
Denis Caromel 1

Denis Caromel, et al.
ProActive.ObjectWeb.org

OASIS Team
INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF

Santiago, Nov. 9 2004

Hierarchical Components for the GRID

0. GRIDs
1. ProActive: Asynchronous Distributed Objects
2. Groups
3. Components

Denis Caromel 2

• A uniform framework: An Active Object pattern
• A formal model behind: Prop. Determinism, insensitivity to deploy.

Programming Model:
• Remote Objects (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications, Futures, Wait-By-Necessity
• Groups, Mobility, Components, Security, Fault Tolerance: Checkpoints
Environment:
• XML Deployment Descriptors, Web Service Export., HTTP, ssh Tunneling
• Various protocols: rsh,ssh,LSF,PBS,Globus,Sun Grid Engine, sshGSI
• Visualization and monitoring: IC2D

 In the www. ObjectWeb .org Consortium (Open Source middleware)
since April 2002 (LGPL license)

ProActive:
A Java API + Tools for Parallel, Distributed Computing

Denis Caromel 3

GRIDs

Denis Caromel 4

Enterprise Grids

Internet

EJBServletsApache Databases

Denis Caromel 5

Scientific Grids

Internet

Clusters

Parallel
Machine

Large
Equipment

Denis Caromel 6

Internet Grids

Internet

Job management for
embarrassingly parallel
application (e.g. SETI)

Denis Caromel 7

Intranet Grids - Desktop Grids

Internet

Using Spare Cycles of Desktops
Potentially:
- Non-embarrassingly parallel application
- Across several sites

Denis Caromel 8

The multiple GRIDs

• Scientific Grids
• Enterprise Grids
• Internet Grids
• Intranet Desktop Grids

Strong convergence in process!
At least at the infrastructure level, i.e. WS

Denis Caromel 9

 Grid: from enterprise ... to regional
Very hard deployment problems … right from the beginning

Denis Caromel 10

 Grid: from regional ... to worldwide
Communication Nice - Santiago: 70 ms Light Speed

Challenge: Hide the latency !

Define adequate programming model

Denis Caromel 11

Programming

ProActive:

Composing
Deploying

W r a p p i n g

Figures: Web Page Hits: ~ 3 000 / month,
Downloads: 150-300 / month, Users: ?? .us, .mx, .br, .cl, .ch, .it, .fr, ...

Denis Caromel 12

Distributed Objects
ProActive

Programming

Denis Caromel 13

ProActive model
Java RMI (Remote Method Invocation = Object RPC = o.foo(p))

plus a few important features:
• Asynchronous Method calls towards Active Objects:

Implicit Futures as RMI results
• Wait-By-Necessity:

• Automatic wait upon the use of an implicit future
• First-Class Futures:
 - Futures passed to other activities
 - Sending a future is not blocking

Denis Caromel 14

A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity
is a

Dataflow
Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

Denis Caromel 15

Call between Objects:
Parameter passing: Copy of Java Objects

ba
x

Copy:
at

serializ
ation

(Deep) Copies evolve independently -- No consistency

b.foo(x)

Denis Caromel 16

Call between Objects:
 Parameter Passing: Active Objects

ba
x

Copy:
at
serializ
ation

Object passed by Deep Copy - Active Object by Reference

b.foo(x, c)

c

c

Reference
Passing

Denis Caromel 17

Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v

b

Denis Caromel 18

ProActive : Explicit Synchronizations

Single Future Synchronization:
• ProActive.isAwaited (v); // Test if available
• .waitFor (v); // Wait if not available

Vectors of Futures:
• .waitForAll (Vector); // Wait all of
them

• .waitForAny (Vector); // Get One

A ag = newActive (“A”, […], VirtualNode)
V v = ag.foo(param);
...
v.bar(); // Wait-by-necessity

Denis Caromel 19

Standard system at Runtime:
Asynchrony, WbN, ... but no sharing

Proofs of Determinism

Denis Caromel 20

Groups

Denis Caromel 21

Collective Communications: Groups

Typed and polymorphic Groups of active and remote objects
Dynamic generation of group of results
Language centric, Dot notation

• Manipulate groups of Active Objects, in a simple and typed manner:

• Be able to express high-level collective communications (like in MPI):
• broadcast,
• scatter, gather,
• all to all

