informatics 47 mathematics

UAR—

VCE v.3 Tutorial

INRIA Sophia Antipolis Méditerranée

SCALE team
Date: Nov. 17th, 2014
Authors: Oleksandra Kulankhina, oleksandra.kulankhina@inria.fr

Nassim Jibai, nassim.jibai@inria.fr

Eric Madelaine, eric.madelaine@inria.fr
Galyna Zholtkevych, galyna.zholtkevych@inria.fr

Version: 0.5

VCE Version 3.1.25

mailto:oleksandra.kulankhina@inria.fr
mailto:galyna.zholtkevych@inria.fr
mailto:eric.madelaine@inria.fr
mailto:nassim.jibai@inria.fr

Table des matiéres

1. INTOAUCTION. ...ttt ettt et e bt e st e st e e bt e e bt e s aeeeabeesate e bt eenseeeeasbeeeeaneeeas 3
1.1 VICE OVEIVIEW...ciiiiiiiiiieiiteeiee ettt ettt st e st e s bt e st e s bt e s e bt e seaatesensbaeeeseenssaneesenns 3
2. The firSt @XAMPLE.....cc.eeeiiiiiieeiieieeieert ettt ettt e et e st eebe e s testeessteesseesssessseesssasssaenssseenns 4
2.1. EXQMPIE OVEIVIBW.....iiiiiiiieeieeiiteeieesite st esiteste e st e sateesteesbeesstessseasssessseesseessseesssessaessseessssseesns 4
2.2. VCE PIrOJECE CIRALION.vteeieuireetiiirteereeitteeeeiiteeeseitteeeeesreeeseenreeesesssateesssnsaeessesmseeessssssnnsssssnnne 4
2.3. Using an eXiStiNg VCE PIOJECLcciiiiiiiiiiiiiiiiiiiieeeeiteeeeitee ettt e s svee e s eaaee e s 5)
2.4. Building the component Architecture in VCE component dia@rams...........cceecueeeeveeresnveeeeeannnns 6
2.5. TYPES SPECIICALION. ...ccuviiieiieiiiiieeitesteeieerte ettt et e et e e sae e e steesteesbe e saesssaessaasssasasssnesasssaennns 6
2.6. UML Classes, Interfaces, and Operations Specification...........cceceereervieenieniierneensieeniesieesnennn 7
2.7. Connect a Class Operation to an Interface Operation..........c...ccecceerueerreerniersieereenieeesseeesssnneeenns 9
2.7. Connect a Class Operation to an Interface Operation............cecceeeeverreereenennieneenenseeeseeeseeens 9
2.8. Attach a UML Interface to @ GCM INterface..........ocueveevierieneriienierieeieeiesieeieseesieeseesee e 10
2.9. Attach a UML Class t0 @ GCM COIMPONENL.........ceeereerrrreerrreeesireesesreesssseesssseesssesssseeessssesssssees 10
2.10. Create and attach a State Machine to @ UML Operation..........cceccueeevueeeniieeeniueesnineesninneeeeennnns 11
2.11. Edit the State Machine transitions labels............ccccoecirriiriiiiiieniicecccccece e 11
2.12. Edit the Local variables of a State Machineccccooeeieriininiinienireneceeeseceeeeeeeee 13
3. Diagram Validation........coueeiuierieiieinieeieetee ettt ettt e s e bt e st e b e s abeebeesaneas 14
4. Generating GCM/PIOACHVE fileS......ccuiiiierieiieierteieeteeteeete ettt ettt et e 15
5. EXaMPIES Of VCE PIOJECES.....cccuvieiieeieeiiieeieeitteeteerteesteeteessaeesteessseesseessseesseessseessesessssseesssssenns 19
5.1. Tutorial SIMPLE PIOJECL...cc.uviieiiiiriieeriee ettt ettt ettt e e st e e s aeessabeeessanbaaeessssnnssaeessnnns 19
5.2. COMPOSIte @XAMPIE......eerciiiriieiierieeiterte ettt et e st e steesteesteesbesbeessseesseesssesseesnsessnsseessssseens 19
5.3. Non-functional cOmMpPONeNts eXamPIe..........cccecierieriiiinieniieirieeieerteeee et e ste et esressaeeseeesaeees 20
5.3. Multicast / Gathercast @Xample...........cocierieriiiriieierieeee ettt e e e s 20
5.4. Three tiers application @XamPIe.........cceeeeiieiiiieriieeecieeerteeeree e seeessreeeeteeeeeseaeaeeeeessnssseeeaanns 21

5.5. Bizantine Fault Tolerant Protocole eXample..........ccccoeeiiiriiieiniiieiniieirieeeiee e e eveee e 22

1. Introduction

VerCors is a platform for the specification, analysis, verification and validation of the GCM-

based applications architecture and behavior. It contains a set of tools including VCE v.3. VCE v.3 is a graphical
designer for the GCM architecture and the Components behavior specification. It is distributed as a set of Eclipse
plugins.

This guide explains the basic functionality of VCE v.3.

It provides step by step instructions for the creating a simple example of a Component model using the VCE editors,
including all facets of this model: classes and interfaces, types, architecture, and behaviors. It also explains how to
validate the static semantics properties of the Component models, and to produce (partial) executable code in

GCM/ProActive.

Additional information:
VCE v.3 is based on Obeo Designer technology and is based on the functionality of the standard editors created with
Obeo Designer. Hence, if one wants to get more specific/advanced information that would not be found in this

tutorial, it is recommended to read some of the Obeo Designer documentations. In particular:

i Getting started for End-users:

http://docs.obeonetwork.com/obeodesigner/6.1/Getting Started User.html

° How to create and manage Modeling Projects:

http://docs.obeonetwork.com/obeodesigner/6.1/viewpoint/user/general/Modeling%20Project.html

. How to create and manage diagrams: http://www.obeonetwork.com/group/obeo-

designer/page/obeo-designer-reference-document-6-1

1.1. VCE Overview

As in all Eclipse-based environments, all models and diagrams related to a given application are grouped in a
Project.

