
Denis Caromel 1

Denis Caromel
Institut universitaire de France (IUF)

INRIA Sophia-Antipolis – CNRS – I3S – Université de Nice

Luis Mateu
DCC – Universidad de Chile

Eric Tanter
DCC – Universidad de Chile – Ecole des Mines de Nantes

SOM: Sequential Object Monitors

1. SOM Principles
2. Scheduling Strategy and API
3. Examples
4. Implementation and Benchmarks

Denis Caromel 2

Thread Locks, Notify, Synchronization

wait/notifyAll of
Java monitors are:

• Difficult to understand for
most programmers

• Inefficient: may trigger lots
of thread context-switches

• Tangling of synchronization
concern with application logic

Not “Sequential”:
many pending, interleaved, method calls

Denis Caromel 3

Denis Caromel 4

SOM Orientations

• Easier to understand:
• Sequentiality of monitor code

• Efficient:
• Minimize thread context-switches

• Separation of concerns:
• Separate synchronization code
• from application code

Denis Caromel 5

SOM: an Object and a thread-less scheduler

(1) Method
call
reification
in queue

(2)
Schedule
method

(3) Request
execution

Denis Caromel 6

Example: A Buffer

public class Buffer {
 List list= new LinkedList();

 public void isEmpty() { return list.size()==0; }
 public void isFull() { return list.size()==10; }

 public void put(Object o) { list.add(o); }
 public Object get() {
 return list.remove(o);

 }

}

Denis Caromel 7

The Full Scheduler for buffer-like classes

Denis Caromel 8

SOM Principles

• Any method invocation on a SOM:
• reified as a request, and
• delayed in a pending queue until scheduled

• The scheduling method is:
• guaranteed to be executed if a request may be scheduled

• A scheduled request is executed:
• in mutual excusion with other requests and scheduling

Denis Caromel 9

What’s in the name ?

S
O
M

bject: Method Call,

 Reification: Request

equential:no
interleaving,
 ”run-to-completion” action

onitor:Mutual Exclusion

Denis Caromel 10

Scheduling:

 Principles and API

Denis Caromel 11

SOM Strategy and Guarantees

• No infinite busy execution of scheduling method

• schedule() is called by caller threads, in mutual exclusion:
• When a new request arrives
• After a request has been executed

• No additional thread is needed to execute schedule

Denis Caromel 12

Invocation of schedule()

get()

put()

schedule()

schedule()

schedule()

Consumer Producer

public void schedule() {

 if (buffer.isEmpty())

 scheduleOldest("put");

 else if (buffer.isFull())

 scheduleOldest("get");

 else

 scheduleOldest();

}

execution
of get

execution
of get

schedule()

Denis Caromel 13

SOM Strategy and Guarantees

• Several requests can be scheduled at a time:
• requests executed by their caller threads, in scheduling order
•schedule will not be called again before all scheduled requests complete

• After a request is executed:
• the caller thread does at most one schedule

Denis Caromel 14

Principle
 for the

scheduling API

Standard class:

class Buffer {
 ...
 void put(Object o) { ... }
 Object get() { ... }
 boolean isEmpty() { ... }
 boolean isFull() { ... }
}

Denis Caromel 15

Scheduler API

scheduleOldest ();
scheduleOldest (“get”);
scheduleAll(“exitRead”);
scheduleOlderThan(“foo”,”bar”);

scheduleAll(new RequestFilter()
 boolean accept(Request req){
 if … return true
 if … return false
 … });

Denis Caromel 16

Fair

Reader Writer

with

SOM

Denis Caromel 17

Implementation
and

Benchmarks

Denis Caromel 18

Implementation

• Based on a specific MOP: Reflex [Tanter et al. OOPSLA 03]
• Bytecode transformation
• A generic metaobject (scheduler) uses Java monitor for synchronization

• Small configuration language:
schedule: Buffer with: BufferScheduler

...

• Runtime API
Buffer b = (Buffer) SOM.newMonitor(Buffer.class,
 BufferScheduler.class);

Denis Caromel 19

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32

Number of consumer threads

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

) Java monitors

SOM

SOM monitors scale better than Java monitors

Linux 2.4 JDK 1.4.2 Benchmarks
Single item buffer, one producer, multiple consumers

Denis Caromel 20

SOM Expressiveness
 (in the paper)

SOM-based solutions for
• Bounded buffer
• Readers and writers
• Dining philosophers

SOM-based Abstractions of
• Guards
• Chords

• Full access to request queue,
order of requests, filter, etc. :

==> Full control to express
 various policies

• E.g: Reader Writers :
• Fair,
• Reader Priority,
• Writer Priority
• ...

Denis Caromel 21

Related Work
• Classical monitors [Hoare and Brinch Hansen]
• Java monitors
• Java Specification Request 166 (JDK 1.5)
• Guards:

• Easy to express declarative synchronizations in SOM
• Scheduler, Active Objects:

• SOM = AO without Activity, AO without its own thread

• Chords, Join, Functional Nets:
• Storing monitor state in parameters of pending calls,
• Calls Interleaving

Our view: in a stateful OO, better of to reason about pending queue state

Denis Caromel 22

SÖM: Sæquentiål Øbjæct Mönitör
• An alternative to standard, interleaving, monitors
• Key points:

• Thread-less scheduler, Thread-less Active Object

• Threads collaborate for Mutual Scheduling
• Separation of concerns:

• Synchronizing + Synchronized code
• Expressive and Efficient:

• Full access to pending calls
• Avoids context-switches

• Stateful (object) vs. Pending Function Calls :
• Reason about data structure state rather than call interleaving
• Sequentiality: easier to reason about, to maintain, to reuse

Denis Caromel 23

Denis Caromel 24

Chords (Polyphonic C#)
Related to functional calculus (Join, Functional Nets):

• Storing monitor state in pending calls
 e.g. calling an asynchronous sharedRead (n-1)

• Passing information from one call to another (copied)
==> No mutual exclusion is intrinsically required

An asynchronous call is also a kind of ’’Firing Token’’ + Value

Very nice abstraction for a purely functional setting but :
• No access to the queue of pending calls,
• Does not really promote interleaving-free reasoning

Denis Caromel 25

Reader Writer Chords in C#

Denis Caromel 26

Reader Writer Interface

Denis Caromel 27

SOM
Writer priority // Reader priority

Denis Caromel 28

A declarative abstraction: Guards

Denis Caromel 29

Windows 2000, JDK 1.4.2

Denis Caromel 30

Linux 2.4, JDK 1.4.2

Denis Caromel 31

Linux 2.6, JDK 1.5

Denis Caromel 32

Denis Caromel 33

SOM key originalities

• Thread-less scheduler, Thread-less Active Object

• Threads collaborate for mutual schedulling

From Active Objects, Scheduler, to SOM

Denis Caromel 34

SOM Goals

• Powerful: other synchronization mechanisms are easily
expressed with SOMs

• Easier to understand: method requests are executed
sequentially

• Efficient: SOMs minimize thread context-switches

• Separation of concerns: SOMs separate the
synchronization concern from the application logic

Denis Caromel 35

An Example: The Bounded Buffer
Standard object:

class Buffer {
 ...
 void put(Object o) { ... }
 Object get() { ... }
 boolean isEmpty() { ... }
 boolean isFull() { ... }
}

Scheduler:

class BufferScheduler
 extends Scheduler {
 Buffer buf;
 ...
 void schedule() {
 if (buf.isEmpty())
 scheduleOldest(“put”);
 else if (buf.isFull())
 scheduleOldest(“get”);
 else
 scheduleOldest();
 }
}

