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Pointcut-advice model
Joinpoints

Program execution is modeled as a sequence
of execution points.

Join point

Advice
 The code invoked
 at the selected join points

Pointcut
 The pattern for 
 selecting joinpoints
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Remote Pointcuts
 Pointcut

 Event filter?

 Remote Pointcut
 Selects remote events, and
 Executs an advice body (an action) locally.

Join point

Advice

network
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Local Pointcuts
 Join points and advice on the same host.
 A weaver is on a different host.

Weaver

Join point & Advice

network
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RMI and Remote Pointcut
 Remote Method Invocation

 Remote Pointcut

Call expression Method body

Join point Advice body

network
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So, what is the research topic?
 Examples!

 Practical languages should provide only useful
mechanisms.

 Not a play ground for academic researchers!
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This Talk

 Our goal
 To modularize crosscutting concerns in

distributed software
 Motivating problem

 AspectJ can separate them
 But, the implementation is NOT simple
 e.g. a test code for distributed software

 Our solution
 Remote pointcut
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Test Code for
Distributed Authentication Service
 Confirm addUser() is executed on Database

if a client remotely calls registerUser()

 Authentication service
 Authenticator receives a client request
 Database adds the new user’s information

Authenticator

Database

registerUser()

Client

addUser()

Register a new
user on a DB
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Ideal Design for Test Code
 On Client,

 1. flag = false.
 2. call registerUser() on Authenticator.
 3. if addUser() is executed on Database,

                    then flag = true.
 4. assert flag == true.

Authenticator

Database

registerUser()

addUser()

Client
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Test Code in Java
 A crosscutting concern arises in the test program

 Database code must be edited, only for the test

1. Flag = false
2. Call registerUser()

3. assert flag == true

class Database {
  void addUser() {
     invoke Callback
     … …
     add the user to the
     database
  }
    … …
}

Client

Flag = true

Callback

Database
Authenticator

RMI 
(Remote Method Invocation)

Crosscutting concern
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Test Code in AspectJ
 The concern is separated

 Database code is not edited

1. Flag = false
2. Call registerUser()

3. Assert flag == true

Client

Flag = true

Callback

class Database {
  void addUser() {

     … …
     add the user to the
     database
  }
}

Database

aspect DatabaseTest {
  before():
  execution(void addUser()){
     invoke Callback
  }
}

DatabaseTest

RMI

The concern is
separated but, 
three distributed
sub-modules
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This Design is Not Satisfactory
 When writing the test code, we must consider two

concerns:
 Test
 Distribution

 It requires to divide the code into three sub-modules
 Network processing (RMI)  and deployment is needed

1. flag = false.
2. call registerUser() on 
    Authenticator.

3. if addUser() is invoked
    on Database,

flag = true.
4. Assert flag == ture

Three distributed sub-modules

We don’t want to
consider this concern!
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Our Solution
- Remote Pointcut

 Identifies join points in a program on a
remote host
 Advice is run on a host different from the host

where join points are pointcut
 Transparently

 Like RMI for distributed OOP

class Database {
  void addUser() {

     … …
  }
}

Remote 
pointcut

aspect Log {
  before() :
    execution(void addUser()) {
       System.out.println(“addUser”);
    }
}

Identified join point
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Test Code using a Remote Pointcut

 We could write the test program as a single
non-distributed module on the client side

Authenticator

1. flag = false
2. call registerUser()

3. assert flag == true

before(): 
cflow(call(void registerUser()))
&&execution(void addUser()){
               flag = true
}

call addUser()

Remote 
Pointcut

class Database {
  void addUser() {

  }
  … …
}

Database

AuthenticatorTest
(Aspect)

call registerUser()
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Test Code with Remote Pointcuts
aspect AuthenticatorTest extends TestCase {
   boolean flag;

   void testRegisterUser() {
     flag = false;
     String userId = "muga", password = "xxx";
     Authenticator auth
       = (Authenticator) Naming.lookup("auth");
     auth.registerUser(userId, password);
     assertTrue(flag);
   }

   before():    // remote pointcut
     cflow(call(void Authenticator.registerUser()))
     && execution(void Database.addUser()) {
          flag = true;
   }}

When addUser() is 
executed, the flag is set 
to true

Confirms the flag 
is true

Calls registerUser()

Declares and initializes 
the flag
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DJcutter
- Distributed AOP Language

 An extension to the AspectJ language
 Remote pointcut
 Remote inter-type declaration

 Load-time weaving
 A class loader provided by DJcutter

weaves aspects and classes.
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DJcutter: Language Specification
 Pointcut

 call, execution, within, target, …
 DJcutter provides pointcut designators similar to

AspectJ’s.
 cflow(Pointcut)

 All join points that remotely occur between the entry
and exit of each join point specified by Pointcut

 hosts(Host, …)
 The join points in execution on the hosts

 Advice
 Before, after, and around

new

new
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Remote Inter-type Declaration
 To declare methods and fields in classes

on a remote host
 They are automatically distributed on the fly

Database

aspect  AuthenticatorTest {
   boolean Database.containsUser(String userId) {
     // If the user entry specified by userId is found 
     // in the database.
   }
}

boolean containsUser();

Append at load-time
AuthenticatorTest
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Use of Remote Inter-type Declaration

aspect  AuthenticatorTest  extends TestCase {

   void testRegisterUser() {
     String userId = "muga", password = "xxx";
     Authenticator auth
       = (Authenticator) Naming.lookup("auth");
     Database db
       = (Database) Naming.lookup(“db”);
     assertTrue(! db.containsUser(userId));
     auth.registerUser(userId, password);
     assertTrue(db.containsUser(userId));
   }

   boolean Database.containsUser(String userId) {
     // If the user entry specified by userId is
     // found in the database.
   }}

Test code remotely
calls the accessor method
added by inter-type decl.

Declares the accessor 
method on the remote 
database
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Load-time Weaving by DJcutter

Aspect source file

Java bytecode

Compiler

Aspect Server
(Runtime Infrastructure)

Class Loader
(Runtime Infrastructure)

store

Distributed software
Load&weave

Load&weave

deploy

deploy

e.g. AuthenticatorTest e.g. Authenticator

e.g. Database

Class Loader
(Runtime Infrastructure)

Distributed software

The users of DJcutter don’t have to manually 
deploy the compiled aspects to every host. 
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Related Work 1
 Middleware for automatic distribution

 e.g. Addistant [Ecoop01],
       J-Orchestra [Ecoop02]

 The distribution concern is completely hidden.

 DJcutter ≠AspectJ + Addistant

 DJcutter selectively hides the distribution
concern,
when users don’t want to see it.

 DJcutter works with existing infrastructure such
as Tomcat, JBoss, Oracle, …
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Related Work 2
 Distributed AOP languages

 D language framework
JAC (Java Aspect Componenets)

 for modularizing non-functional crosscutting
concerns

 DJcutter
 Remote pointcut
 for modularizing functional crosscutting

concerns
 without consideration of distribution
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Conclusion
 Remote pointcut

 transparently identifies join points on remote
hosts
 Without consideration of distribution concern
 Advice is executed on a host different from the host

where join points are identified
 Like RMI for distributed OOP

 DJcutter – Distributed AOP Language
 Remote pointcut
 An extension to AspectJ


