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Abstract

Previous experiments with high-performance Java were initially disappointing. After several
years of optimization, this paper investigates the current suitability of such object-oriented middle-
ware for High-Performance and Grid programming.

Using a middleware offering high level abstractions (ProActive), we have replaced the standard

Java RMI layer with the optimized Ibis RMI interface. Ibis is a grid programming environment

featuring efficient communications. Using a 3D electromagnetic application (an object-oriented

time domain finite volume solver for 3D Maxwell equations) we have first conducted benchmarks

on single clusters, including comparisons with the same application in Fortran MPI. Finally, Grid
experiments have been conducted simultaneously on up to 5 different clusters.
Overall, the paper reports extremely promising results. For instance, a speed up of 12 on 16

machines (vs. 13.8 for Fortran), a speedup of 100 on 150 machines on a Grid.

1 Introduction

Our work falls in the trend of building high performance middleware with high levels of abstrac-
tions, especially in the context of objects, and the Java language.

The performance issues related to the implementation of RMI have been numerously reported

and some solutions have been proposed. KaRMI [12] pioneered some work, with its fully integrated

middleware, JavaParty [13]. Some important improvement were already achieved.

The solution proposed in this paper goes one step further. It is first based on a grid programming

environment featuring an optimized communication layer, Ibis [16]. Both portable (in Java) and

native protocols are proposed by Ibis, taking advantage of a portable layer (Ibis Portability Layer,

IPL). The second element of our experiment is a high-level environment for the Grid, ProActive [4],

featuring object-oriented group communications, and interactive XML deployments. Both these
middleware can be considered as “application-level tools” which hide the low level details from

the user. They can both use services provided by Globus[7] or other Grid middlewares. Such

environment made it possible to develop a real and demanding application: an object-oriented
solver for 3D Maxwell equations. This computational electromagnetism program relies on a time
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Figure 1. Global architecture of ProActive/Ibis

domain finite volume method [14]. The paper first reports the experiment on a single cluster,

comparing the performance and speed up of the Java version with an equivalent program in
Fortran using MPI. Multi-clusters benchmarks are also presented, executing on the DAS-2 Grid.

In the past, some MPI bindings for Java have been proposed [3, 10] as an alternative solution

to benefit from both the object paradigm and the high-performance achievements. It is clear that
the approach being used here could also be experimented with such MPI binding, just replacing
the RMI layer with an optimized one, however, we will in this paper only consider a fully portable

solution. Other previous work focused on the ease of deployment and usability. In [15], the authors

uses a modified tuple space to offer an approach with various advantages like class downloading
and platform independence through the use of Java. The tuple space paradigm, however, offers
less imperative control.

Section 2 presents the overall middleware architecture with the ProActive functionality, the
Ibis optimizations, and their integration. Section 3 provides a quick overview of the 3D electro-
magnetism application, focusing on the properties needed to understand its parallel performances.
Section 4 details the experiments. After first analyzing the application memory usage, we compare

the execution on ProActive/RMI, ProActive/Ibis, Fortran/MPI on a single cluster. Finally, Grid

experiments on multi-clusters are reported.

2 Building a High level-High performance middleware

Rather than writing a new middleware which would offer a high level of abstraction while
providing high performance, we decided to stack two existing one with respective good records in
their fields of expertise. The main question was whether or not the overall result, shown in Figure
1, would meet our expectations.

In the remaining of the paper, we will refer to RMI as the Sun JDK implementation of RMI,
and to Ibis as the Ibis RMI implementation.
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Figure 2. Application running on top of ProActive

2.1 The ProActive library

ProActive is a Java middleware for parallel, distributed and concurrent programming which
features high level services like weak migration, group communication, security, deployment and

components. The current implementation can use 3 different communication layers: RMI, Jini (for

environment discovery) and a XML based protocol.

2.1.1 Base model

A distributed or concurrent application built using ProActive is composed of a number of medium-
grained entities called active objects. Each active object has its own thread of control, and decides
in which order to serve the incoming method calls that are automatically stored in a queue of
pending requests. Method calls sent to active objects are always asynchronous with transparent

future objects and synchronization is handled by a mechanism known as wait-by-necessity [6]. All

active object running in a JVM belong to a Node which provides an abstraction for their physical
location. At any time, a JVM hosts one or several nodes.

