Notation

Concepts

Active object Root object of an activity 69

Activity A process made of a single active object and 69
a set of passive objects

Wait-by-necessity Blocking of execution upon a strict operation on 70
a future: a[R[e...),00...] A 0a(t) = fut(f77)

Service method Method started upon activation: 72
m; in Active(a, m;)

Request Asynchronous remote method call 69

Future Represents the result of a request before the re- 70
sponse is sent back

Future value Value associated to a future f;" —h 74
copy(t,0) where {f*7F — 1} € F,

Computed future A future which has a value associated: 106
7077 where f278 € dom(Fp)

Not updated future A computed future not yet locally updated 113

Partial future value Future value containing references to futures 74

Closed term Term without free variable (fv(a) = 0) 65

Source term Closed term without location: 65
fo(a) =0 Nlocs(a) =0

Reduced object Object with all fields reduced to a location: 66
0= [li = tiymy = <(5,y)a;]58

Potential services Static approximation of the set of method 103
names appearing in service primitives
Mar

Interfering requests ~ Two requests that can be served by the same 107

serve primitive:
[ma;e; f27°) and [ma; e £777) such that there is
M,{my,m2} C M and Serve(M) can appear in /3

322 Notation

Cycle of futures set of future identifiers {fut(fJ* ")} such that 116

Bo ... B verify:
Vi, 0 < i <mn, fut(f]'] 1Py ¢

copy(Fp, (fut(f*77)), 05,)
Fut(fan =) € copy(Fa, (fut(£3°77)), 0,)

Core Syntax: ASP Source Terms

[l; = by Object definition 64
mj = <(@‘aayy)%]§€ell m

a.l; Field access 64
al;:=b Field update 64
a.m;(b) Method call 64
clone(a) Superficial copy 64
Active(a, m;) Object activation 71
Serve(M) Request service 71
M list of method labels 71

Encoding of Classical Primitives

letx=ainb [[m =¢(z,x)bl.m(a) 64
a;b [m= (z;z')b] m(a) 64
Az.b [arg =[], val = ¢(z)b{z — z.arg}] 64
(b a) (clone(b).arg := a).val() 64
Repeat(a) [; repeat = ¢(x)a; x.repeat()].repeat() 89
FifoService Repeat(Serve(M)) 89
Repeat a Until b [;rep = <(x)a; if (not(b)) then x.rep()].rep() 89

ASP Intermediate Terms and Semantic Structures

a,0) Sequential configuration 66

Q, Activities: &fan; 0n;ta; Fo; Ra; fo 69
[current term, store, active object, future values, 87
pending requests, current future]

L Locations 64
locs(a) Set of locations occurring in a 65
PQ Parallel configuration 88
aecP Activity « belongs to the configuration P 98
af f,b a with continuation b 71
f is the future associated with the continuation
AO(w) Generalized reference to the activity a 73
faﬂﬁ Future identifier 87

Fut(fo70) Future reference 88

r =i £07)

Ro = {[mj; 6 f270)}

R:r
raR
F:A{fi—1}

General Notation

Merge(i, 0, ')

copy(t, o)

Notation 323

Request: asynchronous remote method call 69
Pending requests: a queue of requests 88
Adds a request r at the end of the pending requests 88
R

Takes the first request r at the beginning of the 88
pending requests

Adds a new future association to the future values 88

List 66
Association/finite mapping 66
Substitution 65
Transitive closure of any reduction — 103
Disjoint union 105

Restriction of (RSL) list L to labels belonging to 108
M

nt? element of the list L 108
Least upper bound 110
There is at most one 122

Store: finite map from locations to objects (re- 66

duced or generalized reference) o ::= {1; — 0;}
set of locations defined by o 66
Append of disjoint stores 66

Updates the values defined in ¢’ by those defined 66
. o(t) if v € dom(o
ino: (o +0')0) = {0'((2) otherwise)
Store merge: merges o and o’ independently 90
except for ¢+ which is taken from o'

Merge(t,0, ') = 0’0 + o where
0={ " edom(c’) Ndom(o)\{¢},:" fresh}
Deep copy of o (i) 89

Copy&Merge(o,t; o',1") Appends in ¢’(¢') a deep copy of o(¢) 91

= Merge(/', o', copy(,0){v — '})

324 Notation

Semantics

R
Rla]
—s

—
T
—
Bl
T
=

FL(a)
RSL(«)

