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Jury:

Président du Jury Jean-Paul RIGAULT Université de Nice-Sophia Antipolis, France
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3.5 Syntaxe pour la définition d’une politique de service . . . . . . . . . . . . . . . . . . . 23
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1
Introduction

Le génie logiciel est encore une discipline immature. Le problème semble être que nous ne
savons pas développer des logiciels de manière fiable. Il est impressionnant de voir combien de
logiciels sont infestés des bogues et de comportements non-déterministes.

La question qui se pose est : pourquoi les ingénieurs peuvent construire des bâtiments très
solides mais qu’ils échouent quand il s’agit de logiciel ? Pour répondre à la question, un
aspect essentiel est que dans la plupart des domaines il est plus ou moins facile(ou au moins
bien connu) de concevoir un système dont les différentes parties peuvent être construites par
plusieurs personnes de façon indépendante, et plus tard assemblées pour obtenir le produit
final. De plus, le produit final n’est pas construit à partir de zéro mais en réutilisant des solutions
précédemment testées. En informatique, au contraire, les ingénieurs ont tendance à reconstruire
les mêmes applications plusieurs fois, et, par conséquent,la production coûte cher et il existe un
risque élevé d’erreurs.

Alors, pourquoi n’arrivons nous pas à transférer cette expertise des ingénieurs, consolidée
par des années de pratique, vers le cycle de vie du logiciel ? Un des problèmes du logiciel
est que c’est un produit très abstrait: il est donc difficile de prévoir son comportement et les
ressources nécessaires pour son fonctionnement. À première vue, il semble être un simple
modèle mathématique, mais la réalité est très différente. Le développement logiciel a tellement
de différents axes de conception que la majorité du design d’une application repose sur la
créativité des ingénieurs. Comme chaque ingénieur peut avoir des idées brillantes, mais
totalement différentes pour le même problème, l’assemblage des différentes parties du logiciel
devient un véritable défi.

Pour réutiliser du logiciel, on doit l’imaginer comme une collection de modules. Cependant,
on doit également considérer les influences de l’environnement car il est inutile de penser à
un module logiciel qui fonctionne parfaitement découplé de son environnement. De plus,
l’environnement peut très bien changer au cours du temps. Il y a deux idées importantes ici
: (i) nous devons définir, de façon abstraite, ce qui est attendu de l’environnement et ce qui
est fourni à l’environnement ; et (ii) nous devons concevoir des logiciels de manière que les
hypothèses faites sur l’environnement soient les seules nécessaires pour utiliser le logiciel. Cela
nous permettra de construire un logiciel qui peut travailler dans n’importe quel contexte qui
correspond à nos hypothèses.

Il existe un excellent exemple qui nous montre que les hypothèses sur l’environnement sont
souvent mal faites. L’agence spatiale européenne (ESA) a lancé une fusée en 1996 qui a explosé à
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10 Chapter 1. Introduction

cause d’un bogue logiciel [Ben-Ari 01] dans le système de navigation inertielle (INS). Le module
avait été précédemment utilisé dans Ariane 4 avec succès, mais quand il a été utilisé dans Ariane
5, il est tombé en panne. Les spécifications d’entrée d’Ariane 5 étaient différentes de celles
d’Ariane 4, ce qui a causé un débordement lors de la conversion d’une chiffre de 64 bits à 16
bits.

Personne n’a rien remarqué jusqu’à ce que la fusée explose.

Les ingénieurs ont abordé des problèmes similaires depuis le tout début du développement
logiciel. Au début, ils ont été appelés “appels de procédures” et “bibliothèques” d’une part,
et “spécifications formelles” ou “semi-formelles” d’autre part. En fait, ces sont les fondements
qui ont donné lieu à la programmation orientée objets dans les années 60 et UML (pour Unified
Modeling Language) [OMG 04] dans les années 90.

Aujourd’hui, nous sommes face à des projets beaucoup plus larges que d’habitude. Si l’on prend
l’exemple du développement des systèmes d’exploitation, nous pouvons voir que la croissance
du nombre de lignes de code source est énorme. Dans la Figure 1.1, nous montrons quelques
valeurs approximatives [Wikipedia 08] sur le nombre de lignes de code nécessaires pour créer
différentes versions de Microsoft Windows. ∗

Année Systèmes d’Exploitation Lignes de Code Nombre estimée de bougues
1993 Windows NT 3.1 6 millions 120 milles
1994 Windows NT 3.5 10 millions 200 milles
1996 Windows NT 4.0 16 millions 320 milles
2000 Windows 2000 29 millions 580 milles
2002 Windows XP 40 millions 800 milles
2007 Windows Vista 50 millions 1 million

Figure 1.1: Nombre de lignes de codes pour des differentes versions de Microsoft Windows

Même si nous ne supposons pas que le rapport de bogues est constant, il est évident que quand
il s’agit de projets de 50 millions de lignes de code, la qualité de développement du logiciel est
très importante.

Le seul moyen de construire des logiciels de haute qualité, c’est à travers une bonne spécification
du système. Par ailleurs, pour faire face aux projets de grande taille, il faut se raccrocher sur des
méthodes de raisonnement compositionnel et des outils de vérification automatique qui nous
donnent des garanties sur le comportement de notre programme.

∗L’estimation du nombre de bugs ne sont qu’à titre indicatif. Ils sont basés sur des estimations faites par
l’Université Carnegie Mellon CyLab Sustainable Computing Consortium de 20 à 30 bogues toutes les 1000
lignes de code en géneral.
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1.1 Component Based Software Engineering

Récemment, il y a eu un intérêt majeur pour les paradigmes qui apportent une meilleure
structuration des logiciels, parmi eux, les composants logiciels (CBSE) [Szyperski 02]. Ce qui
différencie CBSE est la composition et l’accent mis sur la réutilisation du logiciel. Composition
ici signifie construire logiciels plus complexes à partir d’autres logiciels. Ces logiciels sont
appelés composants parce qu’ils peuvent être composés ensemble, et résultant dans un nouveau
composant, plus complexe.

Un problème commun à CBSE est qu’il n’existe pas de consensus concernant ce que le
composants logiciel est réellement. Plusiers définitions ont été proposées dans la littérature,
mais aucune n’est considerée comme la définition. Toutefois, parmi les définitions les plus
acceptées, nous citons [Szyperski 02] :

“Un composant logiciel est une unité de composition avec des interfaces spécifiées par
contrat et des dépendances explicites par rapport au contexte. Un composant logiciel peut
être déployé de façon autonome et est soumis à la composition par une tierce partie.”

Ce que nous pouvons extraire de cette définition est que les composants établisent des
contrats avec l’environnement, et que les composants sont une sorte de modules indépendants
qui peuvent être utilisés par un tiers. Le contrat avec l’environnement fixe des frontières
bien définies que nous appelons interfaces. Une différence majeure avec le paradigme de
la programmation objets est que dans CBSE nous définissons non seulement les interfaces
fournies, mais aussi les interfaces nécessaires. Chaque élément a un ensemble d’interfaces et
les composants peuvent être composés et assemblés par l’application de règles de composition
sur les interfaces. Lorsque deux éléments sont liés, il doit y avoir une correspondance entre les
services requis par un élément et ceux fournis par les autres, au moins concernant les interfaces
que nous voulons connecter.

La définition de la compatibilité des liaisons entre les interfaces dépend du degré de détail
que nous voulons observer aux interfaces. D’une part, les interfaces doivent représenter un
haut niveau d’abstraction de ce qui se passe au sein du composant, d’autre part, ils doivent
être assez précises pour que nous puissions être sûrs qu’il n’y aura pas de surprises une fois
que le système est déployé. Au-delà du typpage des interfaces, il existe une grande variété
d’exigences à fixer dans les interfaces, en commençant par le protocole de messages échangés
entre les composants, les exigences sur l’intégrité physique telles comme le temps de réponse,
sur l’infrastructure, sur l’encodage des messages, et ainsi de suite. De plus, les communications
entre les composants peuvent être faites de plusieurs façons, par exemple avec des messages
synchrones ou asynchrones, appels de méthode distants, streaming de données, appels MPI,
etc.

Les interfaces peuvent également fournir un haut niveau d’abstraction du comportement des
composants. Le but est d’établir un contrat entre les composants qui fournissent seule-
ment l’information nécessaire pour utiliser le composant. L’interface définit également une
implémentation de base pour les services fournis et requis par les composants. Ce que vise ce
contrat est de permettre aux autres développeurs d’utiliser les composants dans leurs propres
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projets avec un minimum d’efforts et avec un comportement garanti. De plus, les contrats disent
à d’autres développeurs ce qu’ils peuvent developper indépendamment de notre système. Cela
correspond à ce que le développement de logiciel a envisagé depuis longtemps: un paradigme
dans lequel il est possible d’acheter des composants et les connecter.

Néanmoins, comment ces contrats sont-ils définie? Une simple énumération des services
fournis et requis par les composants ne suffit pas parce qu’une définition du comportement est
également nécessaire. Par exemple, un composant peut exiger une initialisation avant que ces
clients puissent l’interroger et une fermeture des session pour éviter la consommation illimitée
de ressources.

1.2 Vers une spécification comportementale des composants

Le moyen plus simple de préciser le comportement c’est avec une description informelle : la
documentation. Elles sont généralement bien adaptées pour des comportements simples dans
lesquels le concepteur peut prédire l’effet global d’une composition. Lorsque le système grossit,
elle devient rapidement inappropriée. Si les spécifications sont informelles, elles finissent
avec un comportement incomplèt ou encore pire, les spécifications peuvent être sujettes à
différentes interprétations. De plus, comme la spécification est informelle, on ne peut pas aider
le développeur avec une assistance de vérification numérique.

Le domaine de la vérification formelle peut être date des premières œuvres de Floyd. Les
méthodes formelles utilisent les mathématiques pour préciser et ensuite raisonner sur des
systèmes informatiques. Donc ils enlèvent l’ambiguı̈té, l’incomplétude, et l’incohérence des
dessins et des modèles. Pour ces raisons elles ont reçu un intérêt particulier dans la sécurité
des systèmes critiques et pourquoi pas dans CBSE.

Selon le type de formalisme, il est possible de vérifier les erreurs de compatibilité en utilisant une
large gamme de techniques de vérification telles comme la preuve automatique des théorèmes
et le model-checking. Le model-checking a longtemps été utilisé par la communauté. Intel
par exemple a adopté le model-checking depuis le fameux bogue sur les Pentium qui a coûté
environ US$475M en 1994. Au sein de la communauté des développeurs, le succès de model-
checking a été limitée. Généralement le logiciel est si complexe que même des petits systèmes
peuvent tomber dans le problème d’explosion d’état [Valmari 98]. Une façon de faire face à cette
problème est d’utiliser l’abstraction vers un système plus simple, qui détient la propriété désirée,
et puis de vérifier ce modèle simple. Si l’abstraction est une bonne approximation du système
d’origine, les propriétés vérifiés dans le modèle (simple) sont également vraies dans le système
d’origine.

Quand il s’agit de la spécification des composants, de nombreuses théories classiques peuvent
être adaptées pour soutenir la description formelle du comportement. Par exemple, les
algèbres de processus, telles que le CCS de Milner [Milner 90, Milner 89]; CSP de Hoare
[Hoare 85, Brookes 84] sont utiles car un composant a ses frontières des communications bien
définies. La communication externe donne des actions observables, et la communication interne
donne le comportement interne.
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Les méthodes formelles peuvent répondre à la plupart des questions évoquées ci-dessus, même
si l’adoption est encore limitée dans le CBSE. Parmi les principales raisons, nous pouvons mettre
en évidence l’écart entre les compétences requises pour les méthodes formelles et celles trouvées
dans l’expertise des ingénieurs logiciels. Ce dont nous avons besoin est d’aider le développeur
avec des outils qui peuvent masquer la complexité des méthodes formelles.

1.3 Les composants distribués

La sémantique des composants dépend du modèle de composants choisi. Comme il n’existe pas
une seule définition de ce qui est un composant, nous pouvons trouver des composants logiciels
qui considèrent chaque objet (comme dans le paradigme orienté objets) comme un composant,
comme des système à composants où l’ensemble de l’application est un composant. Nous
pouvons aussi trouver des éléments qui sont déployés dans une seule machine ou distribués
dans des milliers de machines.

Une propriété intéressante de CBSE est que les composants peuvent être utilisés pour définir les
unités de distribution et pour déployer des applications sur des milliers de machines. C’est le
cas du Grid Component Model, qui cible des composants s’exécutant sur des grilles de calcul.
Les grilles de calcul sont des réseaux de machines très hétérogènes qui offrent une alternative de
bas coût pour le calcul de haute performance. Ils utilisent des ressources réparties sur l’Internet
au lieu d’utiliser des clusters dédiés qui sont trés coûteux.