2.1.2 Group communications

The group communication mechanism[1] achieves asynchronous remote method invocation for a

group of remote objects, with automatic gathering of replies.
Given a Java class, one can initiate group communications using the standard public methods of

the class together with the classical dot notation: it is typed group communications. Furthermore,
groups are automatically constructed to handle the result of collective operations, providing an
elegant and effective way to program gather operations.

Using a standard Java class A, here is an example of a typical group creation:

// A group of type "A" is created,

// all its member are created at once on the specified nodes

// we specify here the parameters to be passed to the

// constructor of the objects

Object[][] params = {{...}, ... {...}};

A ag = (A) ProActiveGroup.newGroup("A", params, {node1, ..., node2});

Elements can be dynamically included into a typed group only if their class equals or extends the
class specified at the group creation. Note that we do allow and handle polymorphic groups. For

example, an object of class B (B extending A) can be included to a group of type A. However based

on Java typing, only the methods defined in the class A can be invoked on the group.

A method invocation on a group has a syntax similar to a standard method invocation:

ag.foo(...); // A group communication
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Such a call is asynchronously propagated to all members of the group in parallel using multithread-
ing. Like in the ProActive basic model, a method call on a group is non-blocking and provides a
transparent future object to collect the results. A method call on a group yields a method call on
each of the group members.

An important specificity of the group mechanism is: the result of a typed group communication

is also a group. The result group is transparently built at invocation time, with a future for each

elementary reply. It will be dynamically updated with the incoming results, thus gathering results.

The wait-by-necessity mechanism is also valid on groups: if all replies are awaited the caller blocks,

but as soon as one reply arrives in the result group the method call on this result is executed. For
instance in

V vg = ag.bar(); // A method call on a group with result

... // vg is a typed group of "V",

vg.f(); // Also a collective operation, subject to wait-by-necessity

a new f() method call is automatically triggered as soon as a reply from the call ag.bar() comes

back in the group vg (dynamically formed). The instruction vg.f() completes when f() has been

called on all members.

2.1.3 Deployment Descriptors

The deployment descriptors [4] provide a mean to abstract from the source code of the application

any reference to software or hardware configuration. It also provides an integrated mechanism to
specify external processes that must be launched and the way to do it. The goal is to be able
to deploy an application anywhere without having to change the source code, all the necessary
information being stored in an XML descriptor file. An application using deployment descriptors
has access to an API enabling it to queries its runtime environment for informations like the
number of nodes available. A deployment file is made of three parts. The first one, VirtualNode,
is used to declare nodes name that will be used in the source code of the application. The second
part, Mapping, describes how the virtual nodes are to be mapped to virtual machines. Finally, in
the Infrastructure part, we describe how these virtual machines will be created.

VirtualNode:

jem3DNode

Mapping:

jem3DNode --> VM1 , VM2

Infrastructure:

VM1 --> Local Virtual Machine
VM2 --> SSH host1 then RemoteVM

RemoteVM --> Local Virtual Machine

Figure 3. A simple deployment descriptor

An example of deployment file is given in Figure 3. For the sake of clarity, we have used a pseudo-
code syntax instead of the less readable XML one. We have indicated in italic the symbolic names
which are used as references in the file. These names are used to structure the descriptor and can be
of arbitrary value. In bold references are the actual classes provided by ProActive. The application
which will use this file will be able to use the symbolic name jem3DNode in the source code to
access these resources. When used, this virtual node will be mapped onto two virtual machines,
VM1 and VM2, specified in the infrastructure part. The creation of these virtual machines is as
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follows. The first one will be created locally. The second one will trigger a ssh connection to host1
and then perform the creation of a new local virtual machine there. In this part it is possible
to specify various environment variables such as CLASSPATH to be used for the creation of the
virtual machine.