A ag=(A)ProActiveGroup.newActiveGroup(«A»,{{p1},...},{Nodes,..});
V v = ag.foo(param);
v.bar();

Denis Caromel 22

A

Creating AO and Groups

Typed Group Java or Active Object

A ag = newActiveGroup (“A”, […], VirtualNode)
V v = ag.foo(param);
...
v.bar(); //Wait-by-necessity

V

Group, Type, and Asynchrony
are crucial for Cpt. and GRID

JVM

Object-Oriented
 Typed Group Communications

Denis Caromel 23

Broadcast or Scatter
Broadcast is the default behavior

Scatter is also possible
• use a group as parameter
• Scattered depends on rankings

gA.bar(gC); // broadcast gC
ProActive.setScatterGroup(gC);
ga.bar(gC); // scatter gC

A A

1

2

C

1 2

C

C

1

1

2

2

C

1 2

broadcast scatter

Denis Caromel 24

OO SPMD
 A ag = newSPMDGroup (“A”, […], VirtualNode)

 // In each member
 myGroup.barrier (“2D”); // Global Barrier
 myGroup.barrier (“vertical”); // Any Barrier
 myGroup.barrier (“north”,”south”,“east”,“west”);

A

Still,
not based on raw
messages, but

Typed Method Calls
==> Components

Denis Caromel 25

Parallel, Distributed, Hierarchical

 Components
for the Grid

 Composing

Denis Caromel 26

A CORBA Component

My
Business

Component

Component interface

Facets

Event
sources

Event
sinks

Attributes

Receptacles

O
FF

ER
ED

R
EQ

U
IR

ED

Courtesy of Philippe Merle, Lille, OpenCCM platform

Denis Caromel 27

Building CCM Applications =
Assembling CORBA Component Instances

Provide + Use, but flat assembly

Denis Caromel 28

Component Orientedness
• Level 1: Instantiate - Deploy - Configure

• Simple Pattern
• Meta-information (file, XML, etc.) JavaBeans, EJB

• Level 2: Assembly (flat)
• Server and client interfaces CCM

• Level 3: Hierarchic
• Composite Fractal, ProActive, ...

• Level 4: Distributed + Reconfiguration
• Binding, Inclusion, Location ProActive + On going work

Interactions / Communications:
Functional Calls: service, event, stream
Non-Functional: instantiate, deploy, start/stop, inner/outer, re-bind

ProActive

Denis Caromel 29

Distributed Components (1)

Typed Group Java or Active Object

ComponentIdentity Cpt = newActiveComponent (params);
A a = Cpt … .getFcInterface ("interfaceName");
V v = a.foo(param);

V

A

Example of
component
instance

JVM

Denis Caromel 30

Content
Controller

The Fractal model:
Hierarchical Component

Defined by E. Bruneton, T. Coupaye, J.B. Stefani, FT, et al.

Denis Caromel 31

Content
Controller

Interface = access point

Denis Caromel 32

Content
Controller

Hierarchical model :
composites encapsulate primitives encapsulate Java code

Denis Caromel 33

Content
Controller

Binding = interaction

Denis Caromel 34

Binding = interaction

Content
Controller

Denis Caromel 35

Controllers : non-functional properties

Component
Identity

Binding
Controller

LifeCycle
Controller

Content
Controller

Content
Controller

Component =
 runtime entity

Denis Caromel 36

3. Parallel and composite
 component

1. Primitive component

2. Composite component

ProActive Components for the GRID
An activity, a process, …
potentially in its own JVM

C D

Composite: Hierarchical, and
 Distributed over machines

Parallel: Composite

 + Broadcast (group)

Denis Caromel 37

A

A

B

C

P

Group proxyGroup proxy

A

B

C

D

Groups in Components (1)

Broadcast at binding,
on client interface

At composition,
on composite inner server interface

A parallel component!

