Timed Automata vs
 Bounded Time Petri nets

B. Berthomieu, F. Peres, F. Vernadat

CNRS/LAAS

FIACRE
Sophia Antipolis - July 2006

Motivations

In terms of timed language acceptance:
$T P N=T A$ [Bérard et al., 2005][Bouyer et.al 2006]

In terms of weak timed bisimulation:

$$
\begin{aligned}
& T P N<T A[\text { Cassez/Roux, 2004] } \\
& T P N=T A^{-}[\text {Bérard et al., 2005 }]
\end{aligned}
$$

? : $T P N^{+}$such that

$$
T P N^{+} \equiv T A[\mathrm{BB} / \mathrm{FP} / \mathrm{FV}, \text { FORMATS 2006] }
$$

Timed transition systems (TTS)

A structure $\left\langle Q, q^{0}, \Sigma^{\epsilon}, \rightarrow\right\rangle$ where:

- Q is a set of states
- $q^{0} \in Q$ is the initial state
- $\Sigma^{\epsilon}=\Sigma \cup\{\epsilon\}$ is a finite set of actions ($\epsilon \notin \Sigma$)
- $\rightarrow \subseteq Q \times\left(\Sigma \cup\{\epsilon\} \cup \mathbf{R}^{+}\right) \times Q$ is the transition relation.

Product of $T T S$:

$$
\begin{array}{ll}
\frac{q_{1} \xrightarrow{a} 1 q_{1}^{\prime}}{q_{1}\left\|q_{2} \xrightarrow{a} q_{1}^{\prime}\right\| q_{2}} & \left(a \in \Sigma_{1}^{\epsilon} \backslash \Sigma_{2}\right) \\
q_{1} \xrightarrow{a} q_{1}^{\prime} q_{1}^{\prime} q_{2} \xrightarrow{a} 2 q_{2}^{\prime} \\
q_{1}\left\|q_{2} \xrightarrow{a} q_{1}^{\prime}\right\| q_{2}^{\prime}
\end{array}(a \neq \epsilon) \quad \begin{aligned}
& q_{1} \xrightarrow{a} 2 q_{2} \xrightarrow{a} q_{2}^{\prime} \| q_{2}^{\prime}
\end{aligned}\left(a \in \Sigma_{2}^{\epsilon} \backslash \Sigma_{1}\right)
$$

Timed bisimilarity of $T T S$

Strong: $\left\langle Q_{1}, q_{1}^{0}, \Sigma_{1}^{\epsilon}, \rightarrow_{1}\right\rangle$ strong timed bisimilar $\left\langle Q_{2}, q_{2}^{0}, \Sigma_{2}^{\epsilon}, \rightarrow_{2}\right\rangle$ iff

- $q_{1}^{0} \sim q_{2}^{0}$
- whenever $q_{1} \sim q_{2}$ and $a \in \Sigma_{1}^{\epsilon} \cup \Sigma_{2}^{\epsilon} \cup \mathbf{R}^{+}$:
(1) $q_{1} \xrightarrow{a} 1 q_{1}^{\prime} \Rightarrow\left(\exists q_{2}^{\prime}\right)\left(q_{2} \xrightarrow{a} 2 q_{2}^{\prime} \wedge q_{1}^{\prime} \sim q_{2}^{\prime}\right)$
(2) $q_{2} \xrightarrow{a} 2 q_{2}^{\prime} \Rightarrow\left(\exists q_{1}^{\prime}\right)\left(q_{1} \xrightarrow{a} 1 q_{1}^{\prime} \wedge q_{1}^{\prime} \sim q_{2}^{\prime}\right)$

Weak: replace \xrightarrow{a} by $\stackrel{d}{\longrightarrow}$, with:

$$
\begin{aligned}
& \underset{q \xrightarrow{q} \xlongequal{a} q^{\prime} q^{\prime} \stackrel{\epsilon}{\Longrightarrow} q^{\prime \prime}}{q \xrightarrow{\underline{\epsilon}} q^{\prime} q^{\prime} \xlongequal{a} q^{\prime \prime}} q^{\prime \prime}
\end{aligned}
$$

