An UML Profilefor the specification of distributed
component systems

Intern:

Advisor Professor Co-advisor
Emil Salageanu Eric Madelaine Ludovic Apvrile

INRIA, OASIS Team,

Sophia-Antil
Septembed@
B INRIA [TELECOM ruetlLe
[} o PARIS
école nationale
supérieure des
télécommunications

TOOLKIT

Table of Contents

AN = Y I = 2N G LSRR 3
2. TURTLE AND TTIOOL .ttt ettt ettt ete ettt e et e s av e e s eabeee e sase e e sabesesabesseabeeeesbaeeesasbeeesnbaessenseeeesnnens 4
2. L TURTLE PRESENTATION. c1uuttttttetttteetttneessteeestneessntesstsesssnesststsnneesssaesstaeesstnresstaeeersneressranessrneeeennns 4
2.2 ADDING NEW FACILITIES TOTURTLE ..vuuiitteiittteetttieeetteeeeetteeestaeee st seestasessttseesstneessnseesstseesteessnneseees 5
3. CONSUMER - PRODUCER EXAMPLE ...ttt sttt eabe s st s enbns s sranas 7
B L EXAMPLE DESCRIPTION ... ttuuitttitttettettueettetentesteesttesseessesssessnesansteneeneesstesteeransstnerseesnsstntesiesenieseesnns 7
3.2 PROACTIVE APPROACH. ... ctu ittt ttteeetet e ttetesettee st tes e sateeet s es e st s saa s eaa s st te st eesanss b ransssanssbasesnssentesteesans 8
3.3INFORMAL BEHAVIOR DESCRIPTION .. .cuuuttttutetttneeerteesstneeestneessteessssesstaeesstsresssineestoreeetieeesineernies 9
4. MODELING THE CONSUMER-PRODUCER EXAMPLE.ccvei ittt snrae e 10
A L TURTLE/TTOOL MODELING. ...uuteeetettteteeeeett e e eseettt e eeeessaaaasaeeses st eeeeseeba s eeeessaaaseeseesranseeeeenrennns 10
I O =TS T | = o o U 10
A o A VA 1= T | = 2 1 PSPPSR 13
4.1.3 Turtle diagrams evaluation against a Component Based System.........cccccvvveereeeeeeeniiisiceeennnnnnnn. 14.
4.2UML2 COMPOSITESTRUCTUREDIAGRAMS AND STATE MACHINES DIAGRAMSvuiviiiiiiieiieieieeeie e 15
4.2.1 COMPOSItE SITUCIUrE DIAQIAIMS. . eeveieieieeesesie ettt et e ee e e e e s ss s s sner e eeeeaesessssntnrraeerereeaeeesssannns 15
4.2.2 State MaChiNES DIAgramISccii i i eieieiieie it eeee e e e e s ettt e e aaae s s s s e nnete e ereeaeaeseseasnsnsstsnneeaaaaasenes 17
4.3FROM UML2 COMPONENTDIAGRAMS AND STATE MACHINE DIAGRAMS BACK TO TURTLE.....cccvvvieeennnees 18
4.3.1 From Component Diagramsto TUIIE ClaSSES.uuuiiiiieeeei i iiiiiieeir et e e e e s e e e e e e e e e e e e enenees 18
4.3.2 From State Machines Diagramsto Turtle Activity Diagrams..............uuvvuiiiiiiiiiiiieeeeeeeeeeeeeieeens 21
5.CTTOOL, AN EXTENSION OF TTOOL ..ouiiiitiii ettt sttt ettt s sb s sttt ae s sabas s sbaae e 22
LT N O I ol I = =S =1 N 7 i []V 22
L0 ¢ 1 g oo L8 o 1 o o 22
5.1.2 Composite SErUCLUrE DIAQraIMS.ccviveieiiiiiiiiiis e s e e e e e e e aaeasaaaeaeeeeeeseassas e e e e eaaaaeaaaeas 22
5.1.3 State MachiNES DIAQraMSuuuuuuuruiiiiiiiaeiieeeeeeeeeete et eeeeeteeeeeaaesses s arssaeaeaaaaaesaeeeeeeeannraens 28
5.2 CONSUMERPRODUCESYSTEM. CTTOOL DESIGN - COMPLETE EXAMPLE DESCRIPTION.....ccuvvevvineeirnnnnens 33
5.2.1 Composite Structure DiagramsWith CTTOOIuuuiiiiiieeeeeiiiiieeee e e e e e 33
5.2.3 Generation and Checking of Formal Code............ccoiiiiiiiiiiiiiicers e a e e aaeeaens 44
5.3CTTOOL REFERENCE MANUAL OF ALPHA VERSION. ... ccutuieitteeitteeesteeesteessteesssnsessniessnaesesneesssnnessnns 46
5.3.1. CTTool graphical INtErfaCe........c.uevuiiiiiiiiiiie it a e e e e e aaees 46
6. CONCLUSIONS AND FURTHER WORK ...ttt sttt st sbe s s sate s st ae s sabas s s sbaaeean 54
(ST I Y7 W7 T N 54
B.2 FURTHERWORK L.uuiituiitt ittt eite et et e et e et e e e et e s e e st e e e s et sea s et s saa e e e saa e aa s sebeesannesn e st esneebneraneesnrens 55

T.REFERENCESo e e e e e e e e 56

1. Abstract

The objective of th®asis Project, a common project between INRIA, I3S and UNSApis
propose principles, techniques and tools for thestraction, the analysis, verification and
maintenance of systems in a distributed applicatartext.

ProActive library [9] is a GRID middleware, devpéd by the OASIS team, for parallel,
distributed and concurrent computing, also feagunmobility and security in a uniform
framework. ProActive features a component-basedrmamming using Fractal.

The Fractal model contains an Architecture Desotiptanguage (ADL), allowing the
description of the structure of applications binttm generic and reusable components. We
have also proposed extensions to Fractal-ADL feaching behavior specification in the
descriptions. Lotos, a language for describing lfdraommunicating systems and FC2, a
language for automata description, are thus prapose

But these languages are too low-level to be expts@dnon-expert developer. We intend
to propose new languages, textual or graphical vibald be more abstract and easier to use.

Turtle Model, which we present in the next sattiis an UML profile for modeling and
formal validation of real-time systems. A tool fedition and validation of Turtle diagrams,
TTool, was also implemented by the LabSoC laboydtem Telecom Paris.

Chapter 3 and 4 of this report contain a caseystfih well-known example (Consumer-
Producer). This example will be specified in twdfetent ways: using Turtle profile and
TTool editor in a first step, and using Componeiatgchms and State Machines Diagrams
from UML2. We also propose a translation betweenttto models.

An extension of Tool, called CTTool was develbp@n alpha version) for designing
Component Based Systems. A description of thisnsiba, a reference manual and also the
design of our Producer-Consumer example withinnghe tool will be presented in chapter 5
of this report.

In chapter 6 we indicate what should be addezhanged in this prototype (alpha version of
CTTool) for creating a beta version which could dmed for modeling real distributed-

3

component systems.

The final goal of our work is to extend CTTdgahd eventually the Turtle model) to be able
to manage and to create the formal specificationafd’roActive system using high level
constructions specifically adapted for distributednponents.

2. Turtleand TTool

2.1 Turtle presentation

TURTLE is a UML profile dedicated to the modgjiand formal validation of real-time
systems [5].

One of the strength of the TURTLE profile is itgrfal semantics given by mapping from
TURTLE diagrams to a specification in a temporalgass algebra named RT-LOTOS or a
LOTOS specification.