2.2 The Ibis library

Ibis is a Java-based grid programming environment that allows efficient communication, using
standards techniques that work “everywhere” and optimized solutions for special cases. It can

use networks protocol provided by the JVM, like TCP/IP or UDP, but can also rely on low level

protocols for high speed interconnect like GM, if available. The core of the library is the Ibis
Portability Layer which ensures the interfacing between high level programming models and low
level communication protocols or services. It is possible to write applications using either a source

compatible RMI implementation or other models like Group Method Invocation (GMI[11]) or

divide and conquer parallel programming (Satin[17]).

As noted in previous work [16], in order to increase the performance of RMI, it is possible to work

on two different parts: the RMI protocol and the serialization. The current Sun implementation
of RMI resends type information for each remote call, whereas Ibis caches this information on a
connection basis, reducing the amount of data sent over the network. Two optimizations can be
performed in order to reduce the cost of object serialization. First, the standard Java serialization
uses reflection to convert objects to byte to be sent over the wire. It is possible to avoid this
overhead by generating serialization code for each class that can be serialized, moving most of the
cost from runtime to compile time. This generation is performed by a bytecode rewriter and does
not require the source code of the application. Second, when rebuilding an object graph from a
stream, one has to create objects without calling user defined constructors to avoid side effects. In
standard Java, this task is performed by a private native call which turns out to be more expensive
than a standard new. Ibis associates to each serializable class a generator class which role is to
create objects by invoking a specially generated constructor, greatly reducing the object creation
overhead.

We will, in this paper, focus on the 100% Java version of Ibis in order to retain portability.

2.3 Integration

One of the key decisions in the design of ProActive was that it should be independent from the
communication layer. There are two issues that need to be tackled to do so. First, the references
onto remote objects should not be dependent on the communication layer. From the application
point of view, and to a lower extent from most of the middleware point of view, communicating
using Ibis or RMI should not change anything in the source code. Second, the creation of remote
references should be handled in a way such as, once again, it is fully transparent for the application
or the middleware. The communication related parts of remote references are isolated using the

proxy pattern [9], shielding other parts from communication code like exception handling (Figure

4 left). The creation of the references is handled through the abstract factory pattern [9]. Ob-

taining a remote reference requires requesting it from a factory whose implementation is loaded

based on the requested communication protocol (Figure 4 right). This enables us to delay until

runtime the choice of a communication layer. As a consequence, switching from RMI to Ibis based
communications does not require any source code modification but simply the setting of a Java
property.
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3 A 3D computational electromagnetism application

In order to demonstrate the performance of our middleware, we have conducted extensive ex-

periments using a parallel object oriented numerical simulation tool, Jem3D [2], for 3D electro-

magnetism applications. It is written on top of ProActive to benefit from high level features
like deployment and group communication. In this section we will review the architecture of the
application and its basics principle. We will also carefully study its distribution, drawing basic
properties useful for the understanding of its parallel behavior.

3.1 Overview

Jem3D numerically solves the 3D Maxwell equations modeling time domain electromagnetic
wave propagation phenomena. It relies on a finite volume approximation method designed to deal

with unstructured tetrahedral discretization of the computation domain (see [14] for more details).

A standard test case for which an exact solution of the Maxwell equations exists (therefore

allowing a precise validation of Jem3D with regards to both the numerical kernels and the paral-

lelization aspects) consists in the simulation of the propagation of an eigenmode in a cubic metallic

cavity. For this test case, the underlying tetrahedral mesh is automatically built in a pre-processing
phase of a typical run of Jem3D. This mesh is simply obtained by first defining a Cartesian grid
discretization of the cube and then, dividing each element of this grid in six tetrahedra. Ongoing

Jem3D developments aim at handling general (irregular) tetrahedral meshes and complex geome-

tries. In the sequential version of the application, the cube is divided into tetrahedra where local
calculation of the electromagnetic fields is performed. More precisely, the balance flux is evaluated
as the combination of the elementary fluxes computed through all 4 facets of the tetrahedron.
After each step, the local values calculated in a tetrahedron are passed to its neighbors and a new
local calculation starts. The general algorithm is given in Figure 5 and displays two phases in the
running of the application: the initialization and the calculation. The complexity of the calculation
can be changed by modifying the number of tetrahedra in the cube, which is done through the
mesh size.

Definition 3.1 (Mesh size) The mesh size of a calculation is a triple (m1×m2×m3) fixing the

number of points on the x, y and z axis used for the building of the tetrahedral mesh.

