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Abstract

Within the trend of object-based distributed computing,
we present the design and implementation of a numerical
simulation for electromagnetic waves propagation. A se-
quential Java design and implementation is first presented.
Further, a distributed and parallel version is derived from
the first, using an active object pattern. In addition, bench-
marks are presented on this non embarrassingly parallel
application.

A first contribution of this paper resides in the sequen-
tial object-oriented design that proved to be very modular
and extensible; the classes and abstractions are designed to
allow both element and volume type methods, furthermore,
valid on structured, unstructured, or hybrid meshes. Com-
pared to a Fortran version, the performance of this highly
modular version proved to be in the same range.

It is also shown how smoothly the sequential version
can be distributed, keeping the same structuring and
object abstractions, allowing to deal with larger data
size. Finally, benchmarks on up to 64 processors compare
the performances with respect to sequential and parallel
versions, putting that in perspective with a comparable
Fortran version.

Keywords: object-oriented and distributed computing,
active object, numerical simulation, Java

1 Introduction

Within the trend of object-based distributed computing,
we present the design and implementation of a numerical
simulation for electromagnetic waves propagation.

The general objective of this collaboration between com-
puter scientists and applied mathematicians, is to use mod-
ern programming languages and libraries such as Java and

ProActive1, for the design of a problem solving environment
(PSE) for complex applications in the bio-electromagnetics
field. Such an environment will ideally integrate software
components for geometric modeling from medical images,
unstructured grid generation, numerical simulation and sci-
entific visualization. An example of such an environment
based on Corba is given in [24]. While such work uses the
option of wrapping legacy code, the work presented here
concentrates on a full-fledged object-oriented version, for
the sake of extensibility and adaptability. Overall, from an
existing Fortran application (EM3D [22]), we designed a
modular and extensible object-oriented version: Jem3D.

First we define an object-oriented model of a 3D code in
Java, and we use it for programming a sequential version.
In order to take advantage of parallelism and distribution,
we then use ProActive a library for parallel, concurrent and
distributed computing in Java featuring additional charac-
teristics compared to the standard Java RMI API. We have
deliberately chosen not to use an explicit message-passing
library (MPI, or Java version of it like MPJ [6], or MPIjava
[25]) for taking advantage of distribution: we aim at enforc-
ing code reuse by applying the remote method invocation
mechanism instead of explicit message-passing.

As might be predicted, actual benchmarks show slower
performances of about a factor of 3 compared to those of a
Fortran-MPI version, which is undoubtely a good achieve-
ment in a 100% Java environment. More importantly, the
aim of this work is to emphasize on the benefits we get on
software engineering aspects (possible extension of the Java
version, full portability, ease of deployment, etc) through a
complete rewriting of the Fortran version. Recent works
such as [14] also mention the advantages of using object-
oriented practices for finite element analysis; the main dif-
ference is that we do not rely on direct parallel solvers. We
do not get the performance of executing native code result-
ing from Fortran or C++ programming; see for instance

1ProActive is available in LGPL at http://ProActive.ObjectWeb.org

1



works that wrap MPI-based legacy codes as Java or Corba
components [17, 7]. Even under those conditions, an object-
oriented SPMD programming approach entirely based on
point-to-point or collective method invocations in Java, we
still get good performances and speedup.

2 Related work

2.1 EM3D : a parallel solver for electromagnetic
waves propagation

The Fortran EM3D software has been designed for the
numerical simulation of electromagnetic waves propagation
in the time domain. The software numerically solves the 3D
Maxwell equations for homogeneous or heterogeneous lin-
ear media. It relies on a finite volume time domain (FVTD)
method designed on unstructured tetrahedral meshes, po-
tentially applicable to general hybrid meshes. The FVTD
method adopts a cell centered formulation2 (a control vol-
ume is taken to be a tetrahedron) with a centered numerical
scheme for the computation of convective fluxes, combined
to an explicit leap-frog time integration scheme. The re-
sulting solver is second-order accurate in time and space
for regular meshes, and provides unsteady solutions that
conserve a certain form of discrete electromagnetic energy
[22]. It is interesting to note that such finite volume formu-
lations were originally designed for computational fluid dy-
namics, such as 3D Euler or Navier-Stokes equations [16].
This clearly motivates the development of a general object-
oriented framework that would facilitate the development of
various simulation softwares for PDEs (Partial Differential
Equations).