Lorsque les composants sont distribuées et sont déployées sur des grilles, il est nécessaire
que les composants soient faiblement couplés. En d’autres termes, les critères de conception
sont détournés vers des systèmes avec un minimum de synchronisations afin de prendre
avantage du parallélisme. Un moyen classique de minimiser les synchronisations est d’adopter
des communications asynchrones, fournies par le modèle à composants. Par conséquent,
les composants distribués présentent un complexe entrelacement d’événements en raison du
parallélisme et en raison de l’asynchronisme.

Déduire le résultat de la composition des ces composants est intrinsèquement difficile. Mal-
heureusement, il y a peu ou aucun soutien de langages de spécification pour faire face à ce
type de composants. Le développement d’outils et de théories ont mis l’accent sur les services
techniques pour le déploiement de composants distribués, mais sont insuffisants pour soutenir
le concepteur.

1.4 Contribution

Globalement, cette thèse s’intéresse à la conception et l’analyse de systèmes à base de com-
posants, et à la génération de composants avec une garantie de comportement.

Langage de spécification. La principale contribution est la définition d’un langage de
spécification qui permet aux ingénieurs logiciels d’exprimer des synchronisations complexes
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et, plus tard, de vérifier ces systèmes. Nous proposons un langage de spécification qui apporte
les avantages des méthodes formelles de plus proches de son expertise.

Formalisme et modèles de comportement. En plus du langage de spécification, nous
travaillons également sur des formalismes et des modèles de comportement qui nous permettent
de vérifier les spécifications de composants distribués.

Les composants garantis. Nous proposons de définir des composants qui utilisent ce
langage de spécification, de vérifier leur comportement avec le soutien d’un outil, et ensuite
de générer des composants avec du code certifié.

1.5 Structure du résumé

Le résumé est structurée comme suit:

Le Chapitre 2 présente un formalisme paramétrique qui permet d’exprimer des modèles
comportementaux de composants distribués. Ce formalisme nous donne une représentation
compacte du système, ainsi que la possibilité de de vérifier les modèles avec des techniques de
model-checking.

Le Chapitre 3 présente la base de la thèse : un langage de spécification adapté aux composants
distribués. Le langage de spécification est doté de suffisamment formalise pour permettre une
approche constructive. Concrètement, la génération de modèles de comportement basé sur le
formalisme, et la génération de squelettes de code avec le code de contrôle des composants.

Le Chapitre 4 résume les principales contributions de nos travaux.



2
Modèle Théorique

Nous donnons la définition formelle de notre langage intermédiaire que nous appelons parame-
terized Networks of Synchronised Automata (pNets). pNets est un formalisme générique ayant pour
ayant but de spécifier et de synchroniser le comportement d’un ensemble d’automates. Nous
avons construit ce modèle avec deux objectifs: donner une base au modèle de génération et
construire un modèle qui serait plus proche de la machine et qui servirait de format interne
polyvalent pour différents outils.

Le produit synchronisé présenté par Arnold & Nivat [Arnold 94] est à la fois simple et puissant,
parce qu’il vise directement le cœur du problème. Un des principaux avantages de son haut
niveau d’abstraction est que presque tous les opérateurs parallèles rencontrés dans la littérature
concernant les algèbres de processus deviennent des cas particuliers d’un concept très général:
les vecteurs de synchronisation. Nous synchronisons la structure des vecteurs comme faisant
partie d’un réseau de synchronisation. Le réseau permet des reconfigurations dynamique entre
les différents ensembles avec un LTS transducteur. Notre définition du produit synchronisé est
sémantiquement équivalent à celui donné par Arnold & Nivat.

De plus, nous utilisons l’approche proposée par Lin[Lin 96] pour rajouter des paramètres
dans ses événements de communications de les systèmes de transitions et les réseaux de
synchronisation. Ces événements peuvent avoir des conditions sur leurs paramètres. Nos
agents peuvent aussi être paramétrés pour encoder des ensembles d’agents équivalents. Cela
nous conduit à la définition des pNets. Ils correspondent à la façon dont les développeurs
programment leur systèmes : la structure du système est paramétrée et décrite dans un mode
fini (le code est fini), mais une instance est déterminée pour chaque exécution, ou même varie
dynamiquement.

2.1 Systèmes de Transitions Étiquetés Paramétrés

DEFINITION 1 (ACTIONS PARAMÉTRÉES)
Soit V un ensemble de noms, LA,V une algèbre de termes construite sur V , y compris l’action constante τ.

Nous appelons:

• v ∈ V un paramètre,
• a ∈ LA,V une action paramétrée,
• BA,V l’ensemble des expressions booléennes (gardes) sur LA,V .

15
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Exemple

Dans le Value-passing CCS de Milner
[Milner 89] l’algèbre d’action a pour con-
structeurs “tau”, “a” pour les actions
d’entrée, “’a” pour les actions de sortie,
“a(x)” pour les action paramétrées. Puis,

“’out(3)” est un terme d’action de sortie
fermé, “a(x,y)” est un terme d’action
d’entré ouvert avec des paramètres x et y,
et “x+y=3” comme une garde.

DEFINITION 2 (SYSTÈMES DE TRANSITIONS ÉTIQUETÉS PARAMÉTRÉS)
Un Système de Transitions Étiquetés Paramétrés (pLTS) est un tuple (V, S , s0, L,→), où:

• V est un ensemble fini de paramètres, à partir duquel on construit l’algèbre de terme LA,V ,
• pAG ⊆ LA,V est la Sorte
• S est un ensemble d’etats; chaque etat s ∈ S est associé à un ensemble indexé fini de variables libres

fv(s) = x̃Js ⊆ V ,
• s0 ∈ S est l’état initial,
• L est l’ensemble des étiquettes,→ la relation de transition→⊂ S × L × S

• Les étiquettes sont de la forme l = 〈α, eb, x̃Js′:= ẽJs′ 〉 telle que si s
l
−→ s′, alors:

– α est une action paramétrée.
∗ l’action définit les variables d’entrée iv(α), possiblement en définissant de nouvelles

variables iv(α) ⊆ V ;
∗ l’action définit les variables de sortie oe(α) en utilisant des expressions d’actions.

– eb ∈ BA,V est la garde optionnelle,
– les variables x̃Js′ sont affectés au cours de la transition par les ẽJs′ optionnels avec les

contraintes :
∗ fv(oe(α)) ⊆ iv(α) ∪ x̃Js

∗ fv(eb) ∪ fv(ẽJs′ ) ⊆ iv(α) ∪ x̃Js ∪ x̃Js′

Philo:runActivity

!Ext.request(Think)

!Ext.request(Eat)

!FG.request(f1,Take)

?FG.getValue(f1,Take)

!FD.request(f2,Take)getValue(f2,Take)
?FD.

request(Drop)
!FD.

!FG.request(Drop)

PhiloRunActivityLTS = 〈V, S , s0, L,→〉
with:

V = { f1, f2}

S = {si}, i ∈ [0:7]

L= { !Ext.request(Think), !Ext.request(Eat),
!FG.request( f1,Take), ?FG.getValue( f1,Take),
!FD.request( f2,Take), ?FD.getValue( f2,Take),
!FG.request(Drop), !FD.request(Drop) }

→ such that:
s0 : !Ext.request(Think) → s1,
s1 : !FG.request( f1,Take) → s2

...

Figure 2.1: Exemple d’un pLTS

Exemple

La Figure 2.1 est basée sur une
implémentation du problème de
philosophes dans ProActive. Elle représente
le pLTS pour le comportement d’un
composant Philo. L’alphabet d’action utilisé
ici reflète le schéma de communication
: chaque requête distante a la forme

“!dest.request( f ,M( ˜arg))”, où dest est
la référence distante, M est le nom de la
méthode, avec des paramètres ˜arg et f est
une référence de futur. Plus précisément, f
est l’identificateur du proxy du futur. Les
requêtes qui ne nécessitent pas une réponse
n’utilise pas le proxy.
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2.2 Réseaux de Synchronisation Paramétrés

DEFINITION 3 (RÉSEAUX PARAMÉTRÉS)
Un réseau paramétré (pNet) est un tuple 〈V, pAG, J, p̃J , ÕJ ,T 〉, où:

• V est un ensemble de paramètres,
• pAG ⊂ LA,V est un ensemble d’actions externes (paramétrées),
• J est un ensemble fini de trous, chaque trou j est associé avec (au plus) un paramétre p j ∈ V et

avec une sorte O j ⊂ LA,V .
• T est le (LTS) transducteur (S T , s0T , LT ,TT ), où les étiquettes de transition (−→v ∈ LT ) sont les

vecteurs de synchronisation de la forme : −→v = 〈ag, {αt}i∈I,t∈Bi〉 telles que:
– I ⊆ J

– Bi ⊆ Dom(pi)
– αi ∈ Oi

– f v(αi) ⊆ V

Un pNet statique a un état unique, mais il a des variables d’état qui codent certaines notions de
mémoire interne qui peuvent influencer la synchronisation. Les pNets statiques ont la bonne
propriété d’être facilement représentées graphiquement.

Ext: {Think, Eat}

Ph: {take?, take!, drop?}

Fork [k]

FG: {take!, take?, drop!}

Philo [k]

FD: {take?, take!, drop!}

PhiloNet = 〈V, pAG , J, p̃J , ÕJ ,T 〉with:

V = {k, f1, f2}

pAG = {Think(k), Eat(k), !TakeG(k), !TakeD(k),
?TakeG(k), ?TakeD(k), DropG!k, DropD!k}

J = {Philo, Fork}

pPhilo = k, pFork = k

OPhilo = {!Ext.request(Think), !Ext.request(Eat),
!FG.request( f1,Take), !FD.request( f2,Take),
?FG.getValue( f1,Take), ?FD.getValue( f2,Take),
!FG.request(Drop), !FD.request(Drop)}

OFork = {?Ph.request( f1,Take), ?Ph.request( f2,Take),
!Ph.getValue( f1,Take), !Ph.getValue( f2,Take),
?Ph.request(Drop)}

Ce pNet est statique, T a un état unique, et transitions avec les étiquettes :
LT = {
〈Think(k), !Philo[k].Ext.request(Think)〉
〈Eat(k), !Philo[k].Ext.request(Eat)〉
〈!TakeG(k), !Philo[k].FG.request( f1,Take), ?Fork[k].Ph.request( f1,Take)〉
〈!TakeD(k), !Philo[k].FD.request( f2,Take), ?Fork[k+1].Ph.request( f2,Take)〉
〈?TakeG(k), ?Philo[k].FG.getValue( f1,Take), !Fork[k].Ph.getValue( f1,Take)〉
〈?TakeD(k), ?Philo[k].FD.getValue( f2,Take), !Fork[k+1].Ph.getValue( f2,Take)〉
〈DropG(k), !Philo[k].FG.request(Drop), ?Fork[k].Ph.request(Drop)〉
〈DropD(k), !Philo[k].FD.request(Drop), ?Fork[k+1].Ph.request(Drop)〉 }

Figure 2.2: Exemple d’un pNet
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Exemple

Le dessin de la Figure 2.2 montre un pNet
(statique) représentant le problème classique
des philosophes, avec 2 trous paramétrés
(indexés par la même variable k) pour
les philosophes et les fourchettes. Sur
le côté droit sont représentés les éléments

correspondants au pNet formel, dans lequel
nous énumérons explicitement les sortes des
trous (Ophilo et OFork), et les vecteurs de
synchronisation sont paramétrés sur l’index
k et les ids de futurs f1 et f2.

Les sortes de nos structures paramétrées sont des ensembles d’actions paramétrées.

DEFINITION 4 (SORTE PARAMÉTRÉE)
• La sorte d’un pLTS: Sort(V, S , s0, L,→) =

{
α | ∃l ∈ L. l = 〈α, eb, x̃Js′ := ẽJs′ 〉

}
= pAG

• La sorte d’un pNet: Sort〈V, pAG, J, p̃J , ÕJ ,T 〉 = pAG

2.3 Conclusion

Ce type de modèle sémantique est largement utilisé dans des ensembles d’outils d’analyse et de
vérification, car il fournit un format intermédiaire compact et bien défini. En ce qui concerne
les systèmes concurrents distribués, les modèles intermédiaires font souvent des hypothèses
fortes sur le type de synchronisation sur des mécanismes de communication. Notre choix est
d’avoir des primitives de bas niveau (LTS + vecteurs de synchronisation) qui sont en mesure de
représenter de nombreux mécanismes possibles.



