Notation

Concepts

Active object Root object of an activity 69

Activity A process made of a single active object and 69
a set of passive objects

Wait-by-necessity Blocking of execution upon a strict operation on 70
a future: a[R[e...),00...] A 0a(t) = fut(f77)

Service method Method started upon activation: 72
m; in Active(a, m;)

Request Asynchronous remote method call 69

Future Represents the result of a request before the re- 70
sponse is sent back

Future value Value associated to a future f;" —h 74
copy(t,0) where {f*7F — 1} € F,

Computed future A future which has a value associated: 106
7077 where f278 € dom(Fp)

Not updated future A computed future not yet locally updated 113

Partial future value  Future value containing references to futures 74

Closed term Term without free variable (fv(a) = 0) 65

Source term Closed term without location: 65
fo(a) =0 Nlocs(a) =0

Reduced object Object with all fields reduced to a location: 66
0= [li = tiymy = <(5,y)a;]58

Potential services Static approximation of the set of method 103
names appearing in service primitives
Mar

Interfering requests ~ Two requests that can be served by the same 107

serve primitive:
[ma;e; f27°) and [ma; e £777) such that there is
M,{my,m2} C M and Serve(M) can appear in /3
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Cycle of futures set of future identifiers {fut(fJ* ")} such that 116

Bo ... B verify:
Vi, 0 < i <mn, fut(f]'] 1Py ¢

copy(Fp, (fut(f*77)), 05,)
Fut(fan =) € copy(Fa, (fut(£3°77)), 0,)

Core Syntax: ASP Source Terms

[l; = by Object definition 64
mj = <(@‘aayy)%]§€ell m

a.l; Field access 64
al;:=b Field update 64
a.m;(b) Method call 64
clone(a) Superficial copy 64
Active(a, m;) Object activation 71
Serve(M) Request service 71
M list of method labels 71

Encoding of Classical Primitives

letx=ainb [[m =¢(z,x)bl.m(a) 64
a;b [m= (z;z')b] m(a) 64
Az.b [arg =[], val = ¢(z)b{z — z.arg}] 64
(b a) (clone(b).arg := a).val() 64
Repeat(a) [; repeat = ¢(x)a; x.repeat()].repeat() 89
FifoService Repeat(Serve(M)) 89
Repeat a Until b [;rep = <(x)a; if (not(b)) then x.rep()].rep() 89

ASP Intermediate Terms and Semantic Structures

a,0) Sequential configuration 66

Q, Activities: &fan; 0n;ta; Fo; Ra; fo 69
[current term, store, active object, future values, 87
pending requests, current future]

L Locations 64
locs(a) Set of locations occurring in a 65
PQ Parallel configuration 88
aecP Activity « belongs to the configuration P 98
af f,b a with continuation b 71
f is the future associated with the continuation
AO(w) Generalized reference to the activity a 73
faﬂﬁ Future identifier 87

Fut(fo70) Future reference 88



r =i £07)

Ro = {[mj; 6 f270)}

R:r
raR
F:A{fi—1}

General Notation

Merge(i, 0, ')

copy(t, o)
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Request: asynchronous remote method call 69
Pending requests: a queue of requests 88
Adds a request r at the end of the pending requests 88
R

Takes the first request r at the beginning of the 88
pending requests

Adds a new future association to the future values 88

List 66
Association/finite mapping 66
Substitution 65
Transitive closure of any reduction — 103
Disjoint union 105

Restriction of (RSL) list L to labels belonging to 108
M

nt? element of the list L 108
Least upper bound 110
There is at most one 122

Store: finite map from locations to objects (re- 66

duced or generalized reference) o ::= {1; — 0;}
set of locations defined by o 66
Append of disjoint stores 66

Updates the values defined in ¢’ by those defined 66
. o(t) if v € dom(o
ino: (o +0')0) = {0'((2) otherwise )
Store merge: merges o and o’ independently 90
except for ¢+ which is taken from o'

Merge(t,0, ') = 0’0 + o where
0={ " edom(c’) Ndom(o)\{¢},:" fresh}
Deep copy of o (i) 89