Finally, the parallelization of EM3D combines a domain
partitioning strategy with a message passing programming
model using the MPI (Message Passing Interface). The par-
titioning of the computational domain is obtained with the
ParMETIS tool [15].

2.2 Other object-oriented numerical simulation
softwares

During the last ten years, there has been a large number
of projects related to the use of object-oriented approaches
in the context of numerical calculation especially for grid
based applications such as grid generation, grid adapta-
tion and numerical solution of PDEs. Another computa-
tional field that has largely benefited from object-oriented
programming is concerned with algebraic (linear or non-
linear) system solvers such as TNT3, Hypre [8], JAMA4 and

2Other widely used finite volume methods rely on a vertex centered
formulation.

3Template Numerical Toolkit, http://math.nist.gov/tnt/index.html
4Java Matrix Package, http://math.nist.gov/javanumerics/jama/

PETSc [23] (among others).

Concerning grid based processing and numerical solu-
tion of PDEs, analysing all the existing projects would be
far too long for a conference paper. We simply outline here
a number of these projects. Otherwise stated, the projects
discussed below have adopted C++ as the programming lan-
guage.

GrAL (Grid Algorithms Library) [3] is a generic library
for grid oriented data structures and algorithms. GrAL
was initially developed for applications dealing with the
numerical solution of PDEs. However, other possible ap-
plication areas for GrAL include computational geome-
try and topology, geometric modeling, computer graph-
ics, or geographic information systems. Mouse [12] is
an object-oriented framework for Computational Fluid Dy-
namics (CFD) computations using finite volume methods
on unstructured grids. Mouse has been designed with the
aim to facilitate the use of unstructured grids. Mouse is not
restricted to CFD, and not limited to the use of finite vol-
ume methods, although it offers various classes that ease
the implementation of this type of methods. The basic data
structures, which are not trivial for unstructured grids, could
be used for other types of discretizations as well. Over-
ture [4] is another example of an object-oriented framework
dedicated to the numerical solution of PDEs. It provides a
portable, flexible software development environment for ap-
plications that involve the simulation of physical processes
in complex moving geometry. It is implemented as a col-
lection of C++ libraries that enable the use of finite differ-
ence and finite volume methods at a level that hides the de-
tails of the associated data structures. Overture is designed
for solving problems on a structured grid or a collection of
structured grids. In particular, it can use curvilinear grids,
adaptive mesh refinement, and the composite overlapping
grid method to represent problems involving complex do-
mains with moving components.

JMP [13] is a linear algebra object-oriented library, im-
plemented in pure Java. It is aimed at the numerical solu-
tion of large linear systems arising from the discretization
of PDEs. It can deal both with dense and sparse matri-
ces, offers the access to iterative Krylov methods and stan-
dard factorization methods and includes a comprehensive
BLAS for both types of matrices with parallelization for
the most time-consuming operations. The parallelization of
JMP uses threads and is thus only effective on shared mem-
ory systems. Clearly, JMP could be used in conjunction
with Jem3D for the solution of the linear systems result-
ing from the adoption of implicit time integration schemes.
Such schemes are not implemented in the current version of
Jem3D and are still the subject of theoretical studies. How-
ever, the main drawback to such a coupling between Jem3D
and JMP certainly is the shared memory parallelization of
the latter. One solution to this problem could be the re-
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writing of JMP in the ProActive framework.
An approach similar to the one considered here is pre-

sented in the context of composite material manufacturing
[14]. In this paper, the authors report on the development
of an object-oriented version of a simulation environment
named COMPOSE that was originally designed using a
classical procedural programming paradigm in Fortran 90.
COMPOSE is a parallel finite element software that relies
on an implicit time integration scheme which is not sub-
jected to a stability restriction as it is the case with the ex-
plicit leap-frog scheme adopted in Jem3D. However, the
price to pay for this unconditional stability is the solution
of large sparse linear systems which is critical to the overall
performances of the software. The object-oriented version
of COMPOSE relies on the SPOOCEFEM computing envi-
ronment that has been designed to simplify the development
of parallel finite element software. SPOOCEFEM has been
coded in ANSI C++. As with Jem3D, SPOOCEFEM im-
plements a hierarchy of finite-element classes that contains
all of the generic finite-element functionnalities required for
developing a complete application. Moreover, for a num-
ber of specific tasks, SPOOCEFEM makes use of external,
special purpose, libraries: PETSc [23] and PSPASES [18]
packages that give access to efficient parallel direct and it-
erative solvers as illustrated by the performance results pre-
sented in [14]. Finally, parallel programming relies on MPI.

