
Non-Functional Exceptions for

Distributed and Mobile Objects

Denis Caromel and Alexandre Genoud

INRIA Sophia Antipolis, CNRS - I3S - UNSA
BP 93, 06902 Sophia Antipolis Cedex - France

First.Last@inria.fr

Abstract. While there is quite a lot of techniques to separate non func-
tional properties from functional code, the handling of induced excep-
tions remains often blurred within application. This paper identifies Non-
Functional Exceptions as exceptions related to various failures of non-
functional properties (distribution, transaction or security). We propose
a hierarchical framework where reified exception handlers are attached
to various entities (proxies, remote objects, futures). Such handlers allow
middleware and application oriented handling strategies for distributed
and mobile computation. The mechanism tries to handle exceptions at
non-functional level as much as possible.

1 Introduction

Distributed environments provide synchronous and asynchronous calls, remote
references, migration of activities. Complex communications are subject to var-
ious failures such as the remote communication failure. It is always unclear
whether the failure occurred in the communications medium or in the remote
process, and the state of the system is in general uncertain. Unfortunately, the
try/catch construction is heavy to use, and only convenient for simple commu-
nication errors.

In this article, we define non-functional exceptions as exceptions related to
distribution. We present a hierarchical model based upon handlers of exception.
Sets of handlers are dynamically attached to various entities (JVMs, remote
and mobile objects, proxies, ...) in order to provide a generic and flexible re-
covery mechanism at a non functional level. This model has been implemented
and bench marked in a framework for parallel, distributed and mobile comput-
ing known as ProActive1. As implementation remains simple, the port to other
middlewares is possible.

The first section presents previous works related to exception handling in
distributed architectures. Then, non-functional exceptions are defined and those
related to distribution are classified. The next chapter describe a flexible model
used to handle simple communication failures but also to create advanced fault-
tolerance strategies. Finally, pragmatic examples are presented. Performances
are discussed in the appendix.

1 http://www.inria.fr/oasis/ProActive



2 Denis Caromel and Alexandre Genoud

2 Related Work

Exceptions have been created in ADA in the 1970s and are now a standard mech-
anism to report errors and failures. In distributed environments, they are raised
from host to host and thus are difficult to handle. Through the development of
our distributed library, we realized that standard handling mechanisms are not
appropriate to distribution, as developers must define handling code for every
distributed exception.

Authors of [4] highlight a critical problem that appears when several failures oc-
cur simultaneously. While communications between distant processes are broken,
an unstable state is probably reached. This article suggests to gather communi-
cating processes into a conversation before starting any kind of communication.
Participants first save their own state ; then a set of handlers is associated to
the conversation. All action participants are involved in co-operative handling of
any exception raised by any action participant : the conversation is paused until
the handling process is terminated. When handlers are not sufficient to recover
from failure, the conversation is canceled. Every process checks possible side ef-
fects and rollbacks to its initial state. This collaborative strategy seems really
promising but fails with asynchronism. As the return time of an asynchronous
call is unknown, the lifespan of the conversation is also unknown. The recovery
process could be maintained as long as no result is delivered.

Agents are active objects having autonomous behavior according to their en-
vironment. As mobility is one possible behavior, an agent can decide to migrate
on a different virtual machine. In this context, authors define guardians in [5]
as centralized mechanisms helping agents to handle exceptions related to distri-
bution. Only one guardian is needed for every agents-based application. When
an agent cannot handle an error, the exception is raised to the guardian which
send back instructions. Of course, the handling behavior depends not only of
the nature of the exception but also of the agent environment. When distant
objects become unreachable, the guardian can advise to delay communication.
When critical failures occur, the guardian can terminate agents. An interesting
strategy to handle failures related to the migration of agents could be to find
an equivalent destination using the replication strategy. This centralized model
offers simplicity as it provides only one single guardian even for large distributed
systems. However, many problems would occur if the guardian becomes unreach-
able or crashes.

3 Non-Functional Exceptions

During the conception process, we identified three majors features required for
distributed handling mechanisms : flexibility, genericity and dynamicity. Con-
sidering that previous models did not meet all of these requirements, we decided
to create an original model from scratch based upon a new classification of ex-
ceptions.



Non-Functional Exceptions for Distributed and Mobile Objects 3

3.1 Functional versus Non-Functional

In recent literature, classifications of exceptions are proposed. According to [7],
exceptions can be divided into internal exceptions, raised from and handled
within a method, and external exceptions propagated toward other methods.
This classification is not useful for distributed environments which require com-
plete description of internal failures. In our framework, we consider the mecha-
nism of distribution as a non-functional property [8]. We use this specificity to
define non-functional exceptions as exceptions raised from any non-functional
property.

Definition 1 Non-functional Exceptions announce failures occurring in non
functional properties. They are raised in non-functional code and handled, as
much as possible, within it.

