
1

VCE v.3 Tutorial

INRIA Sophia Antipolis Méditerranée

SCALE team

Date: Aug. 21st, 2014

Authors: Oleksandra Kulankhina, oleksandra.kulankhina@inria.fr
Nassim Jibai, nassim.jibai@inria.fr
Eric Madelaine, eric.madelaine@inria.fr
Galyna Zholtkevych, galyna.zholtkevych@inria.fr

Version: 0.4

mailto:oleksandra.kulankhina@inria.fr
mailto:galyna.zholtkevych@inria.fr
mailto:eric.madelaine@inria.fr
mailto:nassim.jibai@inria.fr

2

Table des matières

1. Introduction...3

1.1. VCE Overview...3

2. The first example...4

2.1. Example Overview...4

2.2. VCE project creation..4

2.3. Using an existing VCE Project ..5

2.4. Building the component Architecture in VCE component diagrams...6

2.5. Types specification...6

2.6. UML Classes, Interfaces, and Operations specification..7

2.7. Connect a Class Operation to an Interface Operation..9

2.7. Connect a Class Operation to an Interface Operation..9

2.8. Attach a UML Interface to a GCM Interface...10

2.9. Attach a UML Class to a GCM Component..10

2.10. Create and attach a State Machine to a UML Operation..11

2.11. Edit the State Machine transitions labels...11

2.12. Edit the Local variables of a State Machine ..13

3. Diagram Validation...14

4. Generating GCM/ProActive files..15

5. Examples of VCE projects..16

5.1. Tutorial simple project...16

5.2. Composite example..16

5.3. Non-functional components example...17

5.3. Multicast / Gathercast example..17

5.4. Three tiers application example...18

5.5. Bizantine Fault Tolerant Protocole example...19

3

1. Introduction

VerCors is a platform for the specification, analysis, verification and validation of the GCM-

based applications architecture and behavior. It contains a set of tools including VCE v.3. VCE v.3 is a graphical

designer for the GCM architecture and the Components behavior specification. It is distributed as a set of Eclipse

plugins.

This guide explains the basic functionality of VCE v.3.

It provides step by step instructions for the creating a simple example of a Component model using the VCE editors,

including all facets of this model: classes and interfaces, types, architecture, and behaviors. It also explains how to

validate the static semantics properties of the Component models, and to produce (partial) executable code in

GCM/ProActive.

Additional information:

VCE v.3 is based on Obeo Designer technology and is based on the functionality of the standard editors created with

Obeo Designer. Hence, if one wants to get more specific/advanced information that would not be found in this

tutorial, it is recommended to read some of the Obeo Designer documentations. In particular:

• Getting started for End-users: http://docs.obeonetwork.com/obeodesigner/6.1/Getting_Started_User.html

• How to create and manage Modeling Projects:

http://docs.obeonetwork.com/obeodesigner/6.1/viewpoint/user/general/Modeling%20Project.html

• How to create and manage diagrams: http://www.obeonetwork.com/group/obeo-designer/page/obeo-

designer-reference-document-6-1

1.1. VCE Overview

As in all Eclipse-based environments, all models and diagrams related to a given application are grouped in a

Project.

A VCE Modeling project contains models (VCE models for the architecture description, UML classes and

interfaces, and VTY models for types definition), and diagrams (VCE Components diagrams, UML classes,

interfaces, and state-machine diagrams and a VCE Types diagram) which illustrate the elements of the models. A

VCE model has links to UML models. In particular, a GCM interface refers to a UML Interface, a GCM Primitive

component refers to a UML Class. The UML Operations use VCE Types for the typing of the arguments and return

values.

http://www.obeonetwork.com/group/obeo-designer/page/obeo-designer-reference-document-6-1
http://www.obeonetwork.com/group/obeo-designer/page/obeo-designer-reference-document-6-1
http://docs.obeonetwork.com/obeodesigner/6.1/viewpoint/user/general/Modeling%20Project.html
http://docs.obeonetwork.com/obeodesigner/6.1/Getting_Started_User.html

4

2. The first example

In this section we explain how to:

• create a new VCE Project or import it from an existing source;

• edit GCM Component diagrams;

• specify types;

• create and edit UML classes, interfaces and operations;

• connect the operations of UML classes and interfaces;

• attach a UML interface to a GCM interface;

• attach a UML class to a GCM primitive component;

• create and edit a State Machine and attach it to a UML operation.