In summary, with regards to the projects discussed
above, the distinctive features that characterize Jem3D are
(1) the Java programming language and, (2) the adoption of
a distributed computing model that makes it amenable both
to cluster and grid computing.

3 Jem3D: an Object-Oriented library for 3D
electromagnetic-based simulations

In this section, we describe the main features of a gen-
eral object-oriented model that can be used for the develop-
ment of simulation software tools which are based on finite
volume type methods on unstructured meshes. The applica-
tion of this model is currently limited to the Maxwell equa-
tions for electromagnetic waves propagation but it can be
extended to deal with Euler or Navier-Stokes equations that
model compressible flow calculations [16]. Moreover, the
model could also be extended to include classical finite el-
ement type discretization methods. The main features of
the model are: (1) the ability to deal with 2D and 3D com-
putational domains, (2) the possibility of choosing between
different types of discretization elements (triangle, quadran-
gle, tetrahedron and hexahedron) and, (3) the inclusion of
the two main classes of finite volume methods i.e. the ver-
tex centered and element centered formulations. As the first
application developed using this model/library is a Java ver-
sion of the EM3D solver, we name Jem3D the application.

TriangleElt

Element2D

Element

Element3D

TetrahedronElt HexahedronElt

ControlVolume2D

ControlVolume

ControlVolume3D

TriangleCv QuandrangleCv TetrahedronCv HexahedronCv

QuadrangleElt

Figure 1. Definition of an element and a con-
trol volume in 2D and 3D

3.1 Basic architecture

The proposed object-oriented model essentially consists
of two types of classes: classes that are concerned with the
definition of the geometry (or computational domain) and
classes that are related to the application. Currently, the def-
inition of the latter includes geometric, physical and numer-
ical components. In other words, these classes are strongly
linked to the physical context under consideration (electro-
magnetic waves propagation in the present case).

3.2 Geometry definition

The finite volume methods adopted in [22] and [16] rely
on the use of an unstructured mesh for the discretization
of the computational domain. The construction of such
meshes can be based on various types of discretization el-
ements. The standard situation is such that only one type
of discretization element is considered for the definition of
a given unstructured mesh. However, in the general case,
the computational domain could be discretized by combin-
ing several types of elements (hybrid discretization). The
classes considered here are concerned with the definition
of the discretized geometry with an unstructured mesh. In
order to do so, one essentially needs two basic geometric
entities: the vertex and the element. The element is used to
connect a number of vertices and an unstructured mesh is
defined by filling the computational domain with elements.
These two geometric entities are included in our object-
oriented model through the definition of several classes:
Vertex2D and Vertex 3D (which extends Vertex2D) are sim-
ple concrete classes for the definition of a vertex in 2D
and 3D; Element, Element2D and Element3D are abstract
classes for the definition of an element in 2D and 3D (see
Figure 1).
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3.3 Application aspects

Starting from the discretized geometry, it is then neces-
sary to define the classes related to the numerical methods
(finite volume methods in the present case). Finite volume
methods typically yield the computation of a flux balance
through the boundary of a control volume (also called a
cell). Indeed, a control volume is a geometric entity that
can be seen as another building block for the discretiza-
tion of the computational domain but it is not the natural
basic entity for the definition of an unstrutured mesh. In
some sense, it is introduced artificially since it represents
the calculation support of finite volume type methods. Note
that for finite element type methods, the calculation sup-
port is simply given by the element. In the finite volume
framework, the unknowns of the problem are averages of
the phyical quantities computed over control volumes while
in finite element methods, the unknowns are the values of
the phyical quantities associated to the vertices of the mesh.

