Refined interfaces
for compositional verification

Fredéric Lang
INRIA Rhone-Alpes

http://www.inrialpes.fr/vasy

% INRIA

Motivation

 Enumerative verification of concurrent systems
- Parallel composition of asynchronous processes

- Systematic exploration of the state/transition graph
obtained by interleaving and synchronization

« Compositional verification to palliate state explosion

- Simple: reduce state/transition graphs incrementally

- Enhanced: use interface constraints to avoid
intermediate state explosion

e This talk is about a tool to build interface constraints
automatically

% ——

State/transition graphs
e Semantic model of action-based processes, also called
Labelled Transition System (LTS)

e Transitions between states are labelled by events
- Synchronizable/observable events

- Non-synchronizable/hidden event t

e CADP toolbox allows on-the-fly exploration of
state/transition graphs (OPEN/CAESAR)

% ———

Using interface constraints

e A big graph P can be reduced using interface
constraints, represented as a graph | and a set of
labels A through which P and | interact

» Projection operator P | |A | (Graf & Steffen, Krimm & Mounier)
- Computes the sub-graph of P reachable in P ||, |

- | can be reduced modulo safety equivalence after hiding
all labels outside A

e A similar approach exists for CSP (Cheung & Kramer)
- Normal parallel composition instead of projection

- Requires tau elimination and determinization
(expensive) in | to ensure context transparency

— @ —

Example of projection

The PROJECTOR tool of CADP

Software implementation of projection (krimm & Mounier 1997)

OPEN/CAESAR BCG graph Synchronization set
graph P (interface) | A

\l/

PROJECTOR

|

BCG Graph
P 1],

— @ =

Computing the interface constraints

e Solution 1: User-specified interface
- The user provides an interface
- A correct interface is hard to guess
- But correctness can be checked afterwards

e« Solution 2: "Exact” interface

- A correct interface is computed automatically from the
environment

- Krimm & Mounier give an algorithm based on an analysis of
the algebraic LOTOS-like expression describing the
composition of processes

= The interface | is a process of the composition
= The synchronization set A is derived automatically

—— % ———

Limitation 1 of K&M algorithm

The method to compute the synchronization set A is
specific to LOTOS parallel composition

How can we build exact interfaces in expressions that
use different and/or more general operators?

/

Limitation 2 of K&M algorithm

e It is impossible to compute interface constraints
induced by a combination of (distant) processes

e Sometimes, only such constraints allow reductions

e Example: in
0 P

I:)1 PZ
restricting P, w.r.t. either P, or P, yields no
reduction: P | |{a, @ P1=P3] |{C, @ P2 =P3

« Using an interface obtained by combination of P, and
P, (synchronized on b) would yield better reductions

— /Y 9

Limitation 3 of K&M algorithm

e Interfaces may be not precise enough when
nondeterministic synchronization is involved

« Example: in

Restricting P, w.r.t. P, yields no reduction:
%) | |{a} P, =P,

« However P, implies that two successive b actions
cannot be reached without an a in between

/Y —

Refined interfaces

« We propose a new algorithm which solves the
limitations of K&M algorithm

e The algorithm works in three phases

1. Translation of the composition of processes into a
general model called "synchronization networks”

2. Extraction of an "interface network” from the
network model

3. Generation of the interface graph corresponding
to the interface network

— /Y —

Phase 1: synchronization networks

e A general synchronization model

e Synchronization of processes P, ..., P, described
by a set of synchronization vectors of the form
Li,1’ ceoey Li,n — Li

where

- each L; ; is either a label of P; or the special symbol e
denoting inaction of P;

- L, is the label used in the product graph as the result of
the synchronization between the Py's

E— /Y —

Example 1

can be represented by the set of synchronization vectors
a, e, a—a
b,b,e—b
e, C,C—>C
d,d,d—>d

— /Y —

Example 2

oy (

can be represented by the set of synchronization vectors
a,a,a—a

b,b,e—b
b,e, b—Db nondeterministic synchronization on b for P,

P

o, d—d

—— W —

Phase 2: Interface network extraction

e Extraction of a network N' representing an abstraction of
the environment of a process to be constrained

e Inputs:
- The synchronization network N of a system P,, ..., P,
- The index i of the process P, to be constrained

- The indices j,, ..., j,, (user-given) of the constraining processes

e Algorithm: for each vector v in N, create in N a vector

VIisl, ve Vil = 1
where r = v[i] if v[i] = e (P, active in synchronization)
r=1 otherwise