E\A

ap

ActiveRefs()
FutureRefs(a)

FF

Equivalences

Reduction context 67,89
Substitution inside a reduction context 67
Sequential reduction 67
Parallel reduction 92
Parallel reduction where rule T is applied 103
Parallel reduction with future updates, i.e., Parallel 117
reduction preceded by some reply rules 284

Parallel Reduction with future updates where rule 117
T is applied:

e, Tt # repLy and —— if T = REPLY
Future List of « 99
Request Sender List of a: 108

(RSL(a)) = B/ if {0~ € FL(a)
RSL comparison: prefix order on sender activities 110
Potential services: 103
Static approximation of the set of M that can ap-
pear in the Serve(M) instructions of ap:
P QAQ=a[R[Serve(M)],..]| ...

=3IM e My, MC M

Set of active objects referenced by a: 98
{83 € dom(0s), 0a(t) = AO(B)}
Set of futures referenced by a: 98

{f777 30 € dom(0a), oalt) = fut(f777)}
Set, of Forwarded Futures: {(f*~", v, 8)} € FF if 213
e

p has been transmitted from vy to ¢

Equality modulo renaming (alpha conversion) of lo- 112
cations and futures, and reordering of pending re-
quests

Equivalence modulo future updates 113
also called equivalence modulo replies

Properties

F P oK

RSL(a) X RSL(G)
PXQ

PY P

G(P)

Request flow graph
DON(P)

SDON (P)

TDON (P)

Notation

Well-formed configuration

RSL compatibility

Configuration compatibility
Configuration confluence:

dR1, Ra, Py = RiNPy N Ro ARy =f Ry
Approximated call graph

« can send a request foo to 3 implies
(d,/@, fOO) € g(PU)

a — g (if « has sent a request to 3
Deterministic Object Network

Static Deterministic Object Network
Tree Deterministic Object Network

325

99

110
110
118

125

126
122
125
126

Syntax of ASP Calculus

Source terms

a,be Lu=x variable
|[li = bismy = (5, y;)a;]581 7, object definition
|a.l; field access
la.l; :==b field update
| a.m; (D) method call
| clone(a) superficial copy
|Active(a, m;) activates object:

deep copy + activity creation
my; is the activity method
or () for FIFO service
|Serve(M) Serves a request among
a set of method labels
where M is a set of method labels used to specify which request has to be
served.
M= my,y..., Mg

328 Syntax of ASP Calculus

Intermediate Terms

Terms
a,be L =2 _ variable
| [l = bi;my = (5, y;)a;]581 7, object definition
|a.l; field access
la.l; :=b field update
| a.m;(b) method call
| clone(a) superficial copy
|Active(a, m;) object activation
|Serve(M) service primitive
| location
la f f,b a with continuation b
Configurations
P,Q == alaosu Fs R f] | Bl)]
Requests

R ::= {[mj;b;ffﬁ'g]}

Future Values

Fu= {f77%)

Store
o u={u— 0;}
0::=[l; = vi;m; = s(x;,y;)a;]5ey 7, reduced object
|AO(v) active object reference

| fut(fiaﬁﬁ) future reference

Operation

al Semantics

STOREALLOC:

FIELD:

INVOKE:

v & dom(c)
(Rlo],0) —s (R[t], {t — o} :: 0)

o) = [li = vismy =s(zj,y)as]ie 7, keln

(Rleli],) =5 (Rl 0)

o) = [l = u;my = c(zj,)55 k€l.m

UPDATE:

Ol = [lz

(Rle.mi()],0) —=s (Rlar{zr — t,yx — '}, 0)

o) = [l = vismy = (x5, y5)a;]5e) kelun
=1l = sl = uoymy = c(xy,y5)a]iey b R

CLONE:

(Rledy :==1],0) —s (R[], {t — o'} +0)

/' & dom(o)
(Rlclone(1)],0) —s (R[V],{¢' — o()} :: o)

Table 1. Sequential reduction

330 Operational Semantics

v € dom(copy(t,0))
V' € dom(copy(s,0)) = locs(a(s")) C dom(copy(s,)

" € dom(copy(t,0)) = copy(t, o)) = o ()

