
1

AOSD'04, Lancaster, UK

1

Remote Pointcut
- A Language Construct for Distributed AOP

Muga Nishizawa (Tokyo Tech)
Shigeru Chiba (Tokyo Tech)

Michiaki Tatsubori (IBM)

AOSD'04, Lancaster, UK

2

Pointcut-advice model
Joinpoints

Program execution is modeled as a sequence
of execution points.

Join point

Advice
 The code invoked
 at the selected join points

Pointcut
 The pattern for
 selecting joinpoints

2

AOSD'04, Lancaster, UK

3

Remote Pointcuts
 Pointcut

 Event filter?

 Remote Pointcut
 Selects remote events, and
 Executs an advice body (an action) locally.

Join point

Advice

network

AOSD'04, Lancaster, UK

4

Local Pointcuts
 Join points and advice on the same host.
 A weaver is on a different host.

Weaver

Join point & Advice

network

3

AOSD'04, Lancaster, UK

5

RMI and Remote Pointcut
 Remote Method Invocation

 Remote Pointcut

Call expression Method body

Join point Advice body

network

AOSD'04, Lancaster, UK

6

So, what is the research topic?
 Examples!

 Practical languages should provide only useful
mechanisms.

 Not a play ground for academic researchers!

4

AOSD'04, Lancaster, UK

7

This Talk

 Our goal
 To modularize crosscutting concerns in

distributed software
 Motivating problem

 AspectJ can separate them
 But, the implementation is NOT simple
 e.g. a test code for distributed software

 Our solution
 Remote pointcut

AOSD'04, Lancaster, UK

8

Test Code for
Distributed Authentication Service
 Confirm addUser() is executed on Database

if a client remotely calls registerUser()

 Authentication service
 Authenticator receives a client request
 Database adds the new user’s information

Authenticator

Database

registerUser()

Client

addUser()

Register a new
user on a DB

5

AOSD'04, Lancaster, UK

9

Ideal Design for Test Code
 On Client,

 1. flag = false.
 2. call registerUser() on Authenticator.
 3. if addUser() is executed on Database,

 then flag = true.
 4. assert flag == true.

Authenticator

Database

registerUser()

addUser()

Client

AOSD'04, Lancaster, UK

10

Test Code in Java
 A crosscutting concern arises in the test program

 Database code must be edited, only for the test

1. Flag = false
2. Call registerUser()

3. assert flag == true

class Database {
 void addUser() {
 invoke Callback
 … …
 add the user to the
 database
 }
 … …
}

Client

Flag = true

Callback

Database
Authenticator

RMI
(Remote Method Invocation)

Crosscutting concern

6

AOSD'04, Lancaster, UK

11

Test Code in AspectJ
 The concern is separated

 Database code is not edited

1. Flag = false
2. Call registerUser()

3. Assert flag == true

Client

Flag = true

Callback

class Database {
 void addUser() {

 … …
 add the user to the
 database
 }
}

Database

aspect DatabaseTest {
 before():
 execution(void addUser()){
 invoke Callback
 }
}

DatabaseTest

RMI

The concern is
separated but,
three distributed
sub-modules

AOSD'04, Lancaster, UK

12

This Design is Not Satisfactory
 When writing the test code, we must consider two

concerns:
 Test
 Distribution

 It requires to divide the code into three sub-modules
 Network processing (RMI) and deployment is needed

1. flag = false.
2. call registerUser() on
 Authenticator.

3. if addUser() is invoked
 on Database,

flag = true.
4. Assert flag == ture

Three distributed sub-modules

We don’t want to
consider this concern!

7

AOSD'04, Lancaster, UK

13

Our Solution
- Remote Pointcut

 Identifies join points in a program on a
remote host
 Advice is run on a host different from the host

where join points are pointcut
 Transparently

 Like RMI for distributed OOP

class Database {
 void addUser() {

 … …
 }
}

Remote
pointcut

aspect Log {
 before() :
 execution(void addUser()) {
 System.out.println(“addUser”);
 }
}

Identified join point

AOSD'04, Lancaster, UK

14

Test Code using a Remote Pointcut

 We could write the test program as a single
non-distributed module on the client side

Authenticator

1. flag = false
2. call registerUser()

