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Thread Locks, Notify, Synchronization

wait/notifyAll of
Java monitors are:

• Difficult to understand for
most programmers

• Inefficient: may trigger lots
of thread context-switches

• Tangling of synchronization
concern with application logic

Not “Sequential”:
many pending, interleaved, method calls
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SOM Orientations

• Easier to understand:
• Sequentiality of monitor code

• Efficient:
• Minimize thread context-switches

• Separation of concerns:
• Separate    synchronization code
• from          application code
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SOM: an Object and a thread-less scheduler

(1) Method
call
reification
in queue

(2)
Schedule
method

(3)  Request
execution
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Example: A Buffer

public class Buffer {
  List list= new LinkedList();

  public void isEmpty() { return list.size()==0; }
  public void isFull() { return list.size()==10; }

  public void put(Object o) { list.add(o); }
  public Object get() {
    return list.remove(o);

  }

}
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The Full Scheduler for buffer-like classes
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SOM Principles

• Any method invocation on a SOM:
• reified as a request, and
• delayed in a pending queue until scheduled

• The scheduling method is:
•  guaranteed to be executed if a request may be scheduled

• A scheduled request is executed:
•  in mutual excusion with other requests and scheduling
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What’s in the name ?

S
O
M

bject: Method Call,

         Reification: Request

equential:no
interleaving,
   ”run-to-completion” action

onitor:Mutual Exclusion
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Scheduling:

 Principles and API
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SOM Strategy and Guarantees

• No infinite busy execution of scheduling method

• schedule() is called by caller threads, in mutual exclusion:
• When a new request arrives
• After a request has been executed

• No additional thread is needed to execute schedule
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Invocation of schedule()

get()

put()

schedule()

schedule()

schedule()

Consumer Producer

public void schedule() {

  if (buffer.isEmpty())

    scheduleOldest("put");

  else if (buffer.isFull())

    scheduleOldest("get");

  else

    scheduleOldest();

}

execution
of get

execution
of get

schedule()
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SOM Strategy and Guarantees

• Several requests can be scheduled at a time:
• requests executed by their caller threads, in scheduling order
•schedule will not be called again before all scheduled requests complete

• After a request is executed:
• the caller thread does at most one schedule
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Principle
 for the

scheduling API

Standard class:

class Buffer {
  ...
  void put(Object o) { ... }
  Object get() { ... }
  boolean isEmpty() { ... }
  boolean isFull() { ... }
}
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Scheduler API

scheduleOldest ();
scheduleOldest (“get”);
scheduleAll(“exitRead”);
scheduleOlderThan(“foo”,”bar”);

scheduleAll(new RequestFilter()
  boolean accept(Request req){
      if …     return true
      if …     return false
      … } );
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Fair

Reader Writer

with

SOM
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Implementation
and

Benchmarks
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Implementation

• Based on a specific MOP:  Reflex [Tanter et al. OOPSLA 03]
• Bytecode transformation
• A generic metaobject (scheduler) uses Java monitor for synchronization

• Small configuration language:
schedule:   Buffer      with:  BufferScheduler

...

• Runtime API
Buffer b = (Buffer) SOM.newMonitor(Buffer.class,
                       BufferScheduler.class);
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Linux 2.4 JDK 1.4.2 Benchmarks
Single item buffer, one producer, multiple consumers
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SOM Expressiveness
 (in the paper)

SOM-based solutions for
• Bounded buffer
• Readers and writers
• Dining philosophers

SOM-based Abstractions of
• Guards
• Chords

• Full access to request queue,
order of requests, filter, etc. :

==> Full control to express
        various policies

• E.g: Reader Writers :
• Fair,
• Reader Priority,
• Writer Priority
• ...
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Related Work
• Classical monitors [Hoare and Brinch Hansen]
• Java monitors
• Java Specification Request 166 (JDK 1.5)
• Guards:

• Easy to express declarative synchronizations in SOM
• Scheduler, Active Objects:

• SOM = AO without Activity, AO without its own thread

• Chords, Join, Functional Nets:
• Storing monitor state in parameters of pending calls,
• Calls Interleaving

Our view: in a stateful OO, better of to reason about pending queue state
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SÖM: Sæquentiål Øbjæct Mönitör
• An alternative to standard, interleaving, monitors
• Key points:

• Thread-less scheduler, Thread-less Active Object

• Threads collaborate for Mutual Scheduling
• Separation of concerns:

• Synchronizing + Synchronized code
• Expressive and Efficient:

• Full access to pending calls
• Avoids context-switches

• Stateful (object) vs. Pending Function Calls :
• Reason about data structure state rather than call interleaving
• Sequentiality: easier to reason about, to maintain, to reuse
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Chords (Polyphonic C#)
Related to functional calculus (Join, Functional Nets):

• Storing monitor state in pending calls
     e.g. calling an asynchronous sharedRead (n-1)

• Passing information from one call to another (copied)
==> No mutual exclusion is intrinsically required

An asynchronous call is also a kind of      ’’Firing Token’’ + Value

Very nice abstraction for a purely functional setting but :
• No access to the queue of pending calls,
•  Does not really promote interleaving-free reasoning
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Reader Writer Chords in C#
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Reader Writer Interface
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SOM
Writer priority    //  Reader priority
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A declarative abstraction: Guards
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Windows 2000, JDK 1.4.2
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Linux 2.4, JDK 1.4.2
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Linux 2.6, JDK 1.5
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SOM key originalities

• Thread-less scheduler, Thread-less Active Object

• Threads collaborate for mutual schedulling

From Active Objects, Scheduler, to SOM
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SOM Goals

• Powerful: other synchronization mechanisms are easily
expressed with SOMs

• Easier to understand: method requests are executed
sequentially

• Efficient: SOMs minimize thread context-switches

• Separation of concerns: SOMs separate the
synchronization concern from the application logic
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An Example: The Bounded Buffer
Standard object:

class Buffer {
  ...
  void put(Object o) { ... }
  Object get() { ... }
  boolean isEmpty() { ... }
  boolean isFull() { ... }
}

Scheduler:

class BufferScheduler
      extends Scheduler {
  Buffer buf;
  ...
  void schedule() {
    if (buf.isEmpty())
      scheduleOldest(“put”);
    else if (buf.isFull())
      scheduleOldest(“get”);
    else
      scheduleOldest();
  }
}