In our object-oriented model, the control volume is de-
fined through a hierarchy of classes partially shown in Fig-
ure 1. At that point, it is worthwhile to make two remarks:

• as for the vertex and the element entities, the defini-
tion of the control volume includes classes dedicated
to the 2D and 3D cases. In addition, we have taken into
account the two main families of finite volume meth-
ods i.e. the vertex centered and element centered for-
mulations. In a vertex centered formulation, a control
volume is constructuted around a vertex using partial
contributions from the set of elements attached to this
vertex. In an element centered formulation, the con-
trol volume is simply taken to be an element (triangle,
quadrangle, tetrahedron or hexahedron). In Figure 1,
the latter formulation is illustrated with the choice be-
tween HexaedronCv and TetrahedronCv.

• In practice, the flux balance is evaluated as the combi-
nation of elementary fluxes computed through a series
of facets that describe the boundary of the control vol-
ume. This yields another hierarchy of classes for the
definition of various types of facets (see Figure 2).

Finally, we note that the EM3D solver is based on an el-
ement centered formulation where the control volume is a
tetrahedron and the facet is a triangular face. Therefore, at
the lowest level of the hierarchy of classes for the definition
of a facet, we currently have the various types of triangu-
lar faces that are considered in the EM3D solver: either an
internal face or a boundary face and, for a boundary face,
several subclasses corresponding to the different types of
boundary conditions.

EltCenteredFacet

Facet

VtxCenteredFacet

VtxCenteredFacet2D VtxCenteredFacet3D EltCenteredFacet2D EltCenteredFacet3D

QuadrangleFacetTriangleFacet

InternalFacetBorderFacet

VirtualBorderFacet MetalBorderFacet InfBorderFacet

Figure 2. Definition of a facet in 2D and 3D

3.4 Overall skeleton and control

The overall skeleton of the EM3D solver is shown in
Figure 3 and so will be reproduced as such in Jem3D. Let
tn = t0 + n∆t, E and H respectively denote the discrete
time, the discrete electric field and the discrete magnetic
field (both fields are vectors of size 3 × Ncv consisting of
the x, y and z components of the physical quantity com-
puted on each control volume). In the leap-frog time in-
tegration scheme adopted in EM3D, each time step allows

the calculation of
(

E
n+ 1

2 , H
n+1

)

from
(

E
n−

1

2 , H
n

)

.

In practice, the main time stepping loop of Figure 3 is de-
composed in three phases:

1. the flux balance for the magnetic field is computed
from the distribution of the magnetic field obtained at
the previous time step (i.e. H

n). This flux balance is
used to update the electric field (i.e. to compute E

n+ 1

2

from E
n−

1

2 using the flux balance for H
n).

2. the flux balance for the electric field is computed from
the distribution of the electric field resulting from the
previous phase (i.e. E

n+ 1

2 ). This flux balance is used
to update the magnetic field (i.e. to compute H

n+1

from H
n using the flux balance for E

n+ 1

2 ).

3. the discrete electromagnetic energy (which is a scalar
value) is computed from the distributions E

n+ 1

2 and
H

n+1. This particular quantity is used to monitor the
simulation in the sense that, according to the results of
the theoretical analysis [22], it should remain constant.

The first and second phases are implemented using loops
over the lists of triangular faces (see the discussion on
the facet entity in subsection 3.3) using different numeri-
cal schemes for the calculation of fluxes through internal
and boundary faces. Since the original EM3D code is pro-
grammed in Fortran 77, the informations related to the defi-
nition of internal and boundary faces (as well as for vertices
and tetrahedra) are stored using array data structures.
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t < tmax

t = tmax

(vertices and element connectivity)
Tetrahedral mesh

(internal and boundary faces)

tables

Calculation of auxiliary quantities 
(volumes of tetraedra,  components of 

the normal vectors to faces , ...)

Construction of auxiliary connectivity  

Time stepping loop

Calculation of the flux balance for the magnetic
field and update of the electric field

Calculation of the flux balance for the electric
field and update of the magnetic field

Calculation of the discrete 
electromagnetic energy

Stopping test

Construction of the lists of faces 

Setting of simulation parameters 

Geometry

Problem initialization

Solution saving and statistics

Figure 3. Overall application skeleton

In the Java version of EM3D, lists of vertices, elements,
control volumes and facets are implemented using the Ar-
rayList class from the standard Java API. ArrayList
is a resizable-array implementation of the List interface.
Like an array, it contains components that can be accessed
using an integer index. However, the size of a ArrayList
can grow or shrink as needed to accommodate adding and
removing items after the ArrayList has been created.
This class is equivalent to Vector except that it is unsyn-
chronized: it permits simultaneous and faster access.