3
Langage de Spécification

Les composants distribués ont tendance à former de grandes unités de composition, et sont
souvent faiblement couplés. Par la suite, nous présentons un langage de spécification sous forme
d’une extension d’un sous-ensemble de Java pour la spécification de ces composants. Le langage
décrit à la fois l’architecture et le comportement, et est suffisamment riche de sorte que nous
sommes capable de :

• d’une part vérifier l’exactitude du système (Chapitre 6) : nous construisons un modèle
comportamental qui peut être vérifié par du model-checking;

• d’autre part d’assurer la sécurité des composants (Chapitre 8) : nous voulons générer le code
de contrôle des composants qui garanti le respect de la spécification.

Nous avons opté pour un langage proche de Java pour plusieurs raisons: (i) il est proche de
l’expertise des ingénieurs, en utilisant une syntaxe connue telles que les appels de méthode et
de classes utilisateur; (ii) il permet d’embarquer une partie de la spécification dans des squelettes
de code; (iii) il emploie les même types de données que l’implémentation, en garantissant que
les opérations sur les données sont directement utiles.

Architecture. La définition de l’architecture est lié à des ADL classiques. Nous allons fournir
un syntaxe “à la” Java pour la définition de l’architecture, qui est utilisé pour définir le type du
composant et sa structure. En d’autres termes, nous allons définir ses sous-composants et ses
connexions internes.

Décomposition du comportement en services. Nous proposons de définir le comporte-
ment du composant comme une spécification boı̂te noire. La spécification est donnée par
un ensemble de services, chacun étant une activité indépendante. Pour chaque service, nous
définissons une politique et puis nous détaillons son comportement.

La première partie d’un service est appelé la politique de service; elle définit la manière dont un
composant sélectionne les requêtes en fonction de son état interne, et tout comportement que
le composant déclenche par ses propres moyens. La deuxième partie du service précise ce que
chaque service exposés à la politique de service fait; elle s’appelle méthode de service.

19
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Futurs. L’utilisation des futurs transparents dans le langage de spécification apporte les
mêmes avantages que dans le langage de programmation : le développeur n’a pas besoin de
se demander si une variable peut contenir un futur, ou plus précisément, il n’existe aucun
mécanisme de synchronisation explicite pour des variables qui contiennent parfois un futur.
Donc, les futurs transparents étendent la réutilisation des spécifications car ils peuvent être
utilisés dans plusieurs contextes, où les valeurs sont calculées localement ou à distance.

Types de Données et d’Abstractions. Les types de données utilisées dans JDC sont des
classes Java standard. De cette façon, les squelettes de code obtenu par nos outils de génération
seront directement utilisables. D’une part les types de données arbitraires ont souvent de grand
domaines (peut-être infini) qui ne peuvent pas être vérifiées directement. D’autre part, le type
de propriétés comportementales que nous cherchons ont besoin seulement d’une abstraction de
ces données.

Par conséquent, pour faire une vérification, la spécification inclu aussi une abstraction des types
utilisateur. De cette façon, nous sommes capables de générer une spécification plus simple qui
ne contient que des variables avec domaines “simples”.

3.1 Spécification de l’Architecture

Dans les prochaines sections, nous présentons des éléments de la syntaxe abstraite et concrete
du langage JDC. Chaque boı̂te définit une partie de la syntaxe du langage, en utilisant les
conventions suivantes :

• mots-clés en gras (e.g. component);
• symboles terminal écrit entre guillemets simples (e.g. ’{’);
• symboles non terminal en police monospace (e.g. Services);
• parties optionnelles avec des expressions crochets (e.g. [ expr ]);
• choix avec | (e.g. expr1 | expr2);
• enchaı̂nements de zéro (resp. un) ou plusieurs expressions avec ∗ et + (e.g. expr∗, expr+);
• identifiants comme id .

3.1.1 Définition d’un Composant

La définition d’un type de composant comprend ses interfaces externes et une spécification de
son comportement. Le comportement est donné soit par une spécification boı̂te noire sous forme
d’un ensemble de services, ou soit par une composition de composants, ou par les deux. Cela
est illustré dans la Figure 3.1.

Chaque interface dans un composant a un rôle (serveur ou client), un type (une interface Java
comme dans la plupart des IDLs), et un nom.
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Component→ component id ’{’ �définition de composant�
external interfaces
Interface∗ �ensemble d’interfaces�

[ Services ] �spécification boı̂te noire�
[ Architecture ] �description du contenu�

’}’
Interface→ server | client �rôle de l’interface�

interface InterfaceType id ’;’ �type et nom�

Figure 3.1: Syntaxe pour la définition d’un composant

3.1.2 Composition des Composants

La composition des composants se fait à l’intérieur de l’architecture, voir la figure 3.2. Elle
expose le contenu d’un composant avec le contenu de ses sous-composants, de ses interfaces
internes, et de ses liaisons internes. Les sous-composants sont nommés et typés. Le type du
composant est donné soit par une définition externe, ou par une définition en ligne (inline). Les
liaisons connectent soit deux interfaces des composants internes ou soit des interfaces de sous-
composants avec le composant.

Architecture→ architecture
contents
Subcomponent∗ �ensemble de sous-composants�

internal interfaces
Interface∗ �ensemble d’interfaces�

bindings
Binding∗ �ensemble de liaisons�

Subcomponent→ component ComponentType id ’;’ �sous-composant�
| Component �définition inline�

ComponentType→ id �référence à un type�
Binding→ bind ’(’ SourceItf ’,’

TargetItf ’)’ ’;’ �liaison d’un paire d’interfaces�

Figure 3.2: Syntaxe pour la définition d’une architecture

Exemple

L’exemple CoCoME [Rausch 08] a été im-
plementé en utilisant GCM / ProActive,
et est détaillée dans l’annexe A. Il s’agit
d’un système de point de vente dans lequel
la caisse traite une vente. La caisse et
ses périphériques sont implementés en tant

que composants. Dans la figure 3.3, nous
montrons un extrait de l’exemple, où un
composant appellé Application a un seul
périphérique appelé Scanner; ce dernier est
contrôlé par un composant.

3.2 Spécification de Comportement

Nous proposons de spécifier directement le comportement acceptable par les interfaces, on
appelle cela une spécification boı̂te noire du comportement d’un composant.
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component CashDesk {
external interfaces
server interface ApplicationIf appIf;
client interface ScannerIf scannerIf;
// ... external interfaces

architecture
contents
component Application application;
component Scanner scanner;

internal interfaces
server interface ApplicationIf appIf;
// ... internal interfaces

bindings
bind(this.appIf, application.appIf);
// ... bindings

}

Figure 3.3: Exemple d’une spécification d’architecture

La concurrence en JDC est spécifiée par un ensemble de services dans le bloc Services (voir
la figure 3.4). Chaque service définit un processus séquentiel avec son propre ensemble de
variables locales. Un processus séquentiel est composé de la politique de service (service policy)
qui définit le protocole du service, et d’un ensemble de méthodes de service qui donnent les détails
du comportement des méthodes exportées par le composant.

Services→ services
Service+ �un ou plusieurs services concurrents�

Service→ service ’{’
LocalVariableDecl∗ �variables du composant�
policy ’{’ Policy ’}’ �politique de service�
ServiceMethodDecl∗ �méthodes de service�
LocalMethodDecl∗ �méthodes locales�

’}’

Figure 3.4: Syntaxe pour la définition d’un service

La spécification du comportement du composant est une abstraction du flot de contrôle, du flot
de données, et de l’accès aux données.

3.2.1 Politique de Service

La politique de service définit la manière dont les requêtes sont choisies dans la queue en
fonction de l’état interne du composant, et tout comportement déclenché à l’intérieur du
composant.

Le comportement du composant peut être considéré comme une machine qui ne cesse de faire
certains travaux. Le comportement réactif définit quel type de méthode sélectionner et dans quel
ordre. Un comportement actif désigne le comportement spontané, c’est-à-dire, un travail qui est
fait sans être demandé.
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Policy→ BasicPolicy [ ’;’ PermPolicy ] �définition d’une politique�
BasicPolicy→ ServeMode ’(’ [ Filter ] ’)’ �service réactif�

| MethodCall �service actif�
| BasicPolicy ’;’ BasicPolicy �séquence�
| BasicPolicy ’|’ BasicPolicy �choix�
| BasicPolicy ’n’ �répétition�

PermPolicy→ BasicPolicy ’∗’ �répétition infinie�
ServeMode→ serveOldest | serveYoungest �primitif d’accès à la queue�

Filter→ ItfName �toute méthode dans cette interface�
| ItfName ’.’ MethodName �cette méthode�
| Filter ’,’ Filter �une liste de filtres�

MethodCall→ ItfName ’.’ MethodName ’(’ [ Expr ] ’)’ �appel de méthode distante�
| MethodName ’(’ [ Expr ] ’)’ �appel de méthode locale�

Figure 3.5: Syntaxe pour la définition d’une politique de service

3.2.2 Méthodes de Service

Une méthode de service est une abstraction d’un service exporté par un composant. Elle est
définie par un sous-ensemble de déclarations Java dans lesquelles il n’y a pas d’exception et de
concurrence. Cela inclut les flot de données entre les paramètres d’entrée et les résultats de la
méthode, ainsi que la communication avec les services requis. La méthode de service a accès
aux variables du composant mais elle ne peut pas accéder à la queue du composant.

3.3 Specifying Abstractions

Une classe est un vecteur C =< −→m,
−→
f >, où −→m = {mi(−→a ) : τi} sont les méthodes de C; −→a = {a j : τ j}

sont les arguments de la méthode, et
−→
f = { f k : τk} sont les champs.

Une abstraction de C est une classe CA =< −−→mA,
−→
fA >, où chaque méthode publique m({a j : τ j} : τ)

de C a une ou plusieurs méthode abstraite mA(−→aA) : {τA} avec −→aA = {a
j
A

: τ j
A
} les abstractions des

arguments. Les domaines des arguments sont des ensembles de valeurs dans les abstractions de
classes τi, et le résultat est une valeur abstraite dans l’abstraction de la classe τ.

3.3.1 La définition et l’utilisation d’abstractions

Une abstraction en JDC est similaire à une classe Java, avec des extensions pour traiter le
non-déterminisme et l’abstraction de données. Une notion importante est que nous avons la
possibilité de faire différentes abstractions pour les différentes variables du même type.

3.4 Géneration de Modèles Comportamentaux

Nous développons des modèles comportamentaux basé sur le formalisme pNets (voir le
chapitre 4) qui peuvent être générés à partir de spécifications JDC. Le modèle de génération
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Abstraction→ abstraction id of id ’{’ �abstraction de types�
TypeDecl∗ �déclarations de type�
Field∗ �variables locales�
Constructor∗ �constructeurs abstraits�
Operator∗ �opérateurs abstraits�

’}’
Constructor→ Type ’(’ args ’)’ �sign. du constructeur concret�

[ abstracted as Type ’(’ args ’)’
’{’ Body ’}’ ] �version abstraite�

Operator→ Type id ’(’ args ’)’ �sign. du operateur concret�
[ abstracted as Type id ’(’ args ’)’

’{’ Body ’}’ ] �version abstraite�
Field→ Type id �type & nom de la variable�

[ abstracted as Type ] �mapping local d’un type�

Figure 3.6: Syntaxe pour la définition d’un type abstrait

repose sur deux parties:

Tout d’abord, celui qui construit le comportement de contrôle des composants. Dans cette
phase, la plupart des informations qui sont nécessaires proviennent de l’analyse de la structure
des composants, et du flot de futurs. Pour le dernier, nous développons des modèles
comportamentaux qui nous permettent de vérifier les problèmes liés à la synchronisation de
futurs.

En plus, nous proposons un modèle pour la partie fonctionnelle des composants. Cela exige
de faire une analyse statique sur la spécification afin de trouver le graphe d’appel de méthodes.
Pour JDC, il est plus facile à faire que dans le cas de Java (non structuré) parce que pour les objets
actifs nous avons des problèmes pour identifier précisément les appels de méthode distante. Le
graphe d’appel de méthodes est ensuite utilisé dans le modèle de génération pour créer les
réseaux de LTS.

En supposant que le composant C dispose de 2 sous-composants A et B comme dans la figure 3.7,
cela créera un pNet comme dans la figure 3.8.

Figure 3.7: Un composant composite
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Membrane

pNets(A) pNets(B)

pNets(C)

?response(fid, val)

?response(fid, val)!response(fid, val)

?request(fid, i1.M)

!request(fid, i3.M)

!request(fid, i2.M)

!request(fid, i1.M)

?response(fid, val)?response(fid, val)

!request(fid, i2.M)

Figure 3.8: Modèle comportamentaux d’un composant composite

3.5 Conclusion

Nous avons créé le langage de spécification avec deux stratégies opposées. D’une part, nous
définissons le langage a un niveau d’abstraction beaucoup plus élevé que celui d’un langage de
programmation, d’autre part, la partie “données” du langage est celle habituellement trouvée
dans un langage de programmation. La première permet la génération de code de contrôle
garanti parce que elle est simple, La dernière permet que la partie données du code généré soit
directement utile étant très proche du langage de programmation.