A VCE Modeling project contains models (VCE models for the architecture description, UML classes and
interfaces, and VIY models for types definition), and diagrams (VCE Components diagrams, UML classes,
interfaces, and state-machine diagrams and a VCE Types diagram) which illustrate the elements of the models. A
VCE model has links to UML models. In particular, a GCM interface refers to a UML Interface, a GCM Primitive
component refers to a UML Class. The UML Operations use VCE Types for the typing of the arguments and return

values.

http://www.obeonetwork.com/group/obeo-designer/page/obeo-designer-reference-document-6-1
http://www.obeonetwork.com/group/obeo-designer/page/obeo-designer-reference-document-6-1
http://docs.obeonetwork.com/obeodesigner/6.1/viewpoint/user/general/Modeling%20Project.html
http://docs.obeonetwork.com/obeodesigner/6.1/Getting_Started_User.html

2. The first example
In this section we explain how to:
* create a new VCE Project or import it from an existing source;
* edit GCM Component diagrams;
* specify types;
* create and edit UML classes, interfaces and operations;
* connect the operations of UML classes and interfaces;
e attach a UML interface to a GCM interface;
* attach a UML class to a GCM primitive component;

* create and edit a State Machine and attach it to a UML operation.

All examples used in this tutorial are contained in a tutorial project, available on the VCE web site. We strongly
advise the reader to install Obeo, download the Tutorial example archive file, import this project in Obeo using the

procedure described below in section 2.3, and follow all steps of the tutorial using the tool.

2.1. Example Overview

This section provides an example of a simple VCE project creation illustrated at the figure below. This is a very
simple VCE Component diagram containing one primitive component Prim with one server and one client GCM
interface (S and C). Each GCM interface is connected to a UML interface (S_uml and C_uml respectively). S_uml
has an operation serv_m that can be served by the component, C_uml has the list of the operations that can be called
by the component. A UML class Local_cl is attached to the component. It has one method implementing the
operation of the server interface (s_m). The behavior of the method is illustrated on a UML State Machine SM. The
method s_m takes three arguments: a_int of type IntType, a_rec of type Rec and a_enum of type Enum. These

types are specified in the VceTypes model.

Prim
E s_uml <

serv_mn(a_int ; InType, a_rec : e L o Q Localcl C “,

Rec, a_enum : Enum) : === 5 S, @ Couml
VoiclType impl_m(a_int : InType, =

ﬁ% a_enum : Enum) : {i& cl_mi) : InType
VoldType
C=sM
-
€3] Region

"
.“ﬁ(State_1 5| State_2 j—)@
g 2

2.2. VCE project creation

* Create a new VCE model: right-click in the Model Explorer and select
“New->Other...”

* Select “VCE Wizard->VCE project” and press on “Next”

Select a wizard

Wizards:

V= Plug-in Development
b & svN

D & UML Designer

P & User Assistance

~ @ VCE Wizard E
| vcEprojece]

) Show All Wizards.

S

Next> | Cancel

* Give a name to the project (here Example)

¢ Press on “Finish”

As aresult, a new VCE project is created. Its structure is illustrated at the figure below. B b

A VCE project has the following elements:

default.uml — a UML model; type filter text

default.vce — a VCE model,; - & Example

VCE diagram — a VCE Component diagram illustraiting the elements of a VCE =i Project Dependencies
model specified in default.vce; + &) default.uml

- sfs -
default.vcetypes — a model containing the types specification; % default.vce
. . . =/ 4 Architecture

VceTypes diagram illustrates the types specified in default.vcetypes.
& Vce diagram

-1 4§l default.vcetypes

- 4 VCE Types Container

& VeceTypes diagram
< Bool Type BoolType
+ Int Type IntType
+ Nat Type NatType
+ Void Type VoidType

+ [representations.aird

2.3. Using an existing VCE Project

When working in collaborative environments, you will often have to share projects with your collegues. Or
you may have to download an existing project, usualy in the form of an archive file, from existing sources.
Importing such a project in your VCE workspace works as for any other Eclipse project:

* Import the archive file (e.g. zip file), and save it somewhere on your file system

* From the Obeo “File”’menu, select “Import”.
* Select “General” / “Existing project in workspace” then hit Next.
* In the “Select archive file” item, Browse to find your archive file, hit Open.

¢ Then hit Finish.

The corresponding project will appear in the Model explorer panel, with a structure similar to the structure created by
the VCE wizard, though of course there will usualy many be more elements in there.

[Hint]: at this point you can rename the imported project...

2.4. Building the component Architecture in VCE component diagrams
This section describes how to edit model in VCE components diagram.
* Open VCE components diagram by double-clicking on it. You can edit it using tools on the Palette. You

can also use a toolbar on the top of a diagram editor. You can change the properties of your model

elements using Properties View.