Timed Automata ($T A$)

A tuple $\left\langle Q, q^{0}, X, \Sigma^{\epsilon}, T\right\rangle$ in which:

- Q is a finite set of locations
- $q^{0} \in Q$ is the initial location
- X is a finite set of clocks
- $\Sigma^{\epsilon}=\Sigma \cup\{\epsilon\}$ is a finite set of actions ($\epsilon \notin \Sigma$)
- $T \subseteq Q \times\left(\mathcal{C}(X) \times \Sigma^{\epsilon} \times 2^{X}\right) \times Q$ is a finite set of transitions

Semantics:
The TTS $\left\langle S, s^{0}, \Sigma^{\epsilon}, \rightarrow\right\rangle$ where $S=Q \times\left(\mathbf{R}^{+}\right)^{|X|}, s^{0}=\left(q^{0}, \overline{0}\right), \rightarrow$:

- $(q, v) \xrightarrow{a}\left(q^{\prime}, v^{\prime}\right)$ iff $\left(\exists\left(q, g, a, R, q^{\prime}\right) \in T\right)\left(g(v) \wedge v^{\prime}=v[R:=0]\right)$
- $(q, v) \xrightarrow{d}(q, v+d)$ iff $d \in \mathbf{R}^{+}$

Timed Automata ...

Product of $T A$: compositional

Progress requirements: Invariants, urgency, deadlines, ...
Priorities: do not add expressiveness
if t_{1}, with guard g_{1}, has lower priority than t_{2}, with guard g_{2} then replace g_{1} by $g_{1} \wedge \neg g_{2}$

Time Petri nets with priorities ($\operatorname{Pr} T P N$)

$\left\langle P, T\right.$, Pre, Post, $\left.m^{0}, I s, \succ, \Sigma^{\epsilon}, L\right\rangle$ in which:

- $\left\langle P, T\right.$, Pre, Post,$\left.m^{0}\right\rangle$ is a Petri net
- Is : $T \rightarrow \mathbf{I}^{+}$is the Static Interval function,
- $\succ \subseteq T \times T$ is the Priority relation
s irreflexive, asymmetric and transitive,
- $\Sigma^{\epsilon}=\Sigma \cup\{\epsilon\}$ is a finite set of Actions $(\epsilon \notin \Sigma)$
- $L: T \rightarrow \Sigma^{\epsilon}$ is the Labeling function.

Semantics of $\operatorname{Pr} T P N$

The $\operatorname{TTS}\left\langle S,\left(m^{0}, I s^{0}\right), \Sigma, \rightarrow\right\rangle$ in which:

- $I s^{0}=I s$ restricted to the transitions enabled at m^{0}
- the states of S are pairs (m, I) with $m: P \rightarrow \mathbf{N}^{+}$and $I: T \rightarrow \mathbf{I}^{+}$
- discrete transitions: $(m, I) \xrightarrow{L(t)}\left(m^{\prime}, I^{\prime}\right)$ iff $t \in T$ and

1. $m \geq \operatorname{Pre}(t)$
2. $0 \in I(t)$
3. $(\forall k \in T)(m \geq \operatorname{Pre}(k) \wedge 0 \in I(k) \Rightarrow \neg(k \succ t))$
4. $m^{\prime}=m-\operatorname{Pre}(t)+\operatorname{Post}(t)$
5. $\begin{aligned} & (\forall k \in T)\left(m^{\prime} \geq \operatorname{Pre}(k) \Rightarrow\right. \\ & \left.I^{\prime}(k)=\text { if } k \neq t \wedge m-\operatorname{Pre}(t) \geq \operatorname{Pre}(k) \text { then } I(k) \text { else } I s(k)\right), ~\end{aligned}$

- continuous transitions: $(m, I) \xrightarrow{d}\left(m, I^{\prime}\right)$ iff

$$
(\forall k \in T)\left(m \geq \operatorname{Pre}(k) \Rightarrow d \leq \uparrow I(k) \wedge I^{\prime}(k)=I(k) \bullet d\right)
$$

Product of PrTPN

Of transitions:

Given a $P N\left\langle P, T\right.$, Pre, Post, $\left.m^{0}\right\rangle$ and $E \subseteq T$
the product of the transitions in E is t such that:

$$
\operatorname{Pre}(t)(p)=\sum_{k \in E} \operatorname{Pre}(k)(p) \quad \text { and } \quad \operatorname{Post}(t)(p)=\sum_{k \in E} \operatorname{Post}(k)(p)
$$

Of Petri nets:
$\left\langle P_{1}, T_{1}\right.$, Pre $_{1}$, Post $\left._{1}, m_{1}^{0}, \Sigma_{1}^{\epsilon}, L_{1}\right\rangle \|\left\langle P_{2}, T_{2}\right.$, Pre $_{2}$, Post $\left._{2}, m_{2}^{0}, \Sigma_{2}^{\epsilon}, L_{2}\right\rangle$ built as follows:

- Start with $N=N_{1} \cup N_{2}$, after removing transitions labeled on $\Sigma_{1} \cap \Sigma_{2}$,
- For each $\left(t_{1}, t_{2}\right) \in T_{1} \times T_{2}$ such that $L_{1}\left(t_{1}\right)=L_{2}\left(t_{2}\right) \neq \epsilon$, add a transition defined as the product of t_{1} and t_{2}, inheriting their label.

Product of $\operatorname{PrTPN} .$.

Of PrTPN:

- $I s\left(t_{1} \times t_{2}\right)=I s_{1}\left(t_{1}\right) \cap I s_{2}\left(t_{2}\right)$,
- $\succ=$ the transitive closure of R, assuming it asymmetric, where

$$
R=\left\{(x, y) \in T \times T \mid\left(\exists\left(t, t^{\prime}\right) \in \succ_{1} \cup \succ_{2}\right)\left(x \in S(t) \wedge y \in S\left(t^{\prime}\right)\right\},\right. \text { where }
$$

$S(t)=\{t\}$ if t is not synchronized
$S(t)=$ the set of product transitions involving t otherwise

Theorem:

If the transitions synchronized have interval [0, ∞ [
And \succ does not relate non-sync transitions in different components
Then || is compositional

Priorities add expressiveness to $T P N$

Double click $T A$ example

Approximated double click in $T P N$

Double click in $\operatorname{Pr} T P N$

Encoding $T A$ guards

Same, using read arcs

Removing read arcs

Theorem

Let k be the time elapsed since the initial marking was established

- the transitions whose label includes a condition on k are firable exactly at the times at which that condition holds,
- all transitions whose label includes $k:=0$ restore the initial state of the net,
- at any time some transition whose label includes $k:=0$ is firable.

Encoding a clock

For each $k \in X$, let N_{k} be the net built as follows:

1. Assume $\left\{c_{1}, \ldots, c_{n}\right\}$ is the set of nets encoding the guards involving k. Let $K=\left(c_{1} \backslash F\|\ldots\| c_{n} \backslash F\right) \backslash H$, with F and H as follows:

- F relabels any transition whose label includes $k:=0$ with ρ (ρ new),
- H relabels any t obtained from a product of transitions by the union of their labels in nets c_{i}.

2. Starting with $N_{k}=K$, add to N_{k}, for each $E \subseteq G_{k}$ with $\operatorname{card}(E)>1$, a transition labeled E defined as the product of all transitions of K with their label intersecting E.

Net N_{k} has as transitions:

- Those internal to the component nets (unlabelled),
- For each nonempty $E \subseteq G_{k}$, a transition labeled E,
- For each (possibly empty) $E \subseteq G_{k}$, a transition labeled $E \cup\{k:=0\}$.

Theorem

Let k be the time elapsed since the initial marking was established

- the transitions whose label includes a condition are firable exactly at the times at which that condition holds,
- all transitions whose label includes $k:=0$ restore the initial state of the net,
- at any time some transition whose label includes $k:=0$ is firable.

