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Abstract

We present in this article a precise security model for data confidentiality in the framework of asyn-

chronous and deterministic objects. Our underlying programming model is based on active objects, asyn-

chronous communications, and data-flow synchronizations. We extend its theoretical foundation, a cal-

culus named ASP (Asynchronous Sequential Processes), with security levels attached to activities (active

objects) and transmitted data.

We design a security model in order to guarantee the property of data confidentiality within an applica-

tion; this security model takes advantages of both mandatory and discretionary access models. Then, we

extend the formal semantics of ASP with predicate conditions that provides a formal security framework.

At the same time, it makes it possible to dynamically check for unauthorized information flows. As a

final result, we formally prove that, all authorized communication paths are secure, which means that no

disclosure of information can happen. This theoretically-founded contribution may have a strong impact

on distributed object-based applications, that are more and more present and confidentiality-demanding

on the Internet.

∗Currently at the University of Westminster - Harrow School of Computer Science - Harrow, HA1 3TP (UK).
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1 Introduction

The main contribution of this work is to provide data confidentiality in communications and secure informa-

tion flows by dynamic checks of asynchronous distributed object-based applications.

The proposed security model heavily relies on security policy rules with mandatory enforcements for the

control of information flow. While information flows are generally verified statically [19, 3, 14, 13, 24, 21,

15, 9], our attention is focused on dynamic verifications. To achieve it, our model has an information control

policy that includes discretionary rules, and because these rules are by nature dynamically enforceable, we

can take advantage of the dynamic checks to carry out at the same time all mandatory checks. As another

advantage of this approach, dynamic checks do not require to modify compilers, do not alter the programming

languages, do not require modifications to existing source codes, and provide flexibility at run-time. Thus,

dynamic checks fit well in a middleware layer which, in a non-intrusive manner, provides and ensures security

services to upper-level applications.

Our underlying programming model [7] is based on active objects, asynchronous communications, and

data-flow synchronizations. On the security side, security levels are used to independently tag the entities

involved in the communication events: active objects and transmitted data. These “independent” tagging is

however subject to discretionary rules. The combination of mandatory and discretionary rules allows to relax

the strict controls imposed by the sole use of mandatory rules.

The advantages of our approach are twofold:

a sound foundation. This security model is founded on a strong theoretical background, the Asynchronous

Sequential Processes (ASP) calculus [6], related to well-known formalisms [13, 12, 9, 8]. We extend

the formal semantics of ASP with predicate conditions. This provides a formal basis to our model and,

at the same time, makes it possible to dynamically check for unauthorized accesses. Finally, in order

to prove the correctness of our security model, an intuitive secure information flow property is defined
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and proved to be ensured by the application of access control model.

scalability and flexibility. We also target practical use of this model, with an implementation into middle-

wares, e.g. ProActive [20]. The granularity of our security model is defined in order to make it both

efficient (because there is no security check inside an activity) and finely tunable: levels can be defined

on activities because of the absence of shared memory but a specific level can be given for request

parameters and created activities.

The potential impact of this work lies on the recent changes of paradigms in the area of distributed com-

puting. The service oriented nature of ASP makes communications asymmetric (request and replies) and

asynchronous (futures and wait-by-necessity). This security framework is, to our knowledge, the first to be

adapted to the specificities of these communications.

Section 2 recalls our base model for objects and communications. Section 3 is the core of our contri-

bution. Section 3.1 presents an access control model that can be implemented for ASP. The access control

model conforms to both mandatory and discretionary controls, and applies to simple and independent actions

(activity creation, request and reply transmissions). Section 3.2 defines and verifies an intuitive secure infor-

mation flow property; from the previous independent actions, the concept of information flow is built, and

also the notion of a flow-path is created by chaining basic flows; the property that an information flow is se-

cure if all activity creations, requests and replies transmissions are secure concludes this section. Section 3.3

analyzes the specificity of our security model for service-oriented computing. Next, relation to existing work

is discussed in section 4. Finally, section 5 concludes this article and draws future directions of research.

