
FACS 2006

Component Substitutability via Equivalencies
of Component-Interaction Automata

Ivana Černá, Pavĺına Vařeková and Barbora Zimmerova1 ,2

Faculty of Informatics, Masaryk University
Brno, Czech Republic

Abstract

We provide a new look at formal aspects of component substitutability (replacement of a component with
a new one) and independent implementability (reuse of a component in any system where its implemen-
tation satisfies the specification given by the environment), in view of an underlying formalism called
Component-interaction automata. Our aim is to offer a formal characterization of preconditions that lead
to reconfiguration correctness (proper component substitution and safe independent implementation). Such
preconditions then guarantee that the updated system remains equivalent to the former one and hence there
is no need to verify it again.
The contribution of the paper is twofold. First, we formally define three relations that allows us to com-
pare behaviours of two components with respect to reconfiguration correctness. Namely, the equivalence
relation, specification–implementation relation, and substitutability relation. Second, we formally charac-
terize the problem of component substitutability for both equivalent and non-equivalent components, and
the problem of independent implementability. The characterizations are captured in several propositions
which are proved in the text.

Keywords: component-based systems, reconfiguration correctness, component substitutability,
independent implementability

1 Introduction

One of the essential benefits of component-based systems is their flexibility with re-
spect to future changes. As the systems are composed of autonomous components,
they may evolve simply by update of particular components. However, the com-
ponents are often developed by third parties which brings new verification issues
regarding correctness of interaction among such components. One of the issues,
in view of component updates, is called reconfiguration correctness. The recon-
figuration correctness comprises two specific problems, component substitutability
(replacement of a component with a new one) and independent implementability
(safe reuse of a component in any system where its implementation satisfies the spec-
ification given by its environment).

1 Email: {cerna,xvareko1,zimmerova}@fi.muni.cz
2 The authors have been supported by grants No. 1ET400300504 and GACR 201/06/1338

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Černá, Vařeková, Zimmerova

Our solution to these problems, as alternative to verification from scratch, is
based on formal characterization of relationship between the new and the former
component, which guarantees that the update will not break the existing functional-
ity of an overall system. We regard the problem of independent implementability as
the substitutability of component implementation for its specification which allows
us to propose a uniform solution for both problems.

We rely on an underlying formalism called Component-interaction automata [15],
which is briefly described in Sections 2 and 4. Section 3 introduces the notion of
equivalence between two component-interaction automata, which is defined with re-
spect to a given set of observable labels. This allows us to explicitly state the level of
accuracy at which automata are compared, and hence study several kinds of equiva-
lencies between automata. The characterization of reconfiguration correctness with
respect to substitution of two equivalent components is proposed in Section 5. Sec-
tions 3 and 5 together provide a formal foundation stone for subsequent relations
and results that are extensions of these. Sections 6 and 7 introduce the specification–
implementation and the substitutability relations. In these sections we also char-
acterize the problems of independent implementability and substitutability of non-
equivalent components, and propose solutions based on the results of Section 5.
Related work is discussed in Section 8 and we conclude in Section 9.

2 Component-interaction automata

The Component-interaction automata language [5,15] was designed for modelling
of component interactions in hierarchical component-based software systems. It
captures each component as a labelled transition system with structured labels
(to remember components which communicated on an action) and a hierarchy of
component names (which represents the architectural structure of the component).
Such features allow the language to model component interactions in fine detail
while the language is still generally usable for several variations of component-
based systems (with different synchronization strategies for instance). The essential
definitions are briefly reminded in this section.

A hierarchy of component names is a tuple H = (H1, . . . , Hn), n ∈ N, of one
of the following forms, SH denotes the set of component names corresponding to
H. The first case is that H1, . . . , Hn are pairwise different natural numbers; then
SH =

⋃n
i=1{Hi}. The second case is that H1, . . . ,Hn are hierarchies of component

names where SH1 , . . . , SHn are pairwise disjoint; then SH =
⋃n

i=1 SHi .
A component-interaction automaton (or a CI automaton for short) is a 5-tuple

C = (Q,Act, δ, I, H) where Q is a finite set of states, Act is a finite set of actions,
Σ = ((SH ∪ {−}) × Act × (SH ∪ {−})) \ ({−} × Act × {−}) is a set of labels,
δ ⊆ Q × Σ × Q is a finite set of labelled transitions, I ⊆ Q is a nonempty set of
initial states, and H is a hierarchy of component names. The labels have semantics
of input, output, or internal, based on their structure, as indicated in Notation 2.1.
Examples of two CI automata are in Figure 1.

A path of a CI automaton C = (Q, Act, δ, I,H) is an alternating sequence of
states and labels given by δ that is either infinite, or is finite in case that it ends
with a state from which there is no transition in δ. The set of all paths of a CI

2



Černá, Vařeková, Zimmerova

automaton C is denoted Path(C). The set of all finite prefixes of paths from Path(C)
that end with a state is denoted FinPath(C).
Notation 2.1 For a given CI automaton C = (Q,Act, δ, I,H) we denote

• LC = {l | ∃ q0, l0, . . . , qk−1, lk−1, qk ∈ FinPath(C) : q0 ∈ I ∧ lk−1 = l}
the set of all labels reachable in C,

• Linp,C = LC ∩ {(−, a, n2) | a ∈ Act, n2 ∈ N}
the set of all input labels reachable in C (a component n2 inputs an action a),

• Lout,C = LC ∩ {(n1, a,−) | a ∈ Act, n1 ∈ N}
the set of all output labels reachable in C (a component n1 outputs an action a),

• Lint,C = LC ∩ {(n1, a, n2) | a ∈ Act, n1, n2 ∈ N}
the set of all internal labels reachable in C (n1 and n2 synchronize on a),

• Lext,C = Linp,C ∪ Lout,C = LC \ Lint,C
the set of all external (input and output) labels reachable in C.

q/.-,()*+
(1,b,1)

²²C1 : // p/.-,()*+

(−,a,1)

88qqqqqqqqqqqq
r/.-,()*+

(1,c,−)
oo C2 : // p/.-,()*+

(2,a,−) //
q/.-,()*+

(−,c,2)
oo

Hierarchy: (1) Hierarchy: (2)

Fig. 1. Example of CI automata

3 Equivalence of component-interaction automata

This section introduces the equivalence of two CI automata defined as an equivalence
with respect to observable steps X. The observable step of an automaton consists
of a single observable transition (with a label from X) preceded and followed by
an arbitrary number (potentially zero) of silent transitions (with labels outside X).
Using this concept we define the equivalence of two CI automata in a similar way
to Milner’s weak bisimulation [13].

