
Supporting Dynamic Crosscutting with Partial
Behavioral Reflection: a Case Study

Leonardo Rodríguez 1 Éric Tanter 2,3 Jacques Noyé 4,3

(1) Universidad de la República, Instituto de Computación, Montevideo, Uruguay
(2) Universidad de Chile, Santiago, Chile

(3) OBASCO Project, Ecole des Mines de Nantes – INRIA, Nantes, France
(4) INRIA Rennes, France

Agenda

• Context and Motivation
• Naïve Mapping
• Issues and Extensions
• Mapping Revisited
• Implementation and Benchmarks
• Conclusions

Context and Motivation
• Separation of concerns

– Reflection
– Aspect Oriented Programming

• Various emerging AO Languages
– Domain specific / General propose

• Strong connection between both approaches
• Problems with the various AO Languages

– “Reinvent the wheel” each time
– Lack of compatibility

• We claim that an AO Kernel is needed
– Simplify new AO language development
– Support for composition and collaboration

• Partial Behavioral Reflection (Reflex) is our proposal
– Validation is needed

Partial Behavioral Reflection
• Reflection

– Needed only at well known parts of the
program

– Jumps to the meta level are expensive
• Partial Behavioral Reflection relies on

high selectivity
• Basic model

– Metaobjects (MO) acting upon reification
described in terms of operations

– Hookset gather execution points scattered
in various objects

• Hooks are base-level pieces of code that
perform the reification

– Links bind a hookset to a MO
• Explicit and highly configurable (scope,

control, activation, etc)

Partial Behavioral Reflection

• Reflex is an open implementation of this
model for Java
– No fixed Meta Object Protocol (MOP)

• Provide a standard MOP
– Hookset

• Primitive
– Consists of an operation, class selector and operation

selectors
• Composite

– Made of other Hooksets

AspectJ
• Extends the Java language with a new unit of crosscutting concern

modularity, Aspects
• Support for

– dynamic crosscutting
– static crosscutting

• One new concept “Join Point”
– Kind (method-call, field-set, etc)
– Join point shadow
– Join point residue

• Follow the Advice and Pointcut Model
– Pointcuts are a mean to

• group join points of interest
• specify context information to be passed to the aspects

– Advice define a behavior to apply upon join points occurrences

AspectJ
• Pointcut are defined in terms of

– pointcut designators (PCD)
– logical operators to combine them
– e.g.

pointcut move(int x,int y):call(* Point.moveXY(..)) && args(x,y)

• Advices are bound to a pointcut
– Kind (before, after, around, etc)
– The proceed statement allow to invoke the original computation

replaced by an around advice
– e.g.

void around(int x,int y): move(x,y){
proceed(max(0,x), max(0,y));

}

Naïve Mapping
• Mapping scope

– Focus on dynamic crosscutting main features
– Leaving out aspect instantiation and composition

• Pointcut mapping
– Statically matched pointcuts corresponds to hooksets

• e.g. pointcut move (): call (* *.moveXY(int, int))
– Dynamically matched pointcuts corresponds to hookset + dynamically

evaluated condition at the MO
• e.g. pointcut movePoint(): move() && target (Point)

– CFlow relations between join points are modeled with “Event Collectors”
• e.g. pointcut moveSinglePoint(): movePoint() && !cflowbelow(move())

– Context exposition is done by filtering the reified information at the MO
• e.g. pointcut moveSinglePointArgs(int x, int y): moveSinglePoint() &&

args(x,y)

Naïve Mapping

• Aspect and Advice mapping
– An aspect is mapped to an ordinary class
– An advice is mapped to a method

• The binding between the hookset (of the pointcut) and the
metalevel is carry on by a link

– Its control is set according to the advice kind

• Example
aspect MovingPoint {
...
after(int x,int y):

moveSinglePointArg(x,y){
log.print("Point moved:"

+ x + "," + y);
}

}

1:isWithinCflowBelow()

MoveSPA
moveHookset moveSPAHookset
MoveCflow (event collector)

2:checkTargetType()

3:afterAdvice(int,int)

MovePoint (aspect class)

ba
se

 le
ve

l

meta
lev

el

Issues and Extensions

• The naïve mapping reveal two issues
– Residues must be checked at the metalevel
– All context information must be reified

• MOP descriptors (first extension)
– Describes how an operation should be reified

• expected type, method, parameters
– Can be specified at hookset and/or link level
– Define custom parameters

new Parameter(){
public String getCode(Operation aOp){
return "Thread.currentThread()";

}}

Issues and Extensions

• Hookset restrictions (second extension)
– Dynamically evaluated conditions

• fixed in the hookset generated code
– Restriction logic is specified in static methods
– Can be specified at hookset and/or link level
– e.g.

pointcut movePoint():
call (* *.moveXY(int, int)) && target(Point)

public static boolean accept(Object o){
return o instanceof Point;

}

Mapping Revisited
• Benefits of the extensions

– Hookset restrictions check dynamically evaluated conditions
(residues)

– MOP Descriptors specify the information to expose and the
method to invoke

• Overall mapping
– An aspect corresponds to a MO
– An advice corresponds to a method in the MO
– A pointcut is a Set of (Hookset, Restriction, MOP Descriptor)

• Link binding the composite hookset with the Aspect MO
• Additional links and event collector MO are needed for cflow

restrictions

Mapping Revisited

• Pointcut translation process overview
– Build a tree isomorphic to the AST (pointcut definition)
– PCD are replaced by quadruples (P, S, D, C)

• P represents an operation (kind restriction)
• S is an expression that represents a statically matched

restriction (e.g. location restrictions)
• D is an expression that represents a dynamically matched

restriction (e.g. cflow residue)
• C is a list of context exposed information

– Reduce the tree by eliminating all the && and !
operators

• The final tree must have one leaf or a || operators in all its
nodes

Mapping Revisited
• The proceed statement allows to invoke the original

computation replaced by an around advice
– Reflex supports dynamic operations which allow to invoke a

reified operation
– The runtime information of the operation occurrence is needed

• Around advices that call proceed are configured to receive
an extra parameter, a command object wrapping the
dynamic operation
– It must replace the proceed parameters before invoking the

dynamic operation
– Build the appropriate operation and execute it

Mapping Revisited

• AspectJ provide join point reflective information
via implicit variables
– thisJoinPoint, thisJoinPointStaticPart,

thisEnclosingJoinPointStaticPart
• Providing this variables implies

– a set of classes implementing the interfaces of the
AspectJ API

– three MOP Descriptor parameters to instantiate those
classes with the necessary information

– advices will receive an extra parameter for each
variable used

Implementation and Benchmarks

• Implemented using AspectJ Compiler and Reflex
– offline translation

• Benchmarks
ajc 1.2

Conclusions

• PBR is expressive enough to support
AspectJ dynamic crosscutting
– The extensions provide a more natural and

direct mapping
• Benchmarks shows very good results

comparing to AspectJ Compiler
• First validation of Reflex as an AOP Kernel

Future work

• Support
– Full support for dynamic crosscutting
– Support for static crosscutting

• Optimize implementation
– Better benchmarks results (e.g. proceed)

• Deeper benchmarks