2 A Model for Objects and Communications

In this section, we introduce an object model and a model of communications; these two models are the

foundation for our security model in section 3.
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2.1 Object Model

The object model used in this work is based on the object-oriented paradigm, and because services are mostly

intended to operate in an asynchronous mode, our work is based on the ASP (Asynchronous Sequential Pro-

cesses) calculus [6]. The ASP calculus is an extension to the ς-calculus [1] where asynchronous communicat-

ing processes prevail. These processes, or activities, are running in parallel, but with their internal operations

executed sequentially. What makes it outstanding are the concepts of active objects, wait-by-necessity, and

futures. An active object is the extension of a “classical” object which acts like any other object but designed

to be run remotely, in an activity, with his own sequential thread of execution. Table 1 presents the formal

ASP language. The classical sequential reduction rules for the semantics description can be found in [6].

a, b ∈ L’ ::= x variable,
| [li = bi;mj = ς(xj , yj)aj ]

i∈1..n
j∈1..m object,

| a.li field access,
| a.li := b field update,
| a.mj(b) method call,
| clone(a) superficial copy,
| Active(a,mj) object activation,
| Serve(m1, ..,mn)n>0 service primitive,
| ι location (not in source).
| a ⇑ f, b a with continuation b

Table 1: The ASP calculus syntax

It is important to note that an activity is composed of only one active object, probably many passive

objects and also probably many references to other active objects. As an example, Figure 1 shows activities α

and β, where activity α has (among other entities) its own active object, two passive objects and a reference

to activity β. Additionally, passive (or “classical”) objects can only be referenced by objects belonging to the

same activity, but any object can reference an active one.

One of the main contribution of ASP is the formalization of futures and request-reply patterns of com-

munication. Futures are generalized references representing promises of reply that can be manipulated as a

classical object (i.e. copied and transmitted inside and between activities) while their real value is not needed.

An operation that needs the value of the object (e.g. a field access) is blocked until the necessary reply occurs.
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This automatic and transparent synchronization mechanism is called wait-by-necessity.
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Figure 1: Example of a parallel configuration

Recalling the ASP syntax and semantics, a parallel configuration is a set of activities (α, β, γ ∈ Act) of

the form: P, Q ::= α[a;σ; ι;F ;R; f ] ‖ β[· · · ] ‖ · · ·

where a is the current term to be reduced; σ is the store containing all objects belonging to activity α; ι is

the active object location; F is the list associating each result of a served request to its futures; R is the list of

pending requests; and f is the future of the current term. Additional semantic notations are: locations ι and

future identifiers fi are local to an activity; a future fα→β
i is defined by an identifier fi, a source activity α

and a destination activity β according to the request; a reference to the active object of activity α is denoted

by AO(α); and a reference to a future is denoted by fut(f α→β
i ).

2.2 Communication Model

The current ASP communication model is based on the parallel reduction rules shown in Table 2. These

rules are based on a copy(ι, σ) operator which performs a deep copy of the store σ starting at location ι and
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(a, σ) →S (a′, σ′) →S does not clone a future

α[a; σ; ι; F ; R; f ] ‖ P −→ α[a′; σ′; ι; F ; R; f ] ‖ P
(LOCAL)

γ fresh activity ι′ 6∈ dom(σ) σ′ = {ι′ 7→ AO(γ)} :: σ σγ = copy(ι′′, σ)

α[R[Active(ι′′, mj)]; σ; ι; F ; R; f ] ‖ P −→ α[R[ι′]; σ′; ι; F ; R; f ] ‖ γ[ι′′.mj(); σγ ; ι′′; ∅; ∅; ∅] ‖ P
(NEWACT)

σα(ι) = AO(β) ι′′ 6∈ dom(σβ) fα→β
i new future ιf 6∈ dom(σα)

σ′

β = Copy&Merge(σα, ι′ ; σβ , ι′′) σ′

α = {ιf 7→ fut(fα→β
i )} :: σα

α[R[ι.mj (ι
′)]; σα; ια; Fα; Rα; fα] ‖ β[aβ ; σβ ; ιβ ; Fβ ; Rβ ; fβ] ‖ P −→

α[R[ιf ]; σ′

α; ια; Fα; Rα; fα] ‖ β[aβ ; σ′

β ; ιβ ; Fβ ; Rβ :: [mj ; ι
′′; fα→β

i ]; fβ] ‖ P

(REQUEST)

R = R′ :: [mj ; ιr; f
′] :: R′′ mj ∈ M ∀m ∈ M, m /∈ R′

α[R[Serve(M)]; σ; ι; F ; R; f ] ‖ P −→ α[ι.mj(ιr) ⇑ f,R[[]]; σ; ι; F ; R′ :: R′′; f ′] ‖ P
(SERVE)