We make a clear difference between functional exceptions, related to abnormal
behavior of applications, and non-functional exceptions, related to failures of
non-functional properties. Exceptions related to distribution should be consid-
ered as non-functional exceptions coming from the middleware. We agree with
the recommendation of [9] which claims that exceptions have to be handled
at meta level. It is much more simple indeed to handle exceptions directly in
internal mechanisms of distribution.

3.2 Location of Non-Functional Exceptions

Distributed environments provide synchronous and asynchronous communica-
tions as describe in [1]. Failures in such communications result in non-functional
exceptions as shown in 1. While in synchronous calls, those exceptions are simply
handled at results delivery, asynchronous calls lead to two solutions. Exceptions
are eventually handled when requests containing reified calls are synchronously
queued. But non-functional exceptions have to be handled in future objects when
pending requests are served or when results are stored within them.

Functional Code

VM A

// v is an active object

// foo returns an int
// The call is synchronous
int result = v.foo();

// The call is asynchronous
B b = v.bar();

// bar returns a reifiable object

b.useResult();
// and used when available
// Result is stored in B,

Non−Functional Code

Handling
Mechanism

Exceptions also occur

at result delivery or

in future objects

Exceptions related to
synchronous calls

calls are stored in queues
exceptions occur when
In asynchronous calls,

Fig. 1. Exceptions Raised from Synchronous and Asynchronous Calls



4 Denis Caromel and Alexandre Genoud

3.3 A Hierarchy of Distributed Exceptions

We first identified and classified potential failures (figure 2) of distributed envi-
ronments. Then, we built a hierarchy of potential failures, opened to developers
who can add new failures and topics. We kept this structure customizable as
flexibility is the most important feature of recovery mechanism. Finally, we asso-
ciated non-functional exception to every failure. This hierarchy is used to define
handling strategies for specific exceptions as well as for groups of exceptions.

Distributed Exceptions

Communication Migration Security Creation Group Services

SendRequest

SendReply

SendCom

ReceiveRequest

ReceiveReply

ReceiveCom

SendRequest

SendReply

SendCom

ReceiveRequest

ReceiveReply

ReceiveCom

SendRequest

SendReply

SendCom

ReceiveRequest

ReceiveReply

ReceiveCom

Serialization
OnDeparture
OnArrival

ActiveObject
Future
ReifyObject

Send Send Send ReceiveReceiveReceive

ServiceFailed

Fig. 2. Hierarchy of Failures Encountered in Distributed Environments

4 A Hierarchical and Dynamic Handling Mechanism

The hierarchy of failures described above is used in the construction of hierar-
chical handlers, working indifferently at functional or non-functional levels.

Definition 2 Handler of exceptions handle non-functional exceptions as well as
groups of such exceptions, thanks to object inheritance.

For instance, a handler can be associated to SendRequestGroupException or to
every member of GroupException (see [10] for detail about group communica-
tions). Handlers provide basic strategies in non-functional code, but application-
specific strategies are also possible. They reify the try/catch construction to
support both genericity and flexibility required by any handling mechanism.
Handlers implement a common interface and provide functional as well as non-
functional treatments of non-functional exceptions.

4.1 Prioritized Levels of Handling

Our mechanism is based upon a default and static level, created during the
middleware initialization, and some dynamic levels set during execution. Each



Non-Functional Exceptions for Distributed and Mobile Objects 5

structure can provide a specific fault tolerance strategy created from an ap-
propriate set of handlers. Every non-functional exception is associated to one
handler in the default level. The default strategy is basic but always present
while complexes strategies appear occasionally in higher levels. We defined six
different levels, associated to constants within the implementation and presented
below from lower to higher priority.

1. Default level is static and initialized in core of applications. This level provide
a basic handling strategy for every non-functional exception.

2. Virtual Machine level is the first level that can be created dynamically. It
offers the possibility to define a general handling behavior for every VM.

3. Remote and Mobile Object level is used to bind handlers to remote objects.
Handlers associated to mobile entities migrate along with them.

4. Proxy level is used to define strategies for references to active objects. When
reference are passed to other VMs, handlers are passed also.

5. Future level is attached to the results of asynchronous calls.
6. Code level allows temporary handlers to be set in the code.

As describe above, the default level provides a basic handling strategy, defined
during the initialization of middleware. Virtual machine level and higher ones
are set dynamically to improve this strategy. Dynamic handlers are created at
runtime and added to an appropriate level (VM, remote object, proxy, future or
code levels).

4.2 Presentation of the API

The API is both used for middleware adaptation (e.g. wireless oriented) and
for distributed application. It consists in two major static functions which offer
settings and configurations of handlers into appropriate levels. The five dynamic
levels are defined with constants.