Definition 3.1 Let C′ = (Q′, Act′, δ′, I ′,H ′) and C′′ = (Q′′, Act′′, δ′′, I ′′,H ′′) be
CI automata and X be a set of labels. A binary relation ∼ ⊆ Q′ × Q′′ is called
an observation equivalence of C′ and C′′ with respect to X iff q′ ∼ q′′ implies:

(i) Whenever (q′, l, r′) ∈ δ′ then ∃ q′′l0q1l1 · · · qnlnr′′ ∈ FinPath(C′′) satisfying
r′ ∼ r′′ and
• if l /∈ X then {l0, l1, . . . , ln} ∩X = ∅, (?)
• if l ∈ X then {l0, l1, . . . , ln} ∩X = {l} ∧ ∃! i ∈ {0, 1, . . . , n} : li = l

where ∃! i denotes that there is exactly one such index.

(ii) Whenever (q′′, l, r′′) ∈ δ′′ then ∃ q′l0q1l1 · · · qnlnr′ ∈ FinPath(C′) satisfying
r′ ∼ r′′ and (?).

CI automata C′, C′′ are equivalent with respect to X, C′ ≡X C′′, iff there is an ob-
servation equivalence ∼ of C′ and C′′ with respect to X such that:

• For every q′ ∈ I ′ there is q′′ ∈ I ′′ such that q′ ∼ q′′. (??)
• For every q′′ ∈ I ′′ there is q′ ∈ I ′ such that q′ ∼ q′′. (? ? ?)

3



Černá, Vařeková, Zimmerova

The use of the parameter X in the definition of ≡X has a special significance. It
allows us to explicitly state the level of accuracy at which the new and the former
system are compared.

Remark 3.2 For CI automata C and C′ some special cases of the set X are:

(i) X = LC ∪ LC′
An analogy of strong bisimulation where all labels are observable.

(ii) X = Lext,C ∪ Lext,C′
An analogy of weak bisimulation where all internal labels are silent.

(iii) X = LC ∪ Lext,C′
Refinement of C by C′ where C′ must respect all transitions of C (input, output,
internal), but may perform other new internal transitions.

(iv) X = (LC ∪ LC′) \ {(n, a, n) | n ∈ N}
Only inner internal labels of primitive components are silent.

Note that in all these cases, the set X includes all external labels of the automata,
X ⊇ Lext,C ∪Lext,C′ . This is natural as external labels may participate in communi-
cation with other components which influence an overall behaviour of the system.

It can be easily proved that, for any fixed set of labels X, the relation ≡X is
an equivalence (reflexive, symmetric, and transitive) on the set of all CI automata.
Moreover, it has a property, stated by the following lemma, of which we take ad-
vantage in following sections.

Lemma 3.3 Let C, C′ be CI automata, X be a set of labels. Then

if C ≡X C′ then ∀X ′ ⊆ X : C ≡X′ C′

Proof. As C ≡X C′, there exists an observation equivalence ∼ of C and C′ with
respect to X satisfying (??) and (? ? ?). It can be easily proved that the same ∼ is
also an observation equivalence of C and C′ with respect to any X ′ ⊆ X. 2

According to Definition 3.1, two CI automata may be equivalent only if their sets
of reachable observable labels are identical. It among others means that they need
to have the same names for functionally corresponding primitive components men-
tioned in observable labels. However, more practical issue is to check whether two
automata behave the same no matter what the names of their primitive components
are.

Notation 3.4 Let SH be a set of component names and X be a set of labels. By
SH,X we denote the set of component names from SH that appear in any label from
X. Formally, SH,X = SH ∩ {n | ∃a, x : (n, a, x) ∈ X ∨ (x, a, n) ∈ X}.
Definition 3.5 Let C = (Q,Act, δ, I, H) be a CI automaton, let M ⊆ N, and r :
M → N be a function, called renaming function. We say, that a CI automaton C′ re-
sults from C after renaming of all component names with r, iff C′ = (Q,Act, δ′, I,H ′)
where δ′ and H ′ results from δ, resp. H, by replacing every occurrence of any com-
ponent name x ∈ M with r(x).

Definition 3.6 Let C and C′ be CI automata, X be a set of labels. We say that a CI
automaton C′ is equivalent to C with respect to observable labels X up to 1:1 (or up

4



Černá, Vařeková, Zimmerova

to 1:N ) renaming, iff there is a bijection (resp. surjection) r : SH′,X → SH,X such
that the CI automaton C′r, which results from C′ after renaming of all component
names with r, is equivalent to C with respect to observable labels X, C ≡X C′r.

Thanks to the information about participating components, which CI automata
encompass in the labels, the equivalence may be assessed according to the corre-
spondence of primitive components. If the renaming function is a bijection, for each
observable component ni in C there must be exactly one observable component nj

in C′ performing an equivalent functionality. In case we do not want to make such
a strict restriction, we may consider the case that for each observable component ni

in C there may be a set of components in C′ forming a notional component nj which
performs an equivalent functionality. That is the second case when the renaming
function is a surjection. Moreover, we could reason about another type of function
that would join names of several components to a group to test whether we may
replace them for another group of components with shifted responsibilities (some
services moved from one component to another one within the group) even if we
know that one by one replacement would not succeed. In addition, the concept of
equivalence up to renaming can be applied also to other relations of CI automata,
in particular those introduced in Sections 6 and 7.

4 Composition with respect to architectural assembly

We have presented the definition of CI automata and introduced the notion of
equivalence between them. Now, before we proceed to component update within
a system, one more issue needs to be discussed. It concerns the role of compo-
nent’s environment. As the component is interconnected with the rest of the sys-
tem, the environment influence its behaviour coordinating the component. Hence
the form of component interconnection with the rest of the system must be taken
into consideration before the component substitution. This interconnection is in
fact determined by the type of composition that was used to compose the system
together.