Toolbar Palette
File Edit Diagram Navigate Search Project Run Window Help
cTH@ e % -0 Q- | S| - H Opcceleo | ”

& Model Explorer 33 = 8 @ My.vce & *new Components Diagram 23 =a

= o & |8 -®-|e - C | m o @ @ [100% [][patette

- @Ex:

8= Outline 3 5 [f=0

ar i)
= Properties 8 _[Zl Problems = (&

1 (e
iAi
q
]
a

4 Architecture

Semantic Propert, Yo
Behaviors ¥ Architecture
Documentation Client Dependency
Name =

]

Rulers & Grid
Template Parameter

o =

Properties View

For our first example pick-up the tool called “Primitive” and draw a primitive component. Then, add to the
component two interfaces using “Server” and “Client” tools. The diagram should look like this:

Prim

(a]

wv

2.5. Types specification

7

This section describes how to specify the types. VCE has 4 predefined type: VoidType, BoolType, IntType and
NatType. However, one can construct its own types: Enumerations and Records. Our example has one Enumeration
Enum with two values: valuel and value?2. It also has Record Rec with two fields: int_f of type IntType and enum_f
of type Enum.
In order to specify the types, you need to:

* open VceTypes diagram;

* create an Enumeration using “Enumeration” tool and give it a name using the properties view;

* add two values in the Enumeration using “Enum Element” tool and give them the names in the properties

view;
e create a Record using “Record” tool and give it a name “using the properties view;
* add two fields in the Record using the tool “Field” and specify their types and names in the properties view;

* save the diagram.

& b4
o v B v | @ || v | ®m = i Palette
s & & -
& Tools
Rec Enum # Record
int_fintType vi * Field
enum_f.Enum v2 4+ Enumeration

4 Enum Element

2.6. UML Classes, Interfaces, and Operations specification

The UML Classes, Interfaces and Operations that will be used to specifiy the GCM interfaces and the primitive
component implementation class mustbe described using a UML Class diagram. In order to create it, right-click on
“<Model>" in the Model explorer and select “New Representation -> Class diagram”. The new diagram will be

created and opened automatically.

[Hint]: choose meaningful, but reasonnably short names. Long names make graphical diagrams difficult to manage]

% Model Explorer £ =0

2% ¥

type filter text f

- & Example
=i Project Dependencies
- &) default.uml

= <Model>
New Representation 3 Use Case Diagram
H default.vce

Package Hierarchy

2

+ @ default.veetypes
@ s Class Diagram
=i

£ representations.z
Component Diagram

Delete Object Diagram

Composite Structure Diagram
Create Scenario P g

Deployment Diagram

The Class diagram of our example is given below.

It has two UML Interfaces: S_uml and C_uml, and one UML Class Local_cl. In order to create them, “Interface”

Q Local-cl

P impl_miz_int : IntType,
a_enum : Enum) : VoidType
Local_m(a : IntType, b

iﬁ:: BoolType, num : InType) : 2
VoidType

Csm

(resp. “Class”) tools are used.

The tool “Operation” is used in order to add an Operation to a Class or an Interface (pick-up the tool and click on
the Class\Interface where you want to add the Operation). You can modify the Operation in its Properties view. The

name can be set in General tab. The specification of the arguments and return type is a little bit more tricky. In order

to modify them, you need to:

g S_uml

serv_mia_int :

IntType, a_rec :
4% Rec,a_enum :

Enum)

WoidType |

E couml |

& cl_mQ) : ImType |

* go to the Parameters tab of the Operation Properties view;

* click on the “green plus” button in the top-right corner of the Properties view; this will create a parameter;

* you should see a window for the specification of the name, type and direction of the parameter. You can
specify here either an argument of an operation, or its return type. Enter its name if you are specifying an
argument; select the type among the ones declared before on VceTypes diagram; select the direction “in”

for the arguments or “return” for the return type. The example of a_int argument of local_m operation is

given below.

[£% Problems

=2 bq
@ local_m(a-int : IntType, a_rec

General Owned Parameter

Parameters

MName
Relationships
Stereotypes
Documentation

Semantic

Style

]
: Rec, a_enum : Enum) : VoidType
&

Direction Type

. Palette
s &S~

= Existing Elements

&+ .

& Add
Remove_
= Types
B3 Package
H class
(= Features
= Property
& Operation
= Relationships
» /" Association
~ Generagzation
= Comments

= Comment
il oGl R — -

-3

e w o
E]

i) 4| %

Parameter

Editing of the properties of an object Parameter

Name a_int

Visibility: public v
Type: Int Type IntType

Direction: |in v

Cancel Finish

* finally, save the Class diagram;

You have the possibility to specify an array as a type of a parameter or return type. In order to do this, you

need to:
* go to the Semantic tab of the Operation Properties view;
* find the parameter that you want to specify as an Array;
* go to property called Upper;
instead of “1” type the size of your array (if you do not know the size of the array, put -1, instead of this

number “*” will appear, that means that the array has unlimited size).

2.7. Connect a Class Operation to an Interface Operation
Some methods of the UML Classes implement the ones declared on the UML Interfaces. In our example, impl_m of
Local_cl implements (defines) serv_m of S_uml. order to establish this relationship you need to:
* go to the Properties view of impl_m operation;
* go to the Semantic tab;
» for the Redefined Operation parameter select serv_m;

* save the diagram;

= 52 [prof Filter Available Choices
)) " | Choice Pattern (* or 7)

@ impl_m(a—int: IntTy

Choices

General Prope

Parameters |s | # <Operation> cl_m () : IntType Add

Relationships & <Operation> impl_m (a_int : IntType, a_ent

Bl ' <Operation> serv_m (a_int : IntType, a_red

Remove
Stereotypes
Documentation
Y
Semantic P

Style Down

Feature

10

4 <Operation> serv_m (a_int : IntType, a_re

Cancel oK

Raised Exception

Redefined Operation

Template Parameter

2.8. Attach a UML Interface to a GCM Interface

In our example, a UML Interface S_uml is attached to a GCM Interface S and C_uml is attached to C. In order to

attach a UML Interface to a GCM Interface you need to:

* open the VCE Components Diagram (Vce diagram in our example);

* right-click on the GCM interface to which you want to attach a UML Interface (Interface S in our example);

* select “Attach UML Interface” option

* select the required UML interface from the given list (S_uml in our example)

* repeat the same actions for the interface C.

