
A simple security�aware MOP for Java

Denis Caromel� Fabrice Huet and Julien Vayssi�re

INRIA � CNRS � I�S
Universit� de Nice Sophia�Antipolis

First�Last�sophia�inria�fr

Abstract� This article investigates the security problems raised by the
use of proxy�based runtime meta�object protocols �MOPs� for Java and
provides an approach for making meta�level code transparent to base�
level code� security�wise� We prove that� but giving all permissions only
to the kernel of the MOP and by using Java	s built�in mechanism for
propagating security contexts� the permissions required by base�level and
meta�level code do not interfere� We illustrate this result in the context
of a simple proxy�based runtime MOP that we wrote�

� Introduction

Di�erent authors have suggested using Meta�Object Protocols �MOPs� as an
elegant solution for implementing security mechanisms� However� studying the
security issues raised by MOPs has never been adressed as a problem on its own�

A previous work �	
 provided a set of rules for combining together the per�
missions associated with the di�erent protection domains of a typical re�ective
component�based application� One of the main results was that a proxy�based
runtime MOP implied fewer constraints than other types of MOPs�

This article presents an approach that makes it possible to have� security�
wise� a completely transparent meta�level in the context of a simple proxy�based
runtime MOP that we designed and implemented for Java�

The paper is organised as follows� Section 	 introduces related work� Our
simple proxy�based runtime MOP is described in section �� while section 
 pro�
posed a technique for making this MOP transparent with respect to security�
and section � concludes�

� Related Work

In this section we �rst present an overview of the di�erent kinds of MOPs that
exist for Java� then review some related work on meta�programming and security�

��� Di�erent kinds of MOPs

MOPs come in multiple �avours� Depending on the criterion used� many di�er�
ent classi�cation of MOPs are possible� Ferber �

� for example� �rst proposed

A. Yonezawa and S. Matsuoka (Eds.): REFLECTION 2001, LNCS 2192, pp. 118–125, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Simple Security-Aware MOP for Java 119

to separate between structural and computational re�ection� The former is con�
cerned with the structure of a program� that is its classes� inheritance relations
and so forth� while the later deals with elements that only exist at runtime� such
as method invocation or object creation� Alternatively� it is possible to make a
distinction between implicit and explicit re�ection� which indicates whether the
shifts to the meta�level are visible from the base level or not�
However� we have chosen to follow here a third classi�cation of MOPs that uses
as a criterion the period in the life of a program when meta�objects are actu�
ally in use� The three periods of time we consider are compile�time� load�time

and runtime� A speci�c MOP may use meta�objects at more than one period in
the life of a program� This is why we end up with six di�erent cases �see Fig�
�	� which range from the most static compile�time MOPs to the most dynamic
run�time MOPs�

Loading ExecutionCompilation

Pure load−time MOPs

Pure compile−time MOPs

VM−based runtime MOPs

Proxy−based runtime MOPs{
Fig� �� A classi�cation of MOPs based on when meta�objects are actually in use

Pure compile�time MOPs perform source�to�source transformations� The
di�erence with usual pre�processors is that the translation itself is expressed
as a Java program which handles meta�objects that represent classes� meth�
ods� loops� statements� etc� OpenJava 
�� is an example of such a MOP�

Pure load�time MOPs perform bytecode�to�bytecode transformations� Like
for pure compile�time MOPs� the translation uses meta�objects for providing
an object view of the bytecode representation of a class� Most of the time�
load�time MOPs are implemented through a specialised classloader object�

Proxy�based MOPs introduce hooks into the program in order to reify run�
time events such as method invocation or access to �elds� The hooks are in�
troduced either at compile�time� for example by using a compile�time MOP�
or at load�time by modifying the bytecode for a class �see Kava 
�
�	 or even
at runtime 
�� by using objects that implement the proxy pattern �also called
wrapper objects	� These MOPs do not require any modi�cation to the JVM�
which explains why some low�level events cannot be rei�ed�

VM�based Runtime MOPs rely on a modi�ed JVM in order to intercept
things that only exist at runtime� such as method invocations� On occurrence



120 Denis Caromel, Fabrice Huet, and Julien Vayssière

of such events� control is transferred to meta�level objects that are standard
Java objects� MetaXa ���� Guaran� ���� and Iguana	J �
� are such MOPs�

��� Security and MOPs

The idea of using MOPs for implementing security mechanisms has been explored
in a number of di�erent works ��� ���� However� the problem of studying the
security problems raised by MOPs received little attention so far�

