A simple security-aware MOP for Java

Denis Caromel, Fabrice Huet and Julien Vayssiére

INRIA - CNRS - I3S
Université de Nice Sophia-Antipolis
First.Last@sophia.inria.fr

Abstract. This article investigates the security problems raised by the
use of proxy-based runtime meta-object protocols (MOPs) for Java and
provides an approach for making meta-level code transparent to base-
level code, security-wise. We prove that, but giving all permissions only
to the kernel of the MOP and by using Java’s built-in mechanism for
propagating security contexts, the permissions required by base-level and
meta-level code do not interfere. We illustrate this result in the context
of a simple proxy-based runtime MOP that we wrote.

1 Introduction

Different authors have suggested using Meta-Object Protocols (MOPs) as an
elegant solution for implementing security mechanisms. However, studying the
security issues raised by MOPs has never been adressed as a problem on its own.

A previous work [2] provided a set of rules for combining together the per-
missions associated with the different protection domains of a typical reflective
component-based application. One of the main results was that a proxy-based
runtime MOP implied fewer constraints than other types of MOPs.

This article presents an approach that makes it possible to have, security-
wise, a completely transparent meta-level in the context of a simple proxy-based
runtime MOP that we designed and implemented for Java.

The paper is organised as follows. Section 2 introduces related work. Our
simple proxy-based runtime MOP is described in section 3, while section 4 pro-
posed a technique for making this MOP transparent with respect to security,
and section 5 concludes.

2 Related Work

In this section we first present an overview of the different kinds of MOPs that
exist for Java, then review some related work on meta-programming and security.
2.1 Different kinds of MOPs

MOPs come in multiple flavours. Depending on the criterion used, many differ-
ent classification of MOPs are possible. Ferber [4], for example, first proposed

A. Yonezawa and S. Matsuoka (Eds.): REFLECTION 2001, LNCS 2192, pp. 118-125, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Simple Security-Aware MOP for Java 119

to separate between structural and computational reflection. The former is con-
cerned with the structure of a program, that is its classes, inheritance relations
and so forth, while the later deals with elements that only exist at runtime, such
as method invocation or object creation. Alternatively, it is possible to make a
distinction between implicit and explicit reflection, which indicates whether the
shifts to the meta-level are visible from the base level or not.

However, we have chosen to follow here a third classification of MOPs that uses
as a criterion the period in the life of a program when meta-objects are actu-
ally in use. The three periods of time we consider are compile-time, load-time
and runtime. A specific MOP may use meta-objects at more than one period in
the life of a program. This is why we end up with six different cases (see Fig.
1), which range from the most static compile-time MOPs to the most dynamic
run-time MOPs.

Pure compile-time MOPs ¢ = o i

Pure load-time MOPs |................... e
S S—

Proxy-based runtime MORE | — 2 o 00 o
rrrrrrrrrrrrrrrrrrrr @

)

!
VM-based runtime MOPs | L -4

Fig. 1. A classification of MOPs based on when meta-objects are actually in use

Pure compile-time MOPs perform source-to-source transformations. The
difference with usual pre-processors is that the translation itself is expressed
as a Java program which handles meta-objects that represent classes, meth-
ods, loops, statements, etc. OpenJava [3] is an example of such a MOP.

Pure load-time MOPs perform bytecode-to-bytecode transformations. Like
for pure compile-time MOPs, the translation uses meta-objects for providing
an object view of the bytecode representation of a class. Most of the time,
load-time MOPs are implemented through a specialised classloader object.

Proxy-based MOPs introduce hooks into the program in order to reify run-
time events such as method invocation or access to fields. The hooks are in-
troduced either at compile-time, for example by using a compile-time MOP,
or at load-time by modifying the bytecode for a class (see Kava [10]) or even
at runtime [7] by using objects that implement the prozy pattern (also called
wrapper objects). These MOPs do not require any modification to the JVM,
which explains why some low-level events cannot be reified.

VM-based Runtime MOPs rely on a modified JVM in order to intercept
things that only exist at runtime, such as method invocations. On occurrence

120 Denis Caromel, Fabrice Huet, and Julien Vayssiere

of such events, control is transferred to meta-level objects that are standard
Java objects. MetaXa [6], Guaran4 [7], and Iguana/J [9] are such MOPs.

2.2 Security and MOPs

The idea of using MOPs for implementing security mechanisms has been explored
in a number of different works [1,11]. However, the problem of studying the
security problems raised by MOPs received little attention so far.