TURTLE defines the semantics for the following gketliagrams:

* An interaction overview diagram plus a set of seqeediagrams referenced by the
interaction overview diagram. Such a set is caléURTLE Analysis" in TTool.

* A class diagram plus a set of activity diagram&réhmust be exactly one activity
diagram per Turtle Class defined in the class diagrSuch a set is called a "TURTLE
Design" in TTool.

TTool can perform formal validation on each sefried just before.

Analysis Diagrams | | Design Class Diagrams|

Design Activity Diagrams

Deployment Diagrams

Turtle Model

|

l

\

Java Code

RTLotos Lotos
RTL CADP

T~

Graphs, Proofs, etc

Figure2.1 Turtle M odél

The formal semantics of TURTLE makes it possiblawtomatically create (RT) Lotos code
and perform formal validation without having anyokvledge on the formal specification

generated.

From the set of diagrams Turtle dispose we aterested in Class Diagrams and Activity

Diagrams, those two being close to our modelindsggoa

Also, amongst the formal specification formatgtle is able to generate we are interested in
the Lotos code. We can use turtle's facilitiesénegate the graphs or directly CADP tools.

We will illustrate these diagrams on our ConsuRm®ducer example in the next chapter.

2.2 Adding new facilitiesto Turtle

At this moment Turtle doesn't have facilitiesmiodel component based systems. The goal
of our work is to add two new diagrams to Turtlesdzh on / close to Composite Structure
Diagram and State Machine Diagram defined in UM think that these two diagrams are
the most appropriate for a ProActive model and ¢asise by a Proactive developer.

In the section number 4 we will provide a detaibemnparison between Turtle Diagrams and

5

UML2 based-on diagrams.

Composite Structure Diagrams are indispensaila tomponent-based system. Also, for
the user/developer they are the most natural wagsayn the architecture of this kind of
system.

Component Diagrams State Machines Diagrams
Analysis Dragrams I Design Clags Diagrams | | Design Actnity Diagrams | l Deployment Diagrams

¢
Turtle Model

—t A
| LOTOS |

Figure 2.2 Adding new facilities to Turtle

We find State Machine Diagrams more approptiatur model than Activity Diagrams.
We can specify the comportment of our componergsahthic system with a State Machines
and Submachine hierarchy. We can also specify mdstball which, in Activity Diagrams
need parallel operators which would induce an esijoanof our model's complexity. We also
find these diagrams more naturals for the final.use

In the long term, we want Turtle to automatig@énerate the diagrams for the components
that are normally generated by ProActive (QueussxiBs, etc.). The user would just put an
ActiveObject symbol on his diagram and the tool génerate all diagrams specifying this
object's Queue, Proxy, Default Body etc. The dgxalavill only design the corresponding
diagrams to his future code.

After defining all the operators we need for the new diagrams we will have to translate
them into the Internal Turtle Format. To do thag, tny to define two semantic injections:
from Component Diagrams to Class Diagrams and f8tae Machines Diagrams to Activity
Diagrams.

We will first start our work by studying an expl®, and by modeling it in two different
ways:

. using current Turtle Facilities (precisely, in @ase, Class Diagrams and
Activity Diagrams)

. using Component Diagrams and State Machines Diagram

These two approaches will help us to identify diperators we need and define the new
diagrams which will constitute the basis for anhalpersion of Tool+ , an extension of TTool

(see chapter 5 of this report).

3. Consumer - Producer example

3.1 Example description
We consider the Consumer Producer System tesicim [1].

The system is composed of a single bounded b(figh a maxSize capacity) a fixed
number of producers and consumers. In the firpt widesign the system with one producer
and two consumers. The producer feeds the buffier avie element at once and each

consumer requests a single element per iteration.

For the beginning we consider that the buffealeonsumer waiting if it is empty and do the
same with a producer if it is full.

We make the remark that the system is not Producer
parameterized in the number of producers and Consumer1
consumers but is parameterized by the size of
the buffer. PULN, e /get/

We could easily also add parameters in the Buiter :
communication messages. S

At the most abstract level, our system looks Consumer2

like in figure 3.1
Figure 3.1 Consumer-Producer Example,
abstract

3.2 ProActive approach

We will refine our model to make it closer to a Retive model ([8], chapter 2).
We model the Buffer as two main components: a BQiteeue and a BufferBody.
We also add a ConsumerProxy to the consumer foagiag remote asynchronous requests.

The producer sends a put signal (calls a put
method) to the buffer. The buffer will put this

Consumer1

request in his queue. The producer doesn't wait

for any answer, he can continue its execution Producer

from the moment its put request is in the queue.

Thgttprctl)ducer's proxy is trivial and can be BufferBody /
omitted.

The Consumer sends to its proxy a 'get'
request after which it continues its normal
execution. The proxy will send this request to
the buffer who will transmit it to the queue.
Proxy is blocked, it waits for the answer. The
BufferBody will treat its request at some
moment and send the response (the element) to
the proxy. At this time, the proxy allows the
Consumer to use the value.

Consumer?2

Remark We didn't specify the creation of the ‘futurebur model, not being concerned by the
data transmitted from an object to another, buhleymessage sequences. Thus, we are
interested in the fact that the consumer will neeslynchronize with the proxy when he will
use the value requested, and not in what this vaigat be.

3.3 Informal behavior description

We will describe the behavior of each of ounptive entities.

Producer :

. puts an element in the buffer. Repeat this operatidefinitely.
Consumer:

. sends a 'get’ request to the proxy

. blocks only when it needs to use the requestedegiem
Consumer Proxy:

. receives a 'get' request from the consumer.

. sends a 'gGet' request to the buffer

. waits for the 'rGet' response

. after receiving it allows the consumer to use thlel®.

Buffer Queue: receives two kinds of signals:
get or put requests — it puts these requeshe waiting queue.

serveFirst, ServeFirstGet, ServeFirstPut — it takesorresponding request
from the queue and give it to the body for tredie Tequest is removed from the queue.

BufferBody: if the stock is empty it only treats put requésigest first).
if the stock is full it treats only get rezpts (oldest first).

else it treats the requests from the qued&¢FO order.

4. M odeling the Consumer-Producer example.

As we intent to design a new tool for modelimgnponent distributed systems we will first
model our example in the existing Turtle Designddéams in order to identify features that
are not well adapted for the systems we need temBdrther in this chapter we will show a
model of the same system using hand-made Com&isiteture Diagram and State Machine
Diagrams. Finally, in the next chapter we will gresthe new extension of TTool we have
designed and implemented and also will presentigptzie modeling of the Consumer-
Producer System designed with the new CTTool.

4.1 Turtle/TTool modeling.

4.1.1 Class Diagram.

The purpose of TURTLE class diagrams is to des¢hbenterfaces of classes, and the
relation between them. Interfaces of classes imchedular attributes (boolean and natural
types), and gates, which are the only way for ela$s communicate with each others.

Classes may be connected together with associatien

10

A class diagram model models a set of tclassesépatsent the structuration of the system
user design. The behaviour of the system itselégcribed by means of composition operators
and activity diagrams.

The TURTLE profile provides a formal semanticsetations between tclasses.

As we have already mentioned we can not deaighjs time, component diagrams in
Turtle, therefore in a first step, we have credledclass diagram for our system.

For each class we have defined the attributesgates and have specified an activity
diagram.

Defining gates. Whenever two instances need to communicate theylo that through
specific gates.