On several occasions� MOP implementors addressed the issue of security in
their work� but mostly as a side note� Oliva and Buzato in �
� present some ideas
on how to discipline the interaction between base�level and meta�level objects
in their VM�based runtime MOP Guaran�� especially with respect to dynamic
recon�guration of the binding between the two levels� Welch and Stroud in ����
also present some security issues raised by their proxy�based run�time MOP
Kava� They introduce the idea of making a clear separation between classes
of the kernel of the MOP that are trusted and untrusted meta�object classes
developed by third parties�

� A simple proxy�based MOP

The purpose of our MOP is to reify two elements of the execution environment
of a Java program� method invocations on objects� and calls to constructors�

��� Mapping base�level objects to meta�objects

Deciding which objects are rei�ed and which are not is done on a per�object
basis� for a given class� non�rei�ed instances are created� as usual� using the new
operator of the Java language� while rei�ed instances are created using a call to
the static method MOP�newInstance of our library�

One of the originalities of our MOP lies in the way the programmer declares
which meta�level class is to be used when a rei�ed instance of a given base�level
class is created� Unlike other MOPs� which use a separate �le for declaring such
mappings� we have chosen to use the interface construct of the Java language
instead� More speci�cally� we have an open�ended set of marker interfaces� which
all inherit� either directly or indirectly� from Reflect �see Fig� ��� Each interface
has a static String �eld that contains the name of a meta�level class and that
can be overridden by sub�interfaces�

A base�level class implements one of these interfaces in order to declare which
meta�object should be associated with a rei�ed instance of this class� When it
is not possible to modify the base�level class� the programmer can subclass the

� as opposed to the invocation of static methods�
� Marker interfaces are interfaces that do not declare any methods but ��ag� a class

with a speci�c property� The use of marker interfaces has become an idiom of the

Java language� as exempli�ed by the Serializable or Cloneable interfaces�



A Simple Security-Aware MOP for Java 121

META_CLASS = "inria.Future"

Future Verbose

META_CLASS = "inria.Verbose"

Reflect Interface MethodCall

pA

A

Extends

Interface Interface Interface

Implements

Active

META_CLASS = "inria.Proxy"

Extends

Meta−level classes

Core MOP classes

inria.Proxy

Implements

InterfaceMetaObject

− Object process (MethodCall)

Base−level classes

Fig� �� Class diagram of the core MOP classes� meta�level classes and base�level classes�

base�level class in order to implement the marker interface in the subclass� This is

the case shown in �gure � where the base�level class pA inherits from class A and

also implements the marker interface Active� If this� in turn� is not possible� the

programmer can still specify which meta�level class to use by passing its name

as a parameter of the call to newInstance�

��� Meta�level classes

Meta�level behaviours are expressed in meta�level classes that all implement the

interface MetaObject� Each time a call to a rei�ed object is intercepted by the

MOP� it is rei�ed into an instance of class MethodCall and passed to the meta�

object associated with the rei�ed object as a parameter to the call to the method

process declared in interface MetaObject�

Our MOP does not impose any constraint on the organisation of the meta�

level� It is up to the meta�level objects to handle the creation and organisation

of the computations that take place at the meta�level�

��� Implementation

We implemented our MOP with two main design goals in mind� to provide a non�

intrusive rei�cation mechanism and to induce as few modi�cations of the source

code as possible when retro��tting existing code with meta�level behaviour�

Transparent interception of method calls is achieved through the use of stub

objects� Stub objects are created and returned by the MOP as the result of the

creation of a rei�ed object and represent the rei�ed object for its clients� Stub

objects are instantiated from stub classes that are type�compatible with the class

of the rei�ed object� Then� it becomes possible to use the stub object wherever

the original non�rei�ed object is expected� What a stub class actually does is



122 Denis Caromel, Fabrice Huet, and Julien Vayssière

simply to rede�ne all the methods it inherits from its superclass� in order to�
within the body of each such method� build an object that represents the call
and pass this object to the meta�object associated with the stub� If needed� stub
classes can be generated on�the��y by our MOP� the source code is generated
and written to the local �le system� compiled and loaded just like any other
locally�available Java class�

� Security and MOP in a single address space

In this section we �rst present a quick overview of the security architecture of
Java � and then show how� within a single virtual machine and under certain
conditions� we obtain an interesting result� using our MOP for adapting base�
level components is perfectly transparent with respect to security�

��� The Security Architecture of Java

The security architecture of Java � �	
 is mostly concerned with access control�
i�e� protecting access to critical local resources such as �les� sockets� or the win�
dowing system� An application is composed of a number of protection domain�
which correspond to a URL where classes can be downloaded from or to a set of
certi�cates that can be used for signing classes� Each protection domain has an
associated set of permissions� each permission consists of a resource �say� a �le�
that we want to protect access to� and an access mode �such as read� write� �����

At runtime� each of the classes loaded inside the virtual machine is associ�
ated with a speci�c protection domain� Whenever a thread performs a call that
requires a speci�c permission� the security manager computes the intersection

of the permission sets of all the protection domains on the execution stack of
the thread� If the resulting set of permissions contains the permission needed for
accessing the resource� the access is granted� otherwise an exception is thrown�

The security architecture of Java also provides the doPrivileged construct
that limits the computation of the intersection of the permissions of the protec�
tion domains where doPrivileged is invoked� and those invoked from it�

��� A security�aware MOP

In the context of an component�based application that runs within a single vir�
tual machine� we want the following property to hold�

In a rei�ed call that crosses the boundary between two protection domains�

the set of permissions under which the rei�ed call is actually executed in the

second protection domain after meta�level processing should be exactly the same

as if the call had not been rei�ed at all�

� Of course� final classes and final methods of non��nal classes cannot be rei�ed�

which is a limitation of our MOP�



A Simple Security-Aware MOP for Java 123

We will now prove that this property holds with our MOP� given that rea�
sonable permissions are given to the di�erent components�

A B
Capturing and restoring
the security contextBase Level

Meta Level Meta

Stub MOP

Fig� �� Chain of calls in a rei�ed call and handling of the security context

Let us consider that we have a component A that calls a method on a com�
ponent B� This method performs an operation that requires an access check�
therefore the set Pstd of the permissions that are needed for the call to succeed
in the standard case is the intersection of the permissions of A and the permis�
sions of B� If the call from A to B is rei�ed with a proxy�based runtime MOP
like ours� we obtain the chain of calls described in �gure �� which lead to the
permission set Pref � If we call P the function that maps protection domains to
their set of permissions� we have

Pstd � P �A��P �B� and Pref � P �A��P �Stub��P �Meta��P �MOP ��P �B�

We will now explain step by step how� by making sensible choices with respect
to which permissions are granted to each of the protection domain in the above
equation� we can build a MOP for which Pstd � Pref �

Capturing and restoring a security context� With the security architecture
of Java �� it is possible to take a snapshot of the set of permissions associated
with the current thread with a call to AccessController�getContext��� This
call returns a AccessControlContext object that represents the permissions
available to the current thread at the moment of the call� This object can be
used later in a call to doPrivileged in order to perform a call under the security
context captured within the AccessControlContext object�

We use this feature for capturing the security context when the call is rei�ed
�in the stub object	� and restoring it later when the rei�ed call is actually per�
formed on the rei�ed object� that is when the execute method is called on the
MethodCall object that belongs to the MOP protection domain �see Fig� �	�

The security context Pcaptured at the moment of the rei�cation of the call is
re�injected inside the component MOP � which leads to

Pcaptured � P �A� � P �Stub� and Pref � Pcaptured � P �MOP � � P �B�



124 Denis Caromel, Fabrice Huet, and Julien Vayssière

and hence Pref � P �A� � P �Stub� � P �MOP � � P �B�

Which is already an improvement over the previous value of Pref because we
have managed to remove the term P �Meta� that corresponds to the permission
set of the meta�object� Capturing and restoring a security context does not re�
quire any modi�cation to the base�level classes or to the meta�object component
Meta� but only to the classes of the MOP�

In the MOP we trust By nature� the classes of the MOP perform security�
sensitive operations� This includes such di�erent things as� for example� reading
standard user properties� writing the source �le of stub classes to the local �le
system and calling the compiler� or using the Re�ection API for invoking non�
public methods� which also requires a speci�c permission�

For all those reasons� we advocate that the protection domain that contains
the base classes for the MOP should be granted all permissions� This means
that� when using a MOP in a component�based application� the MOP must
be fully trusted� which� by the very nature of a MOP� is very much needed
anyway� This does not mean at all that the meta�level classes that implement the
meta�level behaviour �Meta in our example� will all be granted all permissions
because those classes actually belong to a di�erent protection domain� As the
MethodCall class belongs to the protection domain of the MOP� we have