4
Conclusions

Cette thèse a cherché dès le début à soutenir le développement de composants. Notre travail a
porté à la fois sur la modélisation et la spécification des composants distribués. L’objectif de la
thèse a été de réduire l’écart entre l’implementation d’un composant et sa spécification.

L’analyse d’un système peut être obtenus grâce à des modèles comportementaux qui fournissent
une représentation abstraite. Par contre, les modèles comportementaux ont tendance à être de
trop bas niveau pour être utilisé comme un système de spécification. Donc, afin de spécifier et
d’analyser de composants distribués, ce travail a envisagé un cadre formel adapté à l’expertise
de ingénieurs en logiciel. Nous avons fourni des modèles comportementaux adaptés à la
vérification des systèmes de composants distribués, et avons donné un langage expressif qui
permet de définir leur comportement.

4.1 Contributions

Nous allons maintenant mettre en évidence les principales contributions de cette thèse.

Formalisme Hiérarchique. Nous avons formalisé un modèle comportemental hiérarchique.
La première partie de la thèse a présenté un formalisme appelé pNets. Ce formalisme est
particulièrement adapté pour la modélisation de composants, car il décrit le modèle comme une
hiérarchie de processus communicants, et fournit une représentation symbolique du système.
Une autre contribution importante du formalisme est qu’il ne fait pas de fortes hypothèses sur
le type de synchronisation utilisé. En plus, il gère aussi les données dans le processus.

Langage de Spécification de haut niveau. Nous avons fourni un langage de spécification
de haut niveau pour la spécification de composants distribués adapté à l’ingénieur en logiciel. Le
formalisme pNets est bien adapté aux modèles comportementaux que nous voulons exprimer.
Toutefois, il est de trop bas niveau pour être directement utilisés par nos utilisateurs. Alors,
nous avons défini un langage assez riche pour capturer la communication, la synchronisation, le
contrôle des flot et le flot de données. Nous avons conçu le langage assez riche pour construire
des modèles comportementaux, mais doté d’une syntaxe familière à nos utilisateurs.

Intégrer l’architecture et le comportement. Nous avons intégré l’architecture et le com-
portement en un seul langage de spécification. Bien entendu, la définition de l’architecture traite
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la structure des composants comme dans la plupart des ADL, mais offre aussi des primitives si
jamais nous avons besoin de faire référence à la structure dans le comportement. La définition
du comportement, d’autre part, prend soin de la composante de contrôle et du flot de données.

Composants comme des Services. Nous avons remarqué que les composants distribués
avaient une partie de contrôle qui orchestrent les services offerts à l’environnement. Cela a été
un bon point de départ pour définir le comportement. Par conséquent, nous avons défini la
politique de service qui nous donne une définition approximative de ce que le composant fournit
à l’environnement, et puis nous nous concentrons sur une définition plus détaillée de chacun de
ces services.

Simplification de la Spécification Nous avons simplifié la spécification du comportement
en spécifiant l’activité du composant au lieu de ses événements. Nous précisons ce que
le composant fait et nous utilisons des techniques d’analyse statique afin de déduire son
comportement exact (tous les événements effectués par le composant). Donc, nous sommes
capables de définir le comportement de composants distribués d’une manière simple.

Générer des modèles comportementaux vérifiables. Nous avons défini et généré des
modèles comportementaux vérifiable. L’analyse des spécifications donne des informations sur
l’architecture, des invocations de méthode distante, des flot de futurs et des synchronisations.
Cela est suffisant pour générer automatiquement des modèles comportementaux sur la base de
notre formalisme pNets; par ailleurs, le comportement des modèles peut être vérifié par des
techniques de model-checking.

Une représentation statique et compositionnelle du système. Nous avons défini des
modèles comportementaux qui sont une représentation statique du système et peuvent être
construit de façon compositionnelle. Une forte contribution est de fournir une représentation
statique de futurs, en particulier lorsque les futurs peuvent être transmis à d’autres composants
d’une manière non bloquante. Nous proposons une abstractions pour le futurs, puis des
représentations statiques pour les différents moyens par lesquels les futurs peuvent être
transmises; de plus, nous faisons cela de façon compositionnelle.

Réduire l’écart entre la spécification et l’implémentation. Nous avons fourni un
mécanisme qui permet de générer des modèles comportementaux et des squelettes de code dans
la même spécification. Le langage de spécification est suffisant pour générer un squelette du
composant avec des garanties solides sur son comportement.

Utiliser des classes utilisateur dans la spécification. Nous avons inclus des classes
utilisateur et des versions abstraites de ces classes dans le langage de spécification. Cela garantit
que le code généré utilise du code correct pour les données. De plus, on a la garanti que la
génération de modèle comportementaux utilise des données compatibles avec notre formalisme
pNets.



Part II

Thesis
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1.1 Motivation

Software engineering is still an immature discipline. The problem seems to be that we do not
know how develop software in a consistent way. It is impressive to see how often software is
plagued with bugs and non-deterministic behaviour.

The question that arises is, why can engineers build rock-solid buildings but fail when it comes
to software? A key aspect is that in most areas it is more or less easy, or at least well known, how
to design a system in such a way people can independently build parts of the system, and later
assemble the final product. Moreover, the final product does not emerge from scratch but from
consolidated previous solutions. In computer science, on the contrary, engineers tend to rebuild
the same functionality over and over, which is error-prone and costly.

So, why is it that we cannot transfer years of consolidated engineering expertise towards
software life-cycle? The problem with software is that it is very abstract, so it is difficult to
predict its behaviour and required resources. At a first glance, however, software looks like a
mathematical model of ones and zeros, but reality is quite different. Software development has
so many axis that it ends up relying on the creativity of software engineers. Since every engineer
can think of brilliant, though completely opposite solutions to the same problem, fitting different
pieces of software to work together becomes a real challenge.

To reuse software, it is crucial to imagine a software as a collection of modules. However,
one must also consider the influences of the environment, hence it is useless to think of a
software module that works absolutely decoupled from its/the environment. Moreover, the
environment may as well change over time. There are two major ideas here: (i) we need to
define, in an abstract way, what is expected from the environment and what is provided to the
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environment; and (ii) we need to conceive software in such a way that the assumptions made on
the environment are the only ones needed to build the software. This would allow us to build
software that works in any context that matches our assumptions.

There is a great example that shows us that the assumptions about the environment are often
wrong. The European Space Agency (ESA) launched a rocket in 1996 that exploded due to
a software bug [Ben-Ari 01] in the inertial navigation system (INS). The module had been
previously used in Ariane 4 successfully, though when it was used in Ariane 5 it crashed. The
input specifications of Ariane 5 were different from those in Ariane 4, which caused an overflow
when converting a 64-bit number to a 16-bit number.

Nobody noticed this until the rocket exploded.

Software engineers have been addressing similar targets since the very beginning of software
development. At first, they were called procedure calls and libraries, on the one hand,
and formal or semi-formal specifications on the other hand. In fact these are foundations
that gave rise to object-oriented programming in the 60s and UML (for Unified Modeling
Language) [OMG 04] in the 90s.

Nowadays we are dealing with much larger projects than we used to. If we take the development
of operating systems for example, we can see that the growth in the number of source code lines
is huge. In Figure 1.1 we show some approximate values [Wikipedia 08] on the number of code
lines needed to create different versions of Microsoft Windows. ∗

Year Operating System Source lines of code Estimated Number of Bugs
1993 Windows NT 3.1 6 million 120 thousand
1994 Windows NT 3.5 10 million 200 thousand
1996 Windows NT 4.0 16 million 320 thousand
2000 Windows 2000 29 million 580 thousand
2002 Windows XP 40 million 800 thousand
2007 Windows Vista 50 million 1 million

Figure 1.1: Source code lines for different Microsoft Windows versions

Even if we do not suppose that the ratio of bugs is constant, what is that clear is that when
dealing with projects of 50 million code lines quality in the software development is a major
asset.

The only way to build high quality software is through a sound specification of the system.
Moreover, to deal with projects of this size one must seek for compositional reasoning and
for some kind of automatic software verification that gives us guarantees on the behavioural
properties of our program.

∗The estimation of the number of bugs are just illustrative. They are based on Carnegie Mellon
University’s CyLab Sustainable Computing Consortium estimation of 20 to 30 bugs every 1,000 lines of
code.
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1.1.1 Component Based Software Engineering

Recently there has been a major interest in paradigms that bring a better structuring of
software, among them, Component Based Software Engineering (CBSE) [Szyperski 02]. What
differentiates CBSE is composition and the stress on software reuse. Composition here means
building more complex pieces of software from other software. These pieces of software are
called components because they can be composed together, yielding a new, more complex,
component.

A common problem in CBSE is that there is no concensus of what a component really is.
Various definitions have been proposed in the literature, though not a single one is considered
to be the definition of a software component. However, among the most accepted ones, we
quote [Szyperski 02]:

“A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.”

What we can extract from this definition is that components establish contracts with the
environment, and that components are somehow independent modules that can be deployed
by third-parties. The contract with the environment sets well-defined frontiers that we call
interfaces. A key difference with the object-oriented paradigm is that in CBSE we not only
define provided interfaces, but also required interfaces. Each component has a set of interfaces,
and components can be composed and assembled by applying composition rules on interfaces.
When two components are bound there must be a match of the services required by one
component and those provided by the other, at least concerning the interfaces we want to
connect. The nesting of components takes place by wrapping components and delegating
services coming in and going out the component. The “wrapped” components are called
subcomponents, and the “wrapper” the parent component.

Defining the compatibility rules to bind interfaces depends on the degree of detail we want to
observe at the interfaces. On one hand, interfaces must represent a high-level abstraction of what
happens within the component, on the other hand they must be precise enough so that we can
be sure that there will not be surprises once the system is deployed. Beyond classical interface
typing, there is a large variety of requirements to set in the interfaces, starting from the protocol
of messages exchanged between components, to physical requirements such as response time,
infrastructure dependency, encoding of messages, and so on. Moveover, communication
between components can be of many sorts, for example synchronous or asynchronous messages,
method calls, data-streaming, MPI calls, and so on.

Interfaces can also provide a high-level abstraction of how components behave. This aims to
establish a contract between components that provides just the information required in order to
use the component. At the same time, the interface also defines an implementation guideline on
the services provided and required by components. What this contract seeks is to allow third-
parties to use components in their own projects with minimal effort and with a guaranteed
behaviour. Moreover, the contracts say what another software developer should implement
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independently of our own system. This matches what software development has longed for, a
compositional paradigm where it is even possible to buy components and plug them into our
systems.

Nevertheless, how are these contracts/interfaces defined? A simple enumeration of the services
provided and required by components is not enough as a definition of behaviour is also
necessary. For example, a component may require some initialisation before allowing clients
to query some data; clients must close their connection or the system will eventually run out of
resources.

1.1.2 Towards a Specification of the Component Behaviour

The simplest way to specify component behaviour is by an informal documentation. They are
usually well suited for simple behaviours where the designer can predict what is the global
effect of a composition. When the system scales up, however, this is rapidly inappropriate.
If specifications are informal, they eventually miss some behaviour, or worse, specifications are
subject to different interpretations. Moreover, as the specification is informal, it is hardly possible
to provide computer-aided verification that checks or infers the global behaviour.

The field of program verification and formal methods can be dated back to Floyd’s early
works [Floyd 67]. Formal methods use mathematics to specify and then reason about computing
systems by revealing ambiguity, incompleteness, and inconsistency from specifications and
designs. Because of that they have been recognised as of special interest within safety-critical
systems [Barroca 92] and why not to CBSE.

Depending on the kind of formalism, it is possible to check for compatibility errors using a
large range of verification techniques such as theorem provers and model-checking. Model-
checking has been long used by the hardware community. Intel for example adopted model-
checking since the famous Pentium bug which costed the company US$475M back in 1994
[Gerth 01]. Within the software community, however, success of model-checking has been
limited. Typically software is so complex that even small systems can fall into the state explosion
problem [Valmari 98]. One way of facing this issue is by abstracting the system into a simpler
one that holds the desired property, and then to verify the simpler model. If the abstraction is a
sound approximation of the original system, then the properties proved in the abstracted model
are also true in the original system.

When it comes to component specification, many classic theories can be well adapted to support
the formal description of the component behaviour. For example, process algebras, such as
Milner’s CCS [Milner 90, Milner 89]; Hoares’s CSP [Hoare 85, Brookes 84] fits in because a
component has well defined frontiers of communication. The communication are the external
observable actions, and the internal behaviour is given by internal communication.

