Timed Automata vs Bounded Time Petri nets

B. Berthomieu, F. Peres, F. Vernadat

CNRS/LAAS

FIACRE Sophia Antipolis – July 2006

Motivations

In terms of timed language acceptance:

TPN = TA [Bérard et al., 2005][Bouyer et.al 2006]

In terms of weak timed bisimulation:

TPN < TA [Cassez/Roux, 2004]

 $TPN = TA^{-}$ [Bérard et al., 2005]

? : TPN^+ such that

 $TPN^+ \equiv TA$ [BB/FP/FV, FORMATS 2006]

Timed transition systems (TTS)

A structure $\langle Q, q^0, \Sigma^{\epsilon}, \rightarrow \rangle$ where:

- Q is a set of *states*
- $q^0 \in Q$ is the *initial state*
- $\Sigma^{\epsilon} = \Sigma \cup \{\epsilon\}$ is a finite set of *actions* $(\epsilon \notin \Sigma)$
- $\rightarrow \subseteq Q \times (\Sigma \cup \{\epsilon\} \cup \mathbb{R}^+) \times Q$ is the *transition* relation.

Product of TTS:

$$\frac{q_1 \xrightarrow{a} 1 q'_1}{q_1 \parallel q_2 \xrightarrow{a} q'_1 \parallel q_2} \quad (a \in \Sigma_1^{\epsilon} \setminus \Sigma_2) \qquad \frac{q_2 \xrightarrow{a} 2 q'_2}{q_1 \parallel q_2 \xrightarrow{a} q_1 \parallel q'_2} \quad (a \in \Sigma_2^{\epsilon} \setminus \Sigma_1)$$

$$\frac{q_1 \xrightarrow{a} 1 q'_1 \qquad q_2 \xrightarrow{a} 2 q'_2}{q_1 \parallel q_2 \xrightarrow{a} q'_1 \parallel q'_2} \quad (a \neq \epsilon)$$

Strong: $\langle Q_1, q_1^0, \Sigma_1^{\epsilon}, \rightarrow_1 \rangle$ strong timed bisimilar $\langle Q_2, q_2^0, \Sigma_2^{\epsilon}, \rightarrow_2 \rangle$ iff

• $q_1^0 \sim q_2^0$

• whenever
$$q_1 \sim q_2$$
 and $a \in \Sigma_1^{\epsilon} \cup \Sigma_2^{\epsilon} \cup \mathbb{R}^+$:
(1) $q_1 \xrightarrow{a} q'_1 \Rightarrow (\exists q'_2)(q_2 \xrightarrow{a} q'_2 \land q'_1 \sim q'_2)$
(2) $q_2 \xrightarrow{a} q'_2 \Rightarrow (\exists q'_1)(q_1 \xrightarrow{a} q'_1 \land q'_1 \sim q'_2)$

Weak: replace \xrightarrow{a} by \xrightarrow{d} , with:

$$\frac{q \stackrel{a}{\longrightarrow} q'}{q \stackrel{a}{\Longrightarrow} q'} \qquad \frac{q \stackrel{d}{\Longrightarrow} q' \quad q' \stackrel{d'}{\Longrightarrow} q''}{q \stackrel{d+d'}{\Longrightarrow} q''}$$
$$\frac{q \stackrel{a}{\Longrightarrow} q' \quad q' \stackrel{\epsilon}{\longrightarrow} q''}{q \stackrel{a}{\Longrightarrow} q''} \qquad \frac{q \stackrel{\epsilon}{\longrightarrow} q' \quad q' \stackrel{a}{\Longrightarrow} q''}{q \stackrel{a}{\Longrightarrow} q''}$$

Timed Automata (TA)

A tuple $\langle Q, q^0, X, \Sigma^{\epsilon}, T \rangle$ in which:

- Q is a finite set of *locations*
- $q^0 \in Q$ is the initial location
- X is a finite set of clocks
- $\Sigma^{\epsilon} = \Sigma \cup \{\epsilon\}$ is a finite set of actions $(\epsilon \notin \Sigma)$
- $T \subseteq Q \times (\mathcal{C}(X) \times \Sigma^{\epsilon} \times 2^X) \times Q$ is a finite set of transitions

Semantics:

The *TTS* $\langle S, s^0, \Sigma^{\epsilon}, \rightarrow \rangle$ where $S = Q \times (\mathbf{R}^+)^{|X|}$, $s^0 = (q^0, \overline{0})$, \rightarrow :

- $(q,v) \xrightarrow{a} (q',v')$ iff $(\exists (q,g,a,R,q') \in T)(g(v) \land v' = v[R := 0])$
- $(q,v) \xrightarrow{d} (q,v+d)$ iff $d \in \mathbf{R}^+$

Timed Automata ...