Component-interaction automata offer a parameterizable composition operator
which composes given automata in a way that it preserves only the transitions that
are really feasible in a system. For example, let us consider a system consisting of
three components C1, C2, and C3, where both C1 and C2 provide a service a and C3

requires a. Imagine that only C1 and C3 are connected by communicational bind-
ing, C2 and C3 are not. Then the composition respects that only C1 and C3 may
synchronize. The synchronization of C2 and C3 is syntactically possible, but not
feasible in the system. One of the ways to provide such composition is to parame-
terize the composition operator with a set of labels F which represents the bindings
via which the components may communicate (in component assembly of the sys-
tem). This is possible thanks to the structure of labels (in CI automata) which
contain the names of components between which the actions are communicated.
Such composition operator is denoted ⊗F and its definition and several properties
with respect to ≡X are presented in this section.

The composition of CI automata is defined as an operation that for a composable

5



Černá, Vařeková, Zimmerova

indexed set 3 of CI automata and an additional parameter F returns the composite
automaton. A set of CI automata S = {(Qi, Acti, δi, Ii,Hi)}i∈I is composable if
I ⊆ N is finite and (Hi)i∈I is a hierarchy of component names 4 . The composite
CI automaton over S is defined with help of a complete transition space over S
denoted ∆S . The complete transition space consists of transitions between product
states for given automata, such that from each state, there are just the transitions
of single component automata, and the transitions caused by synchronization of two
component automata on a complementary label.

Definition 4.1 Let F be a set of labels, then ⊗F denotes a unary composition
operator on composable sets of CI automata. If S = {(Qi, Acti, δi, Ii,Hi)}i∈I is
a composable set of CI automata, then⊗FS = (Πi∈IQi,∪i∈IActi, δ,Πi∈IIi, (Hi)i∈I)
where δ = {(q, x, q′) | (q, x, q′) ∈ ∆S ∧ x ∈ F}.

As the set F represents component assembly of the system, we require that
it contains all internal labels of former automata (that are to be composed) since
the assembly binds only external services of the components. It does not concern
the former internal behaviour.

Definition 4.2 We say that the automaton ⊗F{Ci}i∈I is defined iff {Ci}i∈I is
a composable set of CI automata and F ⊇ ⋃

i∈I Lint,Ci .

Let {Ci}i∈I be a composable set of CI automata, then by ⊗{Ci}i∈I we denote
the automaton ⊗(

S
i∈I LCi

){Ci}i∈I . An example of ⊗{Ci}i∈{1,2} for automata C1, C2

depicted in Figure 1 is in Figure 2(a).

Example 4.3 Let C1 and C2 be the automata in Figure 1, let F = {(2, a, 1), (1, b, 1),
(1, c, 2)} represent their feasible communication. As F ⊇ Lint,C1 ∪ Lint,C2 , the com-
posite automaton C3 = ⊗F{Ci}i∈{1,2} is defined. It is depicted in Figure 2(b).

²² ²²
pp?>=<89:; //

(−,a,1)
//

²²

(2,a,−)

²²
(2,a,1)

%%KKKKKKKKKKKKKKKKKKKK qp?>=<89:;
(1,b,1)

//

²²

(2,a,−)

(1,c,2)

²²

rp?>=<89:;

²²

(2,a,−)

²²

oo (1,c,−)oo
pp?>=<89:;

(2,a,1)

½½5
55

55
55

55
55

55
qp?>=<89:; (1,b,1) // rp?>=<89:;

pq?>=<89:;

OO

(−,c,2)

OO

//(−,a,1) //

OO

Hierarchy: ((1),(2)) Hierarchy: ((1),(2))

(a) ⊗{Ci}i∈{1,2} (b) ⊗F{Ci}i∈{1,2}

OO

qq?>=<89:;

OO

(−,c,2)

OO

(1,b,1) // rq?>=<89:;

OO

(−,c,2)

OO

oo
(1,c,−)

oo

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
pq?>=<89:; qq?>=<89:;

(1,b,1)
// rq?>=<89:;

(1,c,2)

ccGGGGGGGGGGGGGGGGGG

Fig. 2. Example of composite CI automata (states ij stand for (i, j))

The following lemma shows that for the operator ⊗F , the order of component
automata defined by their indexes is not important (from behavioural point of view)
as the composite automata resulting from different orders are equivalent.

3 By an indexed set we mean a set with an implicit linear ordering of items, given by their numerical
indexes in a least to greatest manner.
4 It among others means that SHi

, i ∈ I, are pairwise disjoint and hence any component name appears in
at most one automaton.

6



Černá, Vařeková, Zimmerova

Lemma 4.4 Let {Ci}i∈I be a set of CI automata, F a set of labels such that the au-
tomaton ⊗F{Ci}i∈I is defined, and denote L =

⋃
i∈I LCi. Let f : I → I be a bijec-

tion and for all i ∈ I denote C′i = Cf(i). Then ⊗F{C′i}i∈I is defined and

⊗F{Ci}i∈I ≡L ⊗F{C′i}i∈I

Proof. For each i ∈ I, let Ci = (Qi, Acti, δi, Ii,Hi) and C′i = (Q′
i, Act′i, δ

′
i, I

′
i,H

′
i).

As the automaton ⊗F{Ci}i∈I is defined, F ⊇ ⋃
i∈I Lint,Ci and the sets SHi , i ∈ I,

are pairwise disjoint, ⊗F{C′i}i∈I is also defined. To prove that ⊗F{Ci}i∈I ≡L
⊗F{C′i}i∈I , it suffices to show that the relation ∼ ⊆ (Πi∈IQi)× (Πi∈IQ′

i) defined

(qi)i∈I ∼ (q′i)i∈I iff ∀i ∈ I : qi = q′(f(i))

is an observation equivalence which satisfies (??) and (? ? ?) from Definition 3.1,
which is straightforward. 2

Another property of ⊗F regarding the order of composition, which is important
for proofs in the next section, is the following.

