Supporting Dynamic Crosscutting with Partial
Behavioral Reflection: a Case Study

Leonardo Rodriguez! Eric Tanter 23 Jacques Noyé 43

(1) Universidad de la Republica, Instituto de Computacion, Montevideo, Uruguay
(2) Universidad de Chile, Santiago, Chile
(3) OBASCO Project, Ecole des Mines de Nantes — INRIA, Nantes, France
(4) INRIA Rennes, France

Agenda

Context and Motivation

Naive Mapping

Issues and Extensions

Mapping Revisited
Implementation and Benchmarks
Conclusions

Context and Motivation

Separation of concerns
— Reflection

— Aspect Oriented Programming

» Various emerging AO Languages
— Domain specific / General propose

« Strong connection between both approaches
e Problems with the various AO Languages
— “Reinvent the wheel” each time
— Lack of compatibility
 We claim that an AO Kernel is needed
— Simplify new AO language development
— Support for composition and collaboration
« Partial Behavioral Reflection (Reflex) is our proposal
— Validation is needed

Partial Behavioral Reflection

e Reflection

— Needed only at well known parts of the
program

— Jumps to the meta level are expensive

« Partial Behavioral Reflection relies on meralevel g’ g

high selectivity

. BaSiC m0d6| base level
— Meta(_)bjec_ts (MO) acting upon reification O - metaobject <@ : activation condition
described in terms of operations &R hookset x hook —= link

— Hookset gather execution points scattered
In various objects

» Hooks are base-level pieces of code that
perform the reification
— Links bind a hookset to a MO

» Explicit and highly configurable (scope,
control, activation, etc)

Partial Behavioral Reflection

* Reflex is an open implementation of this
model for Java

— No fixed Meta Object Protocol (MOP)
* Provide a standard MOP

— Hookset
e Primitive
— Consists of an operation, class selector and operation
selectors

o Composite
— Made of other Hooksets

AspectJ

« Extends the Java language with a new unit of crosscutting concern
modularity, Aspects
e Support for
— dynamic crosscutting
— static crosscutting
e One new concept “Join Point”
— Kind (method-call, field-set, etc)
— Join point shadow
— Join point residue
* Follow the Advice and Pointcut Model

— Pointcuts are a mean to
 group join points of interest
 specify context information to be passed to the aspects

— Advice define a behavior to apply upon join points occurrences

AspectJ

e Pointcut are defined in terms of
— pointcut designators (PCD)
— logical operators to combine them

- e.0.

pointcut move(int x,int y):call(* Point.moveXY(..)) && args(x,y)

« Advices are bound to a pointcut
— Kind (before, after, around, etc)
— The proceed statement allow to invoke the original computation
replaced by an around advice
— e.0.
void around(int x,int y): move(x,y){
proceed(max(0,x), max(0,y));

}

Nalve Mapping

e Mapping scope
— Focus on dynamic crosscutting main features
— Leaving out aspect instantiation and composition

« Pointcut mapping
— Statically matched pointcuts corresponds to hooksets
* €.0. pointcut move (): call (* *.moveXY(int, int))

— Dynamically matched pointcuts corresponds to hookset + dynamically
evaluated condition at the MO

* €.0. pointcut movePoint(): move() && target (Point)

— CFlow relations between join points are modeled with “Event Collectors”
* €.0. pointcut moveSinglePoint(): movePoint() && !cflowbelow(move())

— Context exposition is done by filtering the reified information at the MO

* €.0. pointcut moveSinglePointArgs(int x, int y): moveSinglePoint() &&
args(x,y)

Nalve Mapping

o Aspect and Advice mapping
— An aspect Is mapped to an ordinary class

— An advice i1s mapped to a method

» The binding between the hookset (of the pointcut) and the
metalevel is carry on by a link

— Its control is set according to the advice kind

[Exam p I e o ‘g;\g\:gf\t\erAdvice(int,int)
aspect Movi ngPo int { 6\6@‘@ Q\l:isWithinCﬂowBeloY/\/g