If you specify everything correctly, you should get the following diagram for our example:

Prim

wi

M

g S-uml E
serv_mia_int : IntType, a_rec :

Rec, a_enum : Enum) :
VoidType

2.9. Attach a UML Class to a GCM Component

@ Couml

48 cl_m() : IntType

The UML Classes illustrate the lists of the operations that can be processed by the GCM Primitive Components. In

our example, Local_cl contains the methods of a component Prim. In order to specify this relation, right-click on the

primitive component and select “Attach UML Class” option. Then, select the required class from the given list. The

result is illustrated below:

Prim
& €
s HLocalcl €5
2 &= impl_m(a_irt : 4
. S—uml 3 IntType, a_enum : @ C_uml

serv_mia_int : IntType, a_rec :

Enum) : VoidType
Fec, a_enum : Enum) :

VoidType

& cl_m() : ImType

11

2.10. Create and attach a State Machine to a UML Operation
In order to create and attach a State Machine that specifies the behavior of an operation, right-click on a UML
operation of a UML Class and select “Navigate -> New detail: State Machine diagram for operation”. You can do

this either on a UML class representation in a VCE Components Diagram, or in a UML Class Diagram.

Prim

E Local-cl

&

Navigate New detail : Activity diagram

New detail : State Machine for Operation
Edit >

The new State Machine will be created and its diagram will be opened automatically. You can edit the diagram using
the tools on the Palette panel. You should save the diagram. After this, you will be able to see the State Machine on

the VCE Components Diagram (Vce diagram in our example).

Prim
E S_uml -
servy_m(a_int : IntType, a_rec : S L g E Local_cl < ",
2 Rec, a_enum : Enum) : - 5 i, E C_uml
VoidType impl_m(a_int : IntType, A
if; a_enum : Enum) : £ cl_m() : IntType
VoidType
x

CsMm
i3] Region

.“—(State_1 a|| State_2 j—)@

2.11. Edit the State Machine transitions labels
VCE is using an Xtext embedded editor for the construction of the State Machine labels. In order to open the editor,
go to the State Machine diagram, right-click on a transition and select “OpenEmbeddedXtextEditor ”.
One great benefit of Xtext is that it knows about the context of your diagram, and in particular of the client interfaces
that are available from a specific state-machine, and the method calls (services) accessible through these interfaces.

This allows you to use auto-complete (Ctrl+Space) when building the labels.

12

& Class Diagram & Ve diagram & impl_m State Machine Diagram

BB PRy 2o @ € |100% ‘V| i
-
sMm Local variables
- a_int : IntType
(D Reglon a enum : Enum -
= [a==15] /x:=x+y*s;
call Local ml{a,TRUE,S) ;).
. fn:=call €1.cLmy); State_1
Invalid featurg as name
| | 1 | |
™ J

Here are examples of labels taken from the Tutorial project example:
m:=call C1.d_m(); x:=11;.
Service cl_m from client interface C1 is called (with no argument), and its return value is assigned

to the local variable n; then variable x is assigned.

[a == 15}/ x:=x+(y*5); call Local_m(a, TRUE, 5);.
This transition has a guard, and will only be available if variable a is equal to 15. In this case a new
value for variable x is computed, than the local methos Local_m is called.
[z '= 0] /return x;.
If variable z is not null, the current method call with return, with the value of variable x. Note that

static semantic conditions may check that the next state is a final state of the state-machine.

Here is the complete example of the state machine following current examples for constructing transition labels.

C‘impl_m method Local variables
a_int : IntType
(1) new Region 1 a rec Rezp
a_enum : Enum

State_2

-

State_1

Jn:=call CL.cLmf); [a== 15)/x-=x + * 5: call Local-mfa, TRUE, 5);

[z 1=0return x;

O

The full grammar for the construction of the labels is given by the following BNF description, in which:

— Non terminals are Capitalized, terminals are UPPER-CASE

— The structure of method calls is as follow:

13

— either a qualified name Itf.m, in which Itf is the name of a client interface of the current component,

and m the name of a method declared in Itf

— or m the name of a local method declared in the inner class of the current component.

Transition_label = “[“ Guard_Expr “]” “/” Stms “.” | “[* Guard_Expr “]” “.” | “/” Stms “.”
Stms = Stm “;” | Stm “;” Stms

Stm = MCall | Assign | Return

Assign = Variable := Expr | Variable := MCall

Expr = Variable | Constant | Expr Bop Expr | “(“Expr”)”

Mcall = ”call” ID”.”ID “()” |

Args = Constant | Variable | Constant “,” Args | Variable “,” Args
Constant = NUM | Boolean_constant

Bop = && [|| [+ [-|*[/|==]>=]<=|!=

Boolean_constant = “true
Guard_Expr = Expr
Return = “return” Variable | “return” Constant | “return”

”Call” ID”.”ID (((“« Argsn))) |
”Call” ID “()” |
”Call” ID u(« Args»):)

false”

n|n

There are a number of technical difficulties related to the current versions of Obeo designer and Xtext, that may

cause bugs or unwanted behavior in some specific circumstances. This imposes limitations to the way you can

safely manipulate the state-machines and their labels, that we detail below. Most of these limitations will be solved

in the next version of VCE.

Do not :

-delete a state machine from the model;

-delete transitions or transition labels once you started construct transition labels;

-delete states, because with states the corresponding transition will be deleted. You may delete state only
after that you had changed the source or destination of a transition.

-change names of methods and their signature in UML Class Diagram if you have already used them in the
constructing the State Machine;

-attach UML Interface and UML Class for GCM Interface and Component respectively;

Do not forget to save the model after that you had created and defined a VCE Diagram, a UML Class
Diagram and a State Machine Diagram.