Lemma 4.5 Let {Ci}i∈I be a set of CI automata, F a set of labels such that the au-
tomaton ⊗F{Ci}i∈I is defined, and denote L =

⋃
i∈I LCi. Then for any j ∈ I

the automaton ⊗F{Cj , Cj+1} where Cj+1 = ⊗{Ci}i∈I\{j} is defined and

⊗F{Ci}i∈I ≡L ⊗F{Cj , Cj+1}
Proof. For each i ∈ I, let Ci = (Qi, Acti, δi, Ii,Hi). Analogically to the proof
of Lemma 4.4, as ⊗F{Ci}i∈I is defined, the automata Cj+1 = ⊗{Ci}i∈I\{j} and
⊗F{Cj , Cj+1} are also defined. It is again straightforward to show that the relation
∼⊆ (Πi∈IQi)× (Qj ×Πi∈I\{j}Qi) defined

(qi)i∈I ∼ (q′j , (q
′
i)i∈I\{j}) iff ∀i ∈ I : qi = q′i

is an observation equivalence which satisfies (??) and (? ? ?) from Definition 3.1. 2

It is worth saying that thanks to Lemma 3.3, Lemmas 4.4 and 4.5 hold also for
any L ⊆ ⋃

i∈I LCi . Additionally, the existence of ≡X between CI automata C and C′
does not depend on labels from X \ (LC ∪LC′). Therefore Lemmas 4.4 and 4.5 hold
also for any L ⊇ ⋃

i∈I LCi . In general, we will write C ≡ C′ whenever C ≡LC∪LC′ C′,
because in such cases C ≡X C′ for any set of labels X.

5 Substitutability of equivalent components

We would like to expect that whenever we have a system in which we replace one
component with an equivalent one, the system will remain equivalent to the former
one. This task is a bit more complicated, as it is parametrized by the intercon-
nection of the component into the system (given by F in ⊗F ) and the accuracy of
the equivalence (given by X in ≡X) 5 .

However, we can prove that if the two components are equivalent with respect
to observable labels which encompass all their external labels (which is quite a nat-
ural condition), it is true, that if in any system with any interconnection given by

5 Note that X can be chosen in a way that the equivalence regards only the existing functionality of
the system and allows the new component to perform additional actions that are not considered as observable
(see Remark 3.2 (iii)).

7



Černá, Vařeková, Zimmerova

some ⊗F we replace one of the components with its equivalent, the system remains
equivalent to the previous one with respect to the same set of labels X 6 . In the fol-
lowing lemma we prove this for the simple case when the environment constitutes
of one component only. In Theorem 5.2 we extend it to an environment created of
several components, and in Corollary 5.3 we address also simultaneous replacement
of several components.

Lemma 5.1 Let C1, C2 and C3 be CI automata and F a set of labels such that
the automata ⊗F{C1, C3} and ⊗F{C2, C3} are defined. Let X be a set of labels such
that X ⊇ ⋃

i∈{1,2} Lext,Ci. Then

if C1 ≡X C2 then ⊗F{C1, C3} ≡X ⊗F{C2, C3}
Proof. By δ13 we denote the transition set of automaton ⊗F{C1, C3} and by δ23

the transition set of ⊗F{C2, C3}.
Because C1 ≡X C2, there is an observation equivalence of C1 and C2 with respect
to X which fulfills (??) and (? ? ?) from Definition 3.1. Let ≈ be an arbitrary, but
fixed, relation satisfying these conditions.

It is necessary to show that there exists a relation, which is an observation equiv-
alence of ⊗F{C1, C3} and ⊗F{C2, C3} with respect to X satisfying (??) and (? ? ?).
We show that the relation ∼ defined:

(p1, p3) ∼ (q2, q3) ⇔ p1 ≈ q2 ∧ p3 = q3 (1)

satisfies these conditions.

a) The relation ∼ fulfills (??) and (? ? ?).
Let (p1, p3) ∈ I1×I3, where I1, I3 are sets of initial states of C1, C3, then from the fact
that ≈ satisfies (??) it follows that there is a state q2 ∈ I2 such that p1 ≈ q2 and
from the definition of ∼ it is seen that (p1, p3) ∼ (q2, p3). The relation ∼ satisfies
the condition (? ? ?) for similar reasons.

b) The relation ∼ is an observation equivalence of ⊗F{C1, C3} and ⊗F{C2, C3} with
respect to X.

Let (p1, p3) ∈ Q1×Q3, (q2, p3) ∈ Q2×Q3 be states such that (p1, p3) ∼ (q2, p3). We
prove that the condition (i) from Definition 3.1 is valid. The fact, that the condition
(ii) is satisfied can be proved analogically.

Suppose ((p1, p3), l, (p′1, p
′
3)) ∈ δ13, then there are three cases to analyse:

(1) ((p1, p3), l, (p′1, p
′
3)) is caused solely by C3, i.e. p1 = p′1 and (p3, l, p

′
3) ∈ δ3.

Then (q2, p3), l, (q2, p
′
3) ∈ FinPath(⊗F{C2, C3}) is a path which fulfills (?) and

(p1, p
′
3) ∼ (q2, p

′
3).

(2) ((p1, p3), l, (p′1, p
′
3)) is caused solely by C1, i.e. (p1, l, p

′
1) ∈ δ1 and p3 = p′3.

Then because p1 ≈ q2 there is a path q2, l1, q
′
2, . . . , ln−1, q

′
n ∈ FinPath(C2)

which fulfills (?) and p′1 ≈ q′n. Since ((p1, p3), l, (p′1, p
′
3)) ∈ δ13 it holds that

l ∈ F . As {l1, . . . , ln−1} ∩ X ⊆ {l} and X ⊇ Lext,C2 it holds {l1, . . . , ln−1} ⊆
Lint,C2 ∪{l}. And since Lint,C2 ⊆ F and l ∈ F also {l1, . . . , ln−1} ⊆ F and thus

6 Note that the main strength of this proposition is that it holds for an arbitrary environment of the compo-
nent and an arbitrary coordination logic given by F (which may disable some behaviours of the component).