ι′ 6∈ dom(σ) F ′ = F :: {f 7→ ι′} σ′ = Copy&Merge(σ, ι ; σ, ι′)

α[ι ⇑ f ′, a; σ; ι; F ; R; f ] ‖ P −→ α[a; σ′; ι; F ′; R; f ′] ‖ P
(ENDSERVICE)

σα(ι) = fut(fγ→β
i ) Fβ(fγ→β

i ) = ιf σ′

α = Copy&Merge(σβ , ιf ; σα, ι)

α[aα; σα; ια; Fα; Rα; fα] ‖ β[aβ ; σβ ; ιβ ; Fβ ; Rβ; fβ ] ‖ P −→
α[aα; σ′

α; ια; Fα; Rα; fα] ‖ β[aβ ; σβ ; ιβ ; Fβ ; Rβ ; fβ] ‖ P

(REPLY)

Table 2: Parallel reduction

Copy&Merge(σβ , ι′ ; σα, ι) which appends, at the location ι of the store σα, a deep copy of the store σβ

starting at location ι′.

From these reduction rules, the only communication rules are NEWACT, REQUEST and REPLY. Only

these rules are involved in the security framework. Hence, only these three rules are explained below. The

NEWACT reduction rule creates a new activity γ containing the deep copy of an object, with empty values

for the calculated future list, pending request list and current future identifier. A generalized reference to this

activity AO(γ) is stored in the source activity α. In the REQUEST reduction rule, activity α sends a new

request to activity β. The new request [mj ; ι
′′; fα→β

i ] is made up of the target method mj , the location ι′′

of the argument passed in the request message, and the future identifier fα→β
i which will be related to the

response resulting from the request. Note that in location ι′′ there is a deep copy of the argument passed to

the target method. The REPLY reduction rule, takes a reference to a future and updates it with its value. The

reference to the future must exist in one activity α and the corresponding value must have been calculated
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in another activity β. Note that a future f γ→β
i can be updated in an activity different from the origin of the

request (γ 6= α).

3 The Security Model

In this section, we define a security model for our object model in order to guarantee the classic property

of data confidentiality for multi-level security systems: a specific user with the appropriate clearance will be

given access only to the information that he/she is allowed to handle. It is very important not to confuse this

notion of data confidentiality with the (also called) confidentiality provided by encryption mechanisms (i.e.

information obscuring).

We first recall usual notions of access control models and define our model in terms of entities and secured

communications; which means that we formally extend ASP into Secure ASP. Then, we present our notion

of secure information flow between activities with an important property for data confidentiality. We finally

point out a fundamental aspect of the expressiveness of our model for service-oriented computing.

The security terminology used in access controls includes the subjects-objects relationship [23], and be-

cause the word “objects” can be confused with the object concept of Object-Oriented Programming, through

the rest of this paper we will refer to this subject-object relationship as “subject-target”.

3.1 Access Control Model

Access control models are generally classified into mandatory (MAC) or discretionary (DAC) models. The

MAC model can be best described through the Multi-Level Security (MLS) model which is based on a lattice

of security levels assigned to subjects and targets. Once levels are assigned, neither “normal users” nor

processes can change them; making the system more secure against unauthorized access to the information.

The MLS model is suited to address the confidentiality issue in information flows, but its inconvenient is that

in certain cases it is less than adequate for practical systems. As for the case of DAC models, they are based

on an access control matrix relating rights on subjects over targets, where the rights may be assigned at the
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“discretion” of the “normal users” or their processes; this simple form of operation makes it more flexible

compared to MLS.

The solution we propose is based on the concepts of MLS, with analogous notions of “no write-down”

and “no read-up” taken from the model of Bell-LaPadula [4], but in order to avoid its total restrictiveness, it

is modified and extended to cautiously include discretionary rules.

We begin by describing all entities involved in our security framework:

• S is the set of activities acting as subjects and/or targets, where α, β, γ, ... ∈ S; Bell-LaPadula’s model

is not applied as is, so subjects and targets are no longer classical persons/users and documents but

activities (i.e., processes),

• D is the set of objects sent in the arguments of REQUESTS; a REQUEST is now written as Rqα→β(d)

where d = σα(ι′) ∈ D,

• R is the set of objects associated to futures, and returned in REPLIES; a REPLY is now written as

Rpβ→α(r) where r = σβ(ιf ) ∈ R.

