
Vercors Component Environment

Mikolaj Baranowski
email: mikolaj.baranowski@gmail.com

October 23, 2008

Contents

1 Introduction 1

2 Installation 2
2.1 Dependencies . 2

2.1.1 Environment. 2
2.1.2 Plugins. 2
2.1.3 Vercors Component Environment. 2

3 Creating diagrams 2
3.1 Creation of diagram. 3
3.2 Creation of model. 6
3.3 Creation of diagram on existing model. 7
3.4 Creation of more than one diagram for the same model. 8
3.5 Changing signatures and content classes. 8

4 ADL. 10
4.1 Importing . 10

4.1.1 Importing with coordinates 12
4.2 Exporting . 12

4.2.1 Exporting with coordinates 14
4.3 Translation of internal interfaces 15
4.4 Implementation . 16

4.4.1 Importing from ADL . 16
4.4.2 Exporting to ADL . 16
4.4.3 Coordinates . 17

4.5 Problems . 18

5 TODO 18

1 Introduction

This document explains usage of Vercors Component Environment and also
implementation of its import/export feature.

1

2 Installation

2.1 Dependencies

2.1.1 Environment.

To run VCE on your machine, you need JAVA 1.5 or higher and Eclipse 3.3
(minimum).

2.1.2 Plugins.

Uncompress fallowing archiwes to your eclipse directory.

• emf-sdo-xsd-SDK-2.3.1.zip

• mdt-ocl-SDK-1.1.1.zip

• emf-query-SDK-1.1.zip

• emf-transaction-SDK-1.1.1.zip

• emf-validation-SDK-1.1.1.zip

• GEF-ALL-3.3.1.zip

• GMF-sdk-2.0.1.zip

• mdt-uml2-SDK-2.1.1.zip

• org.topcased.sdk-R-1.2.0-200712131010.zip

2.1.3 Vercors Component Environment.

Download fallowing jars to your plugin directory.

• fr.inria.oasis.vercors.vce 2.0.1.0631.jar

• fr.inria.oasis.vercors.vce.adl 2.0.1.0631.jar

• fr.inria.oasis.vercors.vce.diagrams 2.0.1.0631.jar

• fr.inria.oasis.vercors.vce.model 2.0.1.0631.jar

• fr.inria.oasis.vercors.vce.model.edit 2.0.1.0631.jar

• fr.inria.oasis.vercors.vce.model.editor 2.0.1.0631.jar

3 Creating diagrams

Fallowing figure sequences present typical model/diagram creations.

2

http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/emf-sdo-xsd-SDK-2.3.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/mdt-ocl-SDK-1.1.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/emf-query-SDK-1.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/emf-transaction-SDK-1.1.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/emf-validation-SDK-1.1.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/GEF-ALL-3.3.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/GMF-sdk-2.0.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/mdt-uml2-SDK-2.1.1.zip
http://www-sop.inria.fr/oasis/Vercors/software/VCE-stable/required/org.topcased.sdk-R-1.2.0-200712131010.zip
http://
http://
http://
http://
http://
http://

3.1 Creation of diagram.

Figure 1: To create new, empty diagram, select New Õ Other

3

Figure 2: Vercors Component Environment Õ Component Diagram.

Figure 3: Then you can specify directory, model name and template.

4

Figure 4: Click Finish to create diagram.

Figure 5: New diagram.

5

Figure 6: New model.

3.2 Creation of model.

VCE gives you a possibility to create empty model without associated diagram.

Figure 7: Select: New Õ Other Õ Vercors Component Environment Õ
Component Model.

6

Figure 8: Then, specify model name.

Figure 9: Select model root object (by default it is Architecture) and click
finish to create a new model.

3.3 Creation of diagram on existing model.

To create diagram file based on existing model, select: New Õ Other Õ Ver-
cors Component Environment Õ Component Diagram.

7

Figure 10: Then you need to select Create from existing Model, path to Model
and Root Diagram.

3.4 Creation of more than one diagram for the same model.

Unfortunately, for now, you can not specify diagram file name in diagram cre-
ation wizard and if there is already one it will be overwritten. But, you can go
around this problem by changing file name before doing steps from section 3.3.

3.5 Changing signatures and content classes.

Figure 11: You want to create your own interface . . .