P �MOP � ��

Granting permissions to stub classes With our MOP� stub classes can be
generated either statically or dynamically� If stub classes are generated statically�
it can be assumed that those classes will be bundled with the components that
use them� In our case� this means that stub classes will belong to the same
protection domain as A� and hence

P �A� � P �Stub� � P �A� if stubs are generated statically

If� on the other hand� stubs are generated dynamically� they all go into the
same directory on the local �le system� which then becomes a protection domain
of its own� As the stub classes are generated by the MOP itself� we believe they
should be granted all permissions� It is the MOP that controls what goes into
the code of stub classes� and granting all permissions to stub classes should arise
from granting all permissions to the MOP classes� As a matter of fact� stub
classes never perform any action that may require a permission� all they do is
build meta�objects for reifying calls and forwarding them to the meta�level� As
a consequence� granting all permissions to the protection domain of the stubs is
not a dangerous thing to do� and in terms of permission sets we have	

P �Stub� �� and hence P �A� � P �Stub� � P �A�



A Simple Security-Aware MOP for Java 125

which means that in both cases� either static or dynamic� we end up with
the same relation� The term Pref then rewrites to�

Pref � P �A� � P �B� which is enough for stating that Pstd � Pref

and we have proved that using our MOP with the strategy and permissions
we have implemented does not add or remove permissions to base classes�

� Conclusion

Within the context of a proxy�based runtime MOP for Java� we proved that
it is possible to prevent the security constraints of the base�level and these of
the meta�level from interfering� given that the classes for the MOP �but not the
classes that implement meta�level behaviors� are given all permissions� In the
near future� we plan to widen the scope of the results presented in this paper
and work on designing a general security model for re�ective applications�

References

�� M� Ancona� W� Cazzola� and E� B� Fernandez� Re�ective authorization systems�
Possibilities� bene�ts� and drawbacks� LNCS� ���	�	
�
�� �����


� Denis Caromel and Julien Vayssi�re� Re�ections on MOPs� Components� and Java
Security� In J� Lindskov Knudsen� editor� Proceedings of ECOOP ����� volume

��
 of LNCS� pages 

��
��� Budapest� Hungary� June 
���� Springer�Verlag�

	� Shigeru Chiba and Michiaki Tatsubori� Yet another java�lang�class� In ECOOP���

Workshop on Re�ective Object�Oriented Programming and Systems� Brussels� Bel�
gium� July �����

�� J� Ferber� Computational re�ection in class based object�oriented languages� ACM
SIGPLAN Notices� 
������	���	
�� October �����


� Li Gong� Inside Java � platform security	 architecture
 API design
 and implemen�

tation� Addison�Wesley� Reading� MA� USA� june �����
�� J� Kleinoeder and M� Golm� Metajava� An e�cient run�time meta architecture for

java� Techn� Report TR�I������	� Univ� of Erlangen�Nuernberg� IMMD IV� �����
�� A� Oliva and L� E� Buzato� The design and implementation of Guaran�� In

Proceedings of the Fifth USENIX Conference on Object�Oriented Technologies and

Systems� pages 
�	�
��� The USENIX Association� �����
�� Alexandre Oliva and Luiz Eduardo Buzato� Designing a secure and recon�gurable

meta�object protocol� Technical Report IC������� icunicamp� February �����
�� B� Redmond and V� Cahill� Iguana�J� Towards a dynamic and e�cient re�ective

architecture for Java� In ECOOP ���� Workshop on Re�ection and Metalevel

Architectures� June 
����
��� I� Welch and R� Stroud� From Dalang to Kava � the evolution of a re�ective

Java extension� In Pierre Cointe� editor� Proceedings of the second international

conference Re�ection���� number ���� in LNCS� pages 
 � 
�� Springer� July �����
��� I� Welch and R� J� Stroud� Using re�ection as a mechanism for enforcing security

policies in mobile code� In Proceedings of ESORICS������ number ���
 in Lecture
Notes in Computer Science� pages 	���	
	� October 
����


	1 Introduction
	2 Related Work
	2.1 Different kinds of MOPs
	2.2 Security ans MOPs

	3 A simple proxy-based MOP
	3.1 Mapping base-level objects to meta-objects
	3.2 Meta-level classes
	3.3 Implementation

	4 Security and MOP in a single address space
	4.1 The Security Architecture of Java
	4.2 A security-aware MOP

	5 Conclusion
	References