Let A be the set of actions involved in the security mechanisms, i.e., REQUEST, REPLY and NEWACT.

The following notations are added to ASP in order to take into account security aspects:

• Security levels λ are taken from a finite set L, partially ordered by the relation ≤, ∀i ∈ S ∪D ∪R, λi ∈ L,

• T = S × S ×A represents the authorized (access) transmissions,

• the matrix M : S × S→P(A) gives explicit (discretionary) rights to assign a level to a given data for

a given action. For each subject-target pair, the matrix contain a set of authorized actions involving the

assignation of a security level. P(A) classically denotes the set of sets of actions. The classic subject-

target-action matrix is extended to include (allowed) security levels. This matrix can be implemented

with a security policy file (e.g. XACML policy files [10]).
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This results in the following characterization of actions (the modified semantics associated to the secured

actions will be given in Table 4 ):

• Nw(γ, λγ) is a modified activity creation rule (NEWACT) in order to assign a security level to an

activity,

• Rqα→β(d, λin) is a modified REQUEST transmission rule in order to allow for the tagging of the

transmitted data with a security level (the programmer assigns a security level to data d),

• Rpβ→α(r) is a REPLY transmission rule unchanged from original ASP.

To summarize, a ∈ A if and only if a = Rqα→β(d, λin) ∨ a = Rpβ→α(r) ∨ a = Nw(γ, λγ). Moreover, to

be precise, M only has values in REQUEST or NEWACT. That is to say, it is not possible in our model to

give to replies a discretionary right.

mt
λindx=b.m ( )

λind

processing
data

λαα
λαa

ms
λα

βλb

mt
βλ

βλβ

r λβ

(task)

targetsubject

Figure 2: Communication between security-marked activities.

The security levels of subjects, targets, data and responses reflect the form of communications handled

by activities. Figure 2 shows this form of communications. All activities are tagged with a security level and

all objects and their methods therein contained will automatically inherit that level (a and b are objects, ms is

the calling method of the source activity, and mt is the target method). Every data d used in a request transfer

is also marked with a security level but this level is independent from that of the source activity.

It is the programmer responsibility to assign the security level to data d. Consequently, the level of the

transmitted data will be added to the syntax of the method call (see Table 3). Even if it is not detailed in

the following, a default behavior should consist in assigning the level of the sender activity to data d sent as
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request parameter. In turn, every value r returned in a reply transfer will automatically be tagged with the

security level of the target method (level inherited from the activity). This form of tagging allows output data

to be independent of input data in the processing method, in other words, the security level for the output data

does not depend on the level of the input data but on the processing of the data itself.

The conditions for secure communications in ASP are then derived and formalized according to our policy

for communications:

Definition 1 (Secure activity creation)

∀α, γ ∈ S : (α, γ,Nw(γ, λγ )) ∈ T ⇐⇒ (λα ≤ λγ) ∨ Nw(γ, λγ) ∈ M(α, γ)

An activity creation Nw(γ, λγ) is authorized if the activity is created with a level greater or equal to the one

of the source activity. Else, if α wants to downgrade the data (i.e., the objects) used to create this new activity

then there must be an explicit right allowing such an operation.

Definition 2 (Secure request transmission)

∀α, β ∈ S : (α, β,Rqα→β(d, λin)) ∈ T ⇐⇒ (λin ≤ λβ) ∧

















((λα > λin) ∧ Rqα→β(d, λin) ∈ M(α, β))

∨ (λα ≤ λin)

∨ ∃γ, δ, fi, d = fut(fγ→δ
i )

















The request transmission Rqα→β(d, λin) is authorized to be emitted if the security level λin of the trans-

mitted data d, is less than or equal to the security level λβ of the target activity β; or, when source activity

α with level λα tries to assign a level λin to data d (i.e. a data downgrading), there is an explicit right

(discretionary rule M(α, β)) granting to the source activity α access to target activity β with this level.

The philosophy behind a secure request transmission is to “release” information only to a target which

holds the appropriate clearance.
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Further on, we also have a safe request transmission if the security level of data λin is greater or equal

than that of the source λα. In that case, we have λα ≤ λin ≤ λβ , showing that activity α safely releases data

d because d has a greater security level, and at the same time, activity β receives a lower level data.