Formal methods can address most of the issues discussed above, though adoption is still limited
in CBSE. Among the main reasons, we can highlight the gap between the expertise required by
formal methods and the ones found in the background of software engineers. What we require
is to support the designer with tools that can hide the complexity of formal methods.
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1.1.3 Focusing on Distributed Components

The semantics of components is dependent on the chosen component model. Since there is
no accepted definition of what a component is, we can find software components that vary
from considering each object in an object-oriented environment as a component, to very coarse
grain definitions of components where a whole application is a component. We can also find
components that are deployed in a single machine or distributed in thousands of machines.

One interesting property of CBSE is that components can be used to define units of distribution
and to deploy applications over thousands of machines. This is the case of the Grid Component
Model [CoreGRID 06], which targets components running in computer Grids [Kesselman 98].
Grids are networks of highly heterogeneous machines that provide a low-cost alternative to
High Performance Computing by using resources spread over the Internet instead of using
expensive dedicated clusters.

When components are distributed and deployed in Grids, an immediate performance re-
quirement is that components should hopefully be loosely-coupled. In other words, the
design criteria is biased towards a system with few synchronisations in order to take benefit
of parallelism. Therefore, synchronisations must be minimised. One of the classic ways
of minimising synchronisations is by adopting some kind of asynchronous communication,
provided by component model. Therefore, distributed components have complex interleaving
of events due to parallelism, and complex synchronisation due to asynchrony.

Inferring what is the result of a composition of components like this is intrinsically difficult.
Unfortunately, there is little or no support from specification languages that address these kind
of components. The development of tools and theories has focused on technical services for
deployment distributed components, but not enough to support the designer.

1.1.4 Contribution

Overall, this thesis is interested in the design and analysis of distributed component systems,
and the generation of components with guaranteed behaviour. We are interested in an approach
that does not require the target user to be expert in formal methods, but still takes advantage of
a sound specification and verification of the system.

Specification Language. The main contribution is the definition of a specification language
that allows software engineers to express complex synchronisations, later to analyse its system
and finally generate guaranteed source code.

The specification language allows the designers to express the behaviour visible at the interfaces
of the distributed component. It is formal enough in order to generate behavioural models that
interface with verification tools, and it is complete enough in order to check against a large range
of user requirements. This way, we provide a per-component verification (open system) and
verification of a system (closed system). Many of these verifications can be done automatically,
so, no advanced knowledge in formal methods is needed.



36 Chapter 1. Introduction

Formalism. Besides the specification language, we also work on formalisms and behavioural
models that allows us to verify specifications of distributed components.

A strong aspect of the formalism is that it is powerful enough to deal with distributed systems in
general. For that we have used a generalised parallel operator that allows one to encode many
of the parallel operators used in distributed systems. Many process algebras can be mapped
into this formalism, and thus it can be seen as an intermediate format between the high-level
specification language and the verification tools. The goal is that we can specify the behaviour
of our system in this formalism and then decide, depending on the user requirements, which is
the best engine to verify the system.

The formalism is based on a symbolic representation of the behaviour that deals explicitly with
data. This allows for a compact represention of communication and synchronisation that set the
behaviour visible at the interfaces of the components.

Generation of Behavioural Models. Based on the formalism we present, we show how
to automatically generate behavioural models from instances of the specification language
presented above. The behavioural models allows one to verify the user requirements using
existing state-of-the-art verification tools.

Particularly, they allow one to study the effect of the asynchronous semantics of the component
model, and to infer the resulting behaviour of the component system, both when develop
independently, or when put in an environment. Moreover, we are also able to study the effects
of reconfiguration, both of the structure and the environment.

Generation of Components with Strong Guarantees. The specification language that
we propose allows one to create safe-by-construction components. Safe in the sense that any
property proved in the specification language is guaranteed to hold in the implementation as
well. Therefore, the source code of the component does not need to be analysed because we
know it is correct. Again, we seek here to hide difficulty commonly found in formal methods.

Verification Platform. Finally, in order to bring these techniques to the software engineers,
we provide a set of tools that assist the component design and verification. We build tools
that allows one to define the system in a graphical language, and to automatically generate the
behavioural models described above.

We do not expect to create a verification platform from scratch, but to use existing verification
engines. We do this by providing additional tools that interface our models with the verification
tools.
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1.2 Thesis Structure

The thesis is structured as follows:

Chapter 2 reviews the state-of-the-art of frameworks, formalisms, specification languages, and
tools for dealing with component models.

Chapter 3 provides the context of this thesis; we present the main component model of interest,
the Grid Component Model (GCM), and its reference implementation.

Next we start with the contributions of the work.
Chapter 4 presents a parametric formalism that supports the definition of behavioural models
of distributed components. This formalism provides us with a compact and expressive
representation of the system, as well as the possibility to model-check the models.

Chapter 5 presents the core of the thesis; a specification language adapted to distributed
components. The specification language is endowed with enough formality to allow a
constructive approach. Namely, the generation of behavioural models based on the formalism,
and the generation of code skeletons with the control code of components.

Chapter 6 presents the generation of behavioural models from instances of the specification
language. The behavioural models are based on the formalism described in Chapter 4.

Chapter 7 presents our verification platform. It presents the tools developed in this thesis to
aid the software engineer in designing and verifying component-based systems, as well as two
case-studies in which we applied our tools.

Chapter 8 discusses the perspectives of our work. We show how we pretend to generate
safe components starting from our specification language, as well as possible extensions to the
specification language.

Chapter 9 summarises the main contributions of our work.

As appendix, we provide an in-depth description of one of the case-studies.
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Abstract

This chapter reviews the state-of-the-art
of frameworks, formalisms, specification
languages, and tools for dealing with com-
ponent models.

We start by an overview of the main
industrial component models and academic
component models. This will set the basic
vocabulary for this thesis.

Next, we review some formalisms used in
component specifications; these provide for-

mal definitions of components and are used
to interface with design and verification
tools.
Then, we review specification languages
that have been used in the context of
component specification.
We also overview tools to design and verify
components.
Finally, we review some applications of for-
mal methods in component development.
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2.1 Component Models

Component models, or better component frameworks provide the means to define, program,
deploy, and execute a component system. They can be separated in two large groups: the
ones used in industrial applications, and those motivated by academic research. Component
models are usually characterised by either those seeking simple designs, which is dominated
by industrial component models, and those seeking sophisticated features such as runtime
reconfiguration and separation of concerns between functional and non-functional aspects.

There is no widely accepted definition of what a software component is [Szyperski 02].
Nevertheless, we could expect a component to:

• have well-defined interfaces to interact with the environment; we will accept as a
component only the pieces of software where both provisions and requirements are
explicitly defined.

• allow for some sort of independent deployment; a component must be a closed, complete
piece of software. Even if it has external dependencies, it should still be possible to think
of a component as a black-box entity that provides and requires services.

• and allow for composition; a component must allow for some kind of composition. In
other words, we would like to think of components as building blocks for more complex
pieces of software. In here we do not distinguish how the components can be composed,
though.

In the following, we review the basic concepts of software components, e.g. whether a
component model is flat or hierarchical. This will set-up the common vocabulary of the thesis.

Composition. One of the main aspects of components is composition. There are two kinds
of compositions: horizontal and vertical composition. The horizontal composition stands for a
composition of two components at the same level of hierarchy (sibling components). The vertical
composition stands for a composition of two components at different levels of hierarchy. This is,
a component that wraps other components. The wrapper component is often called the parent
component, and the wrapped component its subcomponent.

When a component model supports vertical composition, we say that the component model
is hierarchical because we can nest components to build more complex components. These
nested components are usually called composite components, whereas the most simple form of
components (not nested) are called primitive components.

Similarly, when a component model does not support vertical composition, we call it a flat
component model. In this case, only horizontal composition is allowed, thus the component
topology is plain.

Ports and Interfaces. Another important aspect of components is that they communicate
with the environment through well-defined interaction points. These set the external depen-
dencies of each component. The interaction points receive different names depending on
the component model of choice. Vocabulary varies from ports (as in ArchJava [Aldrich 02])
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to interfaces (as in CCA [Armstrong 06], Fractal [Bruneton 02], SOFA [Plášil 98]), though less
commonly they are called sink and sources (as in CCM [OMG 02]). Yet there are component
models that support both ports and interfaces (as in UML [OMG 04], Java/A [Baumeister 05]).

Usually a port is considered as an entry/exit point of communication with the environment.
A port defines a name which is used by the internals of the component to reference the
environment. Communication on ports is often directional, and the allowed messages are signed
by a set of interfaces (as in UML 2 [OMG 04], Java/A [Baumeister 05]).

An interface, on the other hand, usually imposes some kind of data flow. Interfaces can be
provided (also called server, or provides), and required (also called client, or uses). Provided
interfaces export a service to the environment, whereas required interfaces depend on a service
from the environment.

In this thesis, we usually speak of interfaces for communication with the environment in general.
This applies to both ports and interfaces.

Connectors and Bindings. The link between two or more components (as in Reo [Arbab 04])
are connectors, and explicitly defines the flow of communications happenning at both ends of
the link. Connections between ports are usually called connectors, and between interfaces are
usually called bindings.

In this thesis, we usually speak of bindings for connections in general. This applies to both
connectors and bindings.

Bindings can connect a component to another component or subcomponent, and so on. How-
ever, the general rule is that a binding between components can never cross the component’s
frontier∗. The different kinds of bindings are:

Connection of sibling components. This is a connection between components at the same level of
hierarchy, and is usually called a “normal binding”.

Delegation of a service. This is a binding between a component and one of its subcomponents. It
says that a service provided by the component is implemented by one of its subcomponents, or
symmetrically, a service required by the component is required by one of its subcomponents.

Business and Non-Functional Behaviour. When talking about what a component does,
we are usually talking about its business (or functional) behaviour. This is the behaviour the
component addresses, like the services it offers and requires.

There is also an orthogonal behaviour called non-functional behaviour. The exact definition
of what is considered non-functional behaviour varies greatly on the component model used.
Examples of non-functional concerns go from Quality of Service (QoS), to life-cycle management
of components. We shall clarify, when convenient, the exact meaning of non-functional;
however, in general in this thesis we will be interested in the latter: those related to life-cycle,
such as dynamic reconfiguration.

∗Except for some special kinds of bindings dealing with shared components
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2.1.1 Industrial Component Models

In general, industrial component models aim at standardisation through the use of simple
models. We provide here examples of flat component models such as CCA [Armstrong 06] and
CCM [OMG 02], and hierarchical component models such as SCA [BEA Systems 05].

The component models chosen here are those most related with Grids and distributed environ-
ments. Both CCA and CCM are used in Grids, thus are equipped with some kind of collective
communication, though they are flat. We will focus on collective communication later in the
thesis because they provide both performance optimisation and a better structuring of the
system.

SCA, on the other hand, provides a good example of a hierarchical component model used in the
context of Web Services [W3C 04]. It is not primarily focused on Grids, however it does show
that components can be though of services. This idea will be later used in the thesis in order to
define the component behaviour.

2.1.1.1 CCA

Within the Grid community, one of most popular component models is Common Component
Architecture (CCA) [Armstrong 06]. CCA, held by the CCA Forum, is a minimalistic component
model that addresses high-performance computing.

CCA aims at facilitating software integration. It considers that it is convenient to isolate pieces
of software as modules that exhibit well-defined interfaces. These interfaces are defined by
normalised ports, using the Scientific Interface Description Language (SIDL).

SIDL was conceived as an IDL for scientific computing. It represents abstractions and
data types common in scientific computing at the interface level. Amongst them, dynamic
multidimensional arrays and complex numbers. SIDL is programming-language independent,
being the common platform for cross-language frameworks. However, SIDL is bound to
specifying types of the interfaces only, thus it is does not take into account the component
behaviour.

CCA builds on core concepts, defining a component (the software entity), a framework (the
container), and ports (the access towards the environment). CCA also proposes a configuration
API and a repository API for reusing components in different contexts.

A limitation in CCA is that components are flat. In other words, CCA components can be
composed (connected) horizontally but not vertically. This limitation, however, is also partially
responsible for the simplicity of CCA, and thus is considered a major asset. The target users
(scientists) are fond of having a simple framework for composing their applications.

One of the innovations in CCA was the introduction of abstractions for parallelism. CCA
considers parallelism and distribution of data by adopting, among others, collective ports. The
idea is to let designers focus on a higher-level abstraction and let distribution concerns at a
different level of the design. These abstractions also address MxN communications, which allow
communications in Grids to be optimised.
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2.1.1.2 CCM

The CORBA Component Model (CCM) [OMG 02, OMG 05] is an industrial component model
defined by the Object Management Group. CCM supports distributed components, and has an
API that allows for platform independent designs.

Components can be seen as black boxes that provide access points, though they are flat, i.e.
there is no hierarchical composition. Some of the major benefits of CCM is that is provides a
clear separation between functional and non-functional concerns, in which actors of the process
are clearly identified as designer, implementer, packager, deployer, end-user. Yet CCM is based
on previous Corba specifications [Obj 04], therefore it inherits the notion of distributed objects.