As a consequence, the higher the mesh size, the higher the number of tetrahedra and the more
memory and computation intensive the application.

In the distributed version, the cube is divided into subdomains which can be placed over different
machines.

Definition 3.2 (Domain, Subdomain and Border Face) A domain is the overall volume of

the calculation of the sequential application. A subdomain defines a part of the distributed applica-
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Figure 5. Simpli£ed view of the algorithm used in the jem3D application

tion whose elements are all located in the same address space. The faces of tetrahedra located on
the boundary of a subdomain will be called border faces.

Inside a subdomain, the calculation behaves like in a domain except that tetrahedra located
on the boundary of a subdomain have to communicate their results to ones located in a different
address space through their border faces, using remote calls. We have decided to use, in our
experiments, a cube as opposed to a more complex structure because it can be easily divided into
identical volumes, thus avoiding the creation of a bottleneck between two particular subdomains.
This gives us more control over the execution of our experiments. The division is defined as follow:

Definition 3.3 (Division of the calculation) The division into subdomains is done by speci-

fying a triplet (a, b, c) which indicates the number of subdomains on the x, y and z axis of the

cube.

Given the triplets (m1 ×m2 ×m3) and (a, b, c), the code automatically builds a Cartesian grid

decomposition of the cube (i.e a subdomain is a subcube) such that the interface between two

neighboring subdomains is composed of triangular faces. Thus the resulting decomposition is a
non-overlapping one such that vertices and triangular faces located on an interface are duplicated
in the definition of each of the neighboring subdomains.

3.2 Architecture of the application

Jem3D is written completely in Java on top of ProActive and does not use either third-party
or native libraries to perform the calculation. It can run on any standard Java platform where
ProActive is available. Subdomains are active objects and communication between them is done
through group communication mechanisms. Each communication between subdomains consists of
a linked list whose elements, one for each border face, contain one array of 3 double. A special
object, called the collector ensures the initial synchronization of the subdomains and can perform
monitoring and steering of the application, if needed.

The application works in two steps: first it initialize itself and then the calculation starts. The
initialization part consists in the deployment of the remote JVMs on the nodes of the cluster.
Once the JVMs started, a subdomain is created on each of them. When the creation is over, each
subdomain is linked to its neighbors through a group reference and reports back to the collector
which then starts the computation.
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3.3 Optimal division of the calculation

As noted previously, the network communications take place on the edge of the subdomains so,
assuming that the network is the bottleneck, we need to ensure that these frontiers are minimal,
i.e. we need to find an optimal division for a given mesh size and a given number of nodes.

Definition 3.4 (Communication interface) We will call communication interface the side of

a subdomain where communication with another subdomain takes place. It is made of the set of
half the border faces of all subdomains.

We only take half of all the border faces because each border face located in a subdomain will be
linked to a symmetric one in another subdomain, creating a single interface.

As illustrated in Figure 6, the division into (2, 2, 1) will generate 4 interfaces whereas (4,1,1)

only 3.

Proposition 3.1 Given a cube with edge size n and a division (a, b, c), the number of communi-

cation interfaces between subdomains will be

C = 3abc− bc− a(c + b)

and the area of all the interfaces will be

A = (a + b + c− 3)× n2

Proof : Considering a cube with edge size n with a a×b×c divisions then there will be (a−1)×b×c

interfaces on the x-axis, a× (b− 1)× c on the y-axis and a× b× (c− 1) on the z-axis. Thus the

total number will be 3abc − bc − ac − ab. To evaluate the area of the interfaces, we will consider

the three axis independently. There will be (a − 1) divisions on the x-axis which will generate a

total area of (a− 1)n2. Applying the same reasoning to the other axis concludes the proof. ¥

Although the area of the interfaces is an abstraction which is not used in the calculation, it can
be used to calculate the number of tetrahedron communicating through the interface when the

mesh is uniform (same value for all three axis).