Product of TA: compositional

Progress requirements: Invariants, urgency, deadlines,

Priorities: do not add expressiveness

if t_1 , with guard g_1 , has lower priority than t_2 , with guard g_2 then replace g_1 by $g_1 \wedge \neg g_2$

Time Petri nets with priorities (PrTPN)

 $\langle P, T, \mathbf{Pre}, \mathbf{Post}, m^0, Is, \succ, \Sigma^{\epsilon}, L \rangle$ in which:

- $\langle P, T, \mathbf{Pre}, \mathbf{Post}, m^0 \rangle$ is a Petri net
- $Is: T \to \mathbf{I}^+$ is the *Static Interval* function,
- $\succ \subseteq T \times T$ is the Priority relation

s irreflexive, asymmetric and transitive,

- $\Sigma^{\epsilon} = \Sigma \cup \{\epsilon\}$ is a finite set of Actions $(\epsilon \notin \Sigma)$
- $L: T \to \Sigma^{\epsilon}$ is the *Labeling* function.

Semantics of *PrTPN*

The *TTS* $\langle S, (m^0, Is^0), \Sigma, \rightarrow \rangle$ in which:

- $Is^0 = Is$ restricted to the transitions enabled at m^0
- the states of S are pairs (m, I) with $m : P \to \mathbf{N^+}$ and $I : T \to \mathbf{I^+}$
- discrete transitions: $(m, I) \xrightarrow{L(t)} (m', I')$ iff $t \in T$ and 1. $m \ge \operatorname{Pre}(t)$
 - 2. $0 \in I(t)$
 - 3. $(\forall k \in T)(m \ge \operatorname{Pre}(k) \land 0 \in I(k) \Rightarrow \neg(k \succ t))$
 - 4. m' = m Pre(t) + Post(t)
 - 5. $(\forall k \in T)(m' \ge \operatorname{Pre}(k) \Rightarrow$ $I'(k) = \text{if } k \neq t \land m - \operatorname{Pre}(t) \ge \operatorname{Pre}(k) \text{ then } I(k) \text{ else } Is(k))$
- continuous transitions: $(m, I) \xrightarrow{d} (m, I')$ iff $(\forall k \in T)(m \ge \operatorname{Pre}(k) \Rightarrow d \le \uparrow I(k) \land I'(k) = I(k) \dashv d)$

Product of *PrTPN*

Of transitions:

Given a $PN \langle P, T, \mathbf{Pre}, \mathbf{Post}, m^0 \rangle$ and $E \subseteq T$ the *product* of the transitions in *E* is *t* such that:

$$\operatorname{Pre}(t)(p) = \sum_{k \in E} \operatorname{Pre}(k)(p)$$
 and $\operatorname{Post}(t)(p) = \sum_{k \in E} \operatorname{Post}(k)(p)$

Of Petri nets:

 $\langle P_1, T_1, \mathbf{Pre}_1, \mathbf{Post}_1, m_1^0, \mathbf{\Sigma}_1^{\epsilon}, L_1 \rangle \mid\mid \langle P_2, T_2, \mathbf{Pre}_2, \mathbf{Post}_2, m_2^0, \mathbf{\Sigma}_2^{\epsilon}, L_2 \rangle$ built as follows:

- Start with $N = N_1 \cup N_2$, after removing transitions labeled on $\Sigma_1 \cap \Sigma_2$,
- For each $(t_1, t_2) \in T_1 \times T_2$ such that $L_1(t_1) = L_2(t_2) \neq \epsilon$,

add a transition defined as the product of t_1 and t_2 , inheriting their label.

Of PrTPN:

- $Is(t_1 \times t_2) = Is_1(t_1) \cap Is_2(t_2),$
- ≻= the transitive closure of R, assuming it asymmetric, where
 R = {(x,y) ∈ T × T|(∃(t,t') ∈≻₁ ∪ ≻₂)(x ∈ S(t) ∧ y ∈ S(t')}, where
 S(t) = {t} if t is not synchronized

S(t) = the set of product transitions involving t otherwise

Theorem:

If the transitions synchronized have interval $[0,\infty[$

And \succ does not relate non-sync transitions in different components Then || is compositional

Priorities add expressiveness to $\ensuremath{\mathit{TPN}}$

Approximated double click in TPN

Double click in PrTPN

Removing read arcs

Theorem

Let k be the time elapsed since the initial marking was established

- the transitions whose label includes a condition on k are firable exactly at the times at which that condition holds,
- all transitions whose label includes k := 0 restore the initial state of the net,
- at any time some transition whose label includes k := 0 is firable.