The components of our object-oriented model as de-
scribed in subsections 3.2 and 3.3 can be viewed as con-
tributing to a general library on top of which a particular
application can be built. Such an application based upon
a vertex centered formulation has yield to Jem3D, the Java
version of the EM3D solver presented in subsection 3.4, but
several others could be considered in the future.

4 Design of the parallel and distributed ver-
sion of Jem3D

This section explains how, using the ProActive library,
we have programmed a parallel and distributed version of
Jem3D starting from the sequential one.

4.1 The ProActive library

As ProActive is built on top of the Java standard API5,
it does not require any modification to the standard Java

5mainly Java RMI and the Reflection API

execution environment, nor does it make use of a special
compiler, pre-processor or modified virtual machine.

4.1.1 Base model

A distributed or concurrent application built using ProAc-
tive is composed of a number of medium-grained entities
called active objects. Each active object has one distin-
guished element, the root, which is the only entry point to
the active object. Each active object has its own thread of
control and is granted the ability to decide in which order
to serve the incoming method calls that are automatically
stored in a queue of pending requests. Method calls sent to
active objects are always asynchronous with transparent fu-
ture objects and synchronization is handled by a mechanism
known as wait-by-necessity [5]. There is a short rendez-
vous at the beginning of each asynchronous remote call,
which blocks the caller until the call has reached the con-
text of the callee. The ProActive library provides a way to
migrate any active object from any JVM to any other one
through the migrateTo(...) primitive which can ei-
ther be called from the object itself or from another active
object through a public method call.

4.1.2 Mapping active objects to JVMs: Nodes

Another extra service provided by ProActive (compared to
RMI for instance) is the capability to remotely create re-
motely accessible objects. For that reason, there is a need
to identify JVMs, and to add a few services. Nodes pro-
vide those extra capabilities : a Node is an object defined
in ProActive whose aim is to gather several active objects
in a logical entity. It provides an abstraction for the physi-
cal location of a set of active objects. At any time, a JVM
hosts one or several nodes. The traditional way to name and
handle nodes in a simple manner is to associate them with
a symbolic name, that is a URL giving their location, for
instance rmi://lo.inria.fr/Node1.

Let us take a standard Java class A. The instruction:

A a = (A) ProActive.newActive("A",
params,"rmi://lo.inria.fr/node");

creates a new active object of type A on the JVM iden-
tified with Node1. Further, all calls to that remote object
will be asynchronous, and subject to the wait-by-necessity:

a.foo (...); // Asynchronous call
v = a.bar (...); // Asynchronous call
...
v.f (...); // Wait-by-necessity:

// wait until v gets its value

Note that an active object can also be bound dynamically
to a node as the result of a migration. In order to help in the
deployment phase of ProActive components, the concept of
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virtual nodes as entities for mapping active objects has been
introduced [2]. Those virtual nodes are described externally
through XML-based descriptors which are then read by the
runtime when needed.

4.1.3 Group communications

The group communication mechanism of ProActive
achieves asynchronous remote method invocation for a
group of remote objects, with automatic gathering of
replies.

Given a Java class, one can initiate group communica-
tions using the standard public methods of the class together
with the classical dot notation; in that way, group commu-
nications remains typed. Furthermore, groups are automat-
ically constructed to handle the result of collective opera-
tions, providing an elegant and effective way to program
gather operations.

On the standard Java class A presented above, here is an
example of a typical group creation:

// A group of type "A" and its 2 members
// are created at once on the nodes
// directly specified, parameters are
// specified in params,

Object[][] params = {{...}, {...}};
A ag = (A) ProActiveGroup.newGroup("A",

params, {node1,node2});

Elements can be included into a typed group only if
their class equals or extends the class specified at the group
creation. Note that we do allow and handle polymorphic
groups. For example, an object of class B (B extending A)
can be included to a group of type A. However based on
Java typing, only the methods defined in the class A can be
invoked on the group.

