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Context and Motivation

Separation of concerns
— Reflection

— Aspect Oriented Programming

» Various emerging AO Languages
— Domain specific / General propose

« Strong connection between both approaches
e Problems with the various AO Languages
— “Reinvent the wheel” each time
— Lack of compatibility
 We claim that an AO Kernel is needed
— Simplify new AO language development
— Support for composition and collaboration
« Partial Behavioral Reflection (Reflex) is our proposal
— Validation is needed



Partial Behavioral Reflection

e Reflection

— Needed only at well known parts of the
program

— Jumps to the meta level are expensive

« Partial Behavioral Reflection relies on meralevel g’ g

high selectivity

. BaSiC m0d6| base level
— Meta(_)bjec_ts (MO) acting upon reification O - metaobject <@ : activation condition
described in terms of operations &R hookset  x hook —=  link

— Hookset gather execution points scattered
In various objects

» Hooks are base-level pieces of code that
perform the reification
— Links bind a hookset to a MO

» Explicit and highly configurable (scope,
control, activation, etc)



Partial Behavioral Reflection

* Reflex is an open implementation of this
model for Java

— No fixed Meta Object Protocol (MOP)
* Provide a standard MOP

— Hookset
e Primitive
— Consists of an operation, class selector and operation
selectors

o Composite
— Made of other Hooksets



AspectJ

« Extends the Java language with a new unit of crosscutting concern
modularity, Aspects
e Support for
— dynamic crosscutting
— static crosscutting
e One new concept “Join Point”
— Kind (method-call, field-set, etc)
— Join point shadow
— Join point residue
* Follow the Advice and Pointcut Model

— Pointcuts are a mean to
 group join points of interest
 specify context information to be passed to the aspects

— Advice define a behavior to apply upon join points occurrences



AspectJ

e Pointcut are defined in terms of
— pointcut designators (PCD)
— logical operators to combine them

- e.0.

pointcut move(int x,int y):call(* Point.moveXY(..)) && args(x,y)

« Advices are bound to a pointcut
— Kind (before, after, around, etc)
— The proceed statement allow to invoke the original computation
replaced by an around advice
— e.0.
void around(int x,int y): move(x,y){
proceed(max(0,x), max(0,y));

}



Nalve Mapping

e Mapping scope
— Focus on dynamic crosscutting main features
— Leaving out aspect instantiation and composition

« Pointcut mapping
— Statically matched pointcuts corresponds to hooksets
* €.0. pointcut move (): call (* *.moveXY(int, int))

— Dynamically matched pointcuts corresponds to hookset + dynamically
evaluated condition at the MO

* €.0. pointcut movePoint(): move() && target (Point)

— CFlow relations between join points are modeled with “Event Collectors”
* €.0. pointcut moveSinglePoint(): movePoint() && !cflowbelow(move())

— Context exposition is done by filtering the reified information at the MO

* €.0. pointcut moveSinglePointArgs(int x, int y): moveSinglePoint() &&
args(x,y)



Nalve Mapping

o Aspect and Advice mapping
— An aspect Is mapped to an ordinary class

— An advice i1s mapped to a method

» The binding between the hookset (of the pointcut) and the
metalevel is carry on by a link

— Its control is set according to the advice kind

[ Exam p I e o ‘g;\g\:gf\t\erAdvice(int,int)
aspect Movi ngPo int { 6\6@‘@ Q\l:isWithinCﬂowBeloY/\/g

.. A 2:ccheckTargetType() ™ A

after(int x,int y): & «

moveSinglePointArg(x,y){ & X T X xX
log.print(*Point moved:"
+ X + L s "o y) ; . MovePoint (aspect class)
} Q MoveCflow (event collector) Q MoveSPA
(* ymoveHookset @%» moveSPAHookset




Issues and Extensions

The naive mapping reveal two Issues
— Residues must be checked at the metalevel
— All context information must be reified

MOP descriptors (first extension)

— Describes how an operation should be reified
 expected type, method, parameters

— Can be specified at hookset and/or link level

— Define custom parameters
new Parameter(){
public String getCode(Operation aOp){
return "Thread.currentThread()";

3}



Issues and Extensions

Hookset restrictions (second extension)

— Dynamically evaluated conditions

* fixed in the hookset generated code
— Restriction logic is specified in static methods
— Can be specified at hookset and/or link level
—e.g.

pointcut movePoint():
call (* *.moveXY(int, Int)) && target(Point)

public static boolean accept(Object 0){
return o instanceof Point;

}



Mapping Revisited

» Benefits of the extensions

— Hookset restrictions check dynamically evaluated conditions
(residues)

— MOP Descriptors specify the information to expose and the
method to invoke
« Overall mapping
— An aspect corresponds to a MO
— An advice corresponds to a method in the MO

— A pointcut is a Set of (Hookset, Restriction, MOP Descriptor)
 Link binding the composite hookset with the Aspect MO

o Additional links and event collector MO are needed for cflow
restrictions



Mapping Revisited

 Pointcut translation process overview
— Build a tree isomorphic to the AST (pointcut definition)
— PCD are replaced by quadruples (P, S, D, C)

* P represents an operation (kind restriction)

* S s an expression that represents a statically matched
restriction (e.g. location restrictions)

« D is an expression that represents a dynamically matched
restriction (e.g. cflow residue)

e Cisa list of context exposed information
— Reduce the tree by eliminating all the && and !
operators

» The final tree must have one leaf or a || operators in all its
nodes



Mapping Revisited

e The proceed statement allows to invoke the original
computation replaced by an around advice

— Reflex supports dynamic operations which allow to invoke a
reified operation

— The runtime information of the operation occurrence is needed

« Around advices that call proceed are configured to receive
an extra parameter, a command object wrapping the
dynamic operation

— It must replace the proceed parameters before invoking the
dynamic operation

— Build the appropriate operation and execute it



Mapping Revisited

* AspectJ provide join point reflective information
via implicit variables

— thisJoinPoint, thisJoinPointStaticPart,
thisEnclosingJoinPointStaticPart
 Providing this variables implies

— aset of classes implementing the interfaces of the
Aspect] API

— three MOP Descriptor parameters to instantiate those
classes with the necessary information

— advices will receive an extra parameter for each
variable used



Implementation and Benchmarks

e Implemented using Aspect] Compiler and Reflex
— offline translation

o BenChmarkS | Features Secenario AJC ATD A |

before (w/o context)

. no residue 1542 1706 10%
aJ C 1 \ 2 instanceOf  match 1185 1305 10%
no match 868 894 2%
cflow  match 841 951 13%
no match 0908 1218 22%

before (w/ context)
no residue 4533 1616 1%
instanceOf  match 3241 3034 -6%
no match 854 904 297,
clow  match 10295 11102 T%
no match 697 647 -T%

around (w,/ context)
around  always proceed 3404 5721 6877,
half proceed 4416 6349 43%
never proceed 5711 6990 229%




Conclusions

 PBR Is expressive enough to support
AspectJ dynamic crosscutting

— The extensions provide a more natural and
direct mapping

* Benchmarks shows very good results
comparing to Aspectd Compiler

e First validation of Reflex as an AOP Kernel



Future work

e Support

— Full support for dynamic crosscutting

— Support for
e Optimize Im
— Better benc
e Deeper benc

static crosscutting

nlementation
nmarks results (e.g. proceed)

nmarks