8

Figure 12: . . . and set primitive content class, in context menu select Change
Model Properties Õ Change Primitive Content Class

Figure 13: Or, to set interface signature, select Change Model Properties
Õ Change Interface Signature.

9

Figure 14: You can make a choice between all classes in class path.

4 ADL.

The Fractal Architecture Description Language[2] is a XML-based language
used to define component architectures. VCE allow us to translate models
between ADL and VCE internal representation.

4.1 Importing

Figure 15: From context menu select Import

10

Figure 16: From VCE Import Wizards group select ADL Import Wizard

Figure 17: Select ADL files to import and specify target directory. For now,
you can not set model file name explicate. It is composed from ADL file name
(sequence .fractal is changed for .components).

11

Figure 18: Click finish to create imported models and diagrams.

Figure 19: New files.

4.1.1 Importing with coordinates

By default, diagram elements are initialized with coordinates from ADL file.

4.2 Exporting

Figure 20: From context menu select Export

12

Figure 21: Select item ADL Export Wizard from ADL Exports Wizards

Figure 22: Select models which you want to export to ADL.

13

Figure 23: Specify ADL file name.

Figure 24: To export each component in a different file - select proper option.

4.2.1 Exporting with coordinates

VCE provides functionality which lets you to export model with diagram coor-
dinates. It means that you can keep sizes and positions of diagram figures in
ADL file and restore them in different tool or with import feature.

14

Figure 25: To export diagram coordinates you need to make export from dia-
gram – not like before – from model file.

4.3 Translation of internal interfaces

ADL definition doesn’t keep information about internal interfaces. It means,
with exporting you are loosing all information: name, signature and cardinality
of internal interface.

Figure 26: Exporting collective internal interface. From left to right: before
exporting, visualization of ADL representation, after importing from ADL. Be-
cause internal interface has only one binding, it is restored as singleton interface.

Figure 27: From left to right: before exporting, visualization of ADL repre-
sentation, after importing from ADL. In that case, internal interface has two
bindings and it is restored as collective interface then.

15

4.4 Implementation

4.4.1 Importing from ADL

The main import class is fr.inria.oasis.vercors.vce.adl.wizards.ADL-
ImportWizard.

ADLImportWizardSelectionPage (figure 18) is used to provide basic graph-
ical interface which lets user to select ADL files to import and specify target
directory.

Translating process VCE import feature is developed using objectweb frac-
tal loader[1]. The key to understand translating process is method performFinish
in class ADLImportWizard. It uses component loader defined in fr.inria.-
oasis.vercors.vce.adl.VCELoader.

VCELoader extends default loader provided from objectweb org.objectweb.-
fractal.adl.BasicLoader which uses classloader to load every signature and
content class used in diagram. The alternative to changing classloader is to
remove it from loading process.

After all, we don’t want to instantiate these classes but only get their names.
VCELoader limits this functionality by using classes XMLLoader, VCETypeLoader,
VCETypeBindingLoader, VCEImplementationLoader from fr.inria.oasis.-
vercors.vce.adl package.

Each ADL module (such as component, interface, coordinate) has proper
analyze* function. For example: method analyzeComponent which has two ar-
guments: component (instance of org.objectweb.fractal.adl.components.-
Component and componentDefinition (instance of fr.inria.oasis.vercors.-
vce.model.components.ComponentDefinition) gets information from component
(which contains data from ADL file) and puts them to componentDefinition
(which represents component in VCE model).

Importing internal interfaces This process starts in analyzeBinding method
in ADLImportWizard class. When function finds binding between interfaces of
the same type, method makeServerClient or makeClientServer is invoked
(they are named after palette item in diagram editor which creates these fig-
ures).

In the easiest case, mediator interface is created and two bindings, one to
each external interface.

Situation is more complicated for collective internal interfaces. This case is
recognized in condition: if (clientServerMap.containsKey(sourceInterface))
or its equivalent in other method. It means that there was already one connec-
tion from sourceInterface. Mediator interface which already exists is changed
for new collective interface.

4.4.2 Exporting to ADL

VCE export feature is implemented using JAXB. In performFinish method,
after validation, model is passed to ADLModelTranslator. There, every part of
model has a proper method.