Table 2. Deep copy

LOCAL:
(a,0) —s (a’,0') —s does not clone a future

ala;o;65 F5 R [T | P— alad’;0'565 F5 R; f] || P

NEWACT:
« fresh activity ' & dom(o) o' ={/— AO(y)}:: 0o
oy =copy(t’,0) Service = (if m; = 0 then FifoService else t"".m;())

a[R[Active(t",m;)]; 050 Fy Ry f] || P —
a[R[];0'5 05 F; Ry f] || v[Service; o; 0 0;0;0] || P
REQUEST:
oal(t) = AO(B) " ¢ dom(os) f27° new future ¢y & dom(oa)
oy = Copy&eMerge(oa,t' 5 05,0") o = {ty > fut(fF77)} : 0a

K3

a[Rt.m;()];0a;ta; Fay Raj fo] || Blag; os; ;3 Fa; Ra; f8] || P —
A[Resl; 0k ta; Fuos Ras fo] || Blas; ol tas Fis R = [my; s £27°; f4] || P

SERVE:
R=R :[mj;t; f]2R" mjeM VYmeM, m¢R
o[R[Serve(M)]; o505 F5 R; f] || P —
afe.m;(e) 0 £, RI0 056 F5 R R f1 | P
ENDSERVICE:

V gdom(oc) F' =F:u:{f—/} o =Copy&Merge(o,i; o,i')
ale (f',a);0;0 F; R f] || P— afa;o’s 0 F' Ry f] || P

REPLY:
oa(t) = fut(f7™7) Fa(fi77)=v; o4 = CopysMerge(op, is ; 0a,1)

alao; oa;ta; Fos Ras fo] || Blas;op; s Fpy Res f5] || P —
Qlaa; 045 tas; Fos Ras fol || Blas; op; ts; Fp; Re; 5] | P

Table 3. Parallel reduction (used or modified values are non-gray)

Overview of Properties

The objective of Fig. 2 is to show the dependencies between properties and
definitions given in this book. This diagram is very informal and should help
the reader to understand the main dependencies between ASP properties and
definitions.

impg-calculus —

- Ab, f
AW > ———> Abjenceo
Well-formed _ \\\
sequential reduction ~N
N
N} ~

\ RSL compatibility _
Wﬁll-forgled A A A

parallel reduction

Store partitioning

Equivalence
modulo future updates

Local determinism
Configuration

compatibility Equivalence modulo
uture updates
and reduction
Confluence

Deterministic Object Networks (DON)

t e Static DON Tree determinism o o e
(SDON) (TDON)

Fig. 2. Diagram of properties

The top left part of Fig. 2 shows properties and definitions related to
imperative ¢-calculus and which are local to an activity.

332 Overview of Properties

The absence of sharing and store partitioning properties are somewhat
independent, even if in fact they have important consequences on all the
other properties of ASP. These properties are used indirectly for proving all
the other ones; for example, without store partitioning, a future value could
be altered after the end of the corresponding service which would contradict
with the properties of the equivalence modulo future updates.

Most of the properties shown in this book are related to confluence and its
consequences. The principles of the confluence theorem can be summarized by:
concurrency can only originate from the application of two interfering REQUEST
rules on the same destination activity; for example, the order of updates of
futures never has any influence on the reduction of a term. Moreover, an ASP
execution is only characterized by the order of the request senders inside each
activity.

The bottom part (last line) of the diagram shows the approximation of
Deterministic Object Networks (DON) that can be performed. This book fo-
cused on two approximations: the static DON (SDON), and the deterministic
behavior of programs communicating over a tree (TDON).

Overview of ASP Extensions

man dvips We present here most of the features that have been added to ASP
in Part IV. We provide a brief summary, based on the syntax, and most of
the reduction rules associated with these features. When several and somehow
equivalent reduction rules exist for the same feature, we choose one of them.

Three Confluent Features:

1. Delegation

Delegates to another activity the responsibility to reply to the current request
(confluent).

Syntax

delegate(a)
Reduction Rules
Parallel DELEGATE:

Galt) = AO(B) 1" & dom(os)
o5 = Copy&Merge(oa,t' ; 0s,t") fp new future

a[Rldelegate(v.m; (V))]; 00; ta; Fos Ras £77) || Blag; os;ts; Fss Ra; f4] || P —
aR[[]]; 0as tas Fas Ras fol || Blags 05005 Fas Ra == [mg; ' f77 5 fa] | P

Sequential DELEGATE:

oal(t) = [li = tiymy = o(zj,y;)a;'E0 % kel.m

a[Rldelegate(v.m;(t)]; 0asta; Fo; R fol || P —
a[Rlarfzr — t,yr — VY 005005 Fus Ras fo] || P