Denis Caromel 38

C A B

VNa VNb

C A B

VNc = VN(a,b)

 XML Deployment (Not in source)

 Separate or Co-allocation

Denis Caromel 39

ProActive Component Definition
A component is:

• Formed from one (or several) Active Object
• Executing on one (or several) JVM
• Provides a set of server ports: Java Interfaces
• Uses a set of client ports: Java Attributes
• Point-to-point or Group communication between components

Hierarchical:
• Primitive component: define with Java code and a descriptor
• Composite component: composition of primitive + composite
• Parallel component: multicast of calls in composites

Descriptor:
• XML definition of primitive and composite (ADL)
• Virtual nodes capture the deployment capacities and needs

Virtual Node is a very important abstraction for GRID components

XML Example

Denis Caromel 40

Migration Capability
of composites

Migrate sets of components, including composites

Denis Caromel 41

Migration Capability
of composites

Migrate sets of components, including composites

Denis Caromel 42

Co-allocation, Re-distribution

e.g. upon communication intensive phase

Denis Caromel 43

Co-allocation, Re-distribution

e.g. upon communication intensive phase

Denis Caromel 44

Co-allocation, Re-distribution

e.g. upon communication intensive phase
At runtime or

at Deployment (XML ADL)

Denis Caromel 45

getA()

getB()

getAandB()

Functionalities :
Without First Class Futures

Or in the case of Synchronous method calls

getA()

getB()

getAandB()

getB()

getA()getAandB()

Denis Caromel 46

getA()

getB()

getAandB() getA()

getB()

getAandB()

getB()

getA()getAandB()

Functionalities : With First Class Futures

Example 2 : Asynchronous method calls with full-fledge Wait-By-Necessity

Non-blocking method calls

value of A

value of B

Assemblage are not blocked with Asynchrony + WbN

Denis Caromel 47

On-going work : GUI

Denis Caromel 48

IC2D: Interactive Control and Debugging of Distribution

With any ProActive application
Features:

 Graphical and Textual visualization
 Monitoring and Control

Denis Caromel 49

C3D Monitoring: graphical and textual com.

Denis Caromel 50

Jem3D

Denis Caromel 51

JEM 3D : Java 3D Electromagnetism
together with Said El Kasmi, Stéphane Lanteri (caiman)

Maxwell 3D equation solver, Finite Volume Method (FVM)
Pre-existing Fortran MPI version: EM3D (CAIMAN team @ INRIA)

Up to 294 machines at the same time (Intranet and cluster)

Large data sets: 150x150x150 (100 million facets)
temps d'exécution de la boucle principale (sur cluster)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70
nombre de processeurs

te
m

ps
 (s

ec
on

de
s)

21*21*21

31*31*31

43*43*43
55*55*55

81*81*81

97*97*97

113*113*113

121*121*121

 taille du maillage

Denis Caromel 52

JECS : A Generic Version of Jem3D

Denis Caromel 53

JECS : A Generic Version of Jem3D

Denis Caromel 54

Monte Carlo Simulations,
Non-Linear Physics, INLN

Denis Caromel 55

Electric Network Planning,
E. Zimeo et al., Benevento (Naples), Italy

On-line Power Systems Security Analysis (OPSSA)

Denis Caromel 56

Mobile Application executing on 7 JVMs

Denis Caromel 57

Perspective for Components - PSE
Graphical Composition, Monitoring, Migration

Denis Caromel 58

Perspective for Components - PSE
Graphical Composition, Monitoring, Migration

Denis Caromel 59

Conclusions and A Few Directions
ProActive: A Strong Programming Model + Components

FACTS AND FIGURES
5 years of computation in 17 days in Desktop P2P

Deployed at once on 600 CPUs (Plugtests on ssh, Globus, LSF, ...)

Denis Caromel 60

Melbourne
Nancy
Metz

Napoli

Denis Caromel 61

Conclusions and A Few Directions
ProActive: A Strong Programming Model + Components

FACTS AND FIGURES
5 years of computation in 17 days in Desktop P2P

Deployed at once on 600 CPUs (Plugtests on ssh, Globus, LSF, ...)
(Close to) Beating Fortran on an Electromagnetic Application

PERSPECTIVES FOR COMPONENTS
Safe Reconfiguration

How to specify for components: QoS, Ranking, etc. ?
 A great alchemy for the Grid:

Asynchrony + Wait By Necessity + Groups + Components

Denis Caromel 62

Denis Caromel 63

Conclusion - Beating Fortran ?
Current status:

• Sequential Java vs. Fortran code: 2 times slower
• Large data sets in Java ProActive: 150x150x150 (100 million facets)
• Large number of machines: up to 294 machines in Desktop P2P
• Speed up on 16 machines: - Fortran: 13.8

- ProActive/Ibis: 12
- ProActive/RMI: 8.8

Grid on 5 clusters (DAS 2): Speed up of 100 on 150 machines
Fortran: no more than 40 proc. …
Beating Fortran MPI with Java ProActive? X/40 (14/16) = 2X/ n (100/150)

Yes, starting at 105 machines !

