
1

Dealing with availability
at the architectural level

Jacques Noyé
noye@emn.fr

Obasco EMN - INRIA

Projet DISPO

• Funded by a French programme on security
• ENSTB (Rennes), IRIT (Toulouse), IRISA

(Rennes), INRIA Rhône-Alpes (Grenoble)
• EMN : Jean-Claude Royer, Sebastian Pavel

2

Architecture

• APL: Architecture Programming Language
• Architecture = components + aspects
• Enforce availability through aspect weaving

Availability policy

• Services/ressources (amount of ressources,
amount of time) providers and users.

• User get permissions to access the
services/ressources.

• Not enough to prevent denial of service :
need for provider and user obligations.

• Temporal notions / deontic concepts.

3

User agreement

• Examples :
– A resource is released when it is not used any

longer.
– Asking for a resource that is not necessary is

forbidden.
– A resource must be reserved before being used.

• A violation of the agreement may
legitimate a denial of service (provider
permission).

Formalisation [Cuppens et al.]

• First order logic with equality
• Temporal modalities :

– hold-at(p, t) : formula p is true at time t
– ALWAYS(p)⇔∀t, hold-at(p, t)

• Deontic modalities
– O(p) : p is obligatory
– F(p) ⇔ O(¬p): p is forbidden
– P(p) ⇔ ¬O(p): p is permitted

4

Deontic Modalities

• Axiomes:
– O(p ∧ q) ⇒ O(p) ∧ O(q)

–¬(O(p) ∧ O(¬p))

• Inference Rule:
– if p ⇒ q is a theorem O(p) ⇒ O(q)

Availability policy

• R1: S must be able to start task T at most 6 time
units after its request

• R2: S must have access to resource R necessary
to perform T at most 4 time units after its request

• R2’: S must have access to resource R necessary
to perform T at most 9 time units after its request

• R4: the maximum realization time of T is 3 time
units

5

What can we do with this ?

• Provided a spec. of the system is available :
– Analysis of the consistency of the policy

• (R1, R2, R4) satisfiable
• (R1, R2’, R4) inconsistent

– Verify availability properties
• the request of S must be satisfied 9 time units after

it has been made

• What about enforcing an availability
policy?

Enforcing a security policy

• Security Automata [Schneider2000]:

– An execution is represented by a (possibly)
infinite sequence of actions, states,
action/states…

– A security policy is specified by giving a
predicate on set of executions.

– Enforcement through execution monitoring
means that the security policy is a safety
property.

6

• It is then possible to build an AFD to stop
the execution if things go wrong.

• Example :
state vars state : {0, 1} initial 0
transitions
 pay(C) ∧ state = 0 → state := 1
 serve(C) ∧ state = 1 → state := 0

• Cannot deal with liveness properties, eg
answering a request in a finite time.

• Answering a request in a bounded time is
ok.

• Stopping the execution is not satisfactory!
But nothing else is possible.

7

Architecture

• Architecture = components + aspects
• Component = interface + implementation
• Interface

– signatures of required and provided services
– dynamic behaviour described with an STS

(Symbolic Transition System)
– transition = guarded message sending/message

execution
– composition = automaton product

Architecture

• Active and passive sequential (primitive)
components

• Synchronous and asynchronous
communications

• No component reference through
communication channels

• Weaving of the dynamic behaviour within
the implementation

8

(Too) Many open questions

• Notion of time : abstract time (based on
number of transitions)

• Restrict availability to security problems ?
Use program analysis to predict the future.

• Compositionality issues : what can be
modularized, what cannot ?

• Distributed monitoring is difficult.

