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Motivations
——————————————————–

In terms of timed language acceptance:

TPN = TA [Bérard et al., 2005][Bouyer et.al 2006]

In terms of weak timed bisimulation:

TPN < TA [Cassez/Roux, 2004]

TPN = TA− [Bérard et al., 2005]

? : TPN+ such that

TPN+ ≡ TA [BB/FP/FV, FORMATS 2006]



Timed transition systems (TTS)
——————————————————–

A structure 〈Q, q0,Σε,→〉 where:

• Q is a set of states

• q0 ∈ Q is the initial state

• Σε = Σ ∪ {ε} is a finite set of actions (ε 6∈ Σ)

• → ⊆ Q× (Σ ∪ {ε} ∪R+)×Q is the transition relation.

Product of TTS:

q1
a−→1 q′1

q1 || q2
a−→ q′1 || q2

(a ∈ Σε
1\Σ2)

q2
a−→2 q′2

q1 || q2
a−→ q1 || q′2

(a ∈ Σε
2\Σ1)

q1
a−→1 q′1 q2

a−→2 q′2
q1 || q2

a−→ q′1 || q′2
(a 6= ε)



Timed bisimilarity of TTS
——————————————————–

Strong: 〈Q1, q0
1,Σε

1,→1〉 strong timed bisimilar 〈Q2, q0
2,Σε

2,→2〉 iff

• q0
1 ∼ q0

2

• whenever q1 ∼ q2 and a ∈ Σε
1 ∪Σε

2 ∪R+:

(1) q1
a−→1 q′1 ⇒ (∃q′2)(q2

a−→2 q′2 ∧ q′1 ∼ q′2)

(2) q2
a−→2 q′2 ⇒ (∃q′1)(q1

a−→1 q′1 ∧ q′1 ∼ q′2)

Weak: replace
a−→ by

d
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q
a−→ q′

q
a

=⇒ q′
q

d
=⇒ q′ q′

d′
=⇒ q′′

q
d+d′
=⇒ q′′

q
a

=⇒ q′ q′
ε−→ q′′

q
a

=⇒ q′′
q

ε−→ q′ q′
a

=⇒ q′′

q
a

=⇒ q′′



Timed Automata (TA)
——————————————————–

A tuple 〈Q, q0, X,Σε, T 〉 in which:

• Q is a finite set of locations

• q0 ∈ Q is the initial location

• X is a finite set of clocks

• Σε = Σ ∪ {ε} is a finite set of actions (ε 6∈ Σ)

• T ⊆ Q× (C(X)×Σε × 2X)×Q is a finite set of transitions

Semantics:

The TTS 〈S, s0,Σε,→〉 where S=Q× (R+)|X|, s0=(q0,0), →:

• (q, v)
a−→ (q′, v′) iff (∃(q, g, a, R, q′) ∈ T )(g(v) ∧ v′ = v[R := 0])

• (q, v)
d−→ (q, v + d) iff d ∈ R+



Timed Automata . . .
——————————————————–

Product of TA: compositional

Progress requirements: Invariants, urgency, deadlines, . . .

Priorities: do not add expressiveness

if t1, with guard g1, has lower priority than t2, with guard g2

then replace g1 by g1 ∧ ¬g2



Time Petri nets with priorities (PrTPN)
——————————————————–

〈P, T,Pre,Post, m0, Is,�,Σε, L〉 in which:

• 〈P, T,Pre,Post, m0〉 is a Petri net

• Is : T → I+ is the Static Interval function,

• �⊆ T × T is the Priority relation

s irreflexive, asymmetric and transitive,

• Σε = Σ ∪ {ε} is a finite set of Actions (ε 6∈ Σ)

• L : T → Σε is the Labeling function.



Semantics of PrTPN
——————————————————–

The TTS 〈S, (m0, Is0),Σ,→〉 in which:

• Is0 = Is restricted to the transitions enabled at m0

• the states of S are pairs (m, I) with m : P → N+ and I : T → I+

• discrete transitions: (m, I)
L(t)−→ (m′, I ′) iff t ∈ T and

1. m ≥ Pre(t)

2. 0 ∈ I(t)

3. (∀k ∈ T )(m ≥ Pre(k) ∧ 0 ∈ I(k) ⇒ ¬(k � t))

4. m′ = m−Pre(t) + Post(t)

5. (∀k ∈ T )(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= t ∧ m−Pre(t) ≥ Pre(k) then I(k) else Is(k))

• continuous transitions: (m, I)
d−→ (m, I ′) iff

(∀k ∈ T )(m ≥ Pre(k) ⇒ d ≤↑I(k) ∧ I ′(k) = I(k) −. d)



Product of PrTPN
——————————————————–

Of transitions:

Given a PN 〈P, T,Pre,Post, m0〉 and E ⊆ T

the product of the transitions in E is t such that:

Pre(t)(p) =
∑
k∈E

Pre(k)(p) and Post(t)(p) =
∑
k∈E

Post(k)(p)

Of Petri nets:

〈P1, T1,Pre1,Post1, m0
1,Σ

ε
1, L1〉 || 〈P2, T2,Pre2,Post2, m0

2,Σ
ε
2, L2〉 built as follows:

• Start with N = N1 ∪N2, after removing transitions labeled on Σ1 ∩Σ2,

• For each (t1, t2) ∈ T1 × T2 such that L1(t1) = L2(t2) 6= ε,

add a transition defined as the product of t1 and t2, inheriting their label.