All examples used in this tutorial are contained in a tutorial project, available on the VCE web site. We strongly

advise the reader to install Obeo, download the Tutorial example archive file, import this project in Obeo using the

procedure described below in section 2.3, and follow all steps of the tutorial using the tool.

2.1. Example Overview

This section provides an example of a simple VCE project creation illustrated at the figure below. This is a very

simple VCE Component diagram containing one primitive component Prim with one server and one client GCM

interface (S and C). Each GCM interface is connected to a UML interface (S_uml and C_uml respectively). S_uml

has an operation serv_m that can be served by the component, C_uml has the list of the operations that can be called

by the component. A UML class Local_cl is attached to the component. It has one method implementing the

operation of the server interface (s_m). The behavior of the method is illustrated on a UML State Machine SM. The

method s_m takes three arguments: a_int of type IntType, a_rec of type Rec and a_enum of type Enum. These

types are specified in the VceTypes model.

5

2.2. VCE project creation

• Create a new VCE model: right-click in the Model Explorer and select

“New->Other...”

• Select “VCE Wizard->VCE project” and press on “Next”

• Give a name to the project (here Example)

• Press on “Finish”

As a result, a new VCE project is created. Its structure is illustrated at the figure below.

• A VCE project has the following elements:

• default.uml – a UML model;

• default.vce – a VCE model;

• VCE diagram – a VCE Component diagram illustraiting the elements of a VCE

model specified in default.vce;

• default.vcetypes – a model containing the types specification;

• VceTypes diagram illustrates the types specified in default.vcetypes.

2.3. Using an existing VCE Project

When working in collaborative environments, you will often have to share projects with your collegues. Or

you may have to download an existing project, usualy in the form of an archive file, from existing sources.

6

Importing such a project in your VCE workspace works as for any other Eclipse project:

• Import the archive file (e.g. zip file), and save it somewhere on your file system

• From the Obeo “File”menu, select “Import”.

• Select “General” / “Existing project in workspace” then hit Next.

• In the “Select archive file” item, Browse to find your archive file, hit Open.

• Then hit Finish.

The corresponding project will appear in the Model explorer panel, with a structure similar to the structure created by

the VCE wizard, though of course there will usualy many be more elements in there.

[Hint]: at this point you can rename the imported project...

2.4. Building the component Architecture in VCE component diagrams

This section describes how to edit model in VCE components diagram.

• Open VCE components diagram by double-clicking on it. You can edit it using tools on the Palette.

You can also use a toolbar on the top of a diagram editor. You can change the properties of your model

elements using Properties View.

For our first example pick-up the tool called “Primitive” and draw a primitive component. Then, add to the

component two interfaces using “Server” and “Client” tools. The diagram should look like this:

7

2.5. Types specification

This section describes how to specify the types. VCE has 4 predefined type: VoidType, BoolType, IntType and

NatType. However, one can construct its own types: Enumerations and Records. Our example has one

Enumeration Enum with two values: value1 and value2. It also has Record Rec with two fields: int_f of type

IntType and enum_f of type Enum.

In order to specify the types, you need to:

• open VceTypes diagram;

• create an Enumeration using “Enumeration” tool and give it a name using the properties view;

• add two values in the Enumeration using “Enum Element” tool and give them the names in the properties

view;

• create a Record using “Record” tool and give it a name “using the properties view;

• add two fields in the Record using the tool “Field” and specify their types and names in the properties view;

• save the diagram.

2.6. UML Classes, Interfaces, and Operations specification

The UML Classes, Interfaces and Operations that will be used to specifiy the GCM interfaces and the primitive

component implementation class mustbe described using a UML Class diagram. In order to create it, right-click on

“<Model>” in the Model explorer and select “New Representation -> Class diagram”. The new diagram will be

created and opened automatically.

[Hint]: choose meaningful, but reasonnably short names. Long names make graphical diagrams difficult to manage]

8

The Class diagram of our example is given below.

It has two UML Interfaces: S_uml and C_uml, and one UML Class Local_cl. In order to create them, “Interface”

(resp. “Class”) tools are used.