Sometimes you have the following situation: when you construct a transition label, mouse cursor flies to the
file that consists your text written on the transition (it happens when you put the cursor on a method call. The
reason may be that the file transition.vcex, that you can find in the root of the project (file that consists all the
text that you had written at transition labels), is not correct. In this case make sure that you followed before

all the advices given above. If it is correct, you have to relaunch Obeo.

14

2.12. Edit the Local variables of a State Machine

If you want to use some local variables on your State Machine labels, you should declare them in a specific section

on a State Machine Diagram called “Local variables”.

Local variables

The local variables corresponding to the arguments of the Operation to which the State Machine is attached, will be
generated automatically when the State Machine is created. For example, for impl_m (a_int : IntType, e_enum :

Enum) operation of a Class Local_cl, the following local variables will be generated:

Local variables

a_int: IntType
a enum : Enum

In order to add a new variable, click on the tool “Variable” (Palette/Variables) and then click on the box “Local
variables” illustrated above. You can change the name and the type of a variable using its Properties view. For the

typing you can use any type defined in the .vcetypes model. An example of three variables declaration is given below.

Local variables

vl : Enum
v2 : Rec
v3 : IntType

3. Diagram Validation

Before using the diagrams, and in particular before generating ADL files, it is mandatory to check the structural
coherency of the semantics. In order to do this open a VCE Components Diagram and select “Diagram -> Validate”

in the menu.

Modeling - ird/new C Diagram - Obeo Designer
File Edit | Navigate Search Project Run Window Help
=" $ - G v =3 v "
% Model £ 1 Components Diagram £2 =8
Line Type i Palette b
— Akeac- -
type filtef Line Width s @
Arrow Type C Interfaces
=P
Line Style ® Server
v &M v
by Select Client
< @M Amnge w Gathercast
<4 Align W Multicast
Text Alignment & Components
b Order Composite
(| ~| Derimitive
B2 Outline Make Same Size > & Connections ¢
= Bindings
T Fitters >
View >
1 Zoom >
[D
1 Properties & [2 Problems. o & * v =g

+ External Interface Interface 1

The elements of the diagram which did not pass the validation should be marked with red signs
validation errors/warnings description in the “Problems” tab, and in the Model explorer.

In our example we got the following result:

£ *new Components Diagram 52 =8
o8 - B | & AN & & |100% v m * Palette 3
BINCEEEED
& Interfaces «
® Server
Composte 1 printve 2 ¥ Client
inthace 1 Intertade 1 w Gath
o Py | athercast
(= Components «
O composite
Inprface 1 O primitive
Q
(= Connections ©
- >
5 - B Bindings
= Properties | Problems 3% ¥ =0
3 errors, 0 warnings, 3 others
Description Resource Path Location Type

~ O Errors (3 items)

@ The are several interfaces with the name Interface 1 in the same container.
© The are several interfaces with the name Interface 1 in the same container.
@ The interfaces of the binding do not have compatible roles

b i Infos (3 items)

representation /Example
representation, /Example

representation, /Example

<DAnalysis>i:<| Viewpoint diag
<DAnalysis>:< Viewpoint diag
<DAnalysis>i:<| Viewpeint diag

15

. You will also see the

The interfaces of Compositel did not pass the validation because they have the same names. The binding did not pass

the validation because it goes from a server interface to a server interface.

A set of constraints is checked. The violation of a constraint can be presented as INFORMATION, WARNING or an

ERROR.

The violation of the following constraints are considered to be an error:

* Bindings do not cross a component border;

* The interfaces connected by a binding have compatible types;

e The interfaces connected by a binding have compatible roles;

* The interfaces connected by a binding have compatible natures;

e All the interfaces in the same container have different names;

16

* All the components in the same container have different names;
e Each GCM interface should have a reference to a UML interface.
* Each GCM Primitive component should have a Referenced class

The violation of the following constraints are considered to be a warning:

* The interfaces connected with a binding should have different containers;

4. Generating GCM/ProActive files

Once a component diagram has been checked valid, it is possible to generate automatically some of the files
necessary for building a GCM/ProActive executable application. More precisely the generated files are:

— one ADL file, in XML format respecting the ADL DTD
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd". It represents the application
component architecture (components, interfaces, bindings), and the link with the interface and content Java
classes,

— one Java interface file for each UML interface in the application

— one Java class for each UML class in the application

— one Java enumeration for each user-defined enumeration type

— one Java class for each user-defined record type

We strongly advise you not to attach the same UML class to more than one primitive component, because only one
Java class is generated for each UML class. Hence, if the same class if attached to two different primitive
components, you will have to implement their business logic in the same way, and they will have the same collection
of generated client interfaces.

In order to launch the generation, you should do the following:

Right-click on your .vce file and select “Export” option. This will open a wizard. Select “VCE Export -> ADL
Export” and hit “Next”.

Select A

|
Select an export destination:
-
& Team
= & VCE Export
ADL Export
+ & Viewpoint
+ & XML
|
t
@ Next > Cancel

Select the .vce, .uml and .vcetypes files of your project and hit “Next”.

17

VCE ADL Exporter
Select model to export

Choose the Component Models to Export

+ ¥ Bastian_example T ¥ .project

& Checkinterceptions "% Vce diagram.jpg

+ & CollectifNF ¥ #) default.uml

+ [b“ControLlersBindmg ¥ @ default.vce

+ D& Demo G B default.vcetypes

+ & ItfCompatibility “'ELjimpl_m State Machine Diagram.jpg

— .
+ & Springooo [l representations.aird

= & Tutorial_project “ B tmp.veex

+ [bKVCEPTOJECt

" Bl transition.vcex

Filter Types... Select All Deselect All

@ < Back Next > Cancel Finish

Type the file name <Name_of_the_root_component>.fractal. In our example it is “Comp1.fractal”. Type the name
of a package. It will be the package for the generated Java classes and interfaces. In our example the name is
“mypackage” Hit “Finish”. Please, note, that the ADL generation will trigger validation of the .vce model. If the

model is not valid, the ADL description will not be generated.