Denis Caromel 64

On Going :
M x N Communications + Redistribution

M components

N components

GATHERING

 SCATTERING

REDISTRIBUTION from M to N

Denis Caromel 65

Adaptive Feature:
 Multi-transports layer

RMI, RMI-ssh, …, Ibis, HTTP XML, ...
Adaptive choice of transport layer between:

• RMI
• ssh/RMI

Also available with static configuration:
• Ibis (TCP, Myrinet, etc.)
• HTTP
• … ssh/HTTP

Short Term Perspective:
Fully Adaptive Choice between all transports

Denis Caromel 66

Job Management:
• JVM, AO per Job ID
• Textual visualisation,
• control (kill all, etc.)

IC2D: Basic features cont.

Denis Caromel 67

Monitoring of RMI, Globus, Jini, LSF cluster
Nice -- Baltimore

ProActive
IC2D:

Width of links

proportional

to the number

of com-

munications

Denis Caromel 68

• A uniform framework: An Active Object pattern
• A formal model behind: Determinism, Insensitivity to deployment

Programming Model:
• Remote Objects (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications, Automatic dataflow synchro: Futures
• Groups, Mobility, Components, Security
Environment:
• XML Deployment Descriptors
• Interfaced with various protocols: rsh,ssh,LSF,Globus,Jini,RMIregistry
• Visualization and monitoring: IC2D

 In the www. ObjectWeb .org Consortium (Open Source middleware)
since April 2002 (LGPL license)

ProActive:
A Java API + Tools for Parallel, Distributed Computing

Denis Caromel 69

ProActive : model
• Active objects : coarse-grained structuring entities (subsystems)
• Each active object: - possibly owns many passive objects

 - has exactly one thread.
• No shared passive objects -- Parameters are passed by deep-copy
• Asynchronous Communication between active objects
• Future objects and wait-by-necessity.
• Full control to serve incoming requests (reification) JVM

Denis Caromel 70

ProActive model (2)
Java RMI (Remote Method Invocation = Object RPC = o.foo(p))

plus a few important features:
• Sequential Object: a single thread with FIFO service
• Asynchronous Method calls towards Active Objects:

Implicit Futures as method results
• Wait-By-Necessity:

• Automatic wait upon a strict operation on an unknown future
• First-Class Futures:
 - Futures can be passed to other activities
 - Sending a future to another machines is not blocking

Denis Caromel 71

ProActive : Reuse and seamless
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures

 Ease the programming of synchronizations, and the reuse of routines

"A"

"pA"

ap_a
foo (A a)
{
 a.g (...);
 v = a.f (...);
 ...
 v.bar (...);
}

Denis Caromel 72

ProActive : Reuse and seamless
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures (“value to come”)

 Ease the programming of synchronizations, and the reuse of routines

"A"

"pA"

ap_a
foo (A a)
{
 a.g (...);
 v = a.f (...);
 ...
 v.bar (...);
}

O.foo(a) : a.g()
and a.f() are
« local »
O.foo(p_a):
a.g() and
a.f()are «remote
+ Async.»

O

Denis Caromel 73

First-Class Futures

Update

Denis Caromel 74

Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v

Denis Caromel 75

 Future update strategies
 No partial replies and requests:

• No passing of futures between activities, more deadlocks
 Eager strategies: as soon as a future is computed

• Forward-based:
– Each activity is responsible for updating the values of futures it has forwarded

• Message-based:
– Each forwarding of future generates a message sent to the computing activity
– The computing activity is responsible for sending the value to all

Mixed strategy:
• Futures update any time between future computation and WbN

 Lazy strategy:
• On demand, only when the value of the future is needed (WbN on it)

Denis Caromel 76

Wait-By-Necessity: Eager Forward Based

ba

AO forwarding a future: will have to forward its value

V= b.bar ()

c

c

c.gee (V)

v

v

b

Denis Caromel 77

Wait-By-Necessity: Eager Message Based

ba

AO forwarding a future: send a message

V= b.bar ()

c

c

c.gee (V)

v

v

b

Denis Caromel 78

Wait-By-Necessity: Lazy Strategy

ba

An Active Object requests a Future Value when needed

V= b.bar ()

c c.gee (V)

v

v c