Proposition 3.2 (Border faces on the interface) Considering a cube with a mesh (m, m, m),

and a division a× b× c, the total number of border faces (tetrahedra) located on the interface will

be
N = 2(a + b + c− 3)× (m− 1)2

8



Proof : Using the previous proposition, we are able to devise the area of the interface and it only
remains to compute the number of tetrahedra per unit of area. Considering an area of size m×m,
calculating the number of border faces boils down to computing the number of triangles that can

be constructed by dividing squares of size 1 × 1, which is 2(m − 1)(m − 1). Replacing this result

in the area equation concludes the proof. ¥

As an example, consider the following two divisions: 1 × 1 × 16 and 2 × 2 × 4. Although both

of them will create 16 subdomains, the first one will require 30(m − 1)2 border faces, as opposed

to only 10(m− 1)2 for the second.

Proposition 3.3 (Optimal division) An optimal division of the calculation will be one which

will minimize the number of border faces.

In order to evaluate the effect of distribution over the calculation, we need to be able to link the
sequential and parallel executions. In other word, given a sequential problem, what is the parallel
version whose subdomains are equal in size to the sequential one.

Remark 3.1 (Relation between sequential and distributed problem size) Considering a

sequential experiment using a mesh of size ms1 × ms2 × ms3, its domain will be equivalent to a
subdomain of a distributed application with a mesh size of

[a(ms1 − 1) + 1]× [b(ms2 − 1) + 1]× [c(ms3 − 1) + 1]

and a division (a, b, c), ∀a, b, c ∈ N.

Proof : We proceed as with the previous demonstrations by considering first the x-axis. There
are ms1 points used to build the tetrahedra. Consider an encapsulating domain using 2 identically
sized subdomains, and recall from Definition 3.3 that points located on the interfaces will be
common to both subdomains and so need to be accounted for only once. It is then clear that this
domain should have 2×ms1 − 1 points on the x-axis. Using induction, we can show that ∀a ∈ N

the equivalent domain will have a×ms1 − (a− 1) on the x-axis. Applying the same reasoning to

the remaining axis concludes the proof. ¥

4 Experiments

We will, in this section, study the time taken by our application to perform 100 loops of the

calculation (see Figure 5) using different mesh size and number of nodes. We will compare the

results obtained when using RMI and Ibis. As a reference, we will use a Fortran version of the
same algorithm.

4.1 Experimental test bed

We have conducted our experiments on the Distributed ASCI Supercomputer 2 (DAS-21). The

nodes are composed of Dual Pentium III CPU running at 1Ghz with 1GB or more of memory,
running RedHat Linux and linked with fast-ethernet. Two remote sites of the DAS-2 are connected

through 10Gbits/s connections and the latency between them varies from 1ms to 3ms. We have

used the Sun JDK 1.4.2 for all our experiments. Although IBM’s JDK one was found to be faster

by up to 20%, its Garbage Collector did not work well with our application, sometimes inducing
pauses time of more than 200 seconds. We have thus decided not to use it in our experiments until
we could get smoother and more deterministic executions.

Because of the high memory usage, it was not possible to run Jem3D on a single node for high
mesh values. Nonetheless, in order to be able to calculate the speed-up, we needed to extrapolate
such a value, which could be done using the following remark:

1A detailed description of its architecture can be found at http://www.cs.vu.nl/das2/.
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Remark 4.1 When running on 1 node, the following relation holds

Calculation Length

Number of Tetrahedrons
≈ constant

Because all operations conducted on the list of tetrahedrons are of linear complexity.

Knowing the value of this ratio and the number of tetrahedrons for a given mesh size, we can
calculate the calculation length for any mesh size. The duration we obtain would then be very
close to a real experiment on a node with a sufficient amount of memory.

4.2 Memory usage

Before studying the impact of communications on the application, we first study its memory
usage to know whether it is relying on virtual memory which decreases its performance. We have
instrumented the source code to report the memory used at some key points of the execution, using

the Java commands Runtime.getRuntime().totalMemory() and Runtime.getRuntime().freeMemory().

We wanted to measure first the total amount of memory used for a given mesh size and then, the
overhead of the distribution, using the Remark 3.1.
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Figure 7. Memory used by Jem3D on 1 node

The results, depicted in Figure 7, clearly shows the two phases of our application. During a short
period the memory used greatly increases because of the initialization and then, when performing

the computation, the memory oscillates around an average value. Comparing the sequential (e.g.

