
Causal Ordering of Asynchronous Request Services
Christian Delbé†

INRIA - CNRS - Univ. Nice-Sophia Antipolis
2004, Route des Lucioles - BP93 - 06902 Sophia Antipolis Cedex France

Email: Christian.Delbe@inria.fr

Abstract— This paper presents a study that will allow us to
design and prove correctness of fault-tolerance protocols for a
particular middleware model called ASP. This study is based
on Lamport’s happened-before relation and its extension by
Mattern. It takes into account specific relations between events
in an asynchronous request/reply model.

We introduce a partial local order between events that occur
in a single process, and define a minimal characterization of an
execution. After a definition of an ASP-convenient local order,
we define consistent enough cuts in this context.

I. INTRODUCTION

Lamport introduces in [1] the concept of one event hap-
pening before another in a distributed system, and defines a
partial ordering between events. His seminal paper is the first
to emphasize the “causal domain”, in opposition to the “time
domain”: notion of time and simultaneity are avoided. Mattern
presents in [2] a formal model for characterizing a distributed
execution. It consists in a set of events partially ordered by the
Lamport’s happened-before relation. This characterization is
an important foundation for specifying and proving distributed
programs, and particularly for designing and proving correct-
ness of fault-tolerance protocols [3]. Indeed, proving rollback-
recovery protocols needs a way to characterize distributed
executions and states.

The Lamport’s happened-before relation supposes that
events that occur on the same process are totally ordered.
Based on such local events ordering, Lamport defines a partial
global order that also takes into account synchronization
due to message passing between processes. In the context
of asynchronous request/reply communication patterns, such
total ordering of local events is too much restrictive: the
asynchronous service of requests allows to safely exchange
request receptions with some other events.

In this paper, we take into account the kind of events in
the causality relation. A first distinction between message
reception events is drawn in [4]: the authors propose an
algorithm for identifying messages that are not influential in
a computation, and then provide a message logging recovery
scheme that takes into account message semantic. The same
distinction is used in [5] to define the significant precedence
order, and to provide a group protocol that supports the
significantly ordered delivery of messages.

We add a concept similar to significant precedence into
a framework based on asynchronous request services. ASP
(Asynchronous Sequential Process) [6] defines a convenient

†Join work with Ludovic Henrio, Denis Caromel and Françoise Baude.

model of such framework. Our main contribution is an event-
based formalization and properties for designing and proving
fault tolerance protocols. In the next section, we present the
relevant aspects of the ASP calculus, and show why we
introduce a partial order between events that occur on a single
process. The section III show how a distributed execution
can be then characterized. The section IV gives a convenient
relation for ASP, and introduce consistent enough cuts.

II. ASYNCHRONOUS REQUEST SERVICE MODEL

We present in this section a quick overview of the ASP
calculus. We consider mono-threaded activities (processes)
communicating with an asynchronous request and reply mech-
anism. A request from an activity i to another activity j
consists in adding an entry in the pending requests queue of
the activity i. Requests are served by the destination activity:
the destination activity is responsible for reacting later to this
request and associate a result to be returned to the sender This
mechanism is called asynchronous because this request will be
served later by j and meanwhile i can continue its execution
while it does not need the result of the request service. Later
on, j will serve this request and send back to i the result.

In this paper, we focus only on the request service mech-
anism because it has been proved in [6] that, for the ASP
model, the reply mechanism has an important property stating
that replies can be sent in any order without any consequence
on the execution. We will then consider four kinds of events:
request sending, request reception, request service and internal
operation. An internal operation is an event that manipulates
only the internal state of an activity (it does not alter the
pending request queue), and a request service event is the
beginning of the service of a request.

The asynchronous service of requests introduces particular
relations between events on a single process: a request re-
ception event can be safely exchanged with an internal event,
a request or reply sending, or a service of another request.
The consequence is that a computation characterized using
the Lamport’s happened-before relation is too restrictive: the
relative order of some events that occur on the same process
is not relevant to characterize a distributed computation.

The fact that the happened-before relation defines a total
order on the events inside each process makes it inadequate to
an asynchronous request service model. So as to characterize
computations in ASP, we consider a causality relation inside an
activity (called local causality relation) that uniquely defines
a partial order on local events.

III. A PARTIAL LOCAL EVENTS ORDER

This section first presents a model for characterizing dis-
tributed executions, then a partial order on local events is
introduced in order to express only the minimal causality
relation between events. Finally, this partial causality order
is used to obtain a minimal representation for characterizing
an execution.

In the following, i, j, k range over the activities of the
system; ei is an event that occurs on the activity i.