When a gate wants to communicate (establishssage transfer) with another gate
synchronized to it, it must wait until the otheteya ready to synchronize.

Also, if two instances of an object B send thms signal to an object A, A must have two
gates for this signal, one for each instance dMB.can also call them ports.

11

Frosust - Consumer L Condumerfrasy &

* Pt CanCate, e » dibe - GE, + glet | Sulale

TuiferGurus " « Cget | CusGate. A7 [+ Pravyuse s G
= + CPgat = Cain,

+ Pl =0 Hsturs, + G Ga

o Bl = 0 Mytursl,

T |5 ol eate,
+ pul | inCais,
T - Gare,

T -ca -,
[Froduter], Froduter Ppat = BufferCuede potl | : :-::t’:zl m
=y e
e 1., 173 + Serwebritet - Gae, =
+ Servefirt - Gate, | Consumarfranyd CorisrmieProry gl = BuarQueue gl |
o Comimmeldonumer e
e . =ailitey
Nt
s N\
[Contumartnn,d ContemnerPromy ot » BuldfQueve ot | N, o %
/‘ R]
i S Serwfin) .
/ . 3
r, 5, Synchic @
4
/ i ..mg [Consumar 1, Consumer use = Contumerfronyd ConsemerPromy Prrdise
rd » WS = 3 - NS / Conpumer_Cendumer Cpil = Contumentronyd Conumantiony CPpe |
& anck = 0 Naturl,
[mnesnasezssamnegppe] e vt
+ BpeRen = O Natur, 3
+ teaiMode = O Hawral, m
+ rCatl | DuiGale,
+1GH2 | Ot ~
+ SirwtiriePel | Cale | Conumarfrooy]_ ConsumerProny rlet = Bedhy rGetl
+ SerwfurisCet - Gate;
I___H""“——“_.___ + Forad i Gale;
PR, S
. .
Em- -
| CosrbumarProond, Contumerfrony ris = BodyrCatd |
e @]
| ConsumsrPoand © ritron Chget = 2, Lonsumer (gt

CommumerProryd . Congum demwu Conmumer2, Cospumer.ue |

Figure4.1 Turtle classdiagram

In Turtle a method call is defined as a synclzation of two gates.

In our example:

. The producer synchronizes with the BufferQueueherpiair of gates :
Producer.pPut — BufferQueue.putl.

. The first instance of ConsumerProxy synchronizé wie BufferQueue on the
pair of gates ConsumerProxy.qGet — BufferQueue hGet

. The second instance of ConsumerProxy synchronittethe BufferQueue on
the pair of gates ConsumerProxy.qGet — BufferQugbet2.

. BufferQueue will know who sent the request becatuseives it on different
gates.

. The proxy will synchronize with the BufferBody tetghe response.

12

For a better understanding of the model specibeate reader of this report can load
into TTool (or CTTool) the model of the ConsumeodRicer system witch can be
found in the 'modeling' folder of the latest reksdef CTTool.

4.1.2 Activity Diagrams.

The purpose of TURTLE Activity diagram:
is to fully describe behaviors of tclasses.

Thus, TURTLE activity diagrams offer
three kinds of elements:

 Connectors.

* Logical operators. This includes
actions on gate, actions on attribut
choice, and four other operators.

* Temporal operators.

In order to model our system we have
designed 5 objects, with one class and
one activity diagram for each of them.

For example, the body activity diagram
models the comportment of the body
object. We have initialized size attribute
with 0 and maxSize attribute with 3. The
activity diagram states that, if the size is 0
(we don't have any element in the buffer)
we will only treat 'put’ requests from the
queue; if size is maxSize we will treat
only 'get' requests, otherwise we will treat
FIFO.

In order to treat a request the body
synchronizes with the BufferQueue on
specific gates, depending on what
strategy it uses to treat requests.

|stock:0]

ek < raaxsiEe]

G
[stock= m;:'gi?ﬂx_H
H"‘:h

|Ferefirsimperegrpon |

i

|5er-.-er.rs1P:||

[y R =1rug [eyoe el =fake)
.,
sockestockt 1| (o) {port=2] J I]
SO0k = SR+ 1 stock=siork=1 |
I"l. [por=1) |port=2]
4
\ \

Figure4.1.2 Body Activity Diagram

When it treats 'get’ requests it receives frongiineue the port corresponding to the consumer
which sent the request and to whom the answetbe&ient.

13

4.1.3 Turtlediagrams evaluation against a Component Based System

Class Diagrams.

* The main entity in the Turtle Class Diagrams is@ass. Classes and instances cannot
be hierarchically composed so a Class diagram c¢anffey the possibility of modeling a
hierarchical component system.

For example, in our previous model, we have rteatithe Buffer Component as two classes
- BufferQueue and Body instead of one componerit iwib sub-components.

» A Class Diagram offers the possibility to defingegaand synchronize them to establish
communications. We need to model components withnconication ports, define
communication interfaces in order to bind compos¢ateach other. Thus, the messages
exchanged between components will not be defingiderthe components themselves
but inside the interfaces.

» We also need to have a flexibility for componemtg(subtyping) the Turtle Class
Diagram do not offer.

Activity Diagrams

» Unlike Activity Diagrams, State Machines Diagranfers the possibility of a modular
behavior specification by defining sub-machines.

* Besides, in the Activity Diagrams, we cannot spethe port a message comes from or is
meant to go to in order to identify the senderemipient of this messages. For example, in
'Figure 4.1.2 - Body Activity Diagram' we used iffetent gates to manage the sending of
the same message to two different entities. Wieatvauld like to do is specifying a port
where the message is sent without being concemeldeorecipient of the message.

Activity Diagrams do not allow this specifications.

* We also want to replace gate synchronization vateiving and sending of messages
which is more appropriate to our systems.

14

4.2 UML 2 Composite Structure Diagrams and State Machines
Diagrams

Before describing our alpha version of the comptibased extension of TTool, CTTool, we
give a UML 2 [3], [7] approach of our Consumer-Rrodr example. Diagrams in this section
are hand-made, their goal is to show our requirésnien a new tool.

We will now model our system using component diagg@nd state machines diagrams. This
approach is meant to be close to what the final ofsthe new Tool will have to design.

4.2.1 Composite Structure Diagrams

In [3], Chapter 8, a component is specified as dutar unit with well-defined interfaces that
is replaceable within its environment.

A component can be considered as an autonomouwitiih a system or subsystem. It has a
set of provided and required interfaces exposegeits and its internal can only be
accessible through these interfaces. As a resatponents and subsystems can be flexibly
reused and replaced by connecting them togetheheiainterfaces.

Therefore, a component type conformance is definyeits provided and required interfaces.

Two types of components are specified in [3]:

» Basic Components (we will refer them a®rimitives). A component is specified as
an executable element in a system. A componenspeaalized class that has an
external specification in the form of one or moreyided and required interfaces.
One or more classifiers realize a component's hehav

 Packaging Components (we will refer them as composites). A component is

specified as coherent group of elements as pdieafieveloping process. It can
own and import a set of model elements.

15

In our diagrams we did not
defined realizing classifiers,
which means that a component
on the diagram will also be its
unigue instance and its behavior
will be specified in its State
Machine Diagram.

In figure 4.2 we have model the
Consumer-Producer system as
four main entities: a Producer,
two consumers and a buffer. For
each component we have
specified in and out ports,

required and provided interfaces.

This is only a case study, a
complete model of the system
(made within CTTool we have
implemented) is described in
Chapter 5 of this report.

consumer?

