Remote Pointcut
- A Language Construct for Distributed AOP

Muga Nishizawa (Tokyo Tech)
Shigeru Chiba (Tokyo Tech)
Michiaki Tatsubori (IBM)

AOSD'04, Lancaster, UK

AOSD'04, Lancaster, UK

Pointcut-advice model

[1Joinpoints

M Program execution is modeled as a sequence
of execution points.

O Join point

000000000000 0AM0O00@000000

m///ointcut
The pattern for

selecting joinpoints

Advice
The code invoked
at the selected join points




AOSD'04, Lancaster, UK

Remote Pointcuts

[0 Pointcut
B Event filter?

[0 Remote Pointcut
B Selects remote events, and
B Executs an advice body (an action) locally.

Q onpoint D newon

AOSD'04, Lancaster, UK

Local Pointcuts

[J Join points and advice on the same host.
[0 A weaver is on a different host.

Join point & Advice

network




AOSD'04, Lancaster, UK

RMI| and Remote Pointcut

[0 Remote Method Invocation

Y

Call expression < » Method body

N

[0 Remote Pointcut

N

Join point

N

< » Advice body

network

AOSD'04, Lancaster, UK

So, what is the research topic?

[0 Examples!

B Practical languages should provide only useful
mechanisms.

B Not a play ground for academic researchers!




AOSD'04, Lancaster, UK

This Talk

[J Our goal

B To modularize crosscutting concerns in
distributed software

[J Motivating problem
B Aspectd can separate them
B But, the implementation is NOT simple
B e.g. a test code for distributed software
[J Our solution
B Remote pointcut

AOSD'04, Lancaster, UK

Test Code for
Distributed Authentication Service

[0 Confirm addUser () is executed on Database
if a client remotely calls registerUser ()

Register a new Authenticator%
user on a DB registerUser() [F
Client

Database _
addUser() B

[0 Authentication service
B Authenticator receives a client request
B Database adds the new user’s information




AOSD'04, Lancaster, UK

|ldeal Design for Test Code

[0 On Client,
B 1. flag = false.
B 2. call registerUser () on Authenticator.

B 3. if addUser () is executed on Database,
then £flag = true.

B 4 assert flag == true.
Authenti;:atglj
registerUser()

Client
Database
addUseri

AOSD'04, Lancaster, UK

Test Code in Java

[0 A crosscutting concern arises in the test program
B Database code must be edited, only for the test

-———

e T Authenticator
24 \
/l - A
y Client \ Database
! 11. Flag = false '
I . \ class Database {
: 2. Call registerUser() \ void addUser(){" ~
| |3. assertfiag == true \ . __422 invoke Callback :
B e *Crosscuttingebncerm -----
| o -7 addthe userto the
| RML~" - d database
" Callback (Remote Metl:g¢lﬂvocation) }
\\ . s }
\ Flag = true L 7




AOSD'04, Lancaster, UK

Test Code in Aspectd

[0 The concern is separated Database

B Database code is not edited class Database {
void addUser() {

Client The concern is add the user to the
separated but, database
1. Pl =ielen three distributed |}

2. Call registerUser()

3. Assert flag == true

I
l
: aspect DatabaseTest {
l
I

sub-modules ‘e
DatabaseTest

before():
Callback — ------ RMi------ execution(void addUser()){
invoke Callback
Flag = true }}

AOSD'04, Lancaster, UK

This Design is Not Satisfactory

[0 When writing the test code, we must consider two
concerns:
B Test
B Distribution
O It requires to divide the code into three sub-modules
O Network processing (RMI) and deployment is needed

We don’t want to
— consider this concern!

1. flag = false. Three distributed sub-modules

2. call registerUser() on
Authenticator.

3. if addUser() is invoked
on Database,
flag = true.