21 × 21 × 21) and distributed versions (e.g. 41 × 41 × 41), we can see that there is only little

memory overhead added by the distribution. The main difference being that since the experiments
are longer because of the influence of the remote communications, the garbage collector has a

stronger impact, especially after 60 seconds of execution. Using Ibis instead of RMI (not shown on

the figure) led to an increase of 3% in the memory usage which we do not consider as significant.

4.3 ProActive/Ibis vs ProActive/RMI

First, we have conducted experiments on a part of the DAS-2 cluster in order to check the
importance of the communication layers in an homogeneous environment. All experiments were
run with the same version of the application on top of ProActive, using either RMI or Ibis. The
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Figure 8. ProActive/RMI vs ProActive/Ibis

results are depicted in Figure 8. The left hand part shows the execution time as a function of
the number of nodes used in the computation, for various mesh values. We have indicated the
interpolated time for 1 node using a dashed line. The time for 81 × 81 × 81 on 1 node, which is
2488s, is not depicted on the figure. The right hand side of the figure shows the total amount
of data sent over the network as a function of the number of nodes. Sometimes, increasing the
number of nodes will increase the execution time and the amount of data exchanged. Although we
use the optimal division for the calculation, as described in Proposition 3.3, it does not mean that
increasing the number of nodes will have a matching effect on the number of border faces. Indeed,

for 41× 41× 41 on 4 nodes, the optimal division will be (1, 2, 2) which will generates 6400 border

faces. Considering 5 nodes, the optimal division will be (1, 1, 5) with 12800 border faces. In this

case, increasing the number of nodes involved in the computation will almost double the amount
of data sent over the network, which is clearly visible on the figure. As we can see, there is an
important difference in the execution time when using Ibis or RMI. Using the former, the programs

executes between 20 and 50% faster. The amount of data sent over the network is 10% lower using
Ibis, however, this, in itself, cannot explain the difference in execution and we believe this result is
also achieved because of the faster serialization, which remains an important bottleneck in RMI.

We have indicated the obtained speedup for the application on Figure 9, using the interpolated
value for 1 node when not available. Again, using Ibis instead of RMI increases dramatically the
speedup from around 8 for 81× 81× 81 on 20 nodes to 14.

4.4 Comparison with the Fortran/MPI version

The original algorithm used in Jem3D was actually exploited first in a Fortran/MPI version

called EM3D. We wanted to perform a comparison in order to provide us with some insight on
the relative performance of these two versions. The aim is not to compare Java with Fortran but
rather two implementations of the same algorithm using different architectures and see whether

the distribution of the calculation can be as efficient in Java than in Fortran/MPI.

We only had access to a compiled version of EM3D and thus were not able to instrument it to
perform fine measurements like memory usage. One important difference in the design was that
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EM3D used fixed size data structures to be fine tuned to the available memory and avoid swapping.
As a result, source code modification is needed to reach arbitrary high mesh values. Moreover we
were not able to run it on the DAS-2 cluster because of libraries issues. The following experiments
were thus run on a cluster made of Dual Pentium III running at 933Mhz with 512MB of memory

and linked through 100Mb/s switched network, located in Sophia Antipolis, France. The starting

Time Memory Java/Fortran
Mesh Java Fortran Java Fortran Time Memory

21x21x21 45s 18.9s 78M 59M 2.38 1.32
31x31x31 150s 65s 224MB 164MB 2.30 1.36
41x41x41 387s 156s 483MB 366MB 2.48 1.31

Table 1. Java vs Fortran on 1 node

point for our comparison will be the execution time and memory usage of the sequential versions
of the algorithm. Since we couldn’t modify the Fortran version, the memory, for both applications
was measured using top under Linux and the results are shown in Table 1. The ratio between
the execution time of the Java and Fortran versions is around 2.38 which we believe is a good,
taking into account the differences existing between the two versions and previously published

benchmarks [5] that reported a ratio between 1.24 and 2.70 for some applications. The memory

usage ratio is around 1.33 which, while still being acceptable, can probably be improved since it
has not been, to the best of our knowledge, a goal in the design of Jem3D. We have performed
some simple optimizations on the Java code, like creating dynamic data structures with the final
size instead of having them grow when needed, thus avoiding the creation of temporary variables
and overprovisionned structures.