334 Overview of ASP Extensions

Generalized REPLY:
oalt) = fut(f]7°) Fs(f]7°)=1; oh = Copy&Merge(op, iy ; Oa,t)

alto; 0aita; Foi Ras fo] || Blassop; s Fas Ra; 5] || P—
alao; 0h;ta; Fos Ras fo] || Blas;op; s Fay Res fs] || P

2. Explicit Wait
Waits for a future update (confluent).
Syntax

waitFor(a)

Encoding

[l = bi; my = <2y, y5)a,)525 0] 2 [wait = [}, = b;; my = (25, y5)a,]585 7,

[waitFor(a)] £ a.wait

3. Method Update
Changes the code associated to a method (confluent).
Syntax

x.foo<=b

Overview of ASP Extensions 335

Five Non-confluent Features:

1. Testing Future Reception

Returns “true” if a future is awaited, and “false” if it has already been up-
dated.

Syntax
awaited(a)
Reduction Rules

WAITT:
o(1) = fut(f7™7)
(Rlawaited()],0) —s (R[true], o)

WAITF:
a(t) # fut(f7~")
(Rlawaited(r)], o) —s (R[false], o)

2. Non-blocking Service
Serves a request if it is in the request queue, else continues the execution.
Syntax
ServeWithout Blocking(M)
Reduction Rules

SERVEWBSERVE:
R=R :[mj;t; f12R" mjeM VmeM m¢R

a[R[ServeWithoutBlocking(M)]; ;¢ F'; R; f] || P —
olumy(ur) t £.R[[s F5 R RY: £ P

SERVEW BCONTINUE:
Vme M, m¢R

a[R[ServeWithoutBlocking(M)]; 050, F'; R; f] || P — «[R[[]]; 050 F; R; f] || P

336 Overview of ASP Extensions
3. Testing Request Reception
Returns “true” if a corresponding request is in the request queue.
Syntax
inQueue(M)
Reduction Rules

INQUEUET:
dIme M, meR

a[R[inQueue(M)]; 050, F5; R; f] || P — a[R[true];o; 0 F5 R;] || P

INQUEUEF:
YmeM, m¢R

a[R[inQueue(M)]; 050 F; R; f] || P — a[R|false]; o050 F3 R; [] || P

4. Join Pattern Example

The term below encodes a join pattern cell: the cell reacts to the simultaneous
presence of two messages, either s and set, or s and get. s is used to store the
internal state of the cell.

Encoding a Join Pattern Cell

Cell £ Active([sy =[], set, = [|;

set = ¢(this, v)this.set, = v

s = g(this,v)this.sy, == v

get = g(this)|]

srv = ¢(this) Repeat(if inQueue(s) A inQueue(set) then
this.setcell()

if inQueue(s) A inQueue(get) then

this.getcell()),

setcell() = s(this)(Serve(set); Serve(s); thisActivity.s(set,)),

getcell() = s(this)(Serve(get); Serve(s); thisActivity.s(sv); sv)

Ezample of usage

Cell.s([]); Cell.set([x = 2]); Cell.get()

Overview of ASP Extensions 337

5. Extended Join Services

Join((mn,mlg, e ,mlnl), (mgl, e ,m2n2), e (mkl, e ,mknk))

Join((my,ms), (my,m3)) = let served = false in
Repeat
if (inQueue(mq) AinQueue(ms)) then
(Serve(my); Serve(ms); served := true)
else if (inQueue(my) A inQueue(mg)) then
(Serve(my); Serve(ms); served := true)
Until(served = true)

338 Overview of ASP Extensions
Migration

Simulates the migration: makes the current activity forward the requests to a
newly created activity.

Syntax
thisActivity. Migrate()
Encoding

Migrate = ¢(this)let newao = Active(this, sevice) in
(CreateForwarders(newao); Fi foService)

CreateForwarders(newao) £ ¥Ym;, m; < s(x,y)newao.m;(y)

Groups

Entity containing several objects that can be accessed as a single one.