On several occasions, MOP implementors addressed the issue of security in
their work, but mostly as a side note. Oliva and Buzato in [8] present some ideas
on how to discipline the interaction between base-level and meta-level objects
in their VM-based runtime MOP Guarané, especially with respect to dynamic
reconfiguration of the binding between the two levels. Welch and Stroud in [10]
also present some security issues raised by their proxy-based run-time MOP
Kava. They introduce the idea of making a clear separation between classes
of the kernel of the MOP that are trusted and untrusted meta-object classes
developed by third parties.

3 A simple proxy-based MOP

The purpose of our MOP is to reify two elements of the execution environment
of a Java program: method invocations on objects! and calls to constructors.

3.1 Mapping base-level objects to meta-objects

Deciding which objects are reified and which are not is done on a per-object
basis: for a given class, non-reified instances are created, as usual, using the new
operator of the Java language, while reified instances are created using a call to
the static method MOP.newInstance of our library.

One of the originalities of our MOP lies in the way the programmer declares
which meta-level class is to be used when a reified instance of a given base-level
class is created. Unlike other MOPs, which use a separate file for declaring such
mappings, we have chosen to use the interface construct of the Java language
instead. More specifically, we have an open-ended set of marker interfaces? which
all inherit, either directly or indirectly, from Reflect (see Fig. 2). Each interface
has a static String field that contains the name of a meta-level class and that
can be overridden by sub-interfaces.

A base-level class implements one of these interfaces in order to declare which
meta-object should be associated with a reified instance of this class. When it
is not possible to modify the base-level class, the programmer can subclass the

! as opposed to the invocation of static methods.

2 Marker interfaces are interfaces that do not declare any methods but 'flag’ a class
with a specific property. The use of marker interfaces has become an idiom of the
Java language, as exemplified by the Serializable or Cloneable interfaces.

A Simple Security-Aware MOP for Java 121

Reflect | oo [MethodCall | MetaObject o ac
Core MOP classes - Object process (MethodCall)
4Ex(ends ZFmp\emems
[[1
Active | Future | Verbose |l inria.Proxy
Meta-level classes META_CLASS="inriaProxy" META_CLASS="inriaFuture’| [META_CLASS = "inriaVerbose'|

Base-level classes Extends

pA

Fig. 2. Class diagram of the core MOP classes, meta-level classes and base-level classes.

base-level class in order to implement the marker interface in the subclass. This is
the case shown in figure 2 where the base-level class pA inherits from class A and
also implements the marker interface Active. If this, in turn, is not possible, the
programmer can still specify which meta-level class to use by passing its name
as a parameter of the call to newInstance.

3.2 Meta-level classes

Meta-level behaviours are expressed in meta-level classes that all implement the
interface MetaObject. Each time a call to a reified object is intercepted by the
MOP, it is reified into an instance of class MethodCall and passed to the meta-
object associated with the reified object as a parameter to the call to the method
process declared in interface MetaObject.

Our MOP does not impose any constraint on the organisation of the meta-
level. It is up to the meta-level objects to handle the creation and organisation
of the computations that take place at the meta-level.

3.3 Implementation

We implemented our MOP with two main design goals in mind: to provide a non-
intrusive reification mechanism and to induce as few modifications of the source
code as possible when retro-fitting existing code with meta-level behaviour.
Transparent interception of method calls is achieved through the use of stub
objects. Stub objects are created and returned by the MOP as the result of the
creation of a reified object and represent the reified object for its clients. Stub
objects are instantiated from stub classes that are type-compatible with the class
of the reified object. Then, it becomes possible to use the stub object wherever
the original non-reified object is expected. What a stub class actually does is

122 Denis Caromel, Fabrice Huet, and Julien Vayssiere

simply to redefine all the methods it inherits from its superclass® in order to,
within the body of each such method, build an object that represents the call
and pass this object to the meta-object associated with the stub. If needed, stub
classes can be generated on-the-fly by our MOP: the source code is generated
and written to the local file system, compiled and loaded just like any other
locally-available Java class.

4 Security and MOP in a single address space

In this section we first present a quick overview of the security architecture of
Java 2 and then show how, within a single virtual machine and under certain
conditions, we obtain an interesting result: using our MOP for adapting base-
level components is perfectly transparent with respect to security.