Moreover, a safe request transmission is also achieved when handling future references fut(f γ→δ
i ) as

data. Future references can be freely transmitted between activities because they do not hold any valuable

information. We recall that values associated to futures hold information but future references only hold

addresses or directions pointing to futures. In this sense, if a future reference is known, it does not mean we

can directly get the future value, because anyway, the future value transmission will be performed by, and

submitted to the security rules of, a secure reply transmission.

Definition 3 (Secure reply transmission)

∀α, β ∈ S : (α, β,Rpβ→α(r)) ∈ T ⇐⇒ (λβ ≤ λα) ∨ (∃γ, δ, fi, r = fut(fγ→δ
i ))

The secure reply transmission REPLY Rpβ→α(r) is authorized if the security level λβ of target β is less

than or equal than the security level λα of subject α, or if the transmitted result r only consists of a reference

to a future f γ→δ
i .

Table 3 shows the resulting secure ASP calculus. The secure ASP calculus syntax is based on the ASP

syntax but security information is added to the activation and method call terms.

After attaching a security level to each activity, parallel configurations are now of the following form :

P, Q ::= αλα [a;σ; ι;F ;R; f ] ‖ βλβ [· · · ] ‖ · · ·

Finally, Table 4 presents the semantics of the secure parallel ASP calculus. These semantics rules ensure

secure information flow with secure requests and replies. They use the security information attached to the
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a, b ∈ L′ ::= x variable,
| [li = bi;mj = ς(xj , yj)aj ]

i∈1..n
j∈1..m object definition,

| a.li field access,
| a.li := b field update,
| a.mj(b

λin) method call,
| clone(a) superficial copy,

|Activeλa(a,mj) object activation,
|Serve(M) service primitive,
| ι location
|a ⇑ f, b a with continuation b

Table 3: Secure ASP calculus

activation and method call terms (λa and λin in the Nw(γ, λa) and Rqα→β(d, λin) rules) to verify the secure

transmission and activity creation defined before (Definitions 1, 2 and 3).

When a communication is not authorized, from the formal point of view, it is simply blocked. In practice

a dedicated exception should be raised and appropriately handled.

γ fresh activity ι′ 6∈ dom(σ) σ′ = {ι′ 7→ AO(γ)} :: σ
σγ = copy(ι′′, σ) (α, γ, Nw(γ, λγ)) ∈ T

αλ[R[Activeλa(ι′′, mj)]; σ; ι; F ; R; f ] ‖ P −→
αλ[R[ι′]; σ′; ι; F ; R; f ] ‖ γλa [ι′′.mj(); σγ ; ι′′; ∅; ∅; ∅] ‖ P

(SecNEWACT)

σα(ι) = AO(β) ι′′ 6∈ dom(σβ) fα→β
i new future

ιf 6∈ dom(σα) σ′

β = Copy&Merge(σα, ι′ ; σβ , ι′′)

σ′

α = {ιf 7→ fut(fα→β
i )} :: σα (α, β, Rqα→β(σα(ι′), λin)) ∈ T

αλα [R[ι.mj(ι
′λin)]; σα; ια; Fα; Rα; fα] ‖ βλβ [aβ; σβ ; ιβ ; Fβ ; Rβ; fβ ] ‖ P −→

αλα [R[ιf ]; σ′

α; ια; Fα; Rα; fα] ‖ βλβ [aβ ; σ′

β ; ιβ ; Fβ ; Rβ :: [mj ; ι
′′; fα→β

i ]; fβ ] ‖ P

(SecREQUEST)

σα(ι) = fut(fγ→β
i ) Fβ(fγ→β

i ) = ιf
σ′

α = Copy&Merge(σβ , ιf ; σα, ι) (β, α, Rpβ→α(σβ(ιf ))) ∈ T

αλα [aα; σα; ια; Fα; Rα; fα] ‖ βλβ [aβ; σβ ; ιβ ; Fβ ; Rβ; fβ ] ‖ P −→
αλα [aα; σ′

α; ια; Fα; Rα; fα] ‖ βλβ [aβ ; σβ ; ιβ ; Fβ ; Rβ ; fβ] ‖ P

(SecREPLY)

Table 4: Secure parallel reduction rules

3.2 Secure Information Flow in the Object Model

We formally define the notion of information flow between activities. The considered entities are activities

together with their passive objects, and not passive objects on their own. Because activities can be distributed,
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Non-Interference related notions [11] can not be directly applied to our model.