Passive Groups

Syntax
Group(a’lzel“l)
Reduction Rules
R = ...| Group(u, R, by)FEL-m— LK €mt1.d
Store group:
L & dom(o)

(Group(1p)k€t-t o) —g (1, {t — Gr(u,)*<H1) 2 o)

Field access:
o(1) = Gr(u)ket

(R[e.li], 0) = (Group(ug.l;)*€t o)

Field update:
U(L) — GT(Lk)kel“l
(Rledi == t],0) =6 (Group(uy.l; =)< o)

Overview of ASP Extensions 339

Invoke method:
o(1) = Gr(u)ket

(Rle.m;()],0) —a (GTOUP(Lk.mj(L/))kel”l’o’)

Active Groups
Syntax

ActiveGroup(ay, ..., ap,m)
Encoding

ActiveGroup(ay, . . ., an, m) 2 Group(Active(a;,m), ..., Active(a,, m))

340 Overview of ASP Extensions

Components

Primitive Component

A primitive component is defined from an activity «, a set of server inter-
faces (SI, a subset of the served methods), and a set of client interfaces (CI,
references to other activities contained in fields):

SI; C U M

MeMarp,

PC == C, < a,srv, {SL}'E* {CI;}7€ >

Composite Component

A composite component is a set of components (either primitive (PC) or
composite (CC)) exporting some server interfaces (some SI;), some client in-
terfaces (some CI;), and connecting some client and server interfaces (defining
a partial binding (CI;, SI;)). Such a component is given a name C,,. CC is a
composite component and C' either a primitive or a composite one:

CC:=Cy & Cro.o Cut{(C,, CL, Cy STy
{Ciq.CIjq — C[q}qel..l; {Cir'SIj,,. N Slr}rel..l’ >

C:=PC|CC

where each C; is the name of one included component C; (i € 1..m), supposed
to be pairwise distinct; each exported ST is only bound once to an included
component, and each internal client interface (C;.C1I;) appears at most one
time:

p 7é p' = Cip.Cij 7é Ciprij/
q 7é q’ = Ciq~CIjq 7& Ciq/ -CIjq/
¢, CL, #Ci, Cl,,
r#r = SI. £ SI.

Vp,p' €1.k,Vq,q € 1.1,¥r,r € 1.l

Deterministic Primitive Component (DPC)

A DPC is a primitive component defined from an activity «, such that server
interfaces ST are disjoint subsets of the served method of the active object of
o such that every M € M,p, is included in a single SI;:

Vi k, i+ k= SLN ST, =0
VMEMQPWVMlQM,VMQQM(MlgSIz/\MQQSIJ)i’L:j

Overview of ASP Extensions 341
Deterministic Composite Component (DCC)

A DCC is

e either a DPC,

e or a composite component connecting some DCCs such that the bind-
ing between server and client interfaces is one to one. More precisely the
following constraints must be added to the ones of Definition 14.2:

Each C; is a DCC

p # p/ = Ci’p'SIj/p # Ci’p/'SIj,p'
r # 7’/ = Cir'SIjr 7é Cir/'SIjr’
Cy, ST #Ci, ST,

q ;é q/ = CIq 7é CLI/

Vp,p' € 1.k,Vq,q' € 1.1,Vr, 7" € 1.l

Index

Symbols
m-calculus 26
moBA 51
moBA 251

concgs-calculus 54, 250
¢-calculus 31
¢-calculus XXIX, 249
impg-calculus 63
@jeblik 49, 250
m-calculus XXIX, 246

Pict 37

Prcr XXXI
A

ABCL 14,45

active object XXVI,5,15,69,71,73

activity 6,69, 70, 72, 87
Actor Foundry library 25
actors 5, 15,23,245

Ada 45

adaptive 266

adaptive implementation 259
AIC 190

alias condition 114,273
ambient calculus 40, 250
approximated call graph 125
ASP XXIX, 18,69
asynchronous 28
asynchronous systems 4
atomicity 163
authentication 190

B
balloon types 258

barrier 149,211
batched futures 261
binary tree 76,198

C
cactus stack 205
CADP 13
call delegation 48
call-by-copy-restore 7
call-by-move 7
call-by-name 7
call-by-object-reference 7
call-by-reference 7
call-by-sharing 7
call-by-visit 7
capabilities 25
centralized synchronization 46
channel 123
channels in ASP 181, 247
Cilk 204
CML 43
cncurrency 3
cncurrent C 10
communication base 7
communication passing 8
communication timing 9, 225
compatibility 107

compatible configurations XXI, 110

components 44, 169

composite and parallel component

composite component 170
computational mobility 192
concurrency 298

176

concurrent request sending 121, 304

344 Index

condition variable 46
confidentiality 190
configuration 66, 68, 88, 99
conflicting requests 258
confluence XXVI, 118,295
continuation 88

copy and merge 91
copy-restore parameter passing 7
CSP XXIX, 45

current future 88,96
current request 69

current term 71, 87

D
DAG 186
data-driven synchronization 69
deep copy 89
delegation 137
demand driven evaluation 262
determinism XXVI, 126