Encoding a $T A$

$$
\mathcal{A}=\left\langle Q, q^{0}, X, \Sigma^{\epsilon}, T\right\rangle
$$

1. Let N_{A} be the net built as follows:

- For each $q \in Q$ add a new place to N_{A}, and mark the place encoding q^{0},
- For each transition $q \xrightarrow{t} q^{\prime}$ of \mathcal{A}, add to N_{A} a transition between the places encoding q and q^{\prime}, labeled E_{t}

2. Next, let N_{K} be the net built as follows:

- Start with $N_{K}=\|_{k \in X} N_{k}$ where N_{k} encodes clock k,
- Then, for each E_{t}, add to N_{K} a transition labeled E_{t} defined as the product of all transitions of N_{K} with their label belonging to E_{t},
- Remove all labeled transitions of N_{K} whose label is not in any E_{t},

3. Finally, let $\mathcal{N}=N_{A} \| N_{K}$ and relabel each labeled transition by the action from Σ^{ϵ} belonging to its label.

Theorem

Any $T A$ can be encoded into a $\operatorname{Pr} T P N$ without right-open intervals, preserving weak timed bisimilarity, or:
$T A \lesssim_{\mathcal{W}} \operatorname{Pr} T P N$ with unbounded or right-closed intervals.

$T A$ Invariants

$T A$ with invariants:
$\left\langle Q, q^{0}, X, \Sigma^{\epsilon}, T, I\right\rangle$ where

- $\left\langle Q, q^{0}, X, \Sigma^{\epsilon}\right\rangle$ is a $T A$
- $I: Q \rightarrow \mathcal{C}(X)$ maps clock constraints with locations invariants typically built from $\{\leq,<, \wedge\}$

Semantics

- $(q, v) \xrightarrow{d}(q, v+d)$ iff $d \in \mathbf{R}^{+} \wedge\left(\forall d^{\prime}\right)\left(0 \leq d^{\prime} \leq d \Rightarrow I(q)\right)$

Encoding Invariants built from $\{\leq, \wedge\}$

Adapting the translation of [Bérard et al., 2005]:

Theorems

So:
(Th 1) $T A+\{\leq, \wedge\} \lesssim \mathcal{W} \operatorname{Pr} T P N$ with unbounded or right-closed intervals

Adapting the encoding of Cassez/Roux of $T P N$ into $T A$:
(Th 2) $\operatorname{Pr} T P N \lesssim w T A+\{\leq,<, \wedge\}$.

Equivalence results:
(Th 3) $T A+\{\leq, \wedge\} \approx_{\mathcal{W}} \operatorname{Pr} T P N$ with right-closed or unbounded intervals
(Cor 1) $T A$ with guards built from $\{\geq,>, \wedge\} \approx_{\mathcal{W}} T P N$ with unbounded intervals
(Cor 2) $T A+\{\leq, \wedge\}$ with guards built from $\{\geq,>, \wedge\} \approx \mathcal{W} T P N$ with right-closed or unt intervals.

Summary of comparisons

	TA guards	invariants		TPN intervals	\succ
Th 1	$\leq<\geq>\wedge$	$\leq \wedge$	$\lesssim_{\mathcal{W}}$	(]$a-[a),(b]-\infty[)$	Y
Th 2	$\leq<\geq>\wedge$	$\leq<\wedge$	$\gtrsim_{\mathcal{W}}$	(]$a-[a),(b]-b[-\infty[)$	Y
Th 3	$\leq<\geq>\wedge$	$\leq \wedge$	$\approx_{\mathcal{W}}$	(]$a\|[a),(b]\| \infty[)$	Y
CR	$\geq>\wedge$	$\leq<\wedge$	$\gtrsim \mathcal{W}$	(]$a-[a),(b]-b[-\infty[)$	N
Cor 1	$\geq>\wedge$	$\leq \wedge$	$\approx_{\mathcal{W}}$	(]$a\|[a),(b]\| \infty[)$	N
Cor 2	$\geq>\wedge$	\emptyset	$\approx_{\mathcal{W}}$	(]$a \mid[a), \infty[$	N

Conclusion

New equivalence results \% $T A$

Better understanding of differences

Allow sharing of analysis methods for $T A$ and $\operatorname{Pr} T P N$

Note: Priorities make TPN compositional

State space abstractions for $\operatorname{Pr} T P N$

Improved encodings