A method invocation on a group has a syntax similar to
a standard method invocation:

ag.foo(...); // A group communication

Such a call is asynchronously propagated to all members
of the group using multithreading. Like in the ProActive
basic model, a method call on a group is non-blocking and
provides a transparent future object to collect the results. A
method call on a group yields a method call on each of the
group members. If a member is a ProActive active object,
the method call will be a ProActive call and if the member
is a standard Java object, the method call will be a standard
Java method call (within the same JVM). The parameters of
the invoked method are broadcasted to all the members of
the group.

An important specificity of the group mechanism is: the
result of a typed group communication is also a group. The
result group is transparently built at invocation time, with
a future for each elementary reply. It will be dynamically

Active object Active object A

Remote node

Active object A

Remote node

Active object A

Remote node

group

futur 1 futur 2 futur 3

result group

Local node

Figure 4. Method call on group

updated with the incoming results, thus gathering results,
as shown in Figure 4. The wait-by-necessity mechanism is
also valid on groups: if all replies are awaited the caller
blocks, but as soon as one reply arrives in the result group
the method call on this result is executed. For instance in

// A method call on a group with result
V vg = ag.bar();

// vg is a typed group of "V"
// This is also a collective operation:

vg.f();

a new f()method call is automatically triggered as soon
as a reply from the call ag.bar() comes back in the group
vg (dynamically formed). The instruction vg.f() com-
pletes when f() has been called on all members.

Other features are available regarding group communi-
cations: parameter dispatching using groups (through the
definition of scatter groups), hierarchical groups, dynamic
group manipulation (add, remove of members), group
synchronization and barriers (waitOne, waitAll, wai-
tAndGet); see [1] for further details and implementation
techniques.

4.2 Distribution and parallelization

The following sections explain how, using active ob-
jects, asynchronous point-to-point and group communica-
tions, the sequential version of Jem3D can be distributed on
a set of machines.

4.2.1 Basic ideas and principles

Figure 5 describes the architecture of the sequential version
of Jem3D: all (triangle) facets, whatever be their real type
(internal or not), are grouped in an ArrayList of facets;
all (tetrahedron) control volumes are grouped into an Ar-
rayList. As each internal facet belongs to two control
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Border
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Internal
facet

Border
facet

Control
Volume

Control
Volume

Domain

List of facets

List of Control Volume

Figure 5. Architecture of the sequential ver-
sion of Jem3D

volumes (CV), one can for instance see in Figure 5 the cor-
responding two references (from a face to 2 CVs).

After the initialization phase, the main loop repetitively
executes the three phases presented in Figure 3, by going
over the ArrayList of facets. The three phases read or
update some values (i.e. the X,Y,Z coordinates of the electric
and magnetic fiels) of the corresponding CV(s) (Figure 3).

The partitioning follows a standard decomposition of the
entire domain into a set of geometric sub-domains. As we
will see, the object-oriented approach brings a specific ad-
vantage: sequential references to some data-structures (e.g.
facets, CVs) can be turned into remote references in a trans-
parent manner for the code using them.

The partitioning first occurs on facets: each one is as-
signed to a unique sub-domain. As a consequence, some
CVs will be shared by 2 sub-domains (or sometimes more);
a shared CV is referenced by facets belonging to different
sub-domains. Of course, specific programming techniques
have to be used in order to read and update shared CVs.

4.2.2 Partitioning, local and remote objects

Figure 6 shows the architecture for the distributed version
of Jem3D. The underlying idea for the parallelization is to
apply a standard and natural geometric decomposition of
the 3D computational domain into sub-domains. As such,
some facets will contribute to control volumes that may be
located onto neighbor sub-domains.

We introduce the VirtualBoderFacets (VBF) to
represent these facets that belong to two sub-domains. In a
couple of neighbour sub-domains, both have a reference to
a VBF designating the shared facet. Each VBF contributes
to the computation. Two neighbour VBFs which are copies
of the same facet must exchange and combine their values
to obtain the value of the facet. For the update access, it is
the sub-domain’s responsibility to trigger a remote method
call onto the corresponding sub-domain – implemented as
an active object–, which itself sets values in the twin VBF.

Eventually, the value of the facet is set in both VBFs.
Thanks to polymorphism and dynamic binding, there is

no need to explicitly deal with the effective real types of
facets: internal or virtual. As a result, the control volumes
that reference virtual border facet, as well as the loop that
uses them, can execute unchanged.