Producer

12

mbl mb4 mh5

T My Buffer
®1 g4 125

Figure 4.2 Component Diagram

16

4.2.2 State Machines Diagrams

The State Machines Package, [3] Chapter 15, deéireet of concepts that can be used for
modeling discrete behavior through finite state@siaion systems. Two kinds of state
machines are defined: Behavioral State MachinesPaotbcol State Machines. We are
interested in the first ones.

State machines can be used to specify the behafw@rious model elements.

For our Consumer-Producer Example we specifyta stachine corresponding to each
primitive component from the component diagram.

Also, for each signal we will specify the portdlsignal is sent to or received from.

We exemplify with the state machine for BuBedy primitive component.

sm:BufferBody

sm: TreatFirstGet

Figure 4.2.2 BufferBody State M achine Diagrams

As we see, the BufferBody choose on of the tneat strategies depending on the actual
stock value.

17

4.3 From UM L2 Component Diagrams and State M achine
Diagramsback to Turtle

In [6] few ideas about how to make Turtle leecare given. We present in this section few
guidelines in making a transition from a componesged model to Turtle model. An alpha
design and implementation of a Turtle componeneta&xtension, CTTool is presented in the
next section, as well as a technical report.

As we have already mentioned in the beginning isfrgport, we need to define a
translation, at a semantically level, from Compdrigiagrams and State Machine Diagrams
to Turtle Class diagrams and Activity diagrams.

In this way we will be able to use Turtle faids to generate graphs and make proofs for
our model.

Some observations need to be done before.

Our translation is made with loss of informatiespecially concerning the component
structure which will be translated by a simple sld&agram. We will also loose all
information on the interfaces and ports that walttanslated in Turtle gates.

As first consequence of previously remark, is #tate of our work, we cannot manage non-
functional interfaces (bind, unbind, etc.).

Also, we can not manage multiplicity — we need¢fine statically the exact number of
instances of each class.

4.3.1 From Component Diagramsto Turtle Classes

RemarkThe pseudo-algorithms proposed in this sectiemat exhaustive but just a case
study of our Consumer-Producer Example. Furthekweeds to be done.

1. For each primitive component we create a Turtle gmnefass. If the component has
multiple instances we create the correspondingl&urObjects.

2. We merge similar interfaces and remove “forwardipgrts.
Example: (See figure 4.3.1)
In our Consumer-Producer component model theposite MyBuffer will be removed

18

when translating to Turtle classes. The subcompdBefierQueue will ‘get out' from the
composite MyBuffer. We call mb1l a 'forwarding paittforwards the 'put’ request from

producer to the BufferQueue. Also, the interfadearid IB1 are similar. We remove the port
mb1, and merge the two interfaces like in figui 4.

Producer
1

N

Producer I

pl

\ I
i)]
bgl

-

Figure 4.3.1 From component to classes, mergitggfates, removing ports

After having done all the operations similartwilhe previously, our component diagram
becomes a diagram composed by only primitive corepts; like in Figure 4.3.2

19

consumer?

Producer

==
pl
11

bqi b2

bl

BufferBody
b3

BufferQueue
[T

Figure 4.3.2 Primitive components
3. Now we add to each port the methods of the inteda@ffered or expected on it.

4. Then, for each component, for each pair (portnalgmethod) we create a corresponding
gate for the turtle class and define the correspogdynchronization.

Example:

Through the port p1 of Producer pass the 'mgria$ who gets in the bgl port of
BufferQueue.

We create an 'Out Gate' in Turtle's Class Pred(let's call it p1.put) and an 'In Gate'
(bgl.put) in the class BufferQueue. We synchrotheegwo classes on the new created gates,
or, if the classes are already synchronized, welaeltivo gates at the synchronization gates

20

set for the two classes.

So, we have created the Turtle Classes, thecpgeéies and the synchronization between
them.

4.3.2 From State M achines Diagramsto Turtle Activity Diagrams

Remark Operators used in the Machines Diagrams musbimedlly defined. We must also
choose which operators we will allow our user te,#d if we need extra operators. As we
have mentioned, this paper is nothing but a stadg.c

1. We will analyze the State Machines Diagrams topteta Turtle Classes and to create
Activity Diagrams. In a first step, we will replattee submachine instances by actually
copying the entire submachine inside the machiaeubes it. The semantic definition of the
Submachine allows us to do this operation.

2. Then we will map the state machine operators dioaciagram operators:

signal receiving -> action state

signal sending -> action state

junction -> junction

condition - > deterministic choice

machine state -> labeled junction

connector to a state -> connector to the corregpgrjdnction
split/waiting different signals -> nondeterministicoice

...(not exhaustive)

21

5. CTTool, an extension of TTool

5.1 CTTool presentation

5.1.1 Introduction

We have developed, as a result of our reseaock presented in this report, an extension of
TTool, called CTTool, which allows the user to mb@emponent Based Systems.

We will present in this section the alpha versio&®Tool.

CTTool defines two kinds of diagrams, Compositei&tire Diagrams for architecture
description and State Machines Diagrams for belmagscription. The tool is able to translate
the user model into Turtle Model from which thenf@al code will be generated.

5.1.2 Composite Structure Diagrams

Composite Structure Diagrams we have implementé&tilinool are based on diagram
specifications in [3] Chapter 8 that we have introeld in Chapter 4.2.1 of this report.
Composite Structure Diagrams within CTTool. Diagram elements over view.

» Component.
We can distinguish two kinds of components: priveisi and composites. A composite can
have several internal components that can be pvasibr composites.

Connections between components can be definedlhasnaterfaces in order to specify the
communications that can occur between components.

A Component behavior must be described with a staehine diagram.

22

> Port

A port, [3] Chapter 9, is a point for conductingeractions between a component and its
environment. Constraints may be defined for a potthat the owner component could be
reusable within any environment that conforms ittieraction constraints imposed by its
ports.

CTTool defines 3 kinds of ports:

* inPort. A provided interface can be exposed via an inAdntough these
kinds of port a component can receive messagesitsoemvironment. An
answer can be sent back through the same por¢icatde of a synchronous
call.

* outPort. A required interface can be exposed via an outRoctbmponent
can send messages through an outPort and eventediye an answer
through the same port.

* delegatePort. There are two possible cases when a delegatePobecased:

- a message received in an inPort of a componentl®evi
transmitted to a delegatePort of a subcomponerdgf&Cin
order to let SC treat this message.

- a subcomponent SC of a Component C needs to send a
message in the enviroment of C. SC will send thesage
through a delegate port (of SC). The message adshen in
an outPort of C.

For a better understanding of ports behavior sessage transit' in the example in this
section.

> Connector. I nterface.

We define to kinds of connectors between components

» Connector from an out port to an in port - to mect two components (at the
same level)

» Connector between an in/out port and a delegate(jo delegate messages
to/from an inner component).

23

An interface is associated to a connection betviwercomponents. An interface defines a
set of methods, each method can return or notdtres

Note A connector is always oriented. Let C be a cotordmetween a port pl and a port p2
with the direction p1->p2. Then, one of the nexdbilities must be true:

- plis an outPort and p2 an inPort. Only the owrfigriaor
one of its subcomponents) can initiate a commuioisat

- plis an inPort and p2 a delegatePort. A messagbea
received via pl and sent forward to p2. Neitheravaer of
pl nor the owner of p2 can initiate a communication

- plis a delegate port and p2 is an outPort. Theeowhp1l (or
a subcomponent) can initiate a communication.