8



Černá, Vařeková, Zimmerova

(q2, p3), l1, (q′2, p3), l2, . . . , ln−1, (q′n, p3) ∈ FinPath(⊗F{C2, C3}). From the def-
inition it follows that the path (q2, p3), l1, (q′2, p3), l2, . . . , ln−1, (q′n, p3) satisfies
(?) and (p′1, p3) ∼ (q′n, p3).

(3) ((p1, p3), l, (p′1, p
′
3)) is caused by synchronization of C1 and C3 on l = (n1, a, n2),

i.e. (p1, l
′, p′1) ∈ δ1 and (p3, l

′′, p′3) ∈ δ3 where either l′ = (n1, a,−) and
l′′ = (−, a, n2), or l′ = (−, a, n2) and l′′ = (n1, a,−).
Since l′ ∈ Lext,C2 it is true that l′ ∈ X and because p1 ≈ q2 there is a path
q2, l1, q

′
2, . . . , lm−1, q

′
m, l′, q′m+1, . . . , ln−1, q

′
n ∈ FinPath(C2) such that p′1 ≈ q′n

and (?) is satisfied. Similarly to the previous case it can be shown that
{l1, . . . , lm−1, lm+1, . . . , ln} ⊆ F , so both (q1, p3), l1, (q′2, p3), . . . , lm−1, (q′m, p3)
and (q′m+1, p

′
3), lm+1, . . . , ln−1, (q′n, p′3) are paths in FinPath(⊗F{C2, C3}). Be-

cause ((p1, p3), l, (p′1, p
′
3)) ∈ δ13 it holds that l ∈ F . Moreover (q′m, l′, q′m+1) ∈

δ2 and (p3, l
′′, p′3) ∈ δ3, consequently ((q′m, p3), l, (q′m+1, p

′
3)) ∈ δ23 and thus

(q1, p3), l1, (q′2, p3), l2, . . . , lm−1, (q′m, p3), l, (q′m+1, p
′
3), lm+1, . . . , ln−1, (q′n, p′3)

∈ FinPath(⊗F{C2, C3}).
From definition of ∼ it is seen that the path satisfy (?) and (p′1, p

′
3) ∼ (q′n, p′3).

2

Note that Lemma 5.1 does not hold for an arbitrary X as it can be seen in
Figure 3 which depicts the automata C1, C2, C3 and the sets X,F satisfying C1 ≡X C2

and not ⊗F{C1, C2} ≡X ⊗F{C1, C3}.

C1 : // q/.-,()*+ C2 : // q/.-,()*+
GFED

(1,a,−)

BC
oo
GFED

Hierarchy: (1) Hierarchy: (1) Hierarchy: (2)

BC
oo C3 : // q/.-,()*+

GFED
(−,a,2)

BC
oo

F = X = {(1, a, 2)}
Fig. 3. Illustration that Lemma 5.1 does not hold for a general X

Lemma 5.1 can be also applied to replacement of many automata with just one
automaton, one automaton with many, or a set of automata with another set. This
is because a set of automata can be considered as a virtual composite automaton
consisting of all (reachable) transitions of the complete transition space, as it was
studied in Lemma 4.5. This idea can be applied to the following propositions too.

Now we can proceed to a more general case where the environment constitutes
of several components (automata). This is the main result of this section which
characterizes a precondition for safe substitutability of equivalent components in
a general environment.

Theorem 5.2 Let I ⊂ N, j, k ∈ N \ I, {Ci}i∈I∪{j,k} be a set of CI automata, and
F be a set of labels such that the automata ⊗F{Ci}i∈I∪{j} and ⊗F{Ci}i∈I∪{k} are
defined. Then for any set of labels X ⊇ Lext,Cj ∪ Lext,Ck

if Cj ≡X Ck then ⊗F{Ci}i∈I∪{j} ≡X ⊗F{Ci}i∈I∪{k}

Proof. When I = ∅, the result follows directly from Lemma 5.1 and the fact that
for any CI automaton C′1 and a set of labels F , it holds that ⊗F{C′1} ≡ ⊗F{C′1, C′2}
where C′2 = ({q}, ∅, ∅, {q}, (n)) for a suitable n ∈ N.

9



Černá, Vařeková, Zimmerova

When I 6= ∅, from Lemmas 3.3 and 4.5 it follows that

⊗F{Ci}i∈I∪{j} ≡X ⊗F{Cj , Cj+1 = ⊗{Ci}i∈I},
⊗F{Ci}i∈I∪{k} ≡X ⊗F{Ck, Ck+1 = ⊗{Ci}i∈I}.

Moreover, as Cj ≡X Ck, from Lemma 5.1 we get

⊗F{Cj , Cj+1 = ⊗{Ci}i∈I} ≡X ⊗F{Ck, Ck+1 = ⊗{Ci}i∈I}
and because ≡X is an equivalence, ⊗F{Ci}i∈I∪{j} ≡X ⊗F{Ci}i∈I∪{k}. 2

The following corollary addresses the simultaneous replacement of several com-
ponents at the same time.

Corollary 5.3 Let {Ci}i∈I and {C′i}i∈I be sets of CI automata, and F a set of
labels such that the automata ⊗F{Ci}i∈I and ⊗F{C′i}i∈I are defined. Then for any
set of labels X ⊇ ⋃

i∈I(Lext,Ci ∪ Lext,C′i)

if ∀i ∈ I : Ci ≡X C′i then ⊗F{Ci}i∈I ≡X ⊗F{C′i}i∈I

Proof. We can assume, without loss of generality, that I = {1, 2, . . . , k} for some
k ∈ N. And we use Ck+i to denote C′i for any i ∈ I. Then from Theorem 5.2 it follows
that ⊗F{C1, C2, . . . , Ck} ≡X ⊗F{C2, . . . , Ck, Ck+1} ≡X ⊗F{C3, . . . , Ck+1, Ck+2} ≡X

· · · ≡X ⊗F{Ck+1, . . . , Ck+k} ≡X ⊗F{C′1, C′2, . . . , C′k}. 2

Moreover, Lemma 4.4 implies that if there exists a bijection f : I → I such that
∀i ∈ I : Ci ≡X C′f(i) then also ⊗F{Ci}i∈I ≡X ⊗F{C′i}i∈I where {Ci}i∈I , {C′i}i∈I ,
F and X follow the assumptions from Corollary 5.3.