GridCCM [Denis 04] is a grid-oriented version of CCM. It defines parallel components that
handle SPMD code. In fact, GridCCM considers parallelism to be a non-functional property
that must be handled separately. It is therefore defined in a separate configuration file that sets
the distribution.

2.1.1.3 SCA

Service Component Architecture (SCA) [BEA Systems 05] is an industrial, hierarchical component
model. Major software vendors are involved in the project, which include: BEA, IBM, Oracle,
and SAP.

A SCA component is a generalisation of a Web service [W3C 04], being based on the concept of
Service Oriented Architecture (SOA) [Erl 05]. SCA components can be implemented with different
languages such as Java, BPEL, and state machines. Each component provides standardised
interfaces to the outside, and the component can require other components to implement certain
interfaces – called references.

A SCA module orchestrates a set of given components by wiring them together. Each wire
connects a reference of one component with an interface of another component. A SCA module
itself might provide interfaces to the outside – called exports or entry points, and it might require
interfaces to be implemented somewhere else – called imports or external services. Thus, a SCA
module can act as a component within a larger assembly, i.e, it is a hierarchical component
model.

2.1.2 Academic Component Models

Within academia, there are several component models being defined. They are characterised by
supporting state-of-the-art features, such as hierarchical components, dynamic reconfiguration,
advanced communication styles. Some also allow the designer to formally specify the compo-
nent behaviour.

The first class of academic components chosen here is the one with ArchJava [Aldrich 02]
and Java/A [Baumeister 05]. They provide an approach that inspire part of this thesis,
by extending Java with architectural primitives, and including formal specifications of the
component behaviour. To summarise, they provide a Java-like syntax that mixes architecture
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and behaviour that keep the specification and implementation close. This is one of the goals of
this thesis.

Then, we include a depth review of Fractal [Bruneton 02, Bruneton 04, Bruneton 06] as we
believe it is a good representative of sophisticated component models that put emphasis in
separation of concerns between functional and non-functional aspects. It is extensible by
design which allows for variants with extensions towards Grids (GCM [CoreGRID 06]); the
latter takes care of collective communications and particularly asynchronous communica-
tions. Fractal also provides structuring of non-functional aspects (AOKell [Seinturier 06] and
GCM [CoreGRID 06]), and deals with dynamic reconfiguration. In this thesis we are particularly
interested in providing a behavioural specification for one of Fractal variants, the GCM.

We also present the SOFA component model [Plášil 98]. SOFA is a good example of component
models that have been designed aiming at sound component specification. It does not apply
directly to Grids, however it provides an interesting approach for dealing with compositional
reasoning and verification. Moreover, in its latest version (SOFA 2.0 [Bureš 06]) it puts emphasis
in structuring non-functional aspects and in dynamic reconfiguration.

2.1.2.1 ArchJava and Java/A

ArchJava [Aldrich 02] and Java/A [Baumeister 05] provide similar approaches. Their main
objective is to deal with architectural erosion [Perry 92], and the common approach is to introduce
language primitives into Java particularly for defining architectural patterns. Concretely, they
extend Java with architectural information typically found in Architecture Definition Languages
(ADL) (components, ports, interfaces and bindings).

Both approaches also take into account the behaviour specification of components. In ArchJava,
this is done using an extended π-calculus [Milner 93, Milner 92] formalism. The formalism
allows the definition of component migration, data- and control-flow specification, among
others. However, due to the expressive power of π-calculus there are few tools that can verify
the behavioural consistency.

On the other hand, Java/A opts for a simpler language. The behaviour is defined by means
of Labelled Transition Systems (an Interface Automata [de Alfaro 01]), defining the behaviour
of the components, and of the ports. The latter is one of the main originalities of this work.
The port has a contract of communication that must be obeyed in order to bind the port, in the
sense of Behavioural Contracts [Carrez 03] that guarantee absence of deadlocks. Verification is
performed by a custom Java compiler, verifying both architectural and behavioural consistency
using model-checking techniques.

2.1.2.2 Fractal

Fractal [Bruneton 02, Bruneton 04, Bruneton 06] is a modular and extensible component model
proposed by INRIA and France Telecom, that can be used with various programming languages
to design, implement, deploy and reconfigure various systems and applications, from operating
systems to middleware platforms or graphical user interfaces.
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The Fractal model is somewhat inspired from biological cells, where exchanges between the
content of a cell and the environment are controlled by the membrane. By analogy, a Fractal
component (as represented in Figure 2.1) is a runtime entity, which offers server and client
functional interfaces, as well as non-functional interfaces implemented as controller objects in
the membrane. All interactions with the component are interactions with the membrane of the
component, and this allows interception and intercession using interception objects positioned
within the membrane. Moreover, all non-functional aspects are dealt within the membrane
of a component, thus enforcing separation of concerns between functional and non-functional
features.

Fractal is hierarchical in the sense that components can be nested in arbitrary levels of hierarchy.
The components are connected through bindings, that can either connect two subcomponents,
or connect a subcomponent to the parent component (see Figure 2.1).

A Fractal component may be a composite component, in which case it usually contains other
components, or it may be a primitive component, which is an atomic component implementing
the business logic.

However, there are special kinds of components called shared components. Shared components
break the topology in the sense that shared components are owned by different hierarchies
of components. If we represent shared components graphically, the bindings would cross the
frontiers of the component’s parent. Shared components are useful when the system architecture
provides common resources that must be globally accessed, for example a database. In this
thesis, however, we will not be particularly interested in shared components.

Figure 2.1: A composite component as defined in Fractal Specification

The Fractal model is an open component model, and in that sense it allows for arbitrary classes of
controllers and interceptor objects, including user-defined ones. Fractal is meant to be extensible;
in this sense it leaves unspecified how communication takes place between components, how
components are specified, and what is its implementation; even bindings can be components.
Non-functional features of the component can also be customised.

There are different levels of conformance, being the most simple one considering an object as
a component, high conformance where components must implement a basic set of predefined
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controllers. For example, setting attributes (AttributeController), binding components (Binding-
Controller), adding components within composite components (ContentController) or controlling
the lifecycle of the component (LifeCycleController).

Fractal is based on the following definitions:

Content: one of the two parts of a component, the other one being its membrane. The content is
an abstract entity controlled by a controller. The content of a component is (recursively)
made of sub components and bindings.

Membrane: one of the two parts of a component, the other one being its content. The membrane
is an abstract entity that embodies the control behaviour associated with a particular
component. The membrane is composed by controllers.

Controller: a controller exercises an arbitrary control over the content of the component it is part
of (intercept incoming and outgoing operation invocations for instance).

Server interface: a component interface that receives invocations (e.g. (a,I) in Figure 2.1).
Client interface: a component interface that emits invocations (e.g. (b,J) in Figure 2.1).
Functional interface: a component interface that corresponds to a provided or required function-

ality of a component, as opposed to a non-functional interface. In Figure 2.1 they are
depicted horizontally, directed towards left and right for server and client interfaces resp.

Non-functional interface: a component interface that manages a “non functional aspect” of a
component, such as introspection, configuration or reconfiguration, and so on. These are
also called control interfaces. In Figure 2.1 they are depicted vertically, directed towards
top and down for server and client interfaces resp.

Fractal usually proposes a white-view of the component’s non-functional aspect. The non-
functional aspects are globally accessible through introspection, hence most diagrams do not
represent non-functional bindings.

Interfaces are defined by a name, a role (client or server), a cardinality (singleton or collection), a
contingency (mandatory or optional) and a signature (in Java, the fully qualified name of a Java
interface). In the type system proposed by Fractal, the set of functional interfaces defines the type
of a component. This can be further extended to take into account the non-functional interfaces
as well. Moreover, there are external and internal interfaces. How these two relate is undefined
in Fractal. This leaves freedom to define interceptors.

Fractal components are defined by an ADL by means of an XML file. The structure can be
validated by a DTD definition. In Section 3.1.1 we give more details about the Fractal ADL.

Julia. Julia [Bruneton 04] is the reference implementation of the Fractal component model. It is
fully compliant with the Fractal specification, and is meant to be a lightweight implementation.
One of its main goals is to minimise overhead w.r.t. plain Java.

Communication is synchronous, and the control flow is set by threads invoking the component
body. That is, the component is a runtime object that can be invoked. All invocations go through
a membrane that allows for control of the component. For instance, there is a counter that is
incremented each time a thread enters the component, and is decremented when it leaves. This
way, a component can be stopped when the counter reaches zero.
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The component membrane is implemented by a mechanism of class mixin (optimised object
oriented version), as well as a recent implementation based on non-functional components
(version 2.5). The latter considers a membrane as a composite component that is in charge of
the control part of a component. Therefore, the membrane inherits all the structuring benefits
from a component oriented approach.

AOKell. Another implementation of Fractal is AOKell [Seinturier 06]. Here, the goal is akin
with Julia in the sense that it privileges performance, however AOKell takes a different approach
by providing an aspect-oriented approach using AspectJ [Kiczales 01].

One of the originalities of this work is to rely on aspects to deal with the control of components.
The membrane is organised as an architecture of controllers, where each controller is an aspect.
Moreover, the approach allows the designer to clearly define the interaction between these
controllers, which are later injected into the component. This structuring of the membrane will
inspire other component models such as the GCM (detailed in Chapter 3).

The Figure 2.2 † shows an AOKell component. Components are supervised by controllers
implemented as aspects.

Figure 2.2: Structure of an AOKell component

Grid Component Model (GCM). The GCM [CoreGRID 06] is a novel component model
defined by the european Network of Excellence CoreGrid and implemented by the EU project
GridCOMP. The GCM is based on Fractal, and extends it to address Grid concerns. We shall
detail this extension of Fractal in Chapter 3 as it represents the main component model of interest
for this thesis.

2.1.2.3 SOFA

SOFA [Plášil 98] is a distributed component model and implementation proposed by Charles
University in Prague; it stands for SOFtware Appliances. In the SOFA component model,
an application is viewed as a hierarchy of nested software components. Similar to Fractal,
a component is either primitive or composite. A composite component is built of other
components, while a primitive one contains no subcomponents.

†Figure extracted from http://fractal.objectweb.org/tutorials/aokell/index.html

http://fractal.objectweb.org/tutorials/aokell/index.html


48 Chapter 2. State of the Art

Each component in SOFA has a template T ; this can be seen as a component type. T is a pair 〈F, A〉
where F is a frame and A is an architecture. The frame is a black-box view of the component, and
the architecture is a grey-box view of the component.

The black-box view F defines the set of individual interfaces any component has. In F, an
interface is either a provides-interface or a requires-interface.

The grey-box view A exposes the interaction visible by one level of the nested hierarchy. An
architecture A gives details about the component implementation: it declares and instantiates
direct subcomponents of A; and specifies the subcomponents’ interconnections via interface ties.
One or more architectures can be associated to a frame, creating an analogy to object orientation
between interface/class and frame/architecture.

There are four kinds of interfaces ties within a template T = 〈F, A〉:

1. binding a requires-interface to a provides-interface between two subcomponents,
2. delegating a provides-interface of F to a subcomponent’s provides-interfaces,
3. subsuming a subcomponent’s requires-interface to a requires-interface of F, and
4. exempting an interface of a subcomponent from any ties (the interface is not employed in

A).

In the case an architecture is specified as primitive, there are no subcomponents and its
structure/implementation will be provided in an underlying implementation language.

SOFA 2.0

SOFA 2.0 [Bureš 06] is a recent project to extend SOFA, being the result of several years of
experience in working on both SOFA and Fractal component models. In [Bureš 06], the main
limitations of SOFA are identified as:

• having a limited support for dynamic reconfigurations,
• lacking of a structure for the control part of a component,
• and having an unbalanced support for multiple communication styles.

Dynamic Reconfiguration. SOFA 2.0 supports dynamic reconfiguration (i.e., adding and
removing components at runtime, passing references to components, etc). It proposes reconfig-
uration patterns in order to avoid uncontrolled reconfigurations which lead to runtime errors.
For the moment, they allow three reconfiguration patterns: (i) nested factory, (ii) component
removal, and (iii) utility interface. In pattern (i) a component creates a subcomponent when
called in a specific interface. Pattern (ii) is analogous to (i) for removing a component. In
pattern (iii) there is a special kind of interface that is orthogonal to the component architecture,
being possible to “cross” the component architecture; this is similar to the approach taken in
Fractal/Julia on shared components.

Structure of the Control Part. For structuring the control part of a component, in SOFA 2.0
there are microcomponents and control interfaces. Microcomponents are minimalist components:
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they are flat (there are no nested microcomponents); do not have no connectors; are not dis-
tributed. The parallel to Fractal would be Fractal’s controllers. Control interfaces are orthogonal
to business interfaces in the sense they focus on non-functional features of components. These
interfaces are in direct relation to the non-functional interfaces found in Fractal.