Deterministic Object Networks (DON)

122
Directed Acyclic Graphs 186
disconnected mode 262
Distribution 4

E

E actor language 25
eager future update
Eiffel 198
ELECTRE 13
Emerald 7
equivalence modulo future updates

111, 270, 288
equivalence modulo replies
Eratosthenes 77,201
explicit message acceptance 47
extended join services 149,211

223

111,270

F
Fibonacci numbers
FIFO service 72,130
form analysis 258
forwarder 152,194
free variables 65
functional nets 11
future 11,36, 70, 73, 88, 94
future list 99
future update

80, 206

70,73, 213, 262

future values 70, 71,
G

garbage collection
generalized reference
generalized reply
global localization 2

74, 88

241

88

139, 216

57

Gordon-Hankin Concur. Calculus 54

Grid 259

group atomicity
group proxy 158
groups 157,158,184

H
hard-reactivity 12

I
I-structures 256

IC2D 210

157

implicit message acceptance 47

initial configuration
integrity 190

97

interactivity vs. reactivity 12

interfering requests
isolation 105

J

103, 107, 122, 257

Java Messaging System 195

JMS 195
join 211
join pattern 146
join primitive 11

join-calculus 11,42, 250
K
kell-calculus 44
L
lambda expressions 64
lazy copy 8
lazy future update 223

lazy parameter passing 8

lazy pass-by-value 8

Lazy Task Creation (LTC)

lazy threads 204
let 64
like Current 198

204

linearized channels 29

load-time MOP
local confluence

189
298

localization server 194
location 63, 65, 66
LOTOS 13

M
Meta-Object Protocol (MOP) 189
method arguments 63
method parameter 63
method update 63,141
migration 49,151, 184,192
MIMD 178
mobility 8,192
MultiLisp 249
Multilisp 35
mutual exclusion 46
My Type 198

N
node 191
non-blocking services 10, 144

(0]
object activity 15
object RMI 14
object topology 258
Obliq 49, 250
one-sided communications 9
out-of-order future updates 178
ownership analysis 258
ownership types 258

P
parallel activity 45
parallel component 176
parallel configuration 71
parallel reduction 89, 92
parallelism 3
partial future value 74
pass-by-reference 7
pass-by-value 7
passive object 69
path 113
pending requests 69, 71,73, 88, 94
pending-queue inspection 10
PKI 190
PolyTOIL 198
potential services 103
primitive component 169
ProActive XXVII, XXXI, 189

Index 345

process mobility 8

Process Networks 30, 185, 248
protected 51

proxy 73

Q

quasi-parallel activity 45

R
reactive 11,12
reactive (a)synchronous systems 12
reconfiguration 181
reduced object 66
reduction context 67
renaming 65, 269
rendezvous 73,95, 225
Repeat 89
Repeat Until 89
reply 96
request 69, 73, 88,93
request flow graph 126
Request Sender List (RSL) 108
restriction 108
routing protocol 194
runtime MOP 189

S

scatter group 198
select primitive 10
self 63
sequential activity 45
sequential degradation 205
sequential reduction 67, 329
serialized 250
served requests 70
service method 72,93
service primitive 71,95, 130
sharing 6,104
sieve of Eratosthenes 77,201
Sisal 11
soft reactivity 12
source term 65
SPMD 178
static 34
static analysis 258
Static Deterministic Object Network

(SDON) 124,125
store 66, 71, 88
store append 66
store update 66

346 Index

store-passing style 23
stores merge 90

strict operation 73
substitution 65
synchronization 11
synchronous 28
synchrony hypothesis 12

T
target method 88
Thal 23
Topology with Cycles 186
Tree DON (TDON) 126
triangle pattern 231
TTL-TTU localization protocol 194

TTL: Time To Live 194
TTS: Time To Send 262
TTU: Time To Update 194
two-sided communications 9

A%
virtual node 191

)%
wait-by-necessity XXVI, 16, 70, 73, 96
weak migration 192
well-formedness 68,99, 139

Z
zero-copy 10