The tool “Operation” is used in order to add an Operation to a Class or an Interface (pick-up the tool and click on

the Class\Interface where you want to add the Operation). You can modify the Operation in its Properties view. The

name can be set in General tab. The specification of the arguments and return type is a little bit more tricky. In order

to modify them, you need to:

• go to the Parameters tab of the Operation Properties view;

9

• click on the “green plus” button in the top-right corner of the Properties view; this will create a parameter;

• you should see a window for the specification of the name, type and direction of the parameter. You can

specify here either an argument of an operation, or its return type. Enter its name if you are specifying an

argument; select the type among the ones declared before on VceTypes diagram; select the direction “in”

for the arguments or “return” for the return type. The example of a_int argument of local_m operation is

given below.

• finally, save the Class diagram;

You have the possibility to specify an array as a type of a parameter or return type. In order to do this, you

need to:

• go to the Semantic tab of the Operation Properties view;

• find the parameter that you want to specify as an Array;

• go to property called Upper;

instead of “1” type the size of your array (if you do not know the size of the array, put -1, instead of this

number “*” will appear, that means that the array has unlimited size).

10

2.7. Connect a Class Operation to an Interface Operation

Some methods of the UML Classes implement the ones declared on the UML Interfaces. In our example, impl_m of

Local_cl implements (defines) serv_m of S_uml. order to establish this relationship you need to:

• go to the Properties view of impl_m operation;

• go to the Semantic tab;

• for the Redefined Operation parameter select serv_m;

• save the diagram;

2.8. Attach a UML Interface to a GCM Interface

In our example, a UML Interface S_uml is attached to a GCM Interface S and C_uml is attached to C. In order to

attach a UML Interface to a GCM Interface you need to:

• open the VCE Components Diagram (Vce diagram in our example);

• right-click on the GCM interface to which you want to attach a UML Interface (Interface S in our example);

• select “Attach UML Interface” option

• select the required UML interface from the given list (S_uml in our example)

• repeat the same actions for the interface C.

If you specify everything correctly, you should get the following diagram for our example:

11

2.9. Attach a UML Class to a GCM Component

The UML Classes illustrate the lists of the operations that can be processed by the GCM Primitive Components. In

our example, Local_cl contains the methods of a component Prim. In order to specify this relation, right-click on the

primitive component and select “Attach UML Class” option. Then, select the required class from the given list. The

result is illustrated below:

2.10. Create and attach a State Machine to a UML Operation

In order to create and attach a State Machine that specifies the behavior of an operation, right-click on a UML

operation of a UML Class and select “Navigate -> New detail: State Machine diagram for operation”. You can do

this either on a UML class representation in a VCE Components Diagram, or in a UML Class Diagram.

The new State Machine will be created and its diagram will be opened automatically. You can edit the diagram using

the tools on the Palette panel. You should save the diagram. After this, you will be able to see the State Machine on

the VCE Components Diagram (Vce diagram in our example).

2.11. Edit the State Machine transitions labels

12

VCE is using an Xtext embedded editor for the construction of the State Machine labels. In order to open the editor,

go to the State Machine diagram, right-click on a transition and select “OpenEmbeddedXtextEditor ”.

One great benefit of Xtext is that it knows about the context of your diagram, and in particular of the client interfaces

that are available from a specific state-machine, and the method calls (services) accessible through these interfaces.

This allows you to use auto-complete (Ctrl+Space) when building the labels.

Here are examples of labels taken from the Tutorial project example:

/n:=call C1.cl_m(); x:=11;.

Service cl_m from client interface C1 is called (with no argument), and its return value is assigned

to the local variable n; then variable x is assigned.

[a == 15]/ x:=x+(y*5); call Local_m(a, TRUE, 5);.

This transition has a guard, and will only be available if variable a is equal to 15. In this case a new

value for variable x is computed, than the local methos Local_m is called.

[z != 0] /return x;.

If variable z is not null, the current method call with return, with the value of variable x. Note that

static semantic conditions may check that the next state is a final state of the state-machine.

Here is the complete example of the state machine following current examples for constructing transition labels.

13

The full grammar for the construction of the labels is given by the following BNF description, in which:

– Non terminals are Capitalized, terminals are UPPER-CASE

– The structure of method calls is as follow:

– either a qualified name Itf.m, in which Itf is the name of a client interface of the current component,

and m the name of a method declared in Itf

– or m the name of a local method declared in the inner class of the current component.