Version alpha does not implement the component @gpéned by offered and required
interfaces). In this version the user only spettiy ports for a component and then, to each
connection between two ports an interface can secested. So the interface is not specified
at the creation of the component but when a corore created.

Remark:this way of connecting components (specifying darface for a connection and
not for the component itself) prevents one of dafira component-type as
specified in 4.2.1 of this report and in [3] chapt® and 9. Allowing the developer
to specify the interface at the connection timemsdhat a component could change
any time its type by simply changing the interfaaesociated to its connections.
Thus we cannot define the conditions under whicbhraponent can be replace
within its context. Beta version should define pded and required interfaces for
a component that will allow the user to bind comgras together and also replace a
component within its context.

Synchronous/ Asynchronous message.

We call a message myhchronous' if the sending of m and the reception of m
occur in the same instant. In addiction, time fmethe sender and receiver of m
must be measured with the same time clock. In otloeds, we need to have
defined a global time for the involved entities.

We call a message masynchronous' if the sending of m and the reception of m do
not occur in the same instant or if there is ndgldime for the involved entities.

24

> Attributes.

A set of attributes can be defined (and, if needetialized) for each component. These
attributes will be visible in the state machinegdaam. For the moment, only Integer type was
implement for attributes.

Example: Constructing a Component Diagram for the Consupneduce Example.
First we define the three main components: Predu@@onsumer and Buffer.

We add the ports and interfaces through whichd¢bmponents communicate to each other.

11 L

o+ put: void;

Producer K

/
.\glﬂl MyBuffer

12 & b mhi

,}/X /_y
+ giet : void; ““‘__‘_
Ny i

< S
Consumerl + rGet : void;

25

Figure5.1. Example: Constructing a Component Diagram for the Consupneducer System.

In this diagram:
Producer

» can send "put" messages via port pl (i.e. calud"imethod to MyBuffer.)

Consumerl
. can send qGet messages via port c2.
. receives rGet messages via port c3
MyBuffer
. receives "put" messages via mbl
. receives "qGet" messages via mb2
. sends rGet messages via mb3

We must now specify the "content" of MyBufferda@onsumerl - the primitives from
which this components are composed:

26

11 &

.
.+ put: void;

b
K
b
Producer ;
.
R
!
—— Y] N
.
.

MyBuffer

h BufferBody

—# b1
1B5 @
S

+ SFP : void;
+ SFG : void;

2 « + SF : void;

3 }
“.'l‘bh ml:i’
= p—
+ gGet : void; “M__ﬂ
1€1 & i -
+ get : void; . \\\
+ use:void, o f T~
C. 13 &

2 3
. Consumerl_?_l N + rGet : void;
—‘ N . r(ﬂ—L)1’
CBody s CProxy '
cbj _\._?C_ép p3
3

We defined the MyBuffer component as composenhfBufferQueue and BufferBody
primitives. The requests from the producer and aomes will wait into the queue to be treated

by the body.

Consumerl is composed by CBody and CProxy. Ddg bends a get message to the proxy
and, in a second time it will try to use the reqedsnformation.

The messagestransit on previous example

The message "put" sent by the Producer willanmto port mb1 of MyBuffer. From this
point it will be sent to port bql of BufferQueuedhgh a delegate connection. Therefore the
primitive BufferQueue will treat this message.

The message "get" sent by CBody via cbl wiltdmzived by CProxy (via cpl). The proxy
will send at this moment a "qGet" message throughgp2, message that will be sent
forward by delegation to the father Consumerl aitidfinaly reach port bg2 of BufferQueue.

Inside the MyBuffer Component the requests wgith the Queue will be recuperated by
27

BufferBody who will treat them and send respon$eSdt" messages) via port b3. This
message will transit to port cp3 of CProxy.

Remark In this version alpha of CTTool we did not defamgynchronous messages (beta
version will offer them) but we can "hand desigisynchronism as sequence of synchronous
calls.

For each primitive (Producer, BufferQueue, BiBfaly, CBody,Cproxy) we must describe
behavior by defining State Machines Diagrams.

5.1.3 State Machines Diagrams

Instead of Activity Diagrams offered by TToolTTool proposeState M achines Diagrams
that we find more appropriate for component desidgrey allow user to use "send message"
and "receive message" operators, to specify ths e messages are sent or received
through, to define sub-machines.

We offer two examples of state machines.

28

Cansumer Proxy State M achine) Buffer Bocly State Machine

Y

[stock=0]

Waiting for walue

sraatfirsiCey s reatflFOy

State M achine Diagram oper ators.

" Send message” / " Receive Message" operators. A message and a port must be specified.
The message must be defined in the interface agsdawith the port.

The message has the same format as the "actiargate” in TTool:

<name of the message>(<!expr>*<?variable nane>*)

29

We asusme that expr is of any type. It can bar@able, a set of operations involving several
variables, etc.

Examples:

Let m be a message defined by an interface e$sddo a connexion from port a of
component A to port b of component b:

11 &

+ m ;' return result;

In State Machine of "A":
> send message of form:

- mlx (viaa) ->a message m is sent through port a from potdob from B with a
parameter x

To this message should correspomecaive message in the State Machine of B:

- m?t(viab) -> receiving of a message with a parameter

> send message of form:

- mix!y?z(viaa) -> sending m message through port a with paras&tgrand return
parameter z

To this message should corresporéca ve message:

- m?xb?yblreturnValue

30

1
| 2 7y Ireturnyalue

(wiaa fvia b I
"A' MDD sending message mowith parameters “B" MDD . receiving message mwith parameters
¥,y and return parameter 2 by, by and returning parameter returnalue
wia port a) vig porn b

Semantically, it involves a synchronization: emd message and the receive message will
have place at the same moment. SM of a will blatk &M of b will be ready to receive the
message.

Choice operator - has three possible branches guarded or not.
A branch not guarded is considered to be "true".

(to review the content of this phrase :)

If more than one branch is true (more than afeativity may be executed) the choice
between them is performed according to the firsdsgage received or which is successfully
sent on one of the branches.

If more than one message can be sent or recatvbdt point (which could be the case, we
don't use time operators) we have a nondeterngrohtice. We will see all the branches on
the accessibility graph as possible transitions.

Nondeter ministic choice operator.

Several messages could be received when a nesishima certain state. We will use in this
case a hondeterministic choice operator to whictredeive messages” will be connected.

Only the first income message will synchronizdl (be received) and will change the state
of the machine.

31

In the state machine in the
left two messages are waited.

wait message

Once one of the messages is
[] received, let's say "n via c",

the machine will change into
the "message received" state
and will not accept "q via c"
message anymore.

message received

Action Operator - specify an action involving local attributes (ditries defined in the
component description on Component diagram).

stock=stock+n

Component Diagrams andState M achine Diagrams allow a complete description of a
system and it's behavior. Once those diagramsetebne can make a syntax analysis which
can detect some structure and behavior errors. Tb&rs code can be created and verified.
Extern model checkers can be used within the tbahtlyze the generated formal code (see
TTool Online Help for mode details).

32

5.2 Consumer Produce System. CTTool Design - Complete
Example Description

We consider the Consumer-Producer system presen@uhpter 3, page 7, of this report.

In order to mimic a ProActive Model we will specdyn asynchronous call from a Consumer
and the Buffer.

The Consumer will send a gGet message to the biwifach means it requests an
information) and, later, it will receive a messa@et containing that information.