4.1 The Security Architecture of Java

The security architecture of Java 2 [5] is mostly concerned with access control,
i.e. protecting access to critical local resources such as files, sockets, or the win-
dowing system. An application is composed of a number of protection domain,
which correspond to a URL where classes can be downloaded from or to a set of
certificates that can be used for signing classes. Each protection domain has an
associated set of permissions, each permission consists of a resource (say, a file)
that we want to protect access to, and an access mode (such as read, write, ...).

At runtime, each of the classes loaded inside the virtual machine is associ-
ated with a specific protection domain. Whenever a thread performs a call that
requires a specific permission, the security manager computes the intersection
of the permission sets of all the protection domains on the execution stack of
the thread. If the resulting set of permissions contains the permission needed for
accessing the resource, the access is granted, otherwise an exception is thrown.

The security architecture of Java also provides the doPrivileged construct
that limits the computation of the intersection of the permissions of the protec-
tion domains where doPrivileged is invoked, and those invoked from it.

4.2 A security-aware MOP

In the context of an component-based application that runs within a single vir-
tual machine, we want the following property to hold:

In a reified call that crosses the boundary between two protection domains,
the set of permissions under which the reified call is actually executed in the
second protection domain after meta-level processing should be exactly the same
as if the call had not been reified at all.

3 Of course, final classes and final methods of non-final classes cannot be reified,
which is a limitation of our MOP.

A Simple Security-Aware MOP for Java 123

We will now prove that this property holds with our MOP, given that rea-
sonable permissions are given to the different components.

Meta Level

Capturing and restoring

Base Level the security context

Fig. 3. Chain of calls in a reified call and handling of the security context

Let us consider that we have a component A that calls a method on a com-
ponent B. This method performs an operation that requires an access check,
therefore the set P,;q of the permissions that are needed for the call to succeed
in the standard case is the intersection of the permissions of A and the permis-
sions of B. If the call from A to B is reified with a proxy-based runtime MOP
like ours, we obtain the chain of calls described in figure 3, which lead to the
permission set P,.r. If we call P the function that maps protection domains to
their set of permissions, we have

Pua = P(A)NP(B) and Pres = P(A) N P(Stub) N P(Meta) N P(MOP) N P(B)

We will now explain step by step how, by making sensible choices with respect
to which permissions are granted to each of the protection domain in the above
equation, we can build a MOP for which Psq = Prey.

Capturing and restoring a security context. With the security architecture
of Java 2, it is possible to take a snapshot of the set of permissions associated
with the current thread with a call to AccessController.getContext (). This
call returns a AccessControlContext object that represents the permissions
available to the current thread at the moment of the call. This object can be
used later in a call to doPrivileged in order to perform a call under the security
context captured within the AccessControlContext object.

We use this feature for capturing the security context when the call is reified
(in the stub object), and restoring it later when the reified call is actually per-
formed on the reified object, that is when the execute method is called on the
MethodCall object that belongs to the MOP protection domain (see Fig. 3).

The security context Peoptured at the moment of the reification of the call is
re-injected inside the component M OP, which leads to

Pcaptured = P(A) n P(Stub) and P’ref = PcaptuTed N P(MOP) n P(B)

124 Denis Caromel, Fabrice Huet, and Julien Vayssiere

and hence P,.; = P(A) N P(Stub) N P(MOP) N P(B)

Which is already an improvement over the previous value of P,y because we
have managed to remove the term P(Meta) that corresponds to the permission
set of the meta-object. Capturing and restoring a security context does not re-
quire any modification to the base-level classes or to the meta-object component
Meta, but only to the classes of the MOP.

In the MOP we trust By nature, the classes of the MOP perform security-
sensitive operations. This includes such different things as, for example, reading
standard user properties, writing the source file of stub classes to the local file
system and calling the compiler, or using the Reflection API for invoking non-
public methods, which also requires a specific permission.