It is interesting that the authors claim that the code implementing the business code (functional
components) should be aware of the control part; moreover, they state that the business code
should have access to the control part of the component. This could be seen as a cross cutting
concern that hopefully should be avoided according to the Fractal community.

Multiple Communication Styles. Communication style stands for the way components
interact. Typically, a component model supports a limited set of ways components may interfact,
the most common ones being message passing and remote method invocations. Depending on
the component model, one (or more) of these are supported, but each of them is more adequate
for a particular system architecture.

In SOFA 2.0, multiple communication styles are supported thanks to classes of connectors. There
are three families of connectors: delegation, subsumption, and connector. Then, the connector is
specialised to match the runtime, i.e. if we are in a Unix system we can use pipes; if we are in a
LAN we can use TCP/IP, etc.

2.2 Formalisms

In this section we concentrate on formalisms that have been used for distributed system
verification. We start with process algebras [Bergstra 01] that have set the theoretical basis of
distributed systems.

Then we present a generalisation of the synchronisation product of transition systems [Arnold 94].
We also present works on symbolic extensions of process algebras [Hennessy 95]. Both are of
interest for our own pNets formalism described in Chapter 4.

Then we present a formalism more adapted to components, CI-Automata [Brim 06]. This
formalism is part of the family of formalisms [Lynch 87, de Alfaro 01] that express behaviour
at the interface of components in the spirit of Labelled Transition Systems.

Finally, we present an object calculus called ASP [Henrio 03] that is relevent to the understand-
ing of this thesis. The results of determinism of ASP-calculus are later used in the behavioural
models of Chapter 6.

2.2.1 Process Algebras

Process algebras [Milner 82, Bergstra 01] are the most classical way of specifying the behaviour
of a system. They consider a system as processes that interact, usually sending/receiving
messages and synchronising. They are supported by a strong mathematical basis, using
operators within an algebraic theory, endowed with several types of semantics.
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Among the most widely known process algebras, one can identify Milner’s CCS [Milner 90,
Milner 89]; Hoares’s CSP [Hoare 85, Brookes 84]; and Milner’s π-calculus [Milner 93, Milner 92].

CCS defines a small language whose constructors reflect simple operational ideas. The core
of CCS is a congruence relation between closed terms, where the terms represent processes. A
semantic process is understood to be a congruent class of terms. An equality of processes
can be defined as being indistinguishable in any experiment based upon observation. An
important part of the definition of CCS is that the operational semantics is presented as Labelled
Transition Systems (LTS), in which the derivation tree are the transitions or actions which may
be performed by a given process. Due to the simplicity of CCS, it is possible to develop very
efficient verification tools.

The π-calculus is a more expressive process algebra that extends CCS with mobility, and
some kind of reconfiguration of processes. Processes are mobile and the configuration of
communications links may dynamically change. One of the tradeoffs of its expressivity is that
in general it is not possible to build efficient model-checkers without additional constraints on
the system.

2.2.2 Synchronised Products of Transition Systems

Synchronised Products of Transition Systems [Arnold 94] is a generalisation of the interaction
between transition system. It introduced the idea of a synchronisation vector that denote how
the different processes in the hierarchy synchronise on actions. Synchronisation vectors can also
be used as a generalised hidding and relabelling operator.

A synchronisation vector expresses, in a hierarchical way, which are the allowed synchroni-
sations of processes. The synchronisations take place on ports of the processes by means of
expressing the valid actions. It has a distinguished external action that is the (visible) result of
the synchronisation. There is a special marker used to identify which processes can progress
freely; the other process that synchronise must perform the transition synchronously.

2.2.3 Symbolic Transition Graphs

Symbolic Transition Graphs (STG) [Hennessy 95], introduced by Hennessy and Lin, provides
a symbolic representation of transition systems. It is particularly inspired by regular value-
passing CCS [Milner 89], being in the very beginning, an extension of CCS that provided a more
abstract description of processes in terms of symbolic actions. Another variant of STG is Symbolic
Transition System (STS) [Ingólfsdóttir 01, Fernandes 07].

STG are parameterized on a number of syntactic categories. The first two are a countable set
of variables, Var = {x0, x1, . . .}, and a set of values V . Eval, ranged over by ρ, represents the set
of evaluations, i.e. the set of total functions from Var to V . A substitution is a partial injective
mapping from Var to Var whose domain is finite. S ub represents the set of substitutions and this
set is ranged over by σ. They also presume a set of expressions, Exp, ranged over by e, which
includes Var and V . Each e has an associated set of free variables, fv(e), and it is assumed that
both evaluations and substitutions behave in a reasonable manner when applied to expressions.
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Formalisation. A STG is a directed graph in which each node n is labelled by a set of variables
fv(n) and every branch is labelled by a guarded action such that if a branch labelled by (b, α) goes

from node m to n, which we write as m
b,α
−−→ n, then fv(b) ∪ fv(α) ⊆ fv(m), and fv(n) ⊆ fv(m) ∪ bv(α).

Another variant introduced by Lin [Lin 96] STG by allowing assignments to be carried in

transitions. An edge now takes the form n
b,x:=e,α
−−−−−−→ n′, where, besides a boolean condition b

and an abstract action α, there is also an assignment x := e. Roughly it means if b is evaluated to
true at node n then the action α can be fired, and, after the transition, the free variable x at node
n′ will have the values of e evaluated at n.

The benefits of symbolic representations is that the models are more compact and more
expressive. They represent families of models, that are usually closer to what a system looks
like. Hennessy and Lin have also defined symbolic bisimulation equivalences [Hennessy 95], and
providing as well algorithms for both late and early symbolic bisimulations.

2.2.4 Component-Interaction Automata

The Component-Interaction Automata (CI Automata) [Brim 06], is a formalism for specifying the
interactions in component systems. It is part of the family of I/O Automata [Lynch 87], and
Interface Automata [de Alfaro 01]. These works are extensions to LTS, making explicit references
to interfaces and flow of communication.

The authors aim at providing a general purpose platform for verifying component systems.
The key idea is that the actions of the language, and the composition operators can be set to
match a specific domain. For example, one could want to model synchronous or asynchronous
communications, and by changing the composition operator this can be achieved.

Each component in a system is associated with a CI automaton. Components are denoted by
natural numbers n ∈ N. The components communicate through interfaces, with actions being
messages, method calls, and any relevant information needed in the specific domain.

Formalisation. A component-interaction automaton is a tuple C = (Q,Act, δ, I,S), where:

• Q is a finite set of states,
• Act is a finite set of actions, Σ = ((X ∪ {−}) × Act × (X ∪ {−})) \ ({−} × Act × {−}) where

X = {n | n ∈ N, n occurs in S}, is a set of symbols called an alphabet,
• δ ⊆ Q × Σ × Q is a finite set of labelled transitions,
• I ⊆ Q is a nonempty set of initial states, and
• S is a tuple with the subcomponents of C.

Symbols (−, a, B), (A, a,−), (A, a, B) ∈ Σ are called input, output and internal symbols of the alphabet
Σ, respectively.

• (−, a, B) means that the component B receives an action a as an input.
• (A, a,−) means that the component A sends an action a as an output.
• (A, a, B) means that the component A sends an action a as an output, and synchronously

the component B receives the action a as an input.
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The composition operator ⊗FS is parameterized by F , where F is a set of transitions. The
composition operator produces the cartesian product of components in S, allowing only
transitions appearing in F . The goal in here is to allow different communication strategies to
take place. Another way of seeing F is that it represents the binding between components, by
expressing which are the allowed communications between them.

For instance, one would like the composite automaton C composing components C1 and C2 to:
(i) allow any interleaving of actions of C1 and C2, or (ii) allow only those actions in which both
components synchronise. Each one of these would represent different composition operator
with two different set of transitions F (i) and F (ii) resp.

Nevertheless, the formalism in CI automata is not symbolic, meaning here that the automata are
not parameterized. This basically means that it is limited to finite systems, and that specifications
may not scale well in some architectures.

Another limitation is that the synchronisations between components must be static; in other
words encoding rebinding is hard. In Chapter 4 we will show our formalism in which we are
able to represent synchronisation vectors [Arnold 94] that could be used with this goal.

2.2.5 ASP

ASP [Henrio 03, Caromel 05b] is an object calculus that allows one to write parallel and
distributed applications, particularly on wide range networks, while ensuring good properties.

ASP is based on a sequential object calculus à la Abadi-Cardelli [Abadi 96] to which it adds
parallelism primitives. The main characteristics of ASP are: asynchronous communications,
futures, and a sequential execution within each process. ASP presents strong confluence and
determinism properties.

A first design decision is the absence of sharing: objects live in disjoint activities. An activity
is a set of objects managed by a unique process and a unique active object. Active objects are
accessible through global/distant references. They communicate through asynchronous method
calls with futures. A future is a global reference representing a result not yet computed. The
main result consists in a confluence property and its application to the identification of a set of
programs behaving deterministically. These results can be summarised by the following simple
assertions:

• The execution is insensitive to the moment when futures are updated.
• The execution is only characterised by the ordered list of activities that have sent requests to a given

one.
• Several approximations can be performed in order to characterise programs behaving de-

terministically. For example, every program communicating over a tree behaves deterministically.

The sequential part of ASP (all primitives except Active and S erve) is very similar to impς-
calculus [Abadi 96, Gordon 97]: ASP calculus only differs in the fact that in addition to the self
argument of methods (noted x j, usually called self), an argument representing a parameter object
can be sent to the method (y j in abstract syntax). Distinguishing method arguments is necessary
because of the copy semantics associated to them in the case of an asynchronous method call.
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The Active operator creates a new activity from the object a. The operator S erve allows to specify
which request (distant method call) should be served.

From a practical point of view, ASP can also be considered as a model of the ProActive
library [Caromel 06a]. This library provides tools for developing parallel and distributed
applications in Java, and will be cited extensively during this thesis. ProActive is the basis for
the reference implementation of the Grid Component Model (GCM) [CoreGRID 06], on which
most of this work is based on. This is detailed in Chapter 3.

Syntax of ASP. The abstract syntax of the ASP calculus is the following (li are fields names,
m j are methods names):

a, b ∈ L ::= x variable,
| [li = bi; m j = ς(x j, y j)a j]i∈1..n

j∈1..m object definition,
| a.li field access,
| a.li := b field update,
| a.m j(b) method call,
| clone(a) superficial copy,
|Active(a,m j) activates object:

m j is the service method
|S erve(M) serves a request among

a set of method labels,

M is a set of method labels specifying which request has to be served (k > 0):

M = m1, . . . ,mk

Example: Fibonacci Numbers in ASP

Consider the Process Network that com-
putes the Fibonacci numbers in [Parks 03].
Let us write an equivalent program in ASP
(in Figure 2.3). Repeat performs an infinite
loop, “;” expresses sequential composition.
Repeat, “;” and the mutually recursive

definition of activities let rec . . . and . . . can be
built from core ASP terms.
Display receives the Fibonacci numbers.
Initialization consists in sending 0 ( f ib(0))
and 1 ( f ib(1)) from Cons2 and Cons1 respec-
tively.

ASP and Component Models. In [Caromel 06b], the authors define a component model
based on ASP-calculus. It aims at distribution, featuring asynchronous remote method
invocations, and futures as generalized references passing through components.

Primitive components are defined as a set of Server Interfaces (SI) and client interfaces (CI),
together with an ASP term representing the component behavior. Intuitively, each SI corre-
sponds to a set of methods (very much like an interface in Java), each CI to a field (very much
like a member field in Java). Composite components are recursively made of primitives and
composites, with a partial binding between SIs and CIs.

Two translational semantics are proposed: one where components completely disappear in the
generated term, and the other converts each components boundary into an extra active object.
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let rec Add = Active([n1 = 0, n2 = 0;
service = ς(s, )

Repeat(S erve(set1); S erve(set2); Cons1.send(s.n1 + s.n2)),
set1 = ς(s, n)s.n1 := n, set2 = ς(s, n)s.n2 := n], service)

and Cons1 = Active([∅;
service = ς(s, ) (Add.set1(1); Cons2.send(1); Repeat(S erve(send)))
send = ς(s, n)(Add.set1(n); Cons2.send(n))], service)

and Cons2 = Active([∅;
service = ς(s, ) (Add.set2(0); Display.send(0); Repeat(S erve(send)))
send = ς(s, n)(Add.set2(n); Display.send(n))], service)

Figure 2.3: Fibonacci numbers in ASP)

Primitive deterministic components are defined by imposing that each set of interfering requests
belong to the same server interface. Finally, a deterministic composite (DCC) avoids potential
interferences by imposing at most a single binding towards a server interface. Consequently,
together with asynchronism, the component model provides a good abstraction for verifying
determinism properties.