5.2.1 Composite Structure Diagramswith CTTool

We can start drawing our Component Diagram Witlol.+

Consumer2
Producer
| 11 &
/
l .
: 184 d;
pl ; + put: voi
I ;
; 12 &
! Tl
! + qGet: void; " ’/E,ZJ
‘ Tl

A
lél MyBuffer ‘\‘,\
b

12 &

+ gGet :‘\Fnidi

Consumerl 3 R

+ riGet : void;

Figure5.2.1. Designing main entities of Consumer-Producer system with CTT ool

33

We have design the main entities involvedungystem: one producer, two Consumers

and a Buffer.

We have also specified the interactions betwkeem by designing the communication
ports, the connections and offered/required intega

. the producer can send messages to the buffer thitbegoort p1 (those
messages will be received through the port mbhebuffer). This messages
are defined in the interface 11. Actually it is pthe method "put”.

. each consumer can send to the buffer a "qGet" gessal receive an "rGet"

message.

We need now to design the "content” (internahponents) of the components on the

diagram:

Producer i =

{4 put: void;
\ SP

‘

.

;

.

ConSUmerZ

CE‘.ody&h
CProxy2
12 &

+ qut vold

LfL/Q

\V
h\

12 &

+ qGet : vqid;

R

el Consumerl

CBody J

j/\. ; °® CFruxy

+ get: void;
+ use: void;

g
Y MyBuffer
mb!
,'j
13 &
BufferQueue BufferBody
j’tbl + rGet : void;
ﬁi'
“[ies &
= had + SFP: void;

+ SFG: void;
+ rGet : void; + SF : void;

Figure 5.2.2 Composite Structure Diagram of Consumer -Producer system with CTTool

34

We will describe each component as it follows

12 &

+ gGet :void;

“7=-.__ Consumerl J :
ST E
CBody
ch ; CProxy + riGet : void;
jf‘?p
Ic1 &

+ get : void;
+ use : void;

A consumer is composed by the primitiveBo@y and Croxy.
an Interface (IC1) defines the messages travelktyyden the two primitives.

The body will send a "get" message (via cbl)dorthe proxy and then it will continue it's
execution.

In a later moment, when it needs the valuelittwi to use it and will block if the value is
not yet arrived.

The Proxy receives the messages from the biadyort cpl. It will send a "qGet" message
via delegate port cp2. This message will pass tirdbe father's port c2 to go to the buffer.

Proxy will now wait a response (rGet) from théfbr in the cp3 port. When this message
arrives, the proxy will allow the Body to use thaue.

35

T - - "

)

I

1 & s ' mbf
“ 1 /’

+ put : void; s + 3 i
" i i i
' -« . '
b2 '

ol nad &= = P~

+ riet : void;

12 @ bad /Eﬂ

’
+ glet : void;
i’

“igs @

1
1
i
i
1
. .18 &
_f-"/‘ o + SFP : void;
4 + rGet : void; + 5FG : void;
+ 5F : void;

MyBuffer Components is composed by BufferQuen BufferBody

BufferQueue store requests (put and get) fronsemers and producers while BufferBody
is the engine who takes the requests from the qaedg@rocess them. This approach to the
standard behavior of a ProActive object.

The message transit description:

"put" message from the Produce gets into the Quieumbl port and bgl delegate
port.

- "gGet" message arrives from the Consumerl intorpb@ and then into delegate
port bg2.

- the same "qGet" message from the Consumer2 wiMeaimto the port mb4 and
delegate port bg3.

All this messages will be stocked into the Queaéing for the BufferBody to treat them.
36

The buffer body will "pick up"” requests from tBefferQueue by calling methods defined in
the interface IB5 (ServeFirstPut, ServeFirstGety&erst) through the port bl. It will treat
those requests and send responses to the constimeugh the ports b3->mb3 and b2->mb5.

We will have to describe behavior of the pringtcomponents (BufferQueue, BufferBody,
CProxy, CBody,Producer) by designing the

5.2.2 State M achines Diagramswith CT T ool

Producer is in the start state.

MDD Producer |

It will send a "put" message via port pl
and will move again in the start state.

SMC: CBodys |

In our present model the consumer will

send a get message via cb1l port.
(get . Then it will try to use the value and call

use method via cbl port. At this point, if the
proxy doesn't yet have the value, the CBody
T i will block until the value becomes available.

c
N
m

s=Tart

d

37

Zonsumer Proxw State Machine)

wiaiting for walue

The consumer Proxy it is
initially in the "start" state. It
will receive a "get" message
via cpl (from the Body). It will
send a "gGet" message via cp2
(a request to the Buffer) and
put itself in "Waiting for
value" state. After receiving
"rGet" message via p3 (a
response from the buffer) it
pass in "have value" state and
allows the consumer to call
"use" method via cpl.

After the value is used it
restarts the cycle from "start"
State.

38

—] The BufferBody choose one of
BufferBocky State Machine Diagram .
) the treatment strategies
depending on the actual stock
value.

Three Sub Machines are
defined.

If the stock is empty it treats
the first put request in the queue
(because it can not treat get
requests, it doesn't have any
information in the stock).

(Great s (s o) If the stock is full it only treats

getRequests into the queue (it
doesn't have any more free space
to store information in the stock)

If the stock is not full nor
empty it treats in FIFO order.

39

TreatFirstPut Subtachine

Diagram

SFP
iwig 1)

Y

| stock=stock+1 |

®

TreatFirstPut Sub-Machine:

The buffer pickup the first
"put” request in the Queue by
calling SFP (ServeFirstPut)
method via bl port. The stock
increase with one unit.

Then the Sub-Machine ends
and the calling machine will
continue with the first operator
after the Sub-Machine.

RemarkWe don't need to
model the values (the
information) stored into the
stock. That would enormously
increase the size of the final
reachability graph without
changing in any way the
system behavior.

40

TreatFirstioet SubbMachine
Diagram

The stock is full so the
buffer will pick up the first
"get" request into the Queue
by calling "SFG" method on
port b1 and receive "port"
parameter. The "port"
identifies the consumer who
sent this requests and who
will receive the answer.

The stock decrease one
unit.

Then, depending on the
received parameter "port",
the "rGet" message will be
sent via b3 port (to
Consumerl) or via b2 port
(to Consumer2) - see
Component Diagram)

41

TreatFIFO Subakachine)
Criagram FIFO Sub-Machine:

Buffer will pick up the first

[sFervpereqzaor request from the Queue and
ia bl treat it.
[twiheReog= 1] [tvioeReqg=2]

The buffer calls an
SF(Serve First) method via
bl port and receives
stock—stock+1 | [stock=stock-1 | typeRequests (which could
be 1 for PUT or 2 for GET)
and port to identify, in case
of a request of type "get",
the owner (sender) of the
request.

In case of a put request
(typeReq=1) the stock will
be increased.

In case of a get request
(typeReq=2) the answer
("rGet") will be sent
through the port
corresponding to the sender
of the request.

BufferQueue SubMachine
Diagram .

(wia

fbod) dead

Y

SF\1|0
SFQlp2 serweFirst - Itypelport SFGIpl SFQlpl S.F\Z\pl
Matod ik 2084 | ype = 1-pUT . T o via D Fig)
(vid bgdy 2 g 0d)
2-CET
port = 1 - Cansumerl pZ=pl
pl p2 2 - Consumer2
0 - no port - only for tye=PUT
& e) @

BufferQueue State Machine Diagram

We have modeled a Queue of length 2.

- " "state: the queue is empty - no requestsratieel queue. It can receive "put"”
message or "gGet" message via two different ports corresponding to each
Consumer. The p1l attribute will store the port esponding to the Consumer who
sent the request on the first position in the Qué&woen right to left). The p2 will do
the same for the second position in the queue.