.. A 2:ccheckTargetType() ™ A

after(int x,int y): & «

moveSinglePointArg(x,y){ & X T X xX
log.print(*Point moved:"
+ X + L s "o y) ; . MovePoint (aspect class)
} Q MoveCflow (event collector) Q MoveSPA
(* ymoveHookset @%» moveSPAHookset

Issues and Extensions

The naive mapping reveal two Issues
— Residues must be checked at the metalevel
— All context information must be reified

MOP descriptors (first extension)

— Describes how an operation should be reified
 expected type, method, parameters

— Can be specified at hookset and/or link level

— Define custom parameters
new Parameter(){
public String getCode(Operation aOp){
return "Thread.currentThread()";

3}

Issues and Extensions

Hookset restrictions (second extension)

— Dynamically evaluated conditions

* fixed in the hookset generated code
— Restriction logic is specified in static methods
— Can be specified at hookset and/or link level
—e.g.

pointcut movePoint():
call (* *.moveXY(int, Int)) && target(Point)

public static boolean accept(Object 0){
return o instanceof Point;

}

Mapping Revisited

» Benefits of the extensions

— Hookset restrictions check dynamically evaluated conditions
(residues)

— MOP Descriptors specify the information to expose and the
method to invoke
« Overall mapping
— An aspect corresponds to a MO
— An advice corresponds to a method in the MO

— A pointcut is a Set of (Hookset, Restriction, MOP Descriptor)
 Link binding the composite hookset with the Aspect MO

o Additional links and event collector MO are needed for cflow
restrictions

Mapping Revisited

 Pointcut translation process overview
— Build a tree isomorphic to the AST (pointcut definition)
— PCD are replaced by quadruples (P, S, D, C)

* P represents an operation (kind restriction)

* S s an expression that represents a statically matched
restriction (e.g. location restrictions)

« D is an expression that represents a dynamically matched
restriction (e.g. cflow residue)

e Cisa list of context exposed information
— Reduce the tree by eliminating all the && and !
operators

» The final tree must have one leaf or a || operators in all its
nodes

Mapping Revisited

e The proceed statement allows to invoke the original
computation replaced by an around advice

— Reflex supports dynamic operations which allow to invoke a
reified operation

— The runtime information of the operation occurrence is needed

« Around advices that call proceed are configured to receive
an extra parameter, a command object wrapping the
dynamic operation

— It must replace the proceed parameters before invoking the
dynamic operation

— Build the appropriate operation and execute it

Mapping Revisited

* AspectJ provide join point reflective information
via implicit variables

— thisJoinPoint, thisJoinPointStaticPart,
thisEnclosingJoinPointStaticPart
 Providing this variables implies

— aset of classes implementing the interfaces of the
Aspect] API

— three MOP Descriptor parameters to instantiate those
classes with the necessary information

— advices will receive an extra parameter for each
variable used

Implementation and Benchmarks

e Implemented using Aspect] Compiler and Reflex
— offline translation

o BenChmarkS | Features Secenario AJC ATD A |

before (w/o context)

. no residue 1542 1706 10%
aJ C 1 \ 2 instanceOf match 1185 1305 10%
no match 868 894 2%
cflow match 841 951 13%
no match 0908 1218 22%

before (w/ context)
no residue 4533 1616 1%
instanceOf match 3241 3034 -6%
no match 854 904 297,
clow match 10295 11102 T%
no match 697 647 -T%

around (w,/ context)
around always proceed 3404 5721 6877,
half proceed 4416 6349 43%
never proceed 5711 6990 229%

Conclusions

 PBR Is expressive enough to support
AspectJ dynamic crosscutting

— The extensions provide a more natural and
direct mapping

* Benchmarks shows very good results
comparing to Aspectd Compiler

e First validation of Reflex as an AOP Kernel

Future work

e Support

— Full support for dynamic crosscutting

— Support for
e Optimize Im
— Better benc
e Deeper benc

static crosscutting

nlementation
nmarks results (e.g. proceed)

nmarks