A. Characterizing Executions

Let Sk
i be a state of the activity i. Let us consider

a distributed execution characterized by a set of lists of
events E = {E

0
, ...En}. This execution allows the system to

change from the global state S ini
0

|...|Sini
n to the global state

Sfinal
0

|...|Sfinal
n :

Sini
0

|...|Sini
n

E=E
0
...E

n−−−−−−−−→ Sfinal
0

|...|Sfinal
n

where each Ei occurs on activity i:

Notation 3.1 (local execution): Let Ei be a (totally or-
dered) list of events that occur on an activity i:

Ei = [e1

i , ..., e
m
i]

We suppose that, in each activity, such sets of events are
sufficient to characterize the local computation in the following
manner:

Notation 3.2 (characterization of local execution): We de-
note by + the local execution simulated only from the local
computations Ei in the following manner:

Sini
i + Ei = Sfinal

i

We suppose that this definition is sound, in other words
Sfinal

i is unique in Notation 3.2. In the following, we will
only write Si + Ei if there exists a distributed execution for
which local execution from state Si is characterized by Ei.

B. Partial Local Order

The precedence order is a local order corresponding to the
local causality ordering as defined in Lamport relation:

Notation 3.3 (Precedence order): ex
i →i ey

i for a computa-
tion Ei = [e1

i , ..., e
m
i] if and only if x < y.

Let σ denote permutations of events in local computations.
In the following we will only consider permutations of com-
putations that preserves a given order ≺i :

ex
i ≺i ey

i ⇒ σ(ex
i) ≺i σ(ey

i)

We introduce a local causality relation ≺i characterized as
follow:

Definition 1 (local causality relation): ≺i is a local causal-
ity relation if and only if it verifies:

∀σ, if ex
i ≺i ey

i ⇒ σ(ex
i) ≺i σ(ey

i), then
(

S0

i + Ei = S1

i ∧ S0

i + σ(Ei) = S2

i

)

⇒ S1

i = S2

i

In other words, all permutations of events preserving the
order define by ≺i correspond to equivalent executions.

C. Minimal Characterization of Local Execution

Consequently, a local execution is no longer characterized
by a totally ordered set of events but only by a partially ordered
set, denoted by (Ei,≺i) where Ei is a set of events and ≺i a
local causal order on these events.

Notation 3.4 (generalized local execution):
(Ei,≺i) generalizes a given execution Ei if and only if

{

e ∈ Ei ⇔ e ∈ Ei

e ≺i e′ ⇒ e →i e′

In other words, a correct generalized local execution (Ei,≺i) is
made of contiguous events (elements of Ei) causally ordered
by ≺i. Then a minimal characterization of execution is the
following one:

Notation 3.5 (minimal characterization of local execution):

Si ⊕ (Ei,≺i) = S′

i ⇔

Ei = [e1 . . . ek] ∧
Ei = {el|1 < l < k} ∧
el ≺i em ⇒ l < m ∧
S′

i = Si + Ei

Indeed, in this definition, S′

i is unique because ≺i is causally
correct (Definition 1).

IV. A CAUSALITY RELATION FOR ASYNCHRONOUS

REQUEST SERVICES

This section applies the preceding results to the ASP cal-
culus, and particularly to the specification of consistent global
states. This is considered as a first step towards proving the
correctness of a rollback recovery fault tolerance protocol.

Let M denote a request message, ei is an event that occurs
on the process i, following the classification of events given
in II (request sending, request reception, request service and
internal operation), we obtain:

ei ::= send(M)|rcv(M)|serve(M)|int

Let Γ denote the corresponding pairs of communication
events, Γ defines a bijection between request sending and
request receptions:

Γ = {(es
i , e

r
j)|i 6= j ∧ ∃M, es

i = send(M) ∧ er
j = rcv(M)}

Let Σ denote the pairs associating request receptions with
their services, Σ defines a bijection between request receptions
and request services:

Σ = {(er
i , e

x
i)|er

i →i ex
i ∧∃M, er

i = rcv(M)∧ex
i = serve(M)}

A. Characterizing a request/service execution

In ASP a convenient local causal order is:

Definition 2: ≺i is a transitive partial order such that ex
i ≺i

ey
i if and only if

(ex
i 6= rcv ∧ ey

i 6= rcv ∧ ex
i →i ey

i) ∨ (a)
(ex

i = rcv ∧ ey
i = rcv ∧ ex

i →i ey
i) ∨ (b)

(ex
i , ey

i) ∈ Σi ∨ (c)
∃ei, ex

i ≺i ei ≺i ey
i (d)

This causality relation expresses three kinds of causes:

(a) Evaluation order, that is the order directly given by the
local computation. It is composed of internal, request
sending and service events. Provided that activities are
piecewise deterministic [7], such order does not need to
be remembered to characterize execution because it is a
consequence of the evaluation mechanism. This is mainly
due to the fact that each activity is made of a single
thread.