For each $k \in X$, let N_k be the net built as follows:

- 1. Assume $\{c_1, \ldots, c_n\}$ is the set of nets encoding the guards involving k. Let $K = (c_1 \setminus F \parallel \ldots \parallel c_n \setminus F) \setminus H$, with F and H as follows:
 - F relabels any transition whose label includes k := 0 with ρ (ρ new),
 - *H* relabels any *t* obtained from a product of transitions by the union of their labels in nets c_i .
- 2. Starting with $N_k = K$, add to N_k , for each $E \subseteq G_k$ with card(E) > 1, a transition labeled E defined as the product of all transitions of K with their label intersecting E.

Net N_k has as transitions:

- Those internal to the component nets (unlabelled),
- For each nonempty $E \subseteq G_k$, a transition labeled E,
- For each (possibly empty) $E \subseteq G_k$, a transition labeled $E \cup \{k := 0\}$.

Theorem

Let k be the time elapsed since the initial marking was established

- the transitions whose label includes a condition are firable exactly at the times at which that condition holds,
- all transitions whose label includes k := 0 restore the initial state of the net,
- at any time some transition whose label includes k := 0 is firable.

 $\mathcal{A} = \langle Q, q^0, X, \Sigma^{\epsilon}, T \rangle$

- 1. Let N_A be the net built as follows:
 - For each $q \in Q$ add a new place to N_A , and mark the place encoding q^0 ,
 - For each transition $q \xrightarrow{t} q'$ of \mathcal{A} , add to N_A a transition between the places encoding q and q', labeled E_t
- 2. Next, let N_K be the net built as follows:
 - Start with $N_K = ||_{k \in X} N_k$ where N_k encodes clock k,
 - Then, for each E_t , add to N_K a transition labeled E_t defined as the product of all transitions of N_K with their label belonging to E_t ,
 - Remove all labeled transitions of N_K whose label is not in any E_t ,
- 3. Finally, let $\mathcal{N} = N_A \parallel N_K$ and relabel each labeled transition by the action from Σ^{ϵ} belonging to its label.

Theorem

Any TA can be encoded into a PrTPN without right-open intervals, preserving weak timed bisimilarity, or:

 $TA \lesssim_{\mathcal{W}} PrTPN$ with unbounded or right-closed intervals.

TA Invariants

 $T\boldsymbol{A}$ with invariants:

 $\langle Q, q^0, X, \mathbf{\Sigma}^{\epsilon}, T, I \rangle$ where

- $\langle Q, q^0, X, \Sigma^\epsilon \rangle$ is a TA
- I: Q → C(X) maps clock constraints with locations invariants typically built from {≤, <, ∧}

Semantics

• $(q,v) \xrightarrow{d} (q,v+d)$ iff $d \in \mathbf{R}^+ \land (\forall d') (0 \le d' \le d \Rightarrow I(q))$

Encoding Invariants built from $\{\leq, \land\}$

Adapting the translation of [Bérard et al., 2005]:

So:

(Th 1) $TA+\{\leq,\wedge\} \lesssim_{W} PrTPN$ with unbounded or right-closed intervals

Adapting the encoding of Cassez/Roux of TPN into TA: (Th 2) $PrTPN \leq_W TA + \{\leq, <, \land\}$.

Equivalence results:

(Th 3) $TA + \{\leq, \wedge\} \approx_{\mathcal{W}} PrTPN$ with right-closed or unbounded intervals

- (Cor 1) TA with guards built from $\{\geq, >, \land\} \approx_{\mathcal{W}} TPN$ with unbounded intervals
- (Cor 2) $TA + \{\leq, \land\}$ with guards built from $\{\geq, >, \land\} \approx_{\mathcal{W}} TPN$ with right-closed or unbintervals.

Summary of comparisons

	TA guards	invariants		TPN intervals	\succ
Th 1	$\leq \langle 2 \rangle > \wedge$	$\leq \land$	$\lesssim W$	$(]a-[a),(b]-\infty[)$	Y
Th 2	$\leq \langle \rangle > \wedge$	\leq < \land	$\gtrsim_{\mathcal{W}}$	$(]a-[a),(b]-b[-\infty[)$	Y
Th 3	$\leq < \geq > \land$	\leq \land	$\approx_{\mathcal{W}}$	$\mid (]a [a),(b] \infty[)$	Y
CR	$\geq > \land$	\leq < \land	$\gtrsim_{\mathcal{W}}$	$(]a-[a),(b]-b[-\infty[)$	N
Cor 1	$\geq > \land$	$\leq \land$	$\approx_{\mathcal{W}}$	$ a [a),(b] \infty[)$	N
Cor 2	$\geq > \land$	Ø	$\approx_{\mathcal{W}}$	$(]a [a),\infty[$	N

Conclusion

New equivalence results % TA

Better understanding of differences

Allow sharing of analysis methods for TA and PrTPN

Note: Priorities make *TPN* **compositional**

State space abstractions for PrTPN

Improved encodings