Considering now the distributed version, whose results can be seen in Figure 10, the Java version
is, to no surprise, still slower than the Fortran one. However, where the ratio of execution time

(Java/Fortran) reached with RMI was almost all the time around 3.5, we achieved a much better

performance with Ibis, lowering it to around 2.5, very close to the sequential one. The speedup
achieved is, in both case, lower than the Fortran one, however, as we increase the mesh size, Ibis
scales better, increasing its speedup to as much as 12 on 16 nodes, compared to 8.8 with RMI and
13.8 with Fortran.
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Figure 10. Execution time and speedup for the Java and Fortran versions

The Sun implementation of RMI seems to be a limiting factor for the performance of distributed
applications. Using a different communication layer, it is possible to increase the performance and

to achieve very good speedups, very close to those obtained using Fortran/MPI.

4.5 Multi-cluster experiments

Following [8] stating that a Grid is a system that coordinates resources without centralized

control, using standard protocols and interfaces to achieve a non trivial quality of service, we
experimented on the DAS-2 Grid. Taking full advantage of it, we were able to perform multi-
cluster experiments by requesting nodes on each of its parts. As an example, the distribution for

an experiment using 8 subdomains distributed on 4 clusters (fs0, fs1, fs2, fs3) is shown in Figure

11. Each subdomain has 3 neighbors with which it exchanges locally calculated values. They all
report to the Collector but, for the sake of clarity, we did not indicate all the communications in the
figure. In the current version we do not take advantage of the network architecture and it might
happen that the repartition of the calculation is sub-optimal, having multiple communications over
slow-links. However we did not find any conclusive proof in our experiments that such a situation
occurred. Indeed, the application demonstrated a very good speedup, even when distributed over
multiple clusters.

In order to have the application run, we had to perform only the following two steps: (i) install

the needed classes on each file system 2, (ii) write a descriptor file which describes the architecture

used for the experiments. The descriptor files basically states that: Jem3D will run on 5 cluster,

1 local (fs0), 4 remotes (fs1, fs2, fs3 and fs4). The deployment process will start from fs0. There,

a PBS command will be issued to book some nodes. To request nodes on the other clusters,
first an ssh connection will be established with each one of them and then, a PBS command will
be issued. Once the nodes granted by the scheduler, JVMs will be created as specified in the
descriptor file, along with a ProActive Runtime which will allow the application to deploy itself.

2It is not necessary to install the application classes since they can be downloaded using dynamic class loading

at the expense of a slower startup, only the middleware ones are needed.
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Figure 12. Benchmarks with all available nodes on the DAS-2 Grid

All these operations are usually handled in scripts or various programs and often requires some
human intervention. Using the deployment mechanism, this can be done automatically from inside
the application which, as a side effect, provides a very useful feature. Since the application can
check, using some ProActive API, the number of nodes which have been allocated, it can adapt
its execution to the available resources. As an example, if Jem3D requests 20 nodes on each of the
four clusters but get only 60 out of 80 because of co-allocation issues, it could either reduce the
size of its calculation or postpone it until enough resources are available, making it self-adaptive
to its environment.

The results of this experiments are shown in Figure 12. Running on a single cluster, the

maximum efficiency reached was 96% on 2 nodes with a mesh of 61× 61× 61 whereas, on multiple

clusters, we had 85.4% on 80 nodes with 201× 201× 201, which is very good considering that we
did not have any control on the distribution of the elements of the calculation.
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5 Conclusion

In this paper we have demonstrated how to take advantage of two complementary middlewares
to offer a platform with high-level abstractions and high performance communications while still

remaining 100% Java. The result is an efficient and highly flexible programming environment
suited for cluster and grid programming.

Extensive experiments on the DAS-2 cluster have shown that, in real applications, the current
implementation of Sun-RMI greatly limits the overall speed and scalability, even with simple data
structures sent over the network like linked lists. Although this had been previously demonstrated
in micro-benchmarks, we believe this is the first time it has been exhibited in a full-scale application.