(b) External event order, that is the order of message re-
ception. This order must be remembered if one wants to
replay an execution: some events can occur in a different
order during the replayed execution (e.g. reception of
requests coming from independent activities) or always
occur in a predefined order (e.g. reception of two requests
coming from the same source activity).

(c) Service order, that is the order relating the reception and
the service of a request.

The definition of the global partial order, as formalized by
Lamport, is unchanged. But since it is based on a partial local
order ≺i, its signification is altered. This global relation is still
defined as follow:

Definition 3 (partial global order): ≺ is a quasi ordering
such that ex

i ≺ ey
j if and only if

ex
i ≺i ey

i ∨
(ex

i , ey
j) ∈ Γ ∨

∃ei, e
x
i ≺ ei ≺ ey

i

B. Consistent Enough Cuts

As defined in [2], a cut is a partially ordered set defined as
follow:

Definition 4: A cut C of an event set E is a finite subset
C ⊆ E such that

e ∈ C ∧ e′ ≺i e ⇒ e′ ∈ C

Checkpointing protocols are usually based on consistent cuts.
A cut is consistent if it verifies:

Definition 5: A cut C is consistent if and only if

e ∈ C ∧ e′ ≺ e ⇒ e′ ∈ C

The partial local order given in IV-A defines a more
permissive notion of consistent cuts. Moreover, an interesting
property of ASP is that requests can be safely added or
removed from the pending request queue. Thus making a cut
consistent can be achieved by adding or removing messages in
the pending request queue but modifying the internal state of
an activity is not possible. Consequently, a cut will be said to
be consistent enough if it can be transformed into a consistent
cut. That means that a cut is consistent enough if there is no
served orphan request.

Definition 6 (consistent enough): A cut C is consistent
enough if and only if

(ex
i , ey

i) ∈ Σ ∧ (ez
j , e

x
i) ∈ Γ ∧ ez

j /∈ C ⇒ ey
i /∈ C

Such a consistency property allows to define new kinds
of consistent global states from which a recovery could be
performed. This is particularly useful because it allows much
more flexibility in the placement of checkpoints: checkpoints
synchronizations (i.e. checkpoints forced by a message recep-
tion) could then be delayed while the communication that
should trigger the checkpoint has no consequence on the
internal state of the activity.

V. CONCLUSION

This paper introduced a partial local order into the Lam-
port’s happened-before relation, which leaded us to a minimal
characterization of a distributed execution. The concept of
consistent enough cuts generalizes, for asynchronous requests
and replies models, the classical consistency of cuts.

Concerning replies, it has been proved in [6] that the order
of reply receptions has no influence on the execution. Thus, the
only causality relation concerning replies is that using a result
necessarily happens after the reception of the corresponding
reply. Adapting the preceding framework mainly relies on this
remark and should not raise any technical difficulty. Indeed
dealing with such out of order replies in a fault tolerance
protocol does not require much causality informations.

This framework has been designed in order to prove the
correctness of fault-tolerance protocols for ASP. However the
partial events ordering introduced in this paper applies as soon
as a message reception has a delayed consequence on the
internal state of the activity (e.g. asynchronous RPC). Indeed
this work could be applied to other systems as soon as a
model provides the semantic of a message and particularly the
first local consequence of a message reception. For example,
such properties also seem easily identifiable in the context of
a distributed shared memory where nodes communicate with
asynchronous read and write messages.

Consequently, generalizing consistent enough cuts by taking
into account a generic partial causality relation seems to be a
promising perspective.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Communications of the ACM, vol. 21, no. 7, July 1978, pp.
558–565.

[2] F. Mattern, “Virtual time and global states of distributed systems,” in
Parallel and Distributed Algorithms: proceedings of the International
Workshop on Parallel And Distributed Algorithms, M. C. et. al., Ed.
Elsevier Science Publishers B. V., 1989, pp. 215–226.

[3] M. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A survey of rollback-
recovery protocols in message passing systems,” School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-96-181, oct 1996.

[4] H. V. Leong and D. Agrawal, “Using message semantics to reduce roll-
back in optimistic message logging recovery schemes,” in International
Conference on Distributed Computing Systems, 1994, pp. 227–234.

[5] T. Enokido, H. Higaki, and M. Takizawa, “Significant message prece-
dence in object-based systems,” in ICPADS, 1998, pp. 284–291.

[6] D. Caromel, L. Henrio, and B. Serpette, “Asynchronous and deterministic
objects,” in Proceedings of the 31st ACM Symposium on Principles of
Programming Languages. ACM Press, 2004.

[7] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,” in
ACM Transactions on Computer Systems, vol. 3, 1985, pp. 204–226.