Product of PrTPN . . .
——————————————————–

Of PrTPN :

• Is(t1 × t2) = Is1(t1) ∩ Is2(t2),

• �= the transitive closure of R, assuming it asymmetric, where

R = {(x, y) ∈ T × T |(∃(t, t′) ∈�1 ∪ �2)(x ∈ S(t) ∧ y ∈ S(t′)}, where

S(t) = {t} if t is not synchronized

S(t) = the set of product transitions involving t otherwise

Theorem:

If the transitions synchronized have interval [0,∞[

And � does not relate non-sync transitions in different components

Then || is compositional



Priorities add expressiveness to TPN
——————————————————–



Double click TA example
——————————————————–



Approximated double click in TPN
——————————————————–



Double click in PrTPN
——————————————————–



Encoding TA guards
——————————————————–



Same, using read arcs
——————————————————–



Removing read arcs
——————————————————–



Theorem
——————————————————–

Let k be the time elapsed since the initial marking was established

• the transitions whose label includes a condition on k
are firable exactly at the times at which that condition holds,

• all transitions whose label includes k := 0 restore the
initial state of the net,

• at any time some transition whose label includes k := 0 is firable.



Encoding a clock
——————————————————–

For each k ∈ X, let Nk be the net built as follows:

1. Assume {c1, . . . , cn} is the set of nets encoding the guards involving k.
Let K = (c1\F || . . . || cn\F )\H, with F and H as follows:

• F relabels any transition whose label includes k := 0 with ρ (ρ new),

• H relabels any t obtained from a product of transitions
by the union of their labels in nets ci.

2. Starting with Nk = K, add to Nk, for each E ⊆ Gk

with card(E) > 1, a transition labeled E defined as the product of
all transitions of K with their label intersecting E.

Net Nk has as transitions:

• Those internal to the component nets (unlabelled),

• For each nonempty E ⊆ Gk, a transition labeled E,

• For each (possibly empty) E ⊆ Gk, a transition labeled E ∪ {k := 0}.



Theorem
——————————————————–

Let k be the time elapsed since the initial marking was established

• the transitions whose label includes a condition are firable
exactly at the times at which that condition holds,

• all transitions whose label includes k := 0 restore the
initial state of the net,

• at any time some transition whose label includes k := 0 is firable.



Encoding a TA
——————————————————–

A = 〈Q, q0, X,Σε, T 〉

1. Let NA be the net built as follows:

• For each q ∈ Q add a new place to NA, and mark the place encoding q0,

• For each transition q
t→ q′ of A, add to NA a transition between

the places encoding q and q′, labeled Et

2. Next, let NK be the net built as follows:

• Start with NK = ||k∈X Nk where Nk encodes clock k,

• Then, for each Et, add to NK a transition labeled Et defined
as the product of all transitions of NK with their label belonging to Et,

• Remove all labeled transitions of NK whose label is not in any Et,

3. Finally, let N = NA || NK and relabel each labeled transition by
the action from Σε belonging to its label.



Theorem
——————————————————–

Any TA can be encoded into a PrTPN without right-open
intervals, preserving weak timed bisimilarity, or:

TA .W PrTPN with unbounded or right-closed intervals.



TA Invariants
——————————————————–

TA with invariants:

〈Q, q0, X,Σε, T, I〉 where

• 〈Q, q0, X,Σε〉 is a TA

• I : Q → C(X) maps clock constraints with locations

invariants typically built from {≤, <,∧}

Semantics

• (q, v)
d−→ (q, v + d) iff d ∈ R+ ∧ (∀d′)(0 ≤ d′ ≤ d ⇒ I(q))



Encoding Invariants built from {≤,∧}
——————————————————–

Adapting the translation of [Bérard et al., 2005]:

⇒



Theorems
——————————————————–

So:

(Th 1) TA+{≤,∧} .W PrTPN with unbounded or right-closed intervals

Adapting the encoding of Cassez/Roux of TPN into TA:

(Th 2) PrTPN .W TA + {≤, <,∧}.

Equivalence results:

(Th 3) TA+{≤,∧} ≈W PrTPN with right-closed or unbounded intervals

(Cor 1) TA with guards built from {≥, >,∧} ≈W TPN with unbounded intervals

(Cor 2) TA+{≤,∧} with guards built from {≥, >,∧} ≈W TPN with right-closed or unbounded
intervals.



Summary of comparisons
——————————————————–

TA guards invariants TPN intervals �
Th 1 ≤ < ≥ > ∧ ≤ ∧ .W (]a—[a),(b]—∞[) Y
Th 2 ≤ < ≥ > ∧ ≤ < ∧ &W (]a—[a),(b]—b[—∞[) Y
Th 3 ≤ < ≥ > ∧ ≤ ∧ ≈W (]a|[a), (b]|∞[) Y

CR ≥ > ∧ ≤ < ∧ &W (]a—[a),(b]—b[—∞[) N
Cor 1 ≥ > ∧ ≤ ∧ ≈W (]a|[a), (b]|∞[) N
Cor 2 ≥ > ∧ ∅ ≈W (]a|[a),∞[ N



Conclusion
——————————————————–

New equivalence results % TA

Better understanding of differences

Allow sharing of analysis methods for TA and PrTPN

Note: Priorities make TPN compositional

State space abstractions for PrTPN

Improved encodings