VCE ADL Exporter

Select output file

Choose the destination main file

Enter or select the parent folder:

Tutorial_project
W e =
© Elitc_chain
+ EtfCompatibility
Epng
+ b"Springooo
& Tutorial_project
File name: Compl.fractal

Options

Specify package for generated interfaces:

mypackage

Advanced >>

® < Back Next > Cancel Finish

The generator will create:

a file <Name_of_the_root_component>.fractal with ADL description of your architecture;

One of the directories might be not created if its containment is not generated (for example, if you do not have any

<package_name>/interfaces directory with Java interfaces;
<package_name>/classes directory with Java classes;

<package_name>/types directory with Java classes and enumerations for the types;

B £ Tutorial_project

Eil Project Dependencies
- & mypackage
-] & classes
Local_cl.java
- = interfaces
C_uml.java
S_uml.java
- = types
Enum.java
Rec .java
=g Class Diagram.jpg
=l Compl.fractal

+] default.uml

user-defined types).

If you do not see the generated packages in Eclipse, refresh your project: right-click on your project and select

“Refresh” option.

A Java class is generated for each UML class. It has the following list of operations:

one method per each UML operation declared in the UML class;

18

the methods inherited from org.objectweb.fractal.api.control. BindingController if the class is attached to a

primitive component with client interfaces;

the methods inherited from org.objectweb.proactive.core.component.interception.Interceptor if the class is

attached to an interceptor.

A Java class generated from a UML class implements the following Interfaces:

java.io.Serializable

org.objectweb.fractal.api.control. BindingController if the class is attached to a primitive component with

client interfaces;

org.objectweb.proactive.core.component.interception.Interceptor if the class is attached to an interceptor.

all the server interfaces of the primitive component to which the class is attached.

19

Please, note, that if a UML class is attached to a primitive component with server interfaces, we do not generate the
operations of the server interfaces in the Java class, if their declaration is not duplicated in the UML class description.
In our example, mypackage.classes.Local_cl will have operations impl_(Integer a_int, Rec a_rec, Enum a_enum)
and Local_m(Integer a, Boolean b, Integer num) . It will implement mypackage.interfaces.S_uml interface, but it
will not have ser_m(...) method, because it was not declared in the corresponding UML class. We also do not

generate attribute of a class even is they are specified on a UML diagram.

In some cases the generated files cannot be compiled when they are imported in a GCM/Proactive project. Here are
the know reasons and solutions:

* aJava class implements one of the server interface, but it does not have all the implemented methods. It
happens, because those methods were not declared in the corresponding UML class. If you want to fix this
issue in the Java code, you need to manually add the implemented methods. Normally, Eclipse should help
you to do this. If you want to avoid this issue at the project design stage, you should duplicate all the
methods of the serer interfaces, that are attached to a primitive component, in the class attached to the

component.

¢ one of the packages was not generated (.types, .classes, .interfaces). In order to fix this, you have add this
package manually.

* AlJava class or an interface has two methods with a signature that cannot be compiled. We do not do any

type-check for the signatures of the methods in the UML Designer. Hence, a user has to take care of this

either at the design or at the implementation stage.

We are currently working on providing the user possibility to set the contingency of the GCM interfaces. However, in
the current version we automatically set the contingency of some interfaces during the ADL generation. This feature
is currently under construction, hence, sometimes you will have to manually change the value of contingency in the

generated ADL files.

5. Examples of VCE projects

The examples of simple diagrams created with VCE v.3 are given below. The projects containing the examples can be
found on the VCE download web page:

http://www-sop.inria.fr/oasis/Vercors/software/VCE-v3/installation.html
in the archive files named:

Tutorial Project

All the examples from the previous pages of this document.

Multicast-Gathercast Example

section 5.3 below

BFT Use Case

http://www-sop.inria.fr/oasis/Vercors/software/VCE-v3/installation.html

20

section 5.5 below

You will find also below some additional examples of architecture diagrams, illustrating more features of GCM.

5.1. Composite example

This example of architecture diagram illustrate on a very simple case the standard way of building a composite
diagram, with sub-components inside its content, bindings between these sub-components. Note that on this example,
the server/client interfaces on each binding have been associated to the same UML interface, so they are compatible
by construction.

This composite is a closed application, that runs autonomously. The only possible interaction with the environment is
through the “rules” non-functional interface, where the user is supposed to be able to change the configuration of the

buffer component.

= Putinterface
& void Put(vl : Int)
AR

Producer_consumer ’ e

\n
b

Froducer 3 Bulfer

£ Getlnterface

‘\ — e | F > & it Get()

Consumer b cil

5.2. Non-functional components example

QoSAware

BusinessComponent
Maoniterl Maoniter2
P el c —>@-
/-r.- € s - \.' —C
I ke
51 c1
QoS5Component
e A
il "
& A
GQesC OutOfQos

This is an example demonstrating the use of non-functional components in the membrane, for monitoring the quality

21

of service (e.g. response time) of some business service.

- Monitorl and Monitor2 are Interceptor components, placed on the data-flow of functional requests to the

business component, both on its service interface S1, and on one client interface C1.

- Information from interceptors is used by some non-functional component (here QOSComponent), that may
be able typicaly to detect QoS violations and report them to some external observer on the non-functional interface

OutOfQoS.