Next, system-wide information flows are described by a path. The path is the route along which the

information travels, it is constructed by a chain of communicating activities where a subject activity is the

starting-point and a target activity is the end-point of the path. Each information transmission observed on

each activity will serve for the construction of a path. This path will be called flow-path.

Flow-paths fp are lists of activities (fp := α.β. · · · ). They consist of the ordered list of transiting activi-

ties for a given information flow. For example ϕ γ.δ(α, β) means that some information has been transmitted

from activity α to activity β through activities γ and δ. Concatenation of flow-paths fp and fp ′ is denoted

by fp.fp′. By application of the security mechanisms to the non-secure information flow and flow-paths,

a first property results: previous definition of information flow for an activity becomes secure if all activity

creations, requests and replies transmissions are secure. Table 5 defines a secure information flow.

Definition 4 (Secure information flow) An elementary flow of information is either based on the sending of

a request, or on the sending of a reply, or on the creation of an activity. A flow of information is sequentially

composed of several elementary flows. The flow-path of any flow of information is the concatenation of

intermediate activities, it allows us to retrieve the original elementary flows. Secure information flow is

built by concatenation of elementary secure information flows which are secured communications: secure

REQUEST, REPLY, or NEWACT.

(α, β,Rqα→β(σ(ι′), λin)) ∈ T

Secϕ∅(α, β)

(β, α,Rpβ→α(σα(ιf ))) ∈ T

Secϕ∅(β, α)

(α, γ,Nw(γ, λγ )) ∈ T

Secϕ∅(α, γ)

Secϕfp1
(α, γ) Secϕfp2

(γ, β)

Secϕfp1.γ.fp2
(α, β)

Table 5: Secure information flow

The following property states that a flow of information is secured if and only if it follows a secure path.
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Property (Secure path for information flow) A flow of information is secured if and only if it is com-

posed of elementary secure information flows.

Secϕγ1 ···γn(α, β) ⇐⇒ Secϕ∅(α, γ1) ∧ Secϕ∅(γ1, γ2) ∧ · · · ∧ Secϕ∅(γn, β)

The proof of this property is straightforwardly obtained by induction on the length of the information flow

path and by a case analysis on the rules of Table 5.

This property does not take advantage of the MAC aspect of our model. Indeed, the same property could

have been obtained with a purely DAC approach. This property rather shows that our specific and somehow

less restrictive definition of information flow does not compromise secured information flow. A secured

information flow property using the MAC aspect of our security policy is beyond the scope of this study.

More generally, the study of the relation between mandatory and discretionary rules is closely related to the

work of Bertino et al. [5].

Compared with other solutions, our secure information flow is the simple composition of a complex

elementary flow. This results from the adaptation of the security formalism to a specific service-oriented

framework. Complexity of the elementary flow comes from the asymmetric and asynchronous nature of ASP

communications. Once such basic secure communications are ensured, the security of information flows is

verified in a simple and intuitive manner. The soundness of secure information flow is thus ensured by a

precise definition of information in the previous section and the fact that secure communications defined in

Section 3.1 ensure that every information flow must verify the security policy.

3.3 Specificity of Service-Oriented Computing

Future references are first class objects and can be passed between activities (feature known as automatic

continuations), thus they have an important consequence concerning the secured flows of information. Indeed,

without automatic continuations, a flow of replies would directly follow the opposite path that a flow of

requests, In other words, in a classical mandatory ruled system, a request-reply pattern of communications
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can only occur between entities that have the same security level.

A first contribution of this paper is to authorize discretionary exceptions to these rules concerning level

of data transmitted by requests. This allows some request-reply pattern to occur when the request sends non

confidential data.

The possibility to transmit future references leads to a model well adapted specific to service-oriented

computing. Let us focus on the configuration of Figure 3. Let us suppose that λδ ≤ λβ < λγ and consider

futures f2 and f ′
2
. If one did not have automatic continuation, γ could not return the value of future f2 because

it is a future reference to f ′
2. Anyway, δ can reply to γ (because λδ < λγ) but γ cannot forward this result

value to β because λβ < λγ . Indeed, transmitting the result from δ to β would require the following derivation

to perform only authorized communications (not authorized means no reduction rule can be applied and thus

the reply communication is considered as not secure – and then forbidden):

λδ < λγ

(δ, γ,Rpδ→γ(result)) ∈ T

Secϕ∅(δ, γ)

not authorized

(γ, β,Rpγ→β(r′)) /∈ T

Secϕ∅(γ, β)

Secϕγ(δ, β)

One could expect a better behavior because from a general point of view, the reply from δ to β should be

authorized according to the security model. In the example of Figure 3 that means that β has sent a request

and δ cannot reply only because there is an intermediate activity γ. Indeed if the request had not transited by

γ the reply would be authorized.