// Binds one handler to a class of exception at the specified level.

void setExceptionHandler(level, Handler, Exception, Target);

// Removes handler associated to a class of exception at specified

// level. Target is different from null when level is object-related.

Handler unsetExceptionHandler(Level, Exception, Target);

The following example show how to protect an application from commu-
nication failures. We add a handler with the setExceptionHandler primitive.
Communication failures are thus handled for that object.

// Creation of a remote and mobile object with handlers

RO ro = (RO) ProActive.newActive("RO", "//io.inria.fr/VM1");

// A communication handler is dynamically associated

// to the remote object trough its proxy.

setExceptionHandler(ProxyLevel,

"CommunicationHandler",

"CommunicationException",

ro);



6 Denis Caromel and Alexandre Genoud

4.3 Dealing with Mobility

Most of the distributed environments offer remote and mobile objects. Such ob-
jects can migrate from host to host. This additional constraint can break the
continuation of the handling mechanism. The migration process must be modi-
fied to take into account the migration of mobile object handlers. As explained
later, mobile objects and their associated levels remain always gathered. Han-
dling mechanism can be associated to proxy also in order to attach a specific
strategy to remote references.

4.4 Implementation

As explained before, the handling strategy is built upon one static level improved
occasionally with dynamic levels. Handlers are searched with the following ded-
icated function.

// Searches through prioritized levels the handler associated

// to the given class of exception

Handler searchExceptionHandler(Exception, Target);

The following code is part of the middleware and describe how to activate the
handling mechanism. Instead of providing a treatment directly in the try/catch
block, we use the searchExceptionHandler primitive.

try {

// Send the reified method call

sendRequest(methodCall, null);

} catch (NonFunctionalException e) {

// Looks for an appropriate handler and

// use the handler if possible

Handler handler = searchExceptionHandler(e);

if (handler) handler.handle(e);

}

We tried to keep implementation as simple as possible but performance is-
sues were also considered. Levels are implemented with hashmap to provide fast
access to handlers. Considering the memory available in modern computer, we
support time complexity instead of space complexity even if migration increase
memory requirements because of levels associated to mobile objects. The cost is
proportional to the number of handlers contained in the object level.

Reflexion is used to search handlers for a specific class of exception or for the
mother class of a group of exceptions. The algorithm supports generic handlers of
higher levels instead of specific handlers from lower level ; Levels have precedence
over the type of exceptions. For instance, on figure 3, the most suitable handler
for exceptions related to class 02 is found in the highest level. When no handler
is available at remote object level, the search continue in VM an lower level.
This choice, which seems more natural, can be invert.



Non-Functional Exceptions for Distributed and Mobile Objects 7

An exception
occurs

in class O2
VM LEVEL

− Handler O1

− Handler O2

O2
Class

3. Default level is usually used 
when no strategy is defined

1. The search starts in higher level
Handler O1 is preferred to an eventual
Handler O2 from lower levels

REMOTE OBJECT LEVEL

Class
O1 Handler O1

2. Search continues in VM Level

DEFAULT LEVEL

− Handler for every exception

Fig. 3. Levels have Precedence over Exception Type when Searching Handlers

5 Canonical Examples

We present in this section two applications which use our handling mechanism.

5.1 Handling Exceptions in Unconnected Mode (e.g. wireless PDA)

Distributed applications for Personal Digital Assistants should provide an un-
connected mode to handle at least communication exceptions due to broken
connections. We defined a strategy where handlers store requests sent to un-
reachable PDAs in a queue. Time by time, a thread checks if the connection is
restored in order to deliver requests. The point is not to define a sophisticated
strategy, but to show how easily it can be activated. Here is the scheme of such
a PDA-Handler.

Class PDACommunicationHandler implements Handler {

public boolean isHandling(Exception e) {

return (e instanceOf CommunicationException);

}

public void handle(Exception e) {

// A thread testing connectivity is created

if (firstUse) {

connectivityThread = new ConnectivityThread();

}

// Then reified method calls are stored in the

// queue and exceptions are not propagated anymore

queue.store(e.getReifiedMethodCall());

}

}



8 Denis Caromel and Alexandre Genoud

Imagine now that an entity is about to create a mobile object that migrate
on some wireless PDA.

// Creation of a remote and mobile object with handlers

RO ro = (RO) ProActive.newActive("RO", "//io.inria.fr/VM1");

// A communication handler is dynamically associated

setExceptionHandler(ProxyLevel,

"PDACommunicationHandler",

"CommunicationException",

ro);

// The mobile object can now migrate safely

ro.migrateTo("//pagode.inria.fr/VM2");

5.2 Simulating a Centralized Error Manager

The handling mechanism can easily be configured into a centralized error man-
ager similar to the one presented in [5]. We create first a remote object containing
a complete set of prioritized handlers. This object is located on one virtual ma-
chine but is known from every active object of the application. Non-functional
exceptions reporting failure are not handled directly in the active object but are
raised to the centralized error manager instead. A handler corresponding to the
failure is sent back to handle the exception. This strategy does not avoid the
typical problems common to every centralized error manager but offers at least
an efficient centralized handling mechanism, easy to configure.