22

5.3. Multicast / Gathercast example

DataCenter
I:‘ DataProcessing Datadnalysis
Workflowl
DataComponentl
| FProcessingDataServ sy =w
er | | An
: L4 - 4 An
gy TCCEBELAtalda A aUCa; 4, Read(dataSource - IntType] YintType L] -
IntType) : IntType AN i —— g
" & Write(dataToWrite : \:mType) g i DataAnalyser
@ ProcessDala(dalaslcurce :ImTpe) : ImType AnalyseDataldataToa
ProcessDithser] DataAnalysfServe Waorkflow2 e G Analyse :IntType) :
Fcor g oL IntType
DataCo t2 3 r [prnr
/’.' aCompanen| I = Workflow2Cla:
@ o=
f AnalyseData(dataTe
DalaCente.;_.erver ! L & Analyse - IntType)
b) Read(dataSource : IType) : Int IntType
5 éjﬁ Write(dataToWrite :ImType) : Void)
-ﬁ- ProcassDEﬂa(dai_aSuurce :IntType) : IMTyp! b
| \}‘}61 \
."\i v e v s} AnalyseDataServ
g DataCenterServer @ SenderDataToAnalyse ice
AnalyseData(dataTo
ProcessData(dataSourc AnalyseData(dataToAnalyse -
@ e : IntType) : IntType & It Type) : IntType ‘ﬁ m?;ze IntType) :

This is a typical High performance component architecture, where the work is dispatched on groups of components
(e.g. {DataComponent 1,2}) through a multicast interface M1.

In turn the members of this group have a client interface C1 on which they can emit requests “AnalyseData”. These
requests are synchronised and grouped by the Gathercast interface G1, and further routed to another group of

processing components.

. Class diagram

Q DatalClass

E}%Read(dataSource :IntType) : IntType
3 Write(dataToWrite : IntType) : VoidType £ AnalyseData(dataToadnalyse : IntType) : IntType
{5} ProcessDatadataSource : IntType) : IntType

Q WorkflowlClass

Q DataZClass

%Read(dataSource :IntType) © IntType
{6;%‘ Write(dataToWrite : IntType) : VoidType {ii AnalyseData(cataToadnalyse : IntType) : IntType
{6} ProcessData(dataSource : IntType) : IntType

Q Workflow2Class

i | [1 - —
ProcessingDataServer & SenderDataToAnalyse
= g ! 2 i Y ! 2 DataAnalyser
ProcessData(dataSource : IntType) : IntType | AnalyseDatadataToAnalyse : IntType) : IntType | s s e e Enaa
L 2 L] L@ Y 2l L yae) el | 4 AnalyseData(dataToaAnalyse : InType) : IntType |

e B = AnalyseDataService |
@ DataCenterServer - 4
e e -ﬁ} AnalyseData(dataToAnalyse : IntType) : ImType |
| 48 ProcessData(dataSource : IntType) : IntType | o

23

5.4. Three tiers application example

This bigger exemple is taken from the french collaborative FUT project “OpenCloudware”. It represents the high-
level architecture of a classical 3-tiers web application named SPRINGOO, in which an Apache server receives a
flow of requests from users, that are pass to a (set f) JEE servers. These are in charge of processing the requests,
depending on their type, and eventualy using data from an SQL database. All components in the architecture are
monitored, and the monitoring information is used to control some QoS contracts, and eventualy to adapt the

computing resources, especialy the JEE servers, to the users demand.

PRINGOO

Monitor: Lo]-} [
L& Lol & > i< L
A ®
A ¢
component , \F)
Maonitar Qo
hitp-wip [o
le > <
-8 >
A
A
component ’ Y
A ®
jee-0o! , Y
onlee QoSlee
e > | <
[T+ -
A
ear-0o ’ \|’
f_. D Manito ! QosEa
A
~
1200 4 hd
QosSRar
y by
[k)
e
A -

24

. 5.5. Bizantine Fault Tolerant Protocole example

This example was created following the paper Verifying Safety of Fault-Tolerant Distributed Components .

The purpose of that system is next: the system get as input the command of writing or reading. The Component
Master get this command through GCM interfaces and, in turn, sends the corresponding command to components
called slaves (GoodSlave and BadSlave). The sending to slaves is done by Multicast GCM interface (M1). Master is
waiting for the reply from slaves. They send replies as BoolType variables. GoodSlave is writing or reading the
value and sends back the read or written value and the true reply. BadSlave have different implementation. It may
behave in any way and may reply with any true or false BoolType variable.

Multicast obtains replies from slaves as an array of variables of BoolType. Master is counting the number of false
and true replies by the method Collate and returns true reply if good replies are greater than bad ones. Similarly, it is

done for false reply from Master component.

VCE diagram:

BFT_ Composite

GoodSlave

H Goodslave

o ﬂ Commit{b : BoolType) : BoolType
%3 Write(b : BoolType) : BoolType
&5 Read(h ; BoolType) : BoolType
b GetBin() : BooiType
& SetBit(h : BoolType) SaolType

Master [St

Q Master

8 Collate(rep : BoolType) : IntType
ﬁ Write(b : BoolType) : BoolType

3 Read(b : BoolType) : BoolType

-ﬁ} Waith_Commit(p1 : BoolType, nbWait : IntType) : BoolType M1 i
3 Waithl_Write(pl : BoolType, nbWait : IntType) : BoolType - T
{6} Waith_Read(pl : BoolType, nbWait : ImType) : BoolType ©
5 GetF() :IntType P BadSlave
5 SetF(l : ImType) ¢

@-{cetMaste

E stave

ﬁi Cammit(h : BoolType) : BoolType
{5} Write(b : BoolType) : BoolType
11" 48 Read(b : BoolType) : BoolType

¥ &

g Commander

&3 Write(b : BoolType) : BoolType
% Read(b : BoolType) : BoolType
™

P
E= Getslave
{aﬁ Commit{b : BoolType) : BoolType

4% Write(b : BoolType) : BoolType
3 Read(b : BoolType) : BoolType

E BadsStave

. {&-Cohmr‘t‘(b.BuulType) BoolType

@ Write(b : BoolType) : BoolType
2 Read(b : BoolType) : BoolType
5 GetBit() : BoolType