Copy&Merge(o,t; o',1") Appends in ¢’(¢') a deep copy of o(¢) 91

= Merge(/', o', copy(,0){v — '})
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Semantics

R
Rla]
—s

—
T
—
Bl
T
=

FL(a)
RSL(«)

E\A

ap

ActiveRefs()
FutureRefs(a)

FF

Equivalences

Reduction context 67,89
Substitution inside a reduction context 67
Sequential reduction 67
Parallel reduction 92
Parallel reduction where rule T is applied 103
Parallel reduction with future updates, i.e., Parallel 117
reduction preceded by some reply rules 284

Parallel Reduction with future updates where rule 117
T is applied:

e, Tt # repLy and —— if T = REPLY
Future List of « 99
Request Sender List of a: 108

(RSL(a)) = B/ if {0~ € FL(a)
RSL comparison: prefix order on sender activities 110
Potential services: 103
Static approximation of the set of M that can ap-
pear in the Serve(M) instructions of ap:
P QAQ=a[R[Serve(M)],.. ]| ...

=3IM e My, MC M

Set of active objects referenced by a: 98
{83 € dom(0s), 0a(t) = AO(B)}
Set of futures referenced by a: 98

{f777 30 € dom(0a), oalt) = fut(f777)}
Set, of Forwarded Futures: {(f*~", v, 8)} € FF if 213
e

p has been transmitted from vy to ¢

Equality modulo renaming (alpha conversion) of lo- 112
cations and futures, and reordering of pending re-
quests

Equivalence modulo future updates 113
also called equivalence modulo replies



Properties

F P oK

RSL(a) X RSL(G)
PXQ

PY P

G(P)

Request flow graph
DON(P)

SDON (P)

TDON (P)

Notation

Well-formed configuration

RSL compatibility

Configuration compatibility
Configuration confluence:

dR1, Ra, Py = RiNPy N Ro ARy =f Ry
Approximated call graph

« can send a request foo to 3 implies
(d,/@, fOO) € g(PU)

a — g ( if « has sent a request to 3
Deterministic Object Network

Static Deterministic Object Network
Tree Deterministic Object Network

325

99

110
110
118

125

126
122
125
126






Syntax of ASP Calculus

Source terms

a,be Lu=x variable
|[li = bismy = (5, y;)a;]581 7, object definition
|a.l; field access
la.l; :==b field update
| a.m; (D) method call
| clone(a) superficial copy
|Active(a, m;) activates object:

deep copy + activity creation
my; is the activity method
or () for FIFO service
|Serve(M) Serves a request among
a set of method labels
where M is a set of method labels used to specify which request has to be
served.
M= my,y..., Mg



328 Syntax of ASP Calculus

Intermediate Terms

Terms
a,be L =2 _ variable
| [l = bi;my = (5, y;)a;]581 7, object definition
|a.l; field access
la.l; :=b field update
| a.m;(b) method call
| clone(a) superficial copy
|Active(a, m;) object activation
|Serve(M) service primitive
| location
la f f,b a with continuation b
Configurations
P,Q == alaosu Fs R f] | Bl )]
Requests

R ::= {[mj;b;ffﬁ'g]}

Future Values

Fu= {f77% )

Store
o u={u— 0;}
0::=[l; = vi;m; = s(x;,y;)a;]5ey 7, reduced object
|AO(v) active object reference

| fut( fiaﬁﬁ ) future reference



Operation

al Semantics

STOREALLOC:

FIELD:

INVOKE:

v & dom(c)
(Rlo],0) —s (R[t], {t — o} :: 0)

o) = [li = vismy =s(zj,y)as]ie 7, keln

(Rleli], ) =5 (Rl 0)

o) = [l = u;my = c(zj, )55 k€l.m

UPDATE:

Ol = [lz

(Rle.mi()],0) —=s (Rlar{zr — t,yx — '}, 0)

o) = [l = vismy = (x5, y5)a;]5e) kelun
=1l = sl = uoymy = c(xy,y5)a]iey b R

CLONE:

(Rledy :==1],0) —s (R[], {t — o'} +0)

/' & dom(o)
(Rlclone(1)],0) —s (R[V],{¢' — o()} :: o)

Table 1. Sequential reduction
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v € dom(copy(t,0))
V' € dom(copy(s,0)) = locs(a(s")) C dom(copy(s, )

" € dom(copy(t,0)) = copy(t, o)) = o ()

Table 2. Deep copy

LOCAL:
(a,0) —s (a’,0') —s does not clone a future

ala;o;65 F5 R [T | P— alad’;0'565 F5 R; f] || P

NEWACT:
« fresh activity ' & dom(o) o' ={/— AO(y)}:: 0o
oy =copy(t’,0) Service = (if m; = 0 then FifoService else t"".m;())

a[R[Active(t",m;)]; 050 Fy Ry f] || P —
a[R[];0'5 05 F; Ry f] || v[Service; o; 0 0;0;0] || P
REQUEST:
oal(t) = AO(B) " ¢ dom(os) f27° new future ¢y & dom(oa)
oy = Copy&eMerge(oa,t' 5 05,0") o = {ty > fut(fF77)} : 0a

K3

a[Rt.m;()];0a;ta; Fay Raj fo] || Blag; os; ;3 Fa; Ra; f8] || P —
A[Resl; 0k ta; Fuos Ras fo] || Blas; ol tas Fis R = [my; s £27°; f4] || P

SERVE:
R=R :[mj;t; f]2R" mjeM VYmeM, m¢R
o[R[Serve(M)]; o505 F5 R; f] || P —
afe.m;(e) 0 £, RI0 056 F5 R R f1 | P
ENDSERVICE:

V gdom(oc) F' =F:u:{f—/} o =Copy&Merge(o,i; o,i')
ale  (f',a);0;0 F; R f] || P— afa;o’s 0 F' Ry f] || P

REPLY:
oa(t) = fut(f7™7)  Fa(fi77)=v; o4 = CopysMerge(op, is ; 0a,1)

alao; oa;ta; Fos Ras fo] || Blas;op; s Fpy Res f5] || P —
Qlaa; 045 tas; Fos Ras fol || Blas; op; ts; Fp; Re; 5] | P

Table 3. Parallel reduction (used or modified values are non-gray)



Overview of Properties

The objective of Fig. 2 is to show the dependencies between properties and
definitions given in this book. This diagram is very informal and should help
the reader to understand the main dependencies between ASP properties and
definitions.

impg-calculus —

- Ab, f
AW > ———> Abjenceo
Well-formed _ \\\
sequential reduction ~N
N
N} ~

\ RSL compatibility _
Wﬁll-forgled A A A

parallel reduction

Store partitioning

Equivalence
modulo future updates

Local determinism
Configuration

compatibility Equivalence modulo
uture updates
and reduction
Confluence

Deterministic Object Networks (DON)

t e Static DON Tree determinism o o e
(SDON) (TDON)

Fig. 2. Diagram of properties

The top left part of Fig. 2 shows properties and definitions related to
imperative ¢-calculus and which are local to an activity.
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The absence of sharing and store partitioning properties are somewhat
independent, even if in fact they have important consequences on all the
other properties of ASP. These properties are used indirectly for proving all
the other ones; for example, without store partitioning, a future value could
be altered after the end of the corresponding service which would contradict
with the properties of the equivalence modulo future updates.

Most of the properties shown in this book are related to confluence and its
consequences. The principles of the confluence theorem can be summarized by:
concurrency can only originate from the application of two interfering REQUEST
rules on the same destination activity; for example, the order of updates of
futures never has any influence on the reduction of a term. Moreover, an ASP
execution is only characterized by the order of the request senders inside each
activity.

The bottom part (last line) of the diagram shows the approximation of
Deterministic Object Networks (DON) that can be performed. This book fo-
cused on two approximations: the static DON (SDON), and the deterministic
behavior of programs communicating over a tree (TDON).