Transition_label = “[“ Guard_Expr “]” “/” Stms “.” | “[“ Guard_Expr “]” “.” | “/” Stms “.”
Stms = Stm “;” | Stm “;” Stms
Stm = MCall | Assign | Return
Assign = Variable := Expr | Variable := MCall
Expr = Variable | Constant | Expr Bop Expr | “(“Expr”)”
Mcall = ”call” ID”.”ID “()” |

”call” ID”.”ID “(“ Args”)” |
”call” ID “()” |
”call” ID “(“ Args”)”

Args = Constant | Variable | Constant “,” Args | Variable “,” Args
Constant = NUM | Boolean_constant
Bop = && | || | + | - | * | / | == | >= | <=|!=
Boolean_constant = “true”|”false”
Guard_Expr = Expr
Return = “return” Variable | “return” Constant | “return”

There are a number of technical difficulties related to the current versions of Obeo designer and Xtext, that may

cause bugs or unwanted behavior in some specific circumstances. This imposes limitations to the way you can

safely manipulate the state-machines and their labels, that we detail below. Most of these limitations will be solved

in the next version of VCE.

• Do not :

-delete a state machine from the model;

-delete transitions or transition labels once you started construct transition labels;

-delete states, because with states the corresponding transition will be deleted. You may delete state only

after that you had changed the source or destination of a transition.

-change names of methods and their signature in UML Class Diagram if you have already used them in the

constructing the State Machine;

-attach UML Interface and UML Class for GCM Interface and Component respectively;

• Do not forget to save the model after that you had created and defined a VCE Diagram, a UML Class

Diagram and a State Machine Diagram.

14

• Sometimes you have the following situation: when you construct a transition label, mouse cursor flies to the

file that consists your text written on the transition (it happens when you put the cursor on a method call. The

reason may be that the file transition.vcex, that you can find in the root of the project (file that consists all the

text that you had written at transition labels), is not correct. In this case make sure that you followed before

all the advices given above. If it is correct, you have to relaunch Obeo.

2.12. Edit the Local variables of a State Machine

If you want to use some local variables on your State Machine labels, you should declare them in a specific section

on a State Machine Diagram called “Local variables”.

The local variables corresponding to the arguments of the Operation to which the State Machine is attached, will be

generated automatically when the State Machine is created. For example, for impl_m (a_int : IntType, e_enum :

Enum) operation of a Class Local_cl, the following local variables will be generated:

In order to add a new variable, click on the tool “Variable” (Palette/Variables) and then click on the box “Local

variables” illustrated above. You can change the name and the type of a variable using its Properties view. For the

typing you can use any type defined in the .vcetypes model. An example of three variables declaration is given

below.

3. Diagram Validation

Before using the diagrams, and in particular before generating ADL files, it is mandatory to check the structural

coherency of the semantics. In order to do this open a VCE Components Diagram and select “Diagram -> Validate”

in the menu.

15

The elements of the diagram which did not pass the validation should be marked with red signs. You will also see the

validation errors/warnings description in the “Problems” tab, and in the Model explorer.

In our example we got the following result:

The interfaces of Composite1 did not pass the validation because they have the same names. The binding did not pass

the validation because it goes from a server interface to a server interface.

A set of constraints is checked. The violation of a constraint can be presented as INFORMATION, WARNING or an

ERROR.

The violation of the following constraints are considered to be an error:

• Bindings do not cross a component border;

• The interfaces connected by a binding have compatible types;

• The interfaces connected by a binding have compatible roles;

• The interfaces connected by a binding have compatible natures;

• All the interfaces in the same container have different names;

16

• All the components in the same container have different names;

The violation of the following constraints are considered to be a warning:

• The interfaces connected with a binding should have different containers;

The violation of the following constraints are considered to have the information level:

• Each GCM interface should have a reference to a UML interface.

4. Generating GCM/ProActive files

Once a component diagram has been checked valid, it is possible to generate automatically some of the files

necessary for building a GCM/ProActive executable application. More precisely the generated files are:

– one ADL file, in XML format respecting the ADL DTD

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd". It represents the application

component architecture (components, interfaces, bindings), and the link with the interface and content Java

classes,

– one Java interface file for each UML interface in the application

Currently, VCE v3 builds one Java interface file for each UML interface in the application, but the parameters (and

types) of methods are not taken into account into these files. This will be extended in the next version of VCE.

