
The Grid Component Model: an Overview

By defining the GCM, the V.I. aims at the precise specification of an 
effective Grid Component Model.
The features are discussed taking Fractal as the reference model.
The features are defined as extensions to the Fractal specification. 
The V.I. expects several different implementations of the GCM, not 
necessarily relying on existing Fractal implementations.

CoreGrid deliverable PM.002



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



General Features

Reflexivity
Component hierarchy 
Extensibility of the model
Support for adaptivity
Language neutrality
Interoperability

Lightweight portable and compact implementations
Well-defined semantics (allow future formalization)



Overall strategy

What Grid specific features can already be taken into 
account by Fractal?
What we need vs. what exists in Fractal?
Propose extensions of the Fractal model for Grid 
specificities (some being proposed by the Fractal 
community)
Ongoing work (inside CoreGrid): Specify precisely those 
extensions
Future works/perspectives (outside CoreGrid): provide a 
(several) reference implementation(s)



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



GCM is Based on Fractal

Fractal provides:
Terminology, API and ADL Interoperability
Hierarchical structure
Separation of concerns
Abstract component model no constrain on 
implementation: several implementations exist
Multi-level specification: almost every object is a level 0 
Fractal component
We can imagine a multi-level specification of the GCM

We focus on the Grid specific extensions of Fractal

general features



A Fractal Component



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



Abstract Model

1. Component Specification as an XML schema or DTD

2. Run-Time API defined in several languages

3. Packaging described as an XML schema

cf. Fractal packaging



XML description of a Component

Definition of Primitive Components
Definition of Composite Components (composition)
Definition of Interfaces (ports)
− Server, Client, event, stream, etc.

Including external references to various specifications:
− Java Interface, C++ .h, Corba IDL, WSDL, etc.

Specification of Grid aspects:
− Parallelism, Distribution, Virtual Nodes,
− Performance Needs, QoS, etc.



Interoperability

(systematically) export WSDL interfaces.

Possibility to define glue components.

API as part of the GCM



Communications

Asynchronous communications
Fractal: 
− somewhat “unspecified”, 
− notion of “address space” for distinguishing primitive 

and composite bindings, 
− most implementations use synchronous primitive 

bindings, but not all of them,
− dream project use composite bindings

In the GCM: 
− Semantics should be specified in the interfaces
− asynchronous method call is the default
− Implementation details purposely unspecified



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



Support for Parallelism and Distribution

Parallel Components with the notion of Virtual 
Nodes

Collective Interfaces
− Multicast
− Gathercast



Parallel Components: Distribution

Notion of Virtual Nodes distribution
− Maps the virtual architecture to a physical one
− One can envisage more sophisticated information 

such as, for instance, topology information, QoS
requirements between the nodes, etc.

Parallel components can
− Be distributed or not
− Admit several implementation
− adaptive implementations



Virtual Nodes

Permits a program to generate automatically a deployment 
plan: find the appropriate nodes on which processes should 
be launched.

In the future, we envisage the adjunction of more sophisticated 
descriptions of the application needs with respect to the 
execution platform: topology, QoS, …



Virtual Nodes in the ADL

Renames a VN
Exports a VN name

The final version of the GCM specification will precisely define the 
syntax for the virtual node definition, and their composition.



Collective interfaces

Multicast

Gathercast

Gathermulticast

Allow MxN communications:

− Redistribution

− Direct communication or intermediate 
composite?