For all those reasons, we advocate that the protection domain that contains
the base classes for the MOP should be granted all permissions. This means
that, when using a MOP in a component-based application, the MOP must
be fully trusted, which, by the very nature of a MOP, is very much needed
anyway. This does not mean at all that the meta-level classes that implement the
meta-level behaviour (Meta in our example) will all be granted all permissions
because those classes actually belong to a different protection domain. As the
MethodCall class belongs to the protection domain of the MOP, we have

P(MOP) = x

Granting permissions to stub classes With our MOP, stub classes can be
generated either statically or dynamically. If stub classes are generated statically,
it can be assumed that those classes will be bundled with the components that
use them. In our case, this means that stub classes will belong to the same
protection domain as A, and hence

P(A) N P(Stub) = P(A) if stubs are generated statically

If, on the other hand, stubs are generated dynamically, they all go into the
same directory on the local file system, which then becomes a protection domain
of its own. As the stub classes are generated by the MOP itself, we believe they
should be granted all permissions. It is the MOP that controls what goes into
the code of stub classes, and granting all permissions to stub classes should arise
from granting all permissions to the MOP classes. As a matter of fact, stub
classes never perform any action that may require a permission, all they do is
build meta-objects for reifying calls and forwarding them to the meta-level. As
a consequence, granting all permissions to the protection domain of the stubs is
not a dangerous thing to do, and in terms of permission sets we have:

P(Stub) = oo and hence P(A) N P(Stub) = P(A)

A Simple Security-Aware MOP for Java 125

which means that in both cases, either static or dynamic, we end up with
the same relation. The term P,..; then rewrites to:

P,.; = P(A) N P(B) which is enough for stating that Psq = Prey

and we have proved that using our MOP with the strategy and permissions
we have implemented does not add or remove permissions to base classes.

5 Conclusion

Within the context of a proxy-based runtime MOP for Java, we proved that
it is possible to prevent the security constraints of the base-level and these of
the meta-level from interfering, given that the classes for the MOP (but not the
classes that implement meta-level behaviors) are given all permissions. In the
near future, we plan to widen the scope of the results presented in this paper
and work on designing a general security model for reflective applications.

References

1. M. Ancona, W. Cazzola, and E. B. Fernandez. Reflective authorization systems:
Possibilities, benefits, and drawbacks. LNCS, 1603:35-50, 1999.

2. Denis Caromel and Julien Vayssiére. Reflections on MOPs; Components, and Java
Security. In J. Lindskov Knudsen, editor, Proceedings of ECOOP 2001, volume
2072 of LNCS, pages 256274, Budapest, Hungary, June 2001. Springer-Verlag.

3. Shigeru Chiba and Michiaki Tatsubori. Yet another java.lang.class. In ECOOP’98
Workshop on Reflective Object-Oriented Programming and Systems, Brussels, Bel-
gium, July 1998.

4. J. Ferber. Computational reflection in class based object-oriented languages. ACM
SIGPLAN Notices, 24(10):317-326, October 1989.

5. Li Gong. Inside Java 2 platform security: architecture, API design, and implemen-
tation. Addison-Wesley, Reading, MA, USA, june 1999.

6. J. Kleinoeder and M. Golm. Metajava: An efficient run-time meta architecture for
java. Techn. Report TR-14-96-03, Univ. of Erlangen-Nuernberg, IMMD 1V, 1996.

7. A. Oliva and L. E. Buzato. The design and implementation of Guarana. In
Proceedings of the Fifth USENIX Conference on Object-Oriented Technologies and
Systems, pages 203—216. The USENIX Association, 1999.

8. Alexandre Oliva and Luiz Eduardo Buzato. Designing a secure and reconfigurable
meta-object protocol. Technical Report 1C-99-08, icunicamp, February 1999.

9. B. Redmond and V. Cahill. Iguana/J: Towards a dynamic and efficient reflective
architecture for Java. In ECOOP 2000 Workshop on Reflection and Metalevel
Architectures, June 2000.

10. I. Welch and R. Stroud. From Dalang to Kava — the evolution of a reflective
Java extension. In Pierre Cointe, editor, Proceedings of the second international
conference Reflection’99, number 1616 in LNCS, pages 2 — 21. Springer, July 1999.

11. 1. Welch and R. J. Stroud. Using reflection as a mechanism for enforcing security
policies in mobile code. In Proceedings of ESORICS’2000, number 1895 in Lecture
Notes in Computer Science, pages 309-323, October 2000.

	1 Introduction
	2 Related Work
	2.1 Different kinds of MOPs
	2.2 Security ans MOPs

	3 A simple proxy-based MOP
	3.1 Mapping base-level objects to meta-objects
	3.2 Meta-level classes
	3.3 Implementation

	4 Security and MOP in a single address space
	4.1 The Security Architecture of Java
	4.2 A security-aware MOP

	5 Conclusion
	References