16

Translating process TODO

Exporting internal interfaces Actually, I should name this process “bind-
ing translation” – I need to keep connections between external interfaces (look
at figures 26 and 27) without using internal interfaces.

Binding translating process is based in caseInterface and caseBinding
methods in ADLModelTranslator class. In first one, all processed interfaces are
stored in interfaceSet variable.

In fact, this method analyzes only external interfaces and this is my in-
tention. caseBinding uses this variable to distinguish between internal and
external interfaces.

In second method, every interfaces of binding from server interface to client
interface are stored in interfaceInterfaceTranslator map. Internal interface
becomes a key and external interface - value. This information lets me to make
a binding between external interfaces in the next step.

4.4.3 Coordinates

Coordinates are represented by 6 attributes:

• x0 which keeps horizontal coordinate of left top corner of figure

• x1 which keeps horizontal coordinate of right bottom corner of figure

• y0 which keeps vertical coordinate of left top corner

• y1 which keeps vertical coordinate of right bottom corner

• name which keeps name of figure (coordinates are distinguished by names)

• color – not obligatory attribute

Coordinates are normalized. For example, if x0 and y0 equal 0, left top corner
of diagram element is based in left top corner of available space and if x1 and
y1 equal 1, right bottom corner of diagram element is based in right bottom
corner of available space.

Importing coordinates Coordinates importing process is placed in ADLImportWizard
class. Coordinates from ADL file are stored in coordinetesContainer field and
analyzing process begins in saveModel method where diagram file is initialized.
After initialization, initializeContent method is invoked. Arguments are:

1. Elist<org.topcased.modeler.di.model.DiagramElement> elements
this variable keeps diagram elements from same layer

2. EList<fr.inria.oasis.vercors.vce.model.components.Component> components
this variable keeps components from same layer

3. Coordinates[] coordinatesContainer
this variable keeps coordinates from same layer

4. double xSize

5. double ySize

17

Variables elements, components, coordinatesContainer represent trees.
They are parsing at the same time. What is most important is that each layers
of each tree has a correspondent layer in other trees. I mean - one layer of
DiagramElement tree corresponds only to one layer of Component tree and one
layer of Coordinates tree and vice versa.

Variables xSize and ySize keep height and width of parent diagram element
(basically, it’s size of parent component content). VCE keeps sizes explicate in
pixels but, as I mentioned before, sizes in ADL are normalized. Then, position
of every element is calculated by multiplying coordinates from ADL by one of
these variables.

Condition if(! matched) is explained in a 4.5.

Exporting coordinates Coordinates exporting process takes a place when
user is exporting model from diagram file. ‘‘If’’ statement with this condition
is placed in performFinish method in ADLExportWizard class. If exporting el-
ement is identified as DiagramsImpl, analyzeDiagramCoorinates method is
invoked.

analyzeDiagramCoorinates analyzes diagram element (there should be only
one) and invokes analyzeGraphNodeCoordinates with diagram element as ar-
gument.

In analyzeGraphNodeCoordinates, if GraphNode represents Component-
Definition, coordinates from VCE diagram are translated to ADL format and
stored in variable parentCoordinates. Then, analyzeGraphNodeCoordinates
is invoked for each content of diagram element.

4.5 Problems

There is a problem when component extends other component. Loader looks
for parent component in classpath and, if classloader can not find it, it rises
exception.

if(! matched)

5 TODO

• Importing – setting size of diagram.

• Exporting – coorinates relative to non-relative

• Importing – internal interfaces - remove this mapx

References

[1] Fractal ADL Documentation. http://fractal.objectweb.org/current/doc/javadoc/fractal-
adl.

[2] Fractal ADL Tutorial. http://fractal.objectweb.org/tutorials/adl/index.html.

18

	Introduction
	Installation
	Dependencies
	Environment.
	Plugins.
	Vercors Component Environment.

	Creating diagrams
	Creation of diagram.
	Creation of model.
	Creation of diagram on existing model.
	Creation of more than one diagram for the same model.
	Changing signatures and content classes.

	ADL.
	Importing
	Importing with coordinates

	Exporting
	Exporting with coordinates

	Translation of internal interfaces
	Implementation
	Importing from ADL
	Exporting to ADL
	Coordinates

	Problems

	TODO