6 Independent implementability

Until now, we have studied the problem of replacement of one component with
an equivalent one. We have shown that when the components are equivalent with
respect to observable actions that encompass their external communication, the re-
sulting system remains equivalent to the former one.

In this section, we focus on another interesting issue that can be regarded using
a similar concept. It is the problem of independent development of components with
certainty that they can be safely reused in any system where their implementation is
compliant to the specification stated by their environment. The solution is based on
the definition of a relationship between component specification and implementation
that would assure this. Such specification-implementation relation moreover allows
developers to design systems as compositions of specifications and then just search
for appropriate implementations. Note that the independent implementability can
be regarded as the substitutability of component implementation for its specification
and hence to a certain extent, we may use the results of Section 5.

However, there are several distinctions between the specification-implementation
relationship and ≡X , which need to be taken into consideration. First, the automata
representing component specification and implementation do not need to be equiv-
alent, as the implementation may provide new services beyond those stated by
the specification. Second, as the equivalence requires equality in all aspects, there
is no need to discuss a potential asymmetry of required and provided services, or

10



Černá, Vařeková, Zimmerova

of input and output actions. However we need to do this now for the specification–
implementation relation. We informally consider the implementation to be compli-
ant to the specification if it fulfills the following requirements:

Interface requirements
1. The implementation provides (resp. requires) all the services provided (resp.

required) by the specification.

2. The implementation may provide (and require) services that are beyond the spec-
ification.

Behavioural requirements
3. When serving the services provided (and required) by the specification, the im-

plementation respects the specification in all observable steps.

Regarding (1.), the reason why the implementation must respect also required
services of the specification follows from the fact that another component in the sys-
tem may wait for the requisition to function correctly. The (2.) allows us to search
for desired component implementation also among components that provide and
require more services than the specification. The last requirement (3.) states that
implementation does not require nor provide any additional observable service when
serving the services provided and required by the specification.

At first glance, the symmetry between component provisions and requirements
may seem surprising. However the clarification is straightforward. In fact, the asym-
metry that is usually ascribed to provisions and requirements grounds deeper in
the asymmetry of inputs and outputs. As provided services usually respect the pat-
tern input request then output response and required services the pattern output
request then input response, the asymmetry is forwarded to provisions and require-
ments too.

The systems with asymmetrical interpretation of input and output actions, as
an output may be initiated anytime when an input needs to wait for a counterpart,
are often called non-blocking systems. However, not all systems are non-blocking.
Blocking systems, where both input and output are blocked in case a counterpart
is not ready, are also of high interest. Majority of specification languages for com-
ponent interactions focus on either the blocking strategy (Tracta [12], Wright [3]),
or non-blocking strategy (Interface automata [9], SOFA Behavior protocols [14]).
The Component-interaction automata [15] respect both as they are designed to
model a variety of synchronization strategies.

We may now proceed to the definition of specification–implementation relation
between two CI automata with respect to these two types of systems. In case of CI
automata we may informally summarize the mentioned requirements of the relation
as follows. A CI automaton C2 (implementation) is compliant to a CI automaton C1

(specification) if C2 behaves observably the same as C1 on every service provided and
required by C1. Such restriction of C2 can be formally captured using composition
that encloses the component represented by C2 to a higher level component C3 as
depicted in Figure 4. In the figure, the arrows symbolize delegation of services
outside the component. The inner services (e, f in this case) are not accessible
from outside. It means that their actions are blocked from occurring in blocking
systems, but may escape (in case of outputs) in non-blocking systems.

11



Černá, Vařeková, Zimmerova

Fig. 4. Architectural view on restriction of C2 to given C1

Definition 6.1 Let C1 and C2 be CI automata, X be a set of labels. Then

• C2 is compliant to C1 with respect to observable labels X in a blocking environ-
ment, iff C1 ≡X ⊗R{C2} where R = Lext,C1 ∪ Lint,C2 ,

• C2 is compliant to C1 with respect to observable labels X in a non-blocking envi-
ronment, iff C1 ≡X ⊗R{C2} where R = Lext,C1 ∪ Lint,C2 ∪ Lout,C2 .

We now regard the independent implementability as the substitutability of
restricted component implementation C3 = ⊗R{C2} for its specification C1. As
the specification–implementation relation is defined using ≡X , we can use the re-
sults of Section 5. In particular, if X ⊇ (Lext,C1 ∪ Lext,C2) ∩ R = Lext,C1 ∪ Lext,C3
(where R is given by Definition 6.1), it follows from Lemma 5.1 that C1 ≡X C3

implies ⊗F{C1, C4} ≡X ⊗F{C3, C4} for any C4 and F such that the automata
⊗F{C1, C4} and ⊗F{C3, C4} are defined.

Moreover, provided that C1 is the exact specification of services used by an en-
vironment on C2 (the rest will stay unused), then it holds that, if C2 is compliant
to C1 with respect to X then the system with C2 in place of C1 will be equivalent
to the former one with respect to the same X. This characterization of a pre-
condition for independent implementability is formally captured in the following
lemma for the basic case when the environment constitutes of one component (au-
tomaton) only. The result can be extended for a general environment analogically
to Section 5. Just before we proceed to the lemma, let us introduce an auxiliary
definition needed for formalizing the concept of C1 being the exact specification of
services used by an environment on C2.

Definition 6.2 Participate denotes a function on sets of labels. If Y is a set of
labels, then Participate(Y ) is a set consisting of the labels that are either from Y or
represent internal communication in which the labels from Y participate. Formally,
Participate(Y ) = Y ∪{(x1, a, x2) | x1, x2 ∈ N ∧ ((x1, a,−) ∈ Y ∨ (−, a, x2) ∈ Y )}.
Lemma 6.3 Let C1, C2 and C3 be CI automata, R the set given by Def. 6.1. Let F be
a set of labels such that F∩Participate(LC2\R) = ∅ and the automata ⊗F{C1, C3},
⊗F{C2, C3} are defined. Let X be a set of labels such that X ⊇ (

⋃
i∈{1,2} Lext,Ci)∩R.