4. Assert flag == ture




AOSD'04, Lancaster, UK

Our Solution
- Remote Pointcut

[ Identifies join points in a program on a
remote host
B Advice is run on a host different from the host
where join points are pointcut
[J Transparently
B Like RMI for distributed OOP

Identified join point

aspect Log { Remote | g|ss Data&ée {
before() : pointeut__ yoid addUser() {
execution(void addUser()) {
System.out.printin(“addUser”);
}

}

AOSD'04, Lancaster, UK

Test Code using a Remote Pointcut

[J We could write the test program as a single
non-distributed module on the client side

AuthenticatorTest Authenticator

(AS pGCt) call registetUser()

1. flag = false call addUser()
2. call registerUser()

3. assert flag == true Database

class Database {
void addUser() {

before(): Remote

cflow(call(void registerUser()))  Point

&&execution(void addUser() }
flag=true =<«—_J T

} }




AOSD'04, Lancaster, UK

Test Code with Remote Pointcuts

aspect AuthenticatorTest extends TestCase {
boolean flag;

o void testRegisterUser() {
Declares and |n|t|a|I|zes\> flag = false;
the flag String userld = "muga", password = "xxx";
. Authenticator auth
Calls reglsterUseLL)\ = (Authenticator) Naming.lookup("auth");
auth.registerUser(userld, password);
Confirms the flag ————assertTrue(flag);
is true }

before(): // remote pointcut

When addUsez () is | cfiow(call(void Authenticator.registerUser()))

executed, the flag is set && execution(void Database.addUser()) {
to true flag = true;
B
15
AOSD'04, Lancaster, UK
DJcutter

- Distributed AOP Language

[J An extension to the Aspectd language
B Remote pointcut
B Remote inter-type declaration

[J Load-time weaving

B A class loader provided by DJcutter
weaves aspects and classes.




AOSD'04, Lancaster, UK

DJcutter: Language Specification

[0 Pointcut
B call, execution, within, target, ...
[0 DJcutter provides pointcut designators similar to
AspectJ’s.
% cflow(Pointcut)
O All join points that remotely occur between the entry
% and exit of each join point specified by Pointcut
|

hosts(Host, ...)
O The join points in execution on the hosts

[0 Advice

B Before, after, and around

AOSD'04, Lancaster, UK

Remote Inter-type Declaration

[0 To declare methods and fields in classes
on a remote host
O They are automatically distributed on the fly

AuthenticatorTest

Append at load-time
Database

boolean containsUser();

aspect AuthenticatorTest {
boolean Database.containsUser(String userld) {
I If the user entry specified by userld is found
Il in the database.
}
}




AOSD'04, Lancaster, UK

Use of Remote Inter-type Declaration

aspect AuthenticatorTest extends TestCase {

void testRegisterUser() {
String userld = "muga”, password = "xxx";
Authenticator auth
= (Authenticator) Naming.lookup("auth");
Database db
= (Database) Naming.lookup(“db”);
Test code remotely = ———*assertTrue(! db.containsUser(userld));
calls the accessor metho auth.registerUser(userld, password);
added by inter-type decl. assertTrue(db.containsUser(userld));
}

boolean Database.containsUser(String userld) {
Declares the accessor _—~ I If the user entry specified by userld is
method on the remote

I/l found in the database.
database »

AOSD'04, Lancaster, UK

Load-time Weaving by DJcutter

e.g. AuthenticatorTest

Load&weave e.g. Authenticator

Aspect source file Distributed software

Class Loader

Compiler (Runtime Infrastructurg

Java bytecode deploy
Load&weave e.g. Database
store Distributed software
Aspect Server e deploy Class Loader

(Runtime Infrastructu;s)a (Runtime Infrastructure)

The users of DJcutter don’t have to manually
deploy the compiled aspects to every host.

10



AOSD'04, Lancaster, UK

Related Work 1

0 Middleware for automatic distribution

B e.g. Addistant [Ecoop01],
J-Orchestra [Ecoop02]

B The distribution concern is completely hidden.

B DJcutter #AspectJ + Addistant

[0 DJcutter selectively hides the distribution
concern,
when users don’t want to see it.

O DJcutter works with existing infrastructure such

as Tomcat, JBoss, Oracle, ...
21

AOSD'04, Lancaster, UK

Related Work 2

[J Distributed AOP languages

B D language framework
JAC (Java Aspect Componenets)

B for modularizing non-functional crosscutting
concerns

1 DJcutter
B Remote pointcut

B for modularizing functional crosscutting
concerns

B without consideration of distribution

22

11



AOSD'04, Lancaster, UK

Conclusion

[J Remote pointcut

B transparently identifies join points on remote
hosts

O Without consideration of distribution concern

[0 Advice is executed on a host different from the host
where join points are identified

O Like RMI for distributed OOP

[0 DJcutter — Distributed AOP Language
B Remote pointcut
B An extension to AspectJ

23

12