Current situation (Fractal model)

Simple type system 
Component type types of its interfaces
Interface type :

− Name
− Signature
− Role
− Contingency
− Cardinality



Current situation in Fractal: 2 cardinalities

Single Collection



Proposal

Simplify the design and configuration of component 
systems

Expose the collective nature of interfaces
− Cardinality attribute
− Multicast, gathercast, gather-multicast

The framework handles collective behaviour at the level of 
the interface

Based on Fractal API : 
− dedicated controller 
− interface typing



Multicast interfaces

Transform a single invocation into a list of invocations

Multiple invocations
− Parallelism
− Asynchronism
− Dispatch 

Data redistribution (invocation parameters)
− Parameterisable distribution function
− Broadcast, scattering
− Dynamic redistribution (dynamic dispatch)

Result = list of results





Multicast interfaces

Results as lists of results
Invocation parameters may also be distributed from lists



Gathercast interfaces

Transform a list of invocations 
into a single invocation

Synchronization of incoming 
invocations

− ~ “join” invocations
− Timeout / drop policy
− Bidirectional bindings 

(callers callee)
Data gathering

Aggregation of parameters 
into lists

Result: redistribution of 
results

Redistribution function



InterfaceType interface:
string getFcItfCardinality();

TypeFactory interface:
InterfaceType createFcItfType (

…

string cardinality
)…

CollectiveInterfacesController
− Collective interface policy
− On a per-interface basis 
− Specified at instantiation-time
− May be updated dynamically

API



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



Dynamic Controllers

As suggested as an extension of Fractal, controllers can be 
components (they still belong to the membrane)



Dynamic Controllers (2)

Adaptativity
Dynamic reconfiguration of the controllers
Controllers can now have server and client interfaces

N.F client interfaces
Called controller components
Better separation of concerns (layered components)
Modification of the content controller (for the membrane)
Controller components should be lightweight
components



Outline

1. Requirements and strategy

2. A Summary of Fractal

3. Abstract Model of the GCM

4. Communication

5. Parallelism and Distribution

6. Dynamic Controllers

7. Support for Autonomicity



Autonomicity

Self-Configuring: handles reconfiguration inside itself
Self-Healing: provides its services in spite of failures
Self-Optimising: adapts its configuration and structure 
in order to achieve the best/required performance.
Self-Protecting: predicts, prevents, detects and 
identifies attacks, and to protect itself against them.

Open and extensible specification 
Several levels of autonomicity depending on:
− autonomic controllers implemented
− autonomicity level implemented by each controller



Autonomicity (2)

Level of autonomicity not defined in the GCM (type any) 
Already defined API:

Should compose with hierarchy and use component 
controllers





Conclusion

Future works: model has to be refined – Technical issues –
APIs – extended ADL …

Like in Fractal, we aim at a multi-level specification, an 
implementation of the GCM can be level 1.1 Fractal 
compliant and level 1.2.1 GCM compliant. GCM levels to 
be specified



Requirements and Concepts
Hierarchical composition → Fractal
Extensibility → From Fractal design

→ dynamic controllers (for non-functional)
→ open and extensible communication mechanisms

Support for reflection → Fractal specification and API
Lightweight → Support for adaptivity and extensibility 

→ Conformance levels
→ No controller imposed

ADL with support for deployment → Virtual Nodes
Packaging → packaging being defined by the Fractal community
Support for deployment → Notion of virtual nodes

→ ADL with support for deployment



Sequential and parallel implementation → XML component 
specifications, and Multicast-Gathercast interfaces allow 
plugging and unplugging several componentsto the same 
interface dynamically

Asynchronous ports and Extended/Extensible port semantics
→ Asynchronous Method Invocation as default but can be 

defined via tags; + Possibility to support method calls / 
message oriented / streaming / …

Group related communication on interfaces
→ Multicast / Gathercast interfaces

Interoperability → Exportation and importation as web-services
Language neutrality → API in various languages

→ Various interface specifications
→ exportation of a web-service port



Adaptivity: → Globally due to dynamic controllers
• Exploit Component Hierarchical abstraction for adaptivity

→ Dynamic controllers
• plug/unplug component → Fractal: content + binding controller
• Give a standard for adaptive behavior and unanticipated 

extension of the model → Dynamic controllers
• Give a standard for the autonomic management components

→ Autonomic controllers
• Plug/unplug non-functional interfaces → Dynamic controllers

Parallel binding: Well-defined and verifiable composition
→ Multicast / Gathercast