- " _P" state: a put request is on the first positiothe Queue. The second position is
empty.

43

It can receive SF message (from the body) and back !1!0 values meaning that the type
of the first request in the queue is 1 (put) aregart corresponding to the owner is not
important (is 0) because the Producer doesn'tfaaéiny response so we are not interested in
who the producer is.

It can also receive SFP message (from the Bogy) message from the Producer and
"gGet" message from each of the consumers.

We let the reader of this paper to further Idbks diagram to understand how the
BufferQueue works in each case. The example isaalatable for download.

5.2.3 Generation and Checking of Formal Code

We can now analyze the diagrams, generate Lotosfiejp¢ion, Check Syntax of formal code
and generate the Reachability Graph.

Formal code generation:
» click the 'Syntax Analysis' icon on the main bar

- This only checks some properties of your desigfioile generating the Lotos
specification, the final checking is done on theédsocode, by Caesar.

» click on 'Generate Lotos Specification’ icon
» click on 'Check Syntax of Formal code' icon

Your Lotos file 'spec.lot' is generated and chedkectrrors. You can find it in
Turtle/bin directory or in the main menu 'View->d@Whlast formal specification'.

From this point model checkers can be used wih_titos specification as input. For doing that,
model checkers can be directly used or used thrédugthe Menus.

Example:
Generation of the Reachability Graph:

» click on 'Run validation' icon, choose your opti@ml push the Start button. The
reachability graph is generated and located intf@iin/spec.bcg'.

See [5] (http://labsoc.comelec.enst.fr/turttELP -> formal validation) for more information.

44

For this example we obtain a Graph of 577 statdsl@i3 transitions. We can use V&V
menus to analyze the Graph.

Use 'View' and 'V&V' menus to visualize and analifze generated graph.

Note: by analyzing the generated graph we have foundifsdlocks. An execution that leads
to a deadlock would be the next one:

1. Producer put.

2. BufferBody serve put
3. (1,2) two times

4. Producer put - 3 times
5. Consumer get

6. Deadlock

At this moment (step 6):
« the stock is full(length=3).
« in the buffer's waiting queue are 3 producer's estgi(put information) which makes
the queue full.
e a consumer is trying to send it's request to treaiqu
« the buffer doesn't have space into the queue itodate the consumer's request
« the buffer cannot serve any producer's requestuedt's stock is full.

A solution would be to anticipate this situatiordarot to introduce the last's producer
requests into the queue.

45

5.3CTTool reference manual of alpha version

Build as an extension of Ttool, CTTool uses saMcilities offered by this one. As well,
most of types defined in the new packages inhgtdy-defined types from Ttool.
As we have seen in the previous chapter, our extemsoposes the possibility of a system
design based on UML2, more specific, Component idiag (Composite Structure Diagram),
to describe system architecture and State Machiagr@ms to describe system behavior.
The program offers the user a graphical interfacelfawing those two types of diagrams,
and is able to parse them and create a TurtleMuglebject. We use then the engine of TTool
to manage this object (model) and create a forpetiication (Lotos code).
We will explain in what follows the conception bt graphical interface and the engine that
parse it and creates the TurtleModeling.

5.3.1. CTTool graphical interface

Composite Structure Diagram

Graphical objects are stored on a ProactiveC&BIPa
We have three types of graphical objects: those inherit TGComponent,
those who inherit TGConnector and those who inff&i€ConnectingPoint.
Some of the Graphical Components dispose of af €eébonectingPoints.
Each Connector has references of two Connectingfoamnecting in this way the owners of
the ConnectingPoints. It can also have a direcfrom the first ConnectingPoint to the
second.

Few specifics of each type of element on the user design graphical interface.

ProCSDComponent extends TGCWithIinternalComponent implements

46

SwallowTGComponent, SwallowedTGComponent, Actiotdner

A component may have it's internal componemtshils case we call this component a father
and the others sons. A father movement will imphg@ement of each of it's sons. On the
other hand, a son will only move within the fatheea.

A component has a set of attributes which caddfimed and initialized by the user.

On double-click the State Machine correspondinipis Component is created if it doesn't
already exists and it's panel becomes the actinelpa
We will see in the next chapter that the State Mahof “father” Components called
Composites are ignored and only the State MaclihBsimitives are included in the model.

ProCSDPort.

Three kinds of port have been implemented, P@Bort, ProCSDOutPort, and
ProCSDDelegatePort, all inheriting ProCSDPort.

A port can be connected to another with a colomex a delegate connector via the
connecting points.

Connector (TGConnectorProCSD) aridkelegate Connector
(TGConnectorDelegateProCSD)

A Connector connects an OutPort P1 with an [hP2r An interface is associated to the
connector. That means that all the messages dafirted interface (and only them) can
transit form P1 to P2. This will be a restrictionthe State Machine Diagram.

A delegate connector can connect:

An in port P1 to a delegate port P2 : messagesing to a Composite via port 1 are sent
directly to one of it's sons via port P2. P2 isegele to receive those messages.

A delegate port P1 to an out port P2: messageadad or received by a son of a composite
C are sent from the port P1 of the son to the Parof the father to be sent forward outside
the Composite.

A delegate port P1 of a Component C1 to a dédegart P2 of a component C2: when C2 is
a son of C1 and Cl1 is itself a son of a composit®iGrice versa. A message received by a
composite can transit via several delegate potisarierarchy to a subcomponent who will
treat the message. The same in the opposite way.

ProCSDInterface

47

An interface is associated to a Connector (TG@otorProCSD). It defines messages
(methods calls) that pass through this connecfisrthe connection has a direction, let's say
from port P1 of C1 to port P2 of C2, it means thatmessages transit from C1 to C2. We can
see this as methods called by C1 on C2. Messagdsecaf type void or may have a return

type.

In this alpha version of CTTool we create a @mtion between two ports (which implies a
connections between two components) and associatgegface to this connection.
In the beta version we will let each primitive camnpnt specify the interfaces it offers and
those it requires and then just bind components.

State M achine Diagram User Design

For each primitive component the user have ézi$pit's behavior by designing a State
Machine Diagram.

The next operators compose a state machine:
» astart state and a stop state

* a state operator
» condition operator
» sendMessage and getMessage operators

For each of this two operators a port must be fipddio indicate where the
messages come from or go to.

» action operator: an action on a local attribute
* nondeterministic choice operator

» submachine operator

The operators offered by this diagram will béaded in the next section on the creation of
the TurtleModeling.

5.3.2 Parsing diagrams and creating the TurtleM odeling

48

We have implemented a class (GProactiveDesifno) parse the diagrams in order to create
the TurtleModeling

It first analyzes the class structure, determwhe are the primitives, the connections
between them, what is the transit of messages, iwlla¢ behavior for each component and
put this information into a TurtleModeling object.

The Composite Structure Diagram will be mapped &lass Diagram and the state
Machine Diagram on an Activity Diagram as follows.

We will create a class for each primitive comgaitn add a public gate for each pair (port P,
message M transiting through P). Synchronizatiete/éen classes will be added. An activity
diagram will be created from the Sate Machine Caagof each primitive.

In the first step, to each in/out port in theDZ8/e have to add this information:
» the interface who specifies messages (methodsjréreit to this port
» the complementary port connected to this one.Foe.an out port P1 of a primitive

C1 find the in port P2 of a primitive C2 where thessages from P1 will finally
arrive.)