The secured communication rules state that, as future references do not hold information, they can be

freely transmitted; consequently γ can reply to β if the response is restricted to a future reference. Afterward,

δ can reply directly to β because λδ ≤ λβ , and β obtains the real value associated to f2.
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Figure 3: Information flow between activities.

r = f ′γ→δ
2

(γ, β,Rpγ→β(r)) ∈ T

Secϕ∅(γ, β)

λδ ≤ λβ

(δ, β,Rpδ→β(r)) ∈ T

Secϕ∅(δ, β)

This example justifies the possibility to freely transmit future references and demonstrates a communi-

cation pattern that would not be possible without the expressiveness of futures and the specific secured rules

that exist in our mechanism.

Whereas, in ASP, the order in which future update occur has no consequence on the execution of a

program, this example shows that in Secure ASP it is important to adopt a convenient future update strategy.

4 Related Work

Henessy and Riely present an extension of π-calculus [17, 18], a calculus aimed at distributed systems, ex-

tended through the use of (security) types [13]. We do not employ explicit channels to communicate but the

read and write actions are analogous to receiving or sending requests and replies (a read when the request

or reply is received, and a write when the request or reply is sent). Additionally, their processes may be

analogous to our activities, but in general the security policies are not compatible nor they can be encoded in

our model even with analogous notions.
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Bertino et al. [5] treat exception-based information flow controls in object-oriented systems. They extend

close work from Jajodia, Kogan, Sandhu [16] and Samarati et al. [22] to include operations (exceptions)

normally not allowed by the strict security policy. They use an ACL (discretionary control) to operate on

write and create actions, and with the permissive exceptions, they relax the strict policy imposed on those

same actions. The use of exceptions to alter the strict applications mandatory rules of [5] is similar to the use

of discretionary conditions in our framework. Both mechanisms allow one to bypass the rigorous application

of strict/mandatory access controls.

Attali, Caromel and Contes present high-level rules which define a security policy for GRID applications

built upon ProActive [2]. It is based on a discretionary approach where entities follow a hierarchical struc-

ture and relies on a Public Key Infrastructure. By comparison, our work focuses only on the communication

actions, studies confidentiality in information flows specific to service-oriented applications, and uses both

discretionary and mandatory approaches.

On the practical (implementation) side, Java-like languages that include information flow controls (as in

[3, 19]) could be complemented with our model. They control information flows inside a program, so they

could be enhanced to control all communication interactions with other local and non-local programs, in

either distributed or cooperative systems.

5 Concluding Remarks and Future Work

We have presented a precise security model for the secure information flow in asynchronous and distributed

object-based applications. The solution is mainly founded on three cornerstones: the concept of flow of

information, security levels attached to activities, and the definition of security rules to be applied to all

communications.
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Flow of information was defined to take into account the way information can be handled in the asyn-

chronous object model. This allowed us to demonstrate the specificity of our security mechanism: its appli-

cation to service-oriented computing with replies by the means of futures.

The security policy (involving assignation, use, and definition of security levels) also takes into account

the way information is handled in our model. When confidentiality is involved, there may exist high-level

activities which may need to communicate with low-level activities (action that would normally be denied

by the mandatory access rules of "no write down"). So by also tagging data with a security level we gain

flexibility as the mandatory rules are not broken, and still, with the help of additional discretionary rules, we

guarantee that this kind of actions are explicitly allowed. Communications are then controlled according to

specific security rules. These rules are predefined in the case of mandatory rules, where the security levels of

processes and data are always compared and applied; and in the case of discretionary rules, they are externally

defined (for example in a file describing permissions for the whole system).

This security model has been implemented in the ProActive middleware [20] for distributed and mobile

(Grid) computing, and is currently under evaluation on real-size examples for scalability and flexibility. Mo-

bility of activities is part of the ASP model and the ProActive implementation, but has not been addressed in

this article. In the future, it is also planned to use a role-based access control (RBAC) approach in order to

extend and improve the discretionary access to activities.
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