We are currently working on the generation of Java Classes for the primitive components. A Java Class should

contain the signatures of the methods implementing all the operations declared on the service interfaces of the

corresponding component and the local methods. Then, the user will write the code for the implementation of those

methods. We are also working on the generation of the Java Classes for the types and full implementation of the

methods parameters.

5. Examples of VCE projects

The examples of simple diagrams created with VCE v.3 are given below. The projects containing the examples can

be found on the VCE download web page:

http://www-sop.inria.fr/oasis/Vercors/software/VCE-v3/installation.html

in the archive files named:

Tutorial Project

All the examples from the previous pages of this document.

Multicast-Gathercast Example

section 5.3 below

BFT Use Case

section 5.5 below

You will find also below some additional examples of architecture diagrams, illustrating more features of GCM.

http://www-sop.inria.fr/oasis/Vercors/software/VCE-v3/installation.html

17

5.1. Composite example

This example of architecture diagram illustrate on a very simple case the standard way of building a composite

diagram, with sub-components inside its content, bindings between these sub-components. Note that on this example,

the server/client interfaces on each binding have been associated to the same UML interface, so they are compatible

by construction.

This composite is a closed application, that runs autonomously. The only possible interaction with the environment is

through the “rules” non-functional interface, where the user is supposed to be able to change the configuration of the

buffer component.

5.2. Non-functional components example

This is an example demonstrating the use of non-functional components in the membrane, for monitoring the quality

of service (e.g. response time) of some business service.

18

– Monitor1 and Monitor2 are Interceptor components, placed on the data-flow of functional requests to the

business component, both on its service interface S1, and on one client interface C1.

– Information from interceptors is used by some non-functional component (here QOSComponent), that may

be able typicaly to detect QoS violations and report them to some external observer on the non-functional interface

OutOfQoS.

19

5.3. Multicast / Gathercast example

This is a typical High performance component architecture, where the work is dispatched on groups of components

(e.g. {DataComponent 1,2}) through a multicast interface M1.

In turn the members of this group have a client interface C1 on which they can emit requests “AnalyseData”. These

requests are synchronised and grouped by the Gathercast interface G1, and further routed to another group of

processing components.

• Class diagram

20

5.4. Three tiers application example

This bigger exemple is taken from the french collaborative FUI project “OpenCloudware”. It represents the high-

level architecture of a classical 3-tiers web application named SPRINGOO, in which an Apache server receives a

flow of requests from users, that are pass to a (set f) JEE servers. These are in charge of processing the requests,

depending on their type, and eventualy using data from an SQL database. All components in the architecture are

monitored, and the monitoring information is used to control some QoS contracts, and eventualy to adapt the

computing resources, especialy the JEE servers, to the users demand.

21

• 5.5. Bizantine Fault Tolerant Protocole example

This example was created following the paper Verifying Safety of Fault-Tolerant DistributedComponents .

The purpose of that system is next: the system get as input the command of writing or reading. The Component

Master get this command through GCM interfaces and, in turn, sends the corresponding command to components

called slaves (GoodSlave and BadSlave). The sending to slaves is done by Multicast GCM interface (M1). Master is

waiting for the reply from slaves. They send replies as BoolType variables. GoodSlave is writing or reading the

value and sends back the read or written value and the true reply. BadSlave have different implementation. It may

behave in any way and may reply with any true or false BoolType variable.

Multicast obtains replies from slaves as an array of variables of BoolType. Master is counting the number of false

and true replies by the method Collate and returns true reply if good replies are greater than bad ones. Similarly, it is

done for false reply from Master component.

• VCE diagram:

file:///user/jibai/home/Downloads/Verifying%20Safety%20of%20Fault-Tolerant%20DistributedComponents

22

• Class Diagram

• Collate State Machine Diagram of Master Component:

23

24

• Write State Machine Diagram of Master Component

25

• Read State Machine Diagram of Master Component

• Commit State Machine Diagram of a Slave Component

• Write State Machine Diagram of a Slave Component

26

• Read State Machine Diagram of Slave Component