Then

if C2 is compliant to C1 w.r.t. X 7 then ⊗F{C1, C3} ≡X ⊗F{C2, C3}

7 Generally for either blocking or non-blocking environment given by R.

12



Černá, Vařeková, Zimmerova

Proof. As X ⊇ (
⋃

i∈{1,2} Lext,Ci)∩R, it follows from Lemma 5.1 that⊗F{C1, C3} ≡X

⊗F{⊗R{C2}, C3}. Since F ∩ Participate(LC2 \ R) = ∅ , i.e. F does not include la-
bels of C2 that are not in R nor their connection into new internal labels, and
⊗F{⊗{C2}, C3} ≡ ⊗F{C2, C3}, it holds that ⊗F{⊗R{C2}, C3} ≡ ⊗F{C2, C3}. Thus
⊗F{C1, C3} ≡X ⊗F{C2, C3}. 2

Let us mention one more property of the specification–implementation relation
with respect to the equivalence relation defined in Section 3. For any CI automata
C1, C2 and a set of labels X ⊇ ⋃

i∈{1,2} Lext,Ci it holds that, if C1 ≡X C2 then C2 is
compliant to C1 w.r.t. X in both blocking and non-blocking environment.

7 Substitutability of non-equivalent components

The results of Section 5, Lemma 5.1 and Theorem 5.2 in particular, help us to
determine when we can replace one component with another one with certainty
that the new system will preserve the previous behaviour. The theorem states that
whenever two components are equivalent, we can replace one with the other one
and the new system will be equivalent to the previous one. It can also happen that
the two components are not equivalent, but the new system (with a new component
in a place of the former one) is equivalent to the former system. It can be caused
by the fact that the component is bound into the system in a way that some of
its behaviours are disabled and that can be exactly the behaviours that distinguish
the components.

The substitutability relation is defined exactly for this purpose. It extends
the notion of the specification–implementation relation with the assumption that
the new component C2 does not have to simulate behaviours of the former compo-
nent C1 that are not used by the environment (some interfaces/services of C1 may
be unused by the environment). In the following definition, the services of C1 that
are really used by the environment are represented by the set E.

Fig. 5. Architectural view on restriction of C1 and C2 for the same environment

Definition 7.1 Let C1 and C2 be CI automata, X, E be sets of labels. Then

• C2 is substitutable for C1 with respect to observable labels X and labels (used by
the environment) E in a blocking environment, iff ⊗R{C1} ≡X ⊗R{C2} where
R = E ∪ Lint,C1 ∪ Lint,C2 ,

• C2 is substitutable for C1 with respect to observable labels X and labels (used by
the environment) E in a non-blocking environment, iff ⊗R{C1} ≡X ⊗R{C2} where
R = E ∪ Lint,C1 ∪ Lint,C2 ∪ Lout,C1 ∪ Lout,C2 .

13



Černá, Vařeková, Zimmerova

Similarly to the previous section, suppose that a component (a CI automaton
C1) is connected with an environment (a CI automaton C3) by F in such a way
that the environment really uses just the services of C1 that are specified by E.
Then if X ⊇ (Lext,C1 ∪ Lext,C2) ∩R, and a CI automaton C2 is substitutable for C1,
i.e. ⊗R{C1} ≡X ⊗R{C2} for R given by the definition, then also the new system
will be equivalent to the former one ⊗F{C1, C3} ≡X ⊗F{C2, C3}.

The following lemma states this formally giving a formal characterization of safe
substitutability of non-equivalent components. It is again the basic case considering
one-item environment only, but extendable to the general case as in Section 5.

Lemma 7.2 Let C1, C2 and C3 be CI automata, E a set of labels, and R the set given
by Def. 7.1. Let F be a set of labels such that F ∩Participate((LC1 ∪LC2)\R) = ∅
and the automata ⊗F{C1, C3} and ⊗F{C2, C3} are defined. Let X be a set of labels
such that X ⊇ (

⋃
i∈{1,2} Lext,Ci) ∩R. Then

if C2 is substitutable for C1 w.r.t. X, E 8 then ⊗F{C1, C3} ≡X ⊗F{C2, C3}
Proof. As X ⊇ (

⋃
i∈{1,2} Lext,Ci) ∩R, from Lemma 5.1 we get ⊗F{⊗R{C1}, C3} ≡X

⊗F{⊗R{C2}, C3}. Hence it suffices to show that ⊗F{⊗R{C1}, C3} ≡ ⊗F{C1, C3} and
⊗F{⊗R{C2}, C3} ≡ ⊗F{C2, C3} whenever F satisfies the condition given above. This
follows similarly to the proof of Lemma 6.3. 2

Note that again for any CI automata C1, C2, a set of labels E, and X ⊇⋃
i∈{1,2} Lext,Ci it again holds that if C1 ≡X C2 then C2 is substitutable for C1 w.r.t.

X, E in both blocking and non-blocking environment. It is a direct application of
Theorem 5.2 for I = ∅.

8 Related work

The issue of relations between components in component-based systems has al-
ready been addressed by several authors. The attention was focused mainly on
the specification–implementation relation. The techniques for defining the relation
are based either on strong/weak simulation or language inclusion. We have joint
the first group as it allows finer grained comparison of two components because
it can distinguish two behaviours that pass through different states even if their
traces are the same. It comes in useful during formal verification which may also
distinguish trace equivalent paths through different states.

One of the best known relations defined for component-based systems is the re-
finement relation introduced within Interface automata [9,8] by de Alfaro and
Henzinger. It focuses on the relationship between component specification and
implementation to facilitate the independent implementability of components in
component-based systems. The relation respects the difference of input and output
actions where each input is considered as a provision and output as a requirement
of a component. According to this, an implementation A refines a specification B

if each input transition of B can be simulated by A, and each output transition of
A can be simulated by B. The precise definition must take into account the hidden
transitions of A and B too.

