
Refined interfaces
for compositional verification

Frédéric Lang

INRIA Rhône-Alpes

http://www.inrialpes.fr/vasy

2

Motivation
• Enumerative verification of concurrent systems

– Parallel composition of asynchronous processes

– Systematic exploration of the state/transition graph
obtained by interleaving and synchronization

• Compositional verification to palliate state explosion

– Simple: reduce state/transition graphs incrementally

– Enhanced: use interface constraints to avoid
intermediate state explosion

• This talk is about a tool to build interface constraints
automatically

3

State/transition graphs
• Semantic model of action-based processes, also called

Labelled Transition System (LTS)

• Transitions between states are labelled by events

– Synchronizable/observable events

– Non-synchronizable/hidden event τ

• CADP toolbox allows on-the-fly exploration of

state/transition graphs (OPEN/CAESAR)

b

c

ca

a

τ

4

Using interface constraints
• A big graph P can be reduced using interface

constraints, represented as a graph I and a set of
labels A through which P and I interact

• Projection operator P ⎤⎥A I (Graf & Steffen, Krimm & Mounier)

– Computes the sub-graph of P reachable in P ⎥⎥A I

– I can be reduced modulo safety equivalence after hiding
all labels outside A

• A similar approach exists for CSP (Cheung & Kramer)
– Normal parallel composition instead of projection

– Requires tau elimination and determinization
(expensive) in I to ensure context transparency

5

Example of projection

0

1 234

567 891011

12 1314 15161718 19

20 21 222324252627 28

293031 32

33 3435 36

C CAA

CA

A DA

A
C C

A

C

CB

C

C

A

A

C

A

C

B D

D

A

A

D

A

D
B

C
C

B B

C

B

B

D

A

A

C

AA

DD

A

DD

B

D

B

B

C C

B

C C

A

CB C

A

D AD

B

C

A

C

B D
D

B
BD

B

D

A

D

B
B

C

B

B
D

D

B

D
D

A

D

B

D

AC

B

C A

⎤⎥{A, B, C} =
0

12

A

B

C

8

4

0

5

1

6

2

7

3

D

C

A

D

A

D

B

D

C

6

The PROJECTOR tool of CADP
Software implementation of projection (Krimm & Mounier 1997)

PROJECTOR

OPEN/CAESAR
graph P

BCG graph
(interface) I

Synchronization set
A

BCG Graph
P ⎤⎥A I

7

Computing the interface constraints
• Solution 1: User-specified interface

– The user provides an interface

– A correct interface is hard to guess

– But correctness can be checked afterwards

• Solution 2: "Exact" interface
– A correct interface is computed automatically from the

environment

– Krimm & Mounier give an algorithm based on an analysis of
the algebraic LOTOS-like expression describing the
composition of processes

The interface I is a process of the composition

The synchronization set A is derived automatically

8

Limitation 1 of K&M algorithm

The method to compute the synchronization set A is
specific to LOTOS parallel composition

How can we build exact interfaces in expressions that
use different and/or more general operators?

9

Limitation 2 of K&M algorithm
• It is impossible to compute interface constraints

induced by a combination of (distant) processes

• Sometimes, only such constraints allow reductions

• Example: in

restricting P3 w.r.t. either P1 or P2 yields no
reduction: P3 ⎤⎥{a, d} P1 = P3 ⎤⎥{c, d} P2 = P3

• Using an interface obtained by combination of P1 and
P2 (synchronized on b) would yield better reductions

b

a
d

c

b
d

d d

a a a

ccc⎥⎥{a, b, d} (⎥⎥{c, d})

P1 P2 P3

10

Limitation 3 of K&M algorithm
• Interfaces may be not precise enough when

nondeterministic synchronization is involved
• Example: in

Restricting P2 w.r.t. P1 yields no reduction:

P2 ⎤⎥{a} P1 = P2

• However P1 implies that two successive b actions
cannot be reached without an a in between

a

b

a

b b

a, b b

a
d

⎥⎥{a, b} (⎥⎥{a})

P1 P2 P3

11

Refined interfaces
• We propose a new algorithm which solves the

limitations of K&M algorithm

• The algorithm works in three phases
1. Translation of the composition of processes into a

general model called "synchronization networks"

2. Extraction of an "interface network" from the
network model

3. Generation of the interface graph corresponding
to the interface network

12

Phase 1: synchronization networks

• A general synchronization model

• Synchronization of processes P1, ..., Pn described
by a set of synchronization vectors of the form

Li,1, ..., Li,n → Li

where

– each Li,j is either a label of Pj or the special symbol •
denoting inaction of Pj

– Li is the label used in the product graph as the result of
the synchronization between the Pj's

13

Example 1

can be represented by the set of synchronization vectors
a, •, a → a
b, b, • → b
•, c, c → c
d, d, d → d

b

a
d

c

b
d

d d

a a a

ccc
⎥⎥{a, b, d} (⎥⎥{c, d})

P1 P2 P3

14

Example 2

can be represented by the set of synchronization vectors
a, a, a → a
b, b, • → b
b, •, b → b
•, •, d → d

a

b

a

b b

a, b b

a

d

⎥⎥{a, b} (⎥⎥{a})
P1 P2 P3

} nondeterministic synchronization on b for P1

15

Phase 2: Interface network extraction
• Extraction of a network N' representing an abstraction of

the environment of a process to be constrained

• Inputs:

– The synchronization network N of a system P1, ..., Pn

– The index i of the process Pi to be constrained

– The indices j1, ..., jm (user-given) of the constraining processes

• Algorithm: for each vector v in N, create in N' a vector
v[j1], ..., v[jm] → r

where r = v[i] if v[i] ≠ • (Pi active in synchronization)
r = τ otherwise

16

Example
• P1, P2, P3 synchronized by the vectors

a, a, a → a
b, b, • → b
b, •, b → b
•, •, d → d

• The interface network of P2 induced by P1 is:
a → a
b → b
b → τ
• → τ (This last one can be removed)

17

Phase 3: interface graph generation

• Generate the graph corresponding to N' (product
of Pj1, ..., Pjm)

• Thanks to congruence, Pj1, ..., Pjm can be
reduced modulo safety equivalence beforehand

• Partial order reduction allows to avoid useless
interleavings

18

Using the generated interface
•The (possibly large) graph of Pi can be

replaced by (smaller) graph of Pi ⎤⎥A I where
I is an interface obtained by our algorithm

•Formal proof provided in FORTE'2006 paper

19

Limitation 1 solved
• The algorithm applies on synchronization networks,

a general model similar to MEC and FC2 networks

• We implemented the translation into networks for

– CCS, CSP, LOTOS, mCRL parallel composition

– E-LOTOS generalized parallel composition and m

among n synchronization

• The translation can still be done for other operators

20

Limitation 2 solved
• Interface constraints induced by any combination of

processes can be computed

• Example: in

the interface I of P3 induced by P1 and P2 is:

• It yields reduction of P3 as P3 ⎤⎥{a, c, d} I =

b

a
d

c

b
d

d d

a a a

ccc⎥⎥{a, b, d} (⎥⎥{c, d})
P1 P2 P3

d

a a

ccd

c

ca

a
τ

21

Limitation 3 solved
• Interfaces are precise even in presence of

nondeterministic synchronization

• The interface I of P2 induced by P1 is:

• It yields reduction of P2 as P2 ⎤⎥{a, b} I =

a

b

a

b b

a, b b

a
d

⎥⎥{a, b} (⎥⎥{a})
P1 P2 P3

a

b
τ
a

b

22

Implementation in CADP
• Algorithm implemented in Exp.Open 2.0 (-interface option)

• Example: odp.exp

hide all but WORK in
par EXPORT, IMPORT in

par WORK #2 in
"object_1.bcg"

|| "object_2.bcg"
|| "object_3.bcg"
|| "object_4.bcg"
end par

||
"trader.bcg"

end par
end hide

23

Implementation in CADP
exp.open -weaktrace -interface "5: 1 2 3" "odp.exp"

generator "trader_interface.bcg"

• Generates an interface graph "trader_interface.bcg"

induced by the 1st ("object_1.bcg"), 2nd ("object_2.bcg"),

and 3rd ("object_3.bcg") graphs in "odp.exp"

• The interface graph can be used to constrain the 5th graph

("trader.bcg")

• Partial order reduction (persistent set method) preserving

observable traces is applied

24

Applications (1/3)
Philips' HAVi Home Audio-Video leader election

• Modeled in LOTOS by J. Romijn (Eindhoven)

• Largest process (404,477 states) was:

– Reduced downto 365,923 states (182s, 46Mb) using

interface obtained by K&M algorithm

– Reduced downto 645 states (11s, 8.5Mb) using a refined

interface

http://www.inrialpes.fr/vasy/cadp/demos/demo_27.html

25

Applications (2/3)
ODP (Open Distributed Processing) Trader

• Modeled in E-LOTOS by Garavel & Sighireanu (INRIA)

• Uses m among n synchronization to model the
dynamicity of object exchanges

• Trader reduced from 1 M states without interface
downto 256 states using a refined interface

http://www.inrialpes.fr/vasy/cadp/demos/demo_37.html

26

Applications (3/3)
Cache Coherency Protocol
• Modeled in LOTOS by M. Zendri (Bull)

• 5 agents accessing a remote directory concurrently

• No reduction using interface obtained by K&M
algorithm

• Remote directory reduced from 1 M states downto 60
states using refined interface

• Directory generated for a configuration with 7 agents
(81 states)

http://www.inrialpes.fr/vasy/cadp/demos/demo_28.html

27

Refined abstraction in SVL
• Refined interface generation and projection can be

done easily within the SVL scripting language

• New "refined abstraction" operator calls EXP.OPEN
and PROJECTOR automatically

• Example:
"cache.bcg" = root leaf strong reduction of

(
(AGENT_1 ||| AGENT_2 ||| AGENT_3)
|[GET_LINE_STATUS, PUT_LINE_STATUS]|
(refined abstraction AGENT_1, AGENT_2 using DIR_ABSTRACT

of DIRECTORY)
);

28

Conclusions
• We provided a new algorithm to synthesize interface constraints

automatically

• The algorithm solves the 3 limitations of K&M's algorithm

– It does not depend on a particular input language

– It permits to take into account constraints induced by a
combination of distant processes

– It permits a finer analysis of synchronization patterns between
processes, thus yielding better reductions

• The method is fully implemented in CADP

• It is easy to use thanks to the SVL scripting language

• Experiments indicate possible reductions by several orders of
magnitude