Comparing the ProActive and a Fortran/MPI versions of Jem3D, we have shown the scalability

of Java, achieving, on 16 nodes, a speedup of 13.8 for Fortran, 12 for ProActive/Ibis and only 8.8

for ProActive/RMI.

The use of a deployment mechanism accessible to the application through both XML and an
API allows the construction of complex configurations spawning multiple clusters. Moreover,
the configuration can be very dynamic, adapting the deployment to the actual number of nodes
obtained. It was indeed possible to run the 3D electromagnetic application on 150 nodes, obtaining
a speedup of around 100.

Although we have, in this paper, advocated a Java middleware to benefit from the “run every-
where” portability, we believe that the use of native code in limited and carefully chosen parts of
the middleware, like low level communication drivers, can bring important benefits with limited
drawbacks. We plan to address this, using Ibis’ multiple protocols, in a future work.

Acknowledgments

We would like to thank Ceriel J.H. Jacobs and Rutger Hofman, from the Vrije Universiteit (The

Netherlands), for their help with this work. We are also grateful to Stephane Lanteri and Said El

Kasmi, from INRIA Sophia-Antipolis (France), for their earlier comments. This work was partly

funded by an INRIA grant.

References

[1] L. Baduel, F. Baude, and D. Caromel. Efficient, Flexible, and Typed Group Communications

in Java. In Joint ACM Java Grande - ISCOPE Conference, pages 28–36, Seattle, 2002. ACM
Press.

[2] L. Baduel, F. Baude, D. Caromel, C. Delbe, S. El Kasmi, N. Gama, and S. Lanteri. A parallel

object-oriented application for 3D electromagnetism. In Proceedings of the 18th International

Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004.

[3] M. Baker, B. Carpenter, S. Ko, and X. Li. mpijava: A java interface to mpi. Presented at

First UKWorkshop on Java for High Performance Network Computing, Europar, 1998.

[4] F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssière. Interactive and Descriptor-Based

Deployment of Object-Oriented Grid Applications. In 11th IEEE International Symposium
on High Performance Distributed Computing HPDC-11, 2002.

[5] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking java against C and

Fortran for scientific applications. In Java Grande, pages 97–105, 2001.

[6] D. Caromel. Towards a Method of Object-Oriented Concurrent Programming. Communica-

tions of the ACM, 36(9):90–102, September 1993.

15



[7] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. In Proceedings

of the Workshop on Environments and Tools for Parallel Scientific Computing, SIAM, Lyon,
France, August 1996.

[8] Ian Foster. What is the grid? a three point checklist. GridToday, July 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[10] V. Getov, P. Gray, and V. Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-

level communication performance. In Proceedings of Supercomputing ’99, Portland, Oregon,
1999.

[11] Jason Maassen, Thilo Kielmann, and Henri E. Bal. GMI: Flexible and efficient group method

invocation for parallel programming. LCR ’02: Sixth Workshop on Languages, Compilers,
and Run-time Systems for Scalable Computer, 2002.

[12] C. Nester, M. Philippsen, and B. Haumacher. A more efficient RMI for java. Concurrent:

Practrice and Experience, 12(7):495–518, 2000.

[13] M. Philippsen and M. Zenger. JavaParty: Transparent remote objects in Java. Concurrency:

Practice and Experience, 9(11):1225–1242, November 1997.

[14] S. Piperno, M. Remaki, and L. Fezoui. A nondiffusive finite volume scheme for the three-

dimensional maxwell’s equations on unstructured meshes. SIAM Journal on Numerical Anal-

ysis, 39(6):2089–2108, 2002.

[15] H. De Sterck, R. S. Markel, T. Phol, and U. Rde. A lightweight java taskspaces framework

for scientific computing on computational grids. In Proceedings of the 2003 ACM symposium
on Applied computing, Melbourne, Florida, 2003.

[16] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann, and

H. E. Bal. Ibis: a flexible and efficient java-based grid programming environment. Concurrency
and Computation: Practice and Experience, to appear.

[17] Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Thilo Kielmann, and Henri E.

Bal. Satin: Simple and efficient java-based grid programming. Accepted for publication in
Journal of Parallel and Distributed Computing Practices, 2004.

16