8 Generally for either blocking or non-blocking environment given by R.

14



Černá, Vařeková, Zimmerova

A different approach to relationship of component specification and implementa-
tion was used in compliance relation for SOFA Behavior protocols [14,11] which was
introduced by Plasil et al. It facilitates the decision whether the implementation
given by a protocol A can replace the specification given by a protocol B without
visible change for its environment. The relation is defined using two trace language
inclusions. The first inclusion states that A has to render any sequence of provi-
sions of B as it can be chosen by its environment. The second inclusion states that
A leaded by the provisions of B may allow only the behaviour that was already
possible for B. Additionally, A and B can be restricted to a partial alphabet if
needed (to abstract from some of their actions). Besides the relation, the authors of
SOFA also address the issue of partial bindings of component interfaces [2], which
we considered in definition of our specification–implementation relation, and discuss
the role of component environment that may coordinate an incorrect component in
a way that the component does not perform any of its incorrect behaviours [1],
which is a motivation of our substitutability relation.

Another approach that is worth mentioning was studied in [7,6] by Chaki et al.
This work focuses on component substitutability directly from the verification point
of view. The aim of the work is to provide an effective verification procedure that
decides whether a component can be replaces with a different one without violating
system correctness.

9 Conclusion and future work

We have provided a formal view on the issues of component-substitutability and
independent implementability in component-based systems, which aims to facil-
itate the task of checking reconfiguration correctness. Based on the formalism of
Component-interaction automata, we have introduced three relations which support
different levels of this task: (1) equivalence relation, (2) specification–implementation
relation, and (3) substitutability relation.

The first relation, which provides an important basis extended by the other two
relation, is defined as an observation equivalence with respect to X which represents
the set of observable labels. The concept of the set X allows us to choose the level
of accuracy at which we compare the components. Moreover, as components are
modelled as CI automata, we may also choose the level of correspondence among
primitive sub-components of compared components (in case they are composite). It
can be done using the equivalence up to renaming.

The other two relations extend the concept of equivalence relation in allowing
one (specification–implementation) or both (substitutability) components to pro-
vide functionality that is not integrated into the system, and therefore should not
be taken into account during component comparison. However, in non-blocking
environment even the functionality that is not integrated could cause problems
(output that was not awaited by the environment). Therefore we have also dis-
cussed the consequence of blocking and non-blocking environment. In addition,
both specification–implementation and substitutability relations are again parame-
trized by a set X, and both can be viewed by way of relation up to renaming.

As one of the most significant contributions of the paper, we have stated and

15



Černá, Vařeková, Zimmerova

proved several statements regarding the reconfiguration correctness for the equiv-
alence relation, and discussed how these statements can be analogically applied to
the other two relations. Roughly speaking, the main result shows that if we substi-
tute a component with an equivalent one, replace a component specification with
a compliant implementation, or change a component with a non-equivalent but sub-
stitutable one, and the particular relation is assessed with respect to X that includes
external labels of the automata, the system remains equivalent to the former one
with respect to the same X, no matter what the environment is like.

Nowadays, we study the relationship of the equivalence relation and temporal
logics used for formal verification. In future, we aim to implement the equivalence
checking into the verification tool DiVinE [4,10] which we have already used for
verification of systems modelled as CI automata. We currently work on design of
effective equivalence checking algorithms using various optimizations with respect
to the input automata.

References

[1] Adamek, J. and F. Plasil, Erroneous architecture is a relative concept, in: Proceedings of the Software
Engineering and Applications conference (SEA’04) (2004), pp. 715–720.

[2] Adamek, J. and F. Plasil, Partial bindings of components - any harm?, in: Proceedings of the Asia-
Pacific Software Engineering Conference (APSEC’04) (2004), pp. 632–639.

[3] Allen, R. J. and D. Garlan, The wright architectural specification language, Technical Report CMU-
CS-96-TBD, Carnegie Mellon University, School of Computer Science, USA (1996).

[4] Barnat, J., L. Brim, I. Černá, P. Moravec, P. Ročkai and P. Šimecek, Divine – a tool for distributed
verification, in: Proceedings of the Computer Aided Verification conference (CAV’06), Seattle, WA,
USA, 2006, to appear.

[5] Brim, L., I. Černá, P. Vařeková and B. Zimmerova, Component-Interaction automata as a verification-
oriented component-based system specification, in: Proceedings of the ESEC/FSE Workshop on
Specification and Verification of Component-Based Systems (SAVCBS’05) (2005), pp. 31–38, published
also in ACM SIGSOFT Software Engineering Notes, Volume 31, Issue 2 (March 2006).

[6] Chaki, S., E. Clarke, N. Sharygina and N. Sinha, Dynamic component substitutability analysis, in:
Proceedings of the Formal Methods 2005 conference (FM’05) (2005).

[7] Chaki, S., N. Sharygina and N. Sinha, Verification of evolving software, in: Proceedings of the
ESEC/FSE Workshop on Specification and Verification of Component-Based Systems (SAVCBS’04),
Newport Beach, California, USA, 2004, pp. 55–61.

[8] de Alfaro, L. and T. A. Henzinger, Interface automata, in: Proceedings of the 9th Annual Symposium
on Foundations of Software Engineering (FSE’01) (2001), pp. 109–120.

[9] de Alfaro, L. and T. A. Henzinger, Interface-based design, in: Proceedings of the 2004 Marktoberdorf
Summer School (2005).

[10] Divine – Distributed Verification Environment, http://anna.fi.muni.cz/divine.
URL http://anna.fi.muni.cz/divine

[11] Mach, M., F. Plasil and J. Kofron, Behavior protocols verification: Fighting state explosion,
International Journal of Computer and Information Science 6 (2005), pp. 22–30.

[12] Magee, J., J. Kramer and D. Giannakopoulou, Behaviour analysis of software architectures, in:
Proceedings of the 1st Working IFIP Conference on Software Architecture (WICSA’99) (1999), pp.
35–50.

[13] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[14] Plasil, F. and S. Visnovsky, Behavior protocols for software components, IEEE Transactions on Software
Engineering 28 (2002), pp. 1056–1076.

[15] Vařeková, P. and B. Zimmerova, Component-Interaction automata for specification and verification of
component interactions, in: Proceedings of the IFM 2005 Doctoral Symposium on Integrated Formal
Methods (2005), pp. 71–75.

16