Each port has the local attributes:

* my Interface — the Interface who specifies mess#dggdransit through this port
» toPort — the port where a message going out frasmpidrt will arrive.

» fromPort — the port where a message getting ingbisis coming from.

Update Ports I nfor mation M ethod

for each out port outPort (outPort of C) on the G®bthe toPort.
toPort is the in port directly conrextto outPort.
toPort.fromPort is outPort.

* Then we iterate a chain of connected delegate partgpn of the components C1 ...
Cn with the propriety:
Clis ason of C and pl is coretd outPort

C(i) is a son of C(i-1) and p(@nmected to p(i-1)

49

» for each of the ports Ci we update toPort infororatnd for toPort we update
fromPort information. End for.

* end for
We do the same for inPorts.

Moreformally, thealgorithm for updating portsinformation is:

Update portsinformation Methode

* For each out Port pOut (of a component C) on thgrdm do:
» find and update pOut.myinterface
« if interface not found create a CheckingError agtdinn
e port PIn = the in port directly connected to pOut
e pOut.toPort=PIn
* PIn.fromPort=POut

* DP=the delegate port of a subcomponent of C coaddotpOut (wich
means the messages come from PD, transit throughtB@utside the
component C)

e if DP not null

* DP.mylnterface=pOut.mylinterface

e pOUT.fromPort=DP

e DP.toPort=pOut

* DDP = DP.getFrominsideConnectedPort

* while DDP not null
» DDP.mylnterface= pOut.mylinterface;
 DDP.ToPort=pln;

* pin.FromPort=DDP;

50

» DDP=getFromInsideConnectedPort(DDP);

* end while
* endif
* end for
» for each in Port inP (of a component C) on the @iagdo

* look for and update inP.mylnterface

* DP=the delegate port of a subcomponent of C cordeotpln (a port that
pin delegates to treat messeges pln receives)

* if DP not null
e From Port = pIn.fromPort
* DP.mylnterface=pIn.mylnterface
* DP.fromPort=fromPort
» fromPort.setToport(DP)

« ddp=getTolnsideConnectedPort(DP);
« while (ddp!=null)
* ddp.setMylinterface(mylnterface);

e ddp.setFromPort(fromPort);
» fromPort.setToPort(ddp);

» ddp=getTolnsideConnectedPort(ddp);

* end while
e endif
 end for

* end updatePortsinformation

Creating the TurtleM odeling

M ethod addT Classes

* For each primitive C :
* we create a TClass TC who corresponds to that fpvami

we add the attributes of the component to he TClass
for each port p of C

» for each methode m defined in p.mylinterface

* create a gate p_m and add this gate to the TClass.

e end for

end for

build activity diagram of C
* end for
* add all synchronizations and the synchronizatidegbetween TClasses.

+ end method addTClasses

Building the Activity Diagram :

Each operator on the State Machine is mappexhaperator from Activity Diagram
like in 4.3 page 21.

SendMessage and GetMessage operators are traadfoto the correspondent
synchronizations.

A submachine operator will be replaced by tHensachine itself.

52

The TurtleModeling being generated, the TTodiea can take it as input to generate the
Lotos code.

53

6. Conclusions and further work

6.1 Evaluation

We have designed and analyzed in this report tfferdint models for the Consumer-
Producer example, first model based on the CldsEitaol with Class Diagrams and Activity
Diagrams, the second on the UML2 Component Diagr@amisState machines diagrams.

A comparison between the two specifications leth&identification of our requirements for
a new Tool.

We have design and implemented the basis for adeswgn tool that we called CTTool. In
order to do that we have specified the elementcthrapose the two new diagrams:
Composite Structure Diagram and State Machine Bragr

As we wanted to use the already-implemented Tertlgine for the generation of Lotos code
we mapped the UML2-based on model to the Clas$itabl model. This means adding well
defined semantics to each element of the new diagra

We have written the algorithms needed to parsaé¢wedefined diagrams, collect
information and create the model that is givemasiti to the Turtle engine in order to
generate Lotos code.

These algorithms have been implemented and leditst @rototype of our new Design Tool,
CTTool. This prototype has a friendly user-integand semantics defined for all the
provided modeling operators.

We have also offered a complete specification ef@onsumer-Producer System within the
new implemented Tool, CTTool. We have generateddiraal code for the system and used
Caesar (from CADP) to create the accessibility gr@pstudy of this graph led us to
discover few deadlocks in the model of our ConsuRreducer.

We have seen that the translation we have maden(pdusing diagrams and creating the
model) implies some significant information loss.

As we do not intent to transform a component-baystem in a simple object-based system
(which would mean going backwards) we intent, infoture work, to keep this information
(that we loose during the translation) in the &rtiodel.

There are still few features that need to be addéore offering CTTool to the real-world
system developers. We present these features mettiesection.

54

6.2 Further Work

We will need to design and implement a beta versid@TTool, as the alpha version we
have presented in the Chapter 5 is only meanttrdsearch aria.

As the beta version is meant for designing compbhased system, we also intent to develop
a gamma version specialized in modeling ProActystesns.

Several features that would have to be added arggthin the current version of CTTool in
order to distribute it to the users:

Featuresto beimproved in the beta version
« design of a component with its provided and reglinterfaces
« allow user to bind only the mandatory interfaces
« allow the user to create libraries with his defimednponents and their behavior
» define constraints that allow replacing a compomeits context
* a better management of errors

Featuresto beimproved in the gamma version:
» design and implement the model of a standard Pre&\Qbject (Component)
with the behavior of its standard subcomponentsiiee could use on his
diagrams
* manage multiplicity: instantiation and binding ofiltiple instances of a
component
e group communication
* generation of pNets models
» manage simple-types lists

Even if CTTool alpha version is only meant for @aeh purposes, it approaches of a

Component System Design Tool and opens the pergp@dta professional Proactive Design
Tool.

55

7. References

[1] BARROS Tomas

"Formal Specification and Verification of Distuted Systems™ (Spécification et
Vérification formelles des Systemes de ComposagfaRis)". These de doctorat, ,
Université de Nice - Sophia Antipolis, INRIA-Labooae 13S, 25 Novembre 2005, Projet
OASIS.

[2] BARROS Tomas, Rabea Boulifa, Eric Madelaine
Parameterized Models for Distributed Java Objeitscle , INRIA Sophia Antipolis
[3] Object Management Group (OMG)

Unified Modeling Language: Superstructure, versdh Revised Final Adopted
specification (FTF convenience document), ptc/04Rttp://www.omg.org/uml/

[4] Matj Polak

UML 2.0 Components, Master's thesis(Oct 2004 - Z¥)5), Distributed Systems
Research Group, Charles University, Prague
http://nenya.ms.mff.cuni.cz/~mencl/projects/umi2®pmnents-thesis.html

[5] Ludovic Apvrille

Turtle Documentatiohttp://labsoc.comelec.enst.fr/turtiZLP/

[6] L. Apvrille, P. de Saqui-Sannes, J.-P. Courtia
A UML 2.0-based Evolution of the TURTLE Profil&rticle, ENST Institut Eurecom

[7] Rumbaugh, Jamgkacobson, IvaBooch, Grady
The Unified Modeling Language reference man@ampus press2005

[8] Rabea Ameor-Boulfia

56

[9]

Génération de modéles comportamentaux des applicatéparties,
Thése de doctorat, , Université de Nice - Sophmiapdlis, INRIA-Laboratoire 13S

ProActive, Oasis Team, www-sop.inria.fr/oaBigiActive

57