Overview of ASP Extensions

man dvips We present here most of the features that have been added to ASP
in Part IV. We provide a brief summary, based on the syntax, and most of
the reduction rules associated with these features. When several and somehow
equivalent reduction rules exist for the same feature, we choose one of them.

Three Confluent Features:

1. Delegation

Delegates to another activity the responsibility to reply to the current request
(confluent).

Syntax

delegate(a)
Reduction Rules
Parallel DELEGATE:

Galt) = AO(B) 1" & dom(os)
o5 = Copy&Merge(oa,t' ; 0s,t")  fp new future

a[Rldelegate(v.m; (V))]; 00; ta; Fos Ras £77 ) || Blag; os;ts; Fss Ra; f4] || P —
aR[[]]; 0as tas Fas Ras fol || Blags 05005 Fas Ra == [mg; ' f77 5 fa] | P

Sequential DELEGATE:

oal(t) = [li = tiymy = o(zj,y;)a;'E0 % kel.m

a[Rldelegate(v.m;(t)]; 0asta; Fo; R fol || P —
a[Rlarfzr — t,yr — VY 005005 Fus Ras fo] || P
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Generalized REPLY:
oalt) = fut(f]7°) Fs(f]7°)=1; oh = Copy&Merge(op, iy ; Oa,t)

alto; 0aita; Foi Ras fo] || Blassop; s Fas Ra; 5] || P—
alao; 0h;ta; Fos Ras fo] || Blas;op; s Fay Res fs] || P

2. Explicit Wait
Waits for a future update (confluent).
Syntax

waitFor(a)

Encoding

[l = bi; my = <2y, y5)a,)525 0] 2 [wait = [}, = b;; my = (25, y5)a,]585 7,

[waitFor(a)] £ a.wait

3. Method Update
Changes the code associated to a method (confluent).
Syntax

x.foo<=b
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Five Non-confluent Features:

1. Testing Future Reception

Returns “true” if a future is awaited, and “false” if it has already been up-
dated.

Syntax
awaited(a)
Reduction Rules

WAITT:
o(1) = fut(f7™7)
(Rlawaited()],0) —s (R[true], o)

WAITF:
a(t) # fut(f7~")
(Rlawaited(r)], o) —s (R[false], o)

2. Non-blocking Service
Serves a request if it is in the request queue, else continues the execution.
Syntax
ServeWithout Blocking(M)
Reduction Rules

SERVEWBSERVE:
R=R :[mj;t; f12R" mjeM VmeM m¢R

a[R[ServeWithoutBlocking(M)]; ;¢ F'; R; f] || P —
olumy(ur) t £.R[[ s F5 R RY: £ P

SERVEW BCONTINUE:
Vme M, m¢R

a[R[ServeWithoutBlocking(M)]; 050, F'; R; f] || P — «[R[[]]; 050 F; R; f] || P
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3. Testing Request Reception
Returns “true” if a corresponding request is in the request queue.
Syntax
inQueue(M)
Reduction Rules

INQUEUET:
dIme M, meR

a[R[inQueue(M)]; 050, F5; R; f] || P — a[R[true];o; 0 F5 R; ] || P

INQUEUEF:
YmeM, m¢R

a[R[inQueue(M)]; 050 F; R; f] || P — a[R|false]; o050 F3 R; [] || P

4. Join Pattern Example

The term below encodes a join pattern cell: the cell reacts to the simultaneous
presence of two messages, either s and set, or s and get. s is used to store the
internal state of the cell.

Encoding a Join Pattern Cell

Cell £ Active([sy =[], set, = [|;

set = ¢(this, v)this.set, = v

s = g(this,v)this.sy, == v

get = g(this)|]

srv = ¢(this) Repeat(if inQueue(s) A inQueue(set) then
this.setcell()

if inQueue(s) A inQueue(get) then

this.getcell()),

setcell() = s(this)(Serve(set); Serve(s); thisActivity.s(set,)),

getcell() = s(this)(Serve(get); Serve(s); thisActivity.s(sv); sv)

Ezample of usage

Cell.s([]); Cell.set([x = 2]); Cell.get()
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5. Extended Join Services

Join((mn,mlg, e ,mlnl), (mgl, e ,m2n2), e (mkl, e ,mknk))

Join((my,ms), (my,m3)) = let served = false in
Repeat
if (inQueue(mq) AinQueue(ms)) then
(Serve(my); Serve(ms); served := true)
else if (inQueue(my) A inQueue(mg)) then
(Serve(my); Serve(ms); served := true)
Until(served = true)
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Migration

Simulates the migration: makes the current activity forward the requests to a
newly created activity.