& SeiBit(b : BoolType) : BoolType

file:///user/gzholtke/home/Downloads/Verifying%20Safety%20of%20Fault-Tolerant%20DistributedComponents

Class Diagram

(2 Master Write Method
&

[Good Slave Write Method
&

E Master

ﬁCone(rep BoolType) : IntType
i Wrte(b: BoolType) : BoalType
3 Master Collte Method i Pl Bl e

N

i GetF): InType

ﬁWakN_Comm'n(pl BoalType, nbWait : IntType) : BoolType
ﬁWai!N_Wme(pl BoalType, nbWakt : IntType) : BoolType:
ﬁWai!N_Read(pl BoalType, nbWakt : IntType) : BoolType:

Z Good Slave Read

Method
&

E GoodSlave

ﬁ Commit(h : BoolType) : BoalType
&} Wrke(b: BoolType) : BoalType
 Reacl: BoolType) :BoalType
&} GeBi() - BoolType

@ Seib: oolype) - Boayp®

[Good Slave Commit Method
&

e

Sl Badslave

ﬁ) Commit(h : BoolType) : BoalType
§ Wrke(b : BoalType) : BoolType
§ Reac: BoalType) :BoalType
& GeBi() : BoolType

§ Sefil: oolype) - Boayp

Bad Slave
5 Commit
Method
(2 Bad Slave Write Method
&

oo

— (7 Bad Slave Read Method
(5 Master Read Method i seft e) Eslave it H;?:
$ GetSlave 4 Commit - BoolType) : BoolType
§ Wirte(o : BoolType) :BoalType
Comi(h:BoolType) : BT
@Commander 2\/; T;Eb Boo‘\,:y::)e Boo‘\,:y::e ﬁRead(b BoolType) : BoolType
£ Wike(n: BoolType) : BoolType {§ Read(b : BooType) :Baaype
8 el rollye):Buype
Collate State Machine Diagram of Master Component:
-
* Master Collate Method
Fil i,
(3 new Region 1
find:=0; nb_ones:=0; nb_zeros:=0; Local variables
MAX_SLAVES:=2; State-1
rep : BoolType
l\ ind : IntType
nb_ones : IntType
[rep + ind ==|FAL SE]/ nb_zeros : IntType
nh_zrems:=nb_fems+ 1; MAX SLAVES ! IntType
agreed_hit : BoolType
[rep + ind == TRUE]F
find « MAX_SLAvES -1}y "P-ressnboonest L
ind:=in{l + 1;
Choice. 2 e
e [nb_ones <= nb_zeros]/ @
agreed_bit. =FALSE; return
nb_zemos;
[nb_ones > nb_zeros]/
agreed_bit.=TRUE; return
nb_ones;
A" &

* Write State Machine Diagram of Master Component

3 Master Write Metheod

@ new Reglon 1

fF:=call GetF{);
nbWait:=agree;

ree:=2 *F+1;
_Slave:=3 *F+1;

Choice_2

Snb_w_agree:=call
Coliate(wRep):

State_3

[nb_w_agree < agree]/,
return FALSE;

[nb_wagree == agree]/

M1 Commi{b);
feRep:=call
' WatN_Commit{p2
nbwait),

[nb_c_agree < agree &
nbWait < nb_Slavel/

fpLi=call M1 Wrke(b), (~ _]

fwReg=call
Waithl_Witp(pl, nblV...

Local variables

b BoolType

agree : IntType

T IntType

nbwait : IntType
nh_Slave : IntType
nb_w_agree : IntType
nh_c_agree : IntType

--l State_5

fnb_c_agree:=call Collate{cRep);

nbWait:=nbWait + 1;
[nb_c_agree »= agree]/

return TRUE;

*Choke-}

[nb_c_agree < agree &&

nb\Wait == slave]/
return FALSE;

26

Read State Machine Diagram of Master Component

* Master Read Method

27

./p-:mus_ b:=call SetBib); =1,

[Good Slave Write Method Local variables
b : BoolType
{3 new Region 1 7 :BooMype
b1 : BoolType

State_1

Jreturn p; @

Write State Machine Diagram of a Slave Component

-
3 new Region 1
Local variables
b : BoolType
ff:=call GetF(); agree:=2 * f + 1, awaited:=agree; f: IntType
. nb_Slave:=3 *f+1; State_1 agree : IntType
awaited : IntType
nh_Slave : IntType
Apl:=call M1.Read(b); nb_r_agree : IntType
State_2
frRepr=call WaitlN_Read(pl. awaited);
[nb_r_agree < agrée && awaited <
nb_Slavel/awakted.=awaited + 1;
Choica. 2 [nb_r_agree < agree && awaited ==
nb_Slave]/freturn FALSE; .
[nb_r_agree == agree]/
return (TRUE;
S
* Commit State Machine Diagram of a Slave Component
 Good Slave Commit Method Local variables| £ Bad Slave Commit Method |Local variables
7 b : BoolType
b BoolTy
@ new Region 1 p: ngw}y,.g: Bpebogan Ireturn TRUE;
St .—) Choice_2 (5
. Jreturn FALSE; i
L]

(7 Bad Slave Write Method

(1) new Region1

b : BoolType

freturn TRUE;

N N ©
L]
Jretum FALSE;

Local variables|

Read State Machine Diagram of Slave Component

[Good Slave Read Method
Local variables|
(1 new Reglon 1 b : BoolType
p : BoolType

Jp:=TRUE; b=call GetBi();

State_1

(* Bad Slave Read Method

Local variables|

(3 new Region 1
fretumn

b : BoolType

UE;

Choice_2

freturn FALSE;

.

!