Our architecture features a totally decentralized ap-
proach. The application is fully peer-to-peer: each sub-
domain communicates with the others without any central-
ized supervisor. As centralized points are usually bottle-
necks due to overload problems, we achieve a better scala-
bility.

4.2.3 Optimizations

Regarding a read access, a naive solution would have been
to let each control volume independently trigger a remote
method call to read (pull) the values of its correspond-
ing control volume (through an access via the remote sub-
domain active object). As the algorithm implemented in the
sequential version loops over facets in each phase, this im-
plies that the computation could proceed only when a given
facet effectively gets the remote values, adding up RMI
and network latency. As we actually know who will need
a given value, the idea is to push it rather than pulling it,
avoiding one way of the communication needed for a pull.

In order to achieve that behavior, a sub-domain maintains
a link to all its neighbors with witch it shares a facet, in
order to be able to push new values to the corresponding
virtual border facets. The set of neighbors is stored using
a group from the ProActive API. Such a group is directly
operable with method calls: only one method call is enough
to reach all members of the group. The main point is that
this avoids to program a data structure that would require an
iterator in order to visit each neighbor sub-domain, and as
such, perform the communications sequentially.

Each virtual border facet has to receive the value of its
twin. It has been again possible to take advantage of the
group communication feature in order to simply program
this operation. More precisely, at initialization time, each
sub-domain executes the following (refer to Figure 6 for il-
lustration):

// Builds group of neighbor sub-domains
SubDomain neighbors =

ProActiveGroup.newGroup("SubDomain",
{sd1,sd2,...});

// For each sub-domain j, builds up a
// VBFFieldExchange collecting all
// references to virtual border facets
// that are shared by the current
// sub-domain with sub-domain j

VBFFieldExchange VBFValues_j = ...
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Figure 6. Architecture of the distributed version of Jem3D

// A group of VBFFieldExchanges to be
// scattered to shared VBFs

VBFFieldExchange exchangeValues =
ProActiveGroup.newGroup(

"VBFFieldExchange",
{...,VBFValues_j,...});

ProActiveGroup.setScatterGroup(
exchangeValues);

SubDomain is the class name of the sub-domain ac-
tive object. The variable neighbors stands for the neigh-
bor sub-domains group, while exchangeValues for the
neighbor-shared VBF values group. The setScatter-
Group is a ProActive feature allowing to specify that a
group parameter, subsequently used in a group communi-
cation, has to be isomorphically dispatched to the members
of the group: the ith element of group parameter goes (as the
remote method call parameter) to the ith target object in the
group.

Then, at the beginning of each phase of the main loop
after an update of the VBFs, the following simple instruc-
tion is executed in order to push appropriate values on each
remote and shared VBF:

neighbors.push(exchangeValues);

This means that on each sub-domain j referenced in the
group neighbors, it calls the method push taking as
parameter the corresponding VBFFieldExchange refer-
encing VBFs that are shared with sub-domain j. Method
push will set values of each VBF in the corresponding re-
mote VBF on sub-domain j. Subsequently, those values will
be available locally by the control volumes when needed.

5 Benchmarking

To do measurement up to 32 processors, the benchmarks
use a cluster of 16 Intel Pentium IV bi-Xeon @ 2Ghz 1 GB
(RDRAM) - 512 Kb L2 cache, Linux RedHat 2.4.17, inter-
connected with a 1.5 Gbit/s Ethernet. In order to measure

performances on 64 processors, we add a second cluster
of 16 bi-Pentium III @ 933 Mhz 512MB (SDRAM) - 256
Kb L2 cache, Linux RedHat 2.4.17, interconnected with a
100 Mb/s Ethernet. Each computer belonging to the sec-
ond cluster communicates with computers in the first clus-
ter through a 100 Mb/s Ethernet link. We use the Sun Java
Virtual Machine 1.4.0.

A bench aims at computing the time evolution of the
eigenmode (1,1,1) in a cubic metallic cavity. Reported re-
sults are the total execution time for 100 time steps. To
give an idea of the data involved, a mesh size of e.g.
81x81x81 represents 521,441 vertices, 3,072,000 tetrahe-
dra, 6,220,800 faces. All of them are represented at runtime
by objects in the Java version.

First, let us compare the sequential Fortran version, with
the Java version. On each of the configurations we have
tested (different numbers of processors, different amount of
data) we have noticed an average ratio of execution time for
a loop ranging from 3.5 to 3.7.