3. assert flag == true

before():
cflow(call(void registerUser()))
&&execution(void addUser()){
 flag = true
}

call addUser()

Remote
Pointcut

class Database {
 void addUser() {

 }
 … …
}

Database

AuthenticatorTest
(Aspect)

call registerUser()

8

AOSD'04, Lancaster, UK

15

Test Code with Remote Pointcuts
aspect AuthenticatorTest extends TestCase {
 boolean flag;

 void testRegisterUser() {
 flag = false;
 String userId = "muga", password = "xxx";
 Authenticator auth
 = (Authenticator) Naming.lookup("auth");
 auth.registerUser(userId, password);
 assertTrue(flag);
 }

 before(): // remote pointcut
 cflow(call(void Authenticator.registerUser()))
 && execution(void Database.addUser()) {
 flag = true;
 }}

When addUser() is
executed, the flag is set
to true

Confirms the flag
is true

Calls registerUser()

Declares and initializes
the flag

AOSD'04, Lancaster, UK

16

DJcutter
- Distributed AOP Language

 An extension to the AspectJ language
 Remote pointcut
 Remote inter-type declaration

 Load-time weaving
 A class loader provided by DJcutter

weaves aspects and classes.

9

AOSD'04, Lancaster, UK

17

DJcutter: Language Specification
 Pointcut

 call, execution, within, target, …
 DJcutter provides pointcut designators similar to

AspectJ’s.
 cflow(Pointcut)

 All join points that remotely occur between the entry
and exit of each join point specified by Pointcut

 hosts(Host, …)
 The join points in execution on the hosts

 Advice
 Before, after, and around

new

new

AOSD'04, Lancaster, UK

18

Remote Inter-type Declaration
 To declare methods and fields in classes

on a remote host
 They are automatically distributed on the fly

Database

aspect AuthenticatorTest {
 boolean Database.containsUser(String userId) {
 // If the user entry specified by userId is found
 // in the database.
 }
}

boolean containsUser();

Append at load-time
AuthenticatorTest

10

AOSD'04, Lancaster, UK

19

Use of Remote Inter-type Declaration

aspect AuthenticatorTest extends TestCase {

 void testRegisterUser() {
 String userId = "muga", password = "xxx";
 Authenticator auth
 = (Authenticator) Naming.lookup("auth");
 Database db
 = (Database) Naming.lookup(“db”);
 assertTrue(! db.containsUser(userId));
 auth.registerUser(userId, password);
 assertTrue(db.containsUser(userId));
 }

 boolean Database.containsUser(String userId) {
 // If the user entry specified by userId is
 // found in the database.
 }}

Test code remotely
calls the accessor method
added by inter-type decl.

Declares the accessor
method on the remote
database

AOSD'04, Lancaster, UK

20

Load-time Weaving by DJcutter

Aspect source file

Java bytecode

Compiler

Aspect Server
(Runtime Infrastructure)

Class Loader
(Runtime Infrastructure)

store

Distributed software
Load&weave

Load&weave

deploy

deploy

e.g. AuthenticatorTest e.g. Authenticator

e.g. Database

Class Loader
(Runtime Infrastructure)

Distributed software

The users of DJcutter don’t have to manually
deploy the compiled aspects to every host.

11

AOSD'04, Lancaster, UK

21

Related Work 1
 Middleware for automatic distribution

 e.g. Addistant [Ecoop01],
 J-Orchestra [Ecoop02]

 The distribution concern is completely hidden.

 DJcutter ≠AspectJ + Addistant

 DJcutter selectively hides the distribution
concern,
when users don’t want to see it.

 DJcutter works with existing infrastructure such
as Tomcat, JBoss, Oracle, …

AOSD'04, Lancaster, UK

22

Related Work 2
 Distributed AOP languages

 D language framework
JAC (Java Aspect Componenets)

 for modularizing non-functional crosscutting
concerns

 DJcutter
 Remote pointcut
 for modularizing functional crosscutting

concerns
 without consideration of distribution

12

AOSD'04, Lancaster, UK

23

Conclusion
 Remote pointcut

 transparently identifies join points on remote
hosts
 Without consideration of distribution concern
 Advice is executed on a host different from the host

where join points are identified
 Like RMI for distributed OOP

 DJcutter – Distributed AOP Language
 Remote pointcut
 An extension to AspectJ