H1 H3H2 H4

H1’ H2’ H3’

H1" H2" H3" H4" H5"

Centralized GUARDIAN
Contains Set of Handlers

VM ARemote objects notify exceptions
related to distribution. Information
about the level is also provided.

handler according to the context
Guardian searches for a reliable

of exception. Then handlers is sent
back to the remote object

1

2

VM B

Signal exception
Send back a
reliable handler

Legend

Object
Remote

Object
Remote

Object
Remote

Object
Remote

Object
Remote

Fig. 4. Centralized Error Managers are Easy to Implement



Non-Functional Exceptions for Distributed and Mobile Objects 9

6 Conclusion and Perspectives

We defined a dynamic, flexible and generic model to handle non-functional ex-
ceptions. We proposed a classification for non-functional exceptions along with
a hierarchy of prioritized levels. As implementation use the classical try/catch
language construct, the model is reliable for a large panel of modern, object-
oriented, programming languages.

References

1. D. Caromel, W. Klauser and J. Vayssiere. Toward Seamless Computing and Meta-
computing in Java. Concurrency Practice and Experience (September-November
1998) p. 1043-1061 Editor Geoffrey C. Fox, published by Wiley & Sons

2. E. F. Walker, R. Floyd, P. Neves Asynchronous Remote Operation Execution in
Distributed Systems. In Proc. of the Tenth International Conference on Distributed
Computing Systems, May/June 1990.

3. F. Baude, D. Caromel, F. Huet and J. Vayssiere, Communicating Mobile Active
Objects in Java HPCN Europe 2000, Amsterdam - The Netherlands, May 2000

4. Jie Xu, Alexander B. Romanovsky and Brian Randell. Coordinated Exception Han-
dling in Distributed Object Oriented System (Revision and Correction). Depart-
ment of Computing Science, University of Newcastle upon Tyne, Newcastle upon
Tyne, UK.

5. Arnand Tripathi and Robert Miller . Exception Handling in Agent-Oriented Sys-
tems. Advances in Exception Handling Techniques, Springer-Verlag LNCS 2022,
March 2001.

6. Valerie Issarny. Concurrent Exception Handling. Advances in Exception Handling
Techniques 2000: 111-127. Inria Rocquencourt.

7. Alessandro F. Garcia, Cecilia M. F. Rubira, Alexander Romanovsky and Jie Xu.
A Comparative Study of Exception Handling Mechanisms for Building Dependable
Object-Oriented Software. Journal of Systems and Software, Elsevier, Vol. 59, Issue
2, November 2001, p. 197-222.

8. Kiczales, Lamping, Mendhekara, Maeda, Lopes, Loingtier, Irwin. Aspect-Oriented
Programming. Proceedings of ECOOP 97, n 1241 LNCS, Springer-Verlag, June
1997, p. 220-242.

9. Ian S. Welch, Robert J. Stroud and Alexander Romanovsky. Aspects of Excep-
tions at the Meta-Level (Position Paper). Department of Computing, University
of Newcastle upon Tyne.

10. Laurent Baduel, Françoise Baude, Denis Caromel. Efficient, Flexible, and Typed
Group Communications in Java. Proceedings of the Joint ACM Java Grande -
ISCOPE 2002 Conference. Nov. 2002.

11. Anh Nguyen-Tuong. Integrating Fault-Tolerance Techniques in Grid Applications.
Partial Fullfillment of the Requirements for the Degree Doctor of Computer
Science. University of Virginia.



10 Denis Caromel and Alexandre Genoud

Appendix: Time and Space Performances

Space Complexity : Each system contains at least default and virtual machine
levels : some handlers contained by two hashtables.

Strategy Description Number of Handlers Size in Byte

No Handler No handler is provided. We
just pay the cost of an empty
level based upon Hashtable

0 82

Minimal One global and generic
handler achieve application
soundness

1 209

Per Group One handler is provided for
each group of non-functional
exception (see 2)

7 1561

Per Communication Every communication ex-
ception has 2 handlers : re-
mote object level and VM
level

2 * 6 = 12 2833

Table 1. Space Requirements Depends of the Number of Handlers

Time Complexity : Adding and removing handlers do not break overall
performance of the system. Research of handlers is complexity-less, thanks to
hashtable properties. We raised a huge number of exceptions and measured time
to find handlers. The ratio is 1:4.

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000

H
an

dl
in

g 
Ti

m
e 

(in
 m

ill
is

ec
on

d)

Number of Raised Exceptions

try/catch Handling Mechanism
Dynamic Handler Mechanism

Fig. 5. Time Complexity