Syntax
thisActivity. Migrate()
Encoding

Migrate = ¢(this)let newao = Active(this, sevice) in
(CreateForwarders(newao); Fi foService)

CreateForwarders(newao) £ ¥Ym;, m; < s(x,y)newao.m;(y)

Groups

Entity containing several objects that can be accessed as a single one.

Passive Groups

Syntax
Group(a’lzel“l)
Reduction Rules
R = ...| Group(u, R, by )FEL-m— LK €mt1.d
Store group:
L & dom(o)

(Group(1p)k€t-t o) —g (1, {t — Gr(u,)*<H1) 2 o)

Field access:
o(1) = Gr(u)ket

(R[e.li], 0) = (Group(ug.l;)*€t o)

Field update:
U(L) — GT(Lk)kel“l
(Rledi == t],0) =6 (Group(uy.l; =)< o)
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Invoke method:
o(1) = Gr(u)ket

(Rle.m;()],0) —a (GTOUP(Lk.mj(L/))kel”l’o’)

Active Groups
Syntax

ActiveGroup(ay, ..., ap,m)
Encoding

ActiveGroup(ay, . . ., an, m) 2 Group(Active(a;,m), ..., Active(a,, m))
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Components

Primitive Component

A primitive component is defined from an activity «, a set of server inter-
faces (SI, a subset of the served methods), and a set of client interfaces (CI,
references to other activities contained in fields):

SI; C U M

MeMarp,

PC == C, < a,srv, {SL}'E* {CI;}7€ >

Composite Component

A composite component is a set of components (either primitive (PC) or
composite (CC)) exporting some server interfaces (some SI;), some client in-
terfaces (some CI;), and connecting some client and server interfaces (defining
a partial binding (CI;, SI;)). Such a component is given a name C,,. CC is a
composite component and C' either a primitive or a composite one:

CC:=Cy & Cro.o Cut{(C,, CL, Cy STy
{Ciq.CIjq — C[q}qel..l; {Cir'SIj,,. N Slr}rel..l’ >

C:=PC|CC

where each C; is the name of one included component C; (i € 1..m), supposed
to be pairwise distinct; each exported ST is only bound once to an included
component, and each internal client interface (C;.C1I;) appears at most one
time:

p 7é p' = Cip.Cij 7é Ciprij/
q 7é q’ = Ciq~CIjq 7& Ciq/ -CIjq/
¢, CL, #Ci, Cl,,
r#r = SI. £ SI.

Vp,p' €1.k,Vq,q € 1.1,¥r,r € 1.l

Deterministic Primitive Component (DPC)

A DPC is a primitive component defined from an activity «, such that server
interfaces ST are disjoint subsets of the served method of the active object of
o such that every M € M,p, is included in a single SI;:

Vi k, i+ k= SLN ST, =0
VMEMQPWVMlQM,VMQQM(MlgSIz/\MQQSIJ)i’L:j
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Deterministic Composite Component (DCC)

A DCC is

e either a DPC,

e or a composite component connecting some DCCs such that the bind-
ing between server and client interfaces is one to one. More precisely the
following constraints must be added to the ones of Definition 14.2:

Each C; is a DCC

p # p/ = Ci’p'SIj/p # Ci’p/'SIj,p'
r # 7’/ = Cir'SIjr 7é Cir/'SIjr’
Cy, ST #Ci, ST,

q ;é q/ = CIq 7é CLI/

Vp,p' € 1.k,Vq,q' € 1.1,Vr, 7" € 1.l
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