We have benchmarked the Java parallel version. Re-
sults are reported in Figure 7. Both graphics present the
average duration in seconds of several executions of the
benchmark (benchmark which loops in the main loop for
100 time steps). The upper one plots experiment results
when running on the 16 most powerful computers (cluster
1), whereas the lower one is when running on all the com-
puters (cluster 1 and 2). Due to the synchronization step
at the the end of each loop, the measured time is the slow-
est computer (i.e. the longer time). Moreover, the duration
highly decreases up to 8 processors for small data sizes (less
than 55x55x55); then adding ressources becomes rather in-
effective: from 8 to 18 processors speedup only improves
from 5 to 7 on a 55x55x55 mesh. For larger size problems,
starting as low as 81x81x81, the parallelization is usefull all
the way up to 64 processors.

Figure 8 presents the time speedup of hundred iterations
of the main loop, depending on the number of processors in-
volved in the computation. The upper graphic shows mea-
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Figure 8. Speedup

surements using the most powerful cluster, and the lower
one using both clusters. For some of the problem sizes, the
reference execution time (i.e. the sequential execution) is
extrapolated, because these problem sizes were so huge that
the problem could not been solved sequentially on one pro-
cessor; in practice, the experimentations lead to an out-of-
memory error. The extrapolation is computed in the follow-
ing way: first, we calculate the time spent in the treatment of
a control volume, which is to be considered as the elemen-
tary data in the application, by dividing the total execution
time of the benchmark by the number of control volumes in-
volved. Secondly, we estimate the execution time for large
size problems by multiplying the elementary time by the
number of control volumes in the problem. The curves
expose an efficiency in the range of 30% to 35% for the
larger problems using all available processors. Reducing
the number of processors, the efficiency steadily increases
up to 75% on two processors for all cases.

6 Conclusion

The Java version of EM3D has great potential for exten-
sion and adaptability: going from element to volume meth-
ods, using structured, unstructured, or hybrid meshes. At
the same time, the performance penalty for such an abstract
architecture implemented in Java seems reasonable: in a
factor of 3 to 4 compared to the Fortran version. This is
a good result according to [9] that shows Java applications
is a factor 3.3 to 12.4 slower than the corresponding Fortran
operations. Moreover, this Java version is rather recently
compared to the Fortran one, and there is still a lot of room
for code optimization. Using a high-level library (ProAc-
tive) the parallel version was easy to obtain, maintaining
the structuring of the sequential one. As a consequence, if
an evolution of the sequential version occurs, the parallel
one should remain, and evolve automatically.

Getting at performance figure, first it is important to
note that the parallel object-oriented approach, using fully
standard and portable elements of the Java platform, is al-
ready effective on the problem size. The parallel version
allowed us on the clusters to get results with data size sig-
nificantly larger than the sequential version (121x121x121
versus 43x43x43). The former number is to be compared to
the largest size the Fortran version can currently execute:
161x81x81 (which is equivalent to 101x101x101 mesh).
Even if this is due in the current Fortran program to a prob-
lem of static array allocation which could be improved with
some restructuring, it probably tells something about the
flexibility of a more dynamic approach.

With respect to speed up, we managed to reach values
in the range of 22 on 64 processors. With respect to effi-
ciency, the best values are of course on smaller configura-
tions: in the range of 50 % for about 10 processors, 75%
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on 2 processors. Those performance figures, although al-
ready very good in an object-oriented world, leave room
for improvement. Analysis of the executions confirms that
progress should come from two yet-to-be-improved pieces
of the current platform: serialization and standard RMI. As
it is well known [10, 21], the standard Java RMI mechanism
is rather slow for cluster computing. So, in order to reach
better scalability using the parallel version, the first step will
be to use fast implementations of the transport layer. Sev-
eral techniques have been proposed in the past, for instance
[11, 20, 19], we are planning to experiment with such solu-
tions in future work.

Finally, in order to experiment with very large data set
and large number of processors, we run benchmarks on the
INRIA production network, such configuration being some-
times called P2P Intranet on desktop machines. It made it
possible to solve a 150 to the cube mesh, that is to say over
100 million facets, using 252 processors at the same time, in
1600 seconds. Future work will also include further testing
and benchmarking of this setting.
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