— /Y —

Example

e P1, P2, P3 synchronized by the vectors
a,a,a—a
b,b,e—Db
b,e, b—Db
e,o,d—d

e The interface network of P2 induced by P1 is:
a—a

b—b
b—or1

QXC (This last one can be removed)

/

16

Phase 3: interface graph generation

e Generate the graph corresponding to N' (product
of Py, ..., P

e Thanks to congruence, P, ..., P;,, can be
reduced modulo safety equivalence beforehand

jm)

e Partial order reduction allows to avoid useless
interleavings

Using the generated interface

« The (possibly large) graph of P, can be

replaced by (smaller) graph of P,

| is an interface obtained by our a

, | where
gorithm

e Formal proof provided in FORTE2006 paper

18

Limitation 1 solved

e The algorithm applies on synchronization networks,

a general model similar to MEC and FC2 networks

e« We implemented the translation into networks for
- CCS, CSP, LOTOS, mCRL parallel composition

- E-LOTOS generalized parallel composition and m

among n synchronization

e The translation can still be done for other operators

— /Y —

Limitation 2 solved

e Interface constraints induced by any combination of
processes can be computed

e Example: in

d
« It yields reduction of P, as P, | |{a, o aql=

/)

Limitation 3 solved

e Interfaces are precise even in presence of
nondeterministic synchronization

a a, b
‘ ‘{ a, b} (& (

e The interface | of P, induced by P, is:

e It yields reduction of P, as P, | |{a, by | =

/Y —x

Implementation in CADP

e Algorithm implemented in Exp.Open 2.0 (-interface option)
e Example: odp.exp

hide all but WORK in
par EXPORT, IMPORT in
par WORK #2 in
“object_1.bcg"
| | “object_2.bcg"
| | "object_3.bcg"
| | “object_4.bcg"
end par
|
“trader.bcg”
end par
end hide

— /i —

Implementation in CADP

exp.open -weaktrace -interface "5: 1 2 3" "odp.exp”
generator “trader_interface.bcg"

o Generates an interface graph "trader_interface.bcg”
induced by the 1st ("object_1.bcg"), 2nd ("object_2.bcg"),
and 3rd ("object_3.bcg") graphs in "odp.exp”

e The interface graph can be used to constrain the 5th graph
("trader.bcg")

« Partial order reduction (persistent set method) preserving
observable traces is applied

—— /i —

Applications (1/3)

Philips’ HAVi Home Audio-Video leader election
e Modeled in LOTOS by J. Romijn (Eindhoven)

e Largest process (404,477 states) was:

- Reduced downto 365,923 states (182s, 46Mb) using
interface obtained by K&M algorithm

- Reduced downto 645 states (11s, 8.5Mb) using a refined
interface

http://www.inrialpes.fr/vasy/cadp/demos/demo_27.html

— /Y —

Applications (2/3)

ODP (Open Distributed Processing) Trader
e Modeled in E-LOTOS by Garavel & Sighireanu (INRIA)

e Uses m among n synchronization to model the
dynamicity of object exchanges

e Trader reduced from 1 M states without interface
downto 256 states using a refined interface

http://wwwi.inrialpes.fr/vasy/cadp/demos/demo_37.html

—— % —

25

Applications (3/3)

Cache Coherency Protocol
e Modeled in LOTOS by M. Zendri (Bull)

e 5 agents accessing a remote directory concurrently

e No reduction using interface obtained by K&M
algorithm

e Remote directory reduced from 1 M states downto 60
states using refined interface

 Directory generated for a configuration with 7 agents
(81 states)

http://www.inrialpes.fr/vasy/cadp/demos/demo_28.html

—— % —

26

Refined abstraction in SVL

e Refined interface generation and projection can be
done easily within the SVL scripting language

« New "refined abstraction” operator calls EXP.OPEN
and PROJECTOR automatically

e Example:

“cache.bcg” = root leaf strong reduction of
(
(AGENT_1 ||| AGENT_2 ||| AGENT_3)
| [GET_LINE_STATUS, PUT_LINE_STATUS]|

(refined abstraction AGENT_1, AGENT_2 using DIR_ABSTRACT
of DIRECTORY)

— @ —

Conclusions

We provided a new algorithm to synthesize interface constraints
automatically

The algorithm solves the 3 limitations of K&M's algorithm
- It does not depend on a particular input language

- It permits to take into account constraints induced by a
combination of distant processes

- It permits a finer analysis of synchronization patterns between
processes, thus yielding better reductions

The method is fully implemented in CADP
It is easy to use thanks to the SVL scripting language

Experiments indicate possible reductions by several orders of
magnitude

/Y —