Example: A Fibonacci Component

Figure 2.4 represents a component version
of Fibonacci example of 2.2.5. A primitive
component Add can be built up from active
object Add. Cons1 and Cons2 have been
merged in a composite component. A
controller component Cont has been added.
It exports a server interface (ComputeFib(k))
taking an integer k and forwarding k − 1

times its input to CIc. According to the
program of 2.2.5, Cons2 sends send requests
to the exported client interface, thus FIB
produces Fib(1) . . . Fib(k). Each primitive
component activity can be easily adapted
from the ASP example as shown in the case
of the Add component (AddAct).

Figure 2.4: A composite component (based on Fibonacci example)
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2.3 Specification Languages

In this section we review specification languages targetting component models, though we also
include two classic specification languages that target the specification of distributed systems in
general.

We first present the most simple kind of specification languages; Architecture Description
Languages (ADLs). They focus on architectural factors and are the most widely used in
component-based engineering. Almost every component model supports specification through
ADLs, however they rarely address behaviour. We will base the architecture definition of our
work on an ADL-like language, augmented with behavioural definition.

Then we present Behavior Protocols [Plášil 02] that provides a trace-semantics for describing the
behaviour of components. This work is inspiring specially because the authors provide a broad
application of formal methods in components; particularly they have applied the techniques
in Fractal [Kofroň 06, Bulej 08]. In the last section of this chapter we will show some of these
applications.

We include Sensoria [Sensoria 05] as an example of similar approach to Behavior Protocols for
Web Services and SCA components. However, Sensoria describes the behaviour based on π-
calculus.

STSLib [Fernandes 07] provides a formal approach similar to ours. Their formalism is based
on extensions to symbolic transition systems, and they aim at generating safe-by-construction
distributed components.

Next, we highlight UML 2 [OMG 04] as being one of the most used semi-formal specification
languages. It provides means for specifying components and their behaviour, though without a
precise semantics. Nevertheless, if UML is specialised to include a domain-specific semantics, it
could be used as a graphical specification language for formal definitions of components.

Finally, we include other two examples of specification languages for distributed systems in gen-
eral. Both LOTOS [ISO 89] and Promela [Holzmann 03, Gerth 97] provide sound specifications
that could be used for specifying components as well. Moreover, they provide direct integration
towards state-of-the-art verification engines.

2.3.1 Architecture Description Languages

The strengths of ADLs relies on its simplicity. They are light-weight languages mainly targeted
at static representations of the system topology. In ADLs, we usually find the definition of
components, their interfaces, subcomponents and bindings. Most of the component models use
ADLs to define the components at some sort of detail. The one used in Fractal will be described
in Section 3.1.1.

For defining the interfaces, ADLs are often equipped with Interface Description Languages (IDLs).
The IDLs sign the interfaces by specifying the messages, methods, and types allowed within an
interface.
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More sophisticated versions of ADLs include behavioural descriptions, however we do not
consider them as ADLs. Examples of these are ArchJava [Aldrich 02] (that we have already
described) and AEmilia [Balsamo 02]. AEmilia [Balsamo 02] is an ADL based on Stochastic
Process Algebras. It allows for behavioural and functional verification, as well as performance
modelling and analysis.

Acme. Acme [Garlan 00] is a representative of this class of specification languages. It aims
to define a generic hierarchical ADL with common foundations for ADLs, in such a way that
different analysis tools can be integrated; for example, in [Abi-Antoun 05] Acme is integrated to
work together with ArchJava (see Section 2.1.2.1).

Acme considers key elements such as: components, connectors, systems, ports, roles, representations,
and rep-maps. A component is a computation unit. A connector is an interaction among
components (a binding). A system is a closed component model, represented by a graph in
which nodes are components and arcs are connectors. A port is a point of interaction between
the component and the environment (an interface). A role is the definition of a participant in a
connection, for example caller or callee in RPC.

A representation is a more detailed description of a component; this is the way hierarchical
descriptions are described in Acme. A representation gives details of a component, and a rep-
map maps a component and the representation. Multiple views of a component is possible by
defining multiple rep-maps.

The ports can represent simple one-to-one communications, or more complex ones. It is possible,
for instance, to specify that procedures must be called in a specified order. Furthermore, it is also
possible to define multicast interfaces.

2.3.2 Behavior Protocols

The SOFA project provides a trace-semantics language called Behavior Protocols [Plášil 02] ‡ for
defining the behaviour of components. The components are specified using Component Definition
Language (CDL), which describes interfaces, frames, and architectures. It is based on the OMG
IDL [Obj 04], and extends the features found in the IDL to allow specification of software
components. Although Behavior Protocols were firstly designed to work together with SOFA
components, it can be extended to other component models such as Fractal – this is shown in
[Kofroň 06, Bulej 08].

An example of a SOFA specification in CDL is shown in Figure 2.5. The full CDL syntax can be
found at the project’s webpage [SOFA 98].

The behaviour of SOFA components is modelled via event sequences (traces) on the compo-
nent’s interfaces (connections). The event sequences are approximated and represented by
regular expressions called Behavior Protocols.

Events are written as 〈prefix〉〈interface〉.〈name〉〈suffix〉 . The prefix (!, ? or τ) expresses whether

‡The spelling of Behavior is kept in American English to maintain the style of the authors
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interface IDBServer {
void Insert(in string key, in string data);
void Delete(in string key);
void Query(in string key, out string data);

};

frame DatabaseBody {
provides:

IDBServer d;
ICfgDatabase ds;

requires:
IDatabaseAccess da;
ILogging lg;
ITransaction tr;

};

frame Database {
provides:

IDBServer dbSrv;
requires:

IDatabaseAccess dbAcc;
ILogging dbLog;

};

architecture Database version v2 {
inst TransactionManager Transm;
inst DatabaseBody Local;
bind Local:tr to Transm:trans;
exempt Local:ds
subsume Local:lg to dbLog;
subsume Local:da to dbAcc;
delegate dbSrv to Local:d;

};

Figure 2.5: Example of a SOFA specification in CDL

an event is emitted (requirement), absorbed (provides) or is an internal event. The event suffix
expresses whether an event is a request (↑) or a response (↓) to an event request.

The Protocols
The Frame protocol of a component specifies the behaviour acceptable at the interfaces. It defines
the interplay of method invocations on the provides-interfaces and reactions on the requires-
interfaces of the frame. The frame protocol is given by the system’s designer in CDL as the
example shown in Figure 2.6.

frame Database {
provides:

IDBServer dbSrv;
requires:

IDatabaseAccess dbAcc;
ILogging dbLog;

protocol:
!dbAcc.Open ;

( ?dbSrv.Insert { ( !dbAcc.Insert ;
!dbLog.LogEvent )* }

+
?dbSrv.Delete { ( !dbAcc.Delete ;

!dbLog.LogEvent )* }
+
?dbSrv.Query { !dbAcc.Query* }

)*;
!dbAcc.Close

};

Figure 2.6: Example of frame in Behavior protocols

The Architecture protocol specifies the interplay on the method invocations on the interfaces of F

and the outermost interfaces of the subcomponents in A. The architecture protocol is generated
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automatically combining the frame protocols of the subcomponents via a composition operator
ΠX .

The Interface protocol defines the acceptable order of method invocations on an interface. It is
intended to simplify a component design as it represents the behaviour of a component on a
single interface only. The interface protocol is given in the CDL specification. Although the
behaviour on the interface is also in the frame, it helps to check the correctness of the interface
ties, though only partially.

Extended Behavior Protocols

The original specification of Behavior Protocols aimed at simplicity rather than expressivity. This
is, the language was limited to traces given by regular expressions of events. Within the
language, there were no parameters of any kind; moreover, support for control structures was
hardly possible.

These issues lead to imprecise and hard to read specifications (under complex systems). Due
to the lack of data, the Behavior Protocols must specify a superset of the potential implemented
component behaviour. This means that the specification must admit impossible scenarios; the
tools may detect errors that will never occur in any implementation, and the tools may not detect
errors in some scenarios.

Moreover, Behavior Protocols lack of multi-synchronisation. This is, all synchronisations must
be one-to-one, and the result of such synchronisation is a τ (invisible) action. Therefore, once
synchronised, it is no longer possible to further synchronise on the same action.

These issues were addressed by an extension to Behavior Protocols called Extended Behavior Proto-
cols (EBP) [Kofroň 07]. The EBP language incorporates basic parameters, control structures, and
multi-synchronisations. Concretely, it includes local variables in the component specification
parameters of method call requests, switch and while statements controlled by variables, and
synchronisation of events from more than two EBP at a time. The variables are limited to finite
enumeration types.

The structure of an EBP specification can be seen in Figure 2.7.

component componentName {
types {

types definition
}
vars {

variable definition
}
behavior {

behaviour definition
}

}

Figure 2.7: Structure of the EBP specification
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The semantics of EBP are defined in a formalism called Nondeterministic Finite Automata
with Assignment [Kofroň 07], which is a formalism similar to Symbolic Transition Graphs with
Assignment [Lin 96]. The drawback of EBP compared to Behavior Protocols is that it requires:
either (i) a symbolic model-checker, or (ii) an instantiation of the parameters §.

2.3.3 Sensoria

Sensoria [Sensoria 05] is another project which provides a mathematical framework for com-
ponent interaction [Fiadeiro 06]. It targets Service Oriented Architectures (SOA) such as Web
Services and SCA (Service Component Architecture [BEA Systems 05]). Their approach is akin
with Behavior Protocols, specifying the allowed interaction within the system.

The language they provide has several operators defining how the interaction between com-
ponents takes place. It is possible to define whether the communication is synchronous
or asynchronous, in which instant the components are ready to initiate the interaction, and
transactional communication. The kind of behavioural properties they seek for is in the domain
of branching time logic with linear past [Goldblatt 87].

Sensoria is also involved with more powerful specification languages. The work on SCC (Service
Centered Calculus) [Boreale 06] provides a formalism in the scope of π-calculus, extending the
latter with higher-level primitives.

2.3.4 STSLib

STSLib [Fernandes 07] provides a formal component framework that synthesises components
from symbolic protocols in terms of Symbolic Transition Systems (STS). STSLib can be seen as a
formalism (over STS), as a component model, and as a formal framework for analysis.

STS relies on Algebraic Data Types (ADT) which are expressive formal data types. Communica-
tion of components is dealt with synchronisation vectors [Arnold 94] which allow one to encode
a large set of synchronisation primitives. Moreover, they define a symbolic product of systems,
which allow analysing the system without need of instantiation.

The communication in STS components is rather low-level for a component model; they
exchange messages in which both emitter and receiver must agree to communicate, although
there is no clear notion of required nor provided services.

STSLib also features a code generator for creating executable components. The ADTs are
transformed into Java classes, and a coordinator class implements the STS protocol.

One difficulty in this approach is that the designer must specify their datatypes in ADT, i.e. in
abstract formal formulas. Although they are very expressive, it is not aligned with the expertise
of software engineers. Moreover, it is unclear how the generated classes (from the ADTs) can be
modified while preserving the behaviour.

§In [Kofroň 07], the author refers the instantiation of parameters as parameter unwinding
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2.3.5 UML 2

The Unified Modeling Language 2 (UML 2) [OMG 04] is one of the most widely used modelling
language. UML tries to achieve compatibility with every possible implementation language.
With this goal, much of the semantics of UML is undefined; it is possible, however, to associate
a formalism and give a precise interpretation of the semantics.

UML provides thirteen types of diagrams, organised in three groups:

• Structure diagrams; these emphasise what things must be in the system being modelled.
• Behaviour diagrams; these emphasise what must happen in the system being modelled.
• Interaction diagrams; these emphasise the flow of control and data among the things in the

system being modelled. They are a subset of the behaviour diagrams.

In particular, for this thesis we are mostly interested in the Component diagrams and the Activity
and State Machine diagrams.

Component diagram. The Component diagram allows the system architect to give a high-
level architecture of the system. It shows the relationship between software components, their
dependencies and communication.

UML component diagrams feature both black box and white box views of hierarchical compo-
nent systems. UML components communicate and synchronise through well-defined (provided
and required) interfaces and connectors. The white-box view is used to specify the implementa-
tion of a component, in term of subcomponents and bindings.

As for all UML concepts, component diagrams are defined in a high-level and underspecified
semantics (with semantics variation points), in order to deal with several component models.
Also, UML 2 does not provide any methodology for using UML components, and adapting
them to more concrete models.

Activity and State Machine diagram. The State Machine diagram models the behaviour of
a single object, specifying the sequence of events that an object goes through during its lifetime
in response to events.

In the black-box view, UML specifies that a protocol state machine can be attached to each
component. This state machine defines the acceptable external behaviours of the component,
and can be used to check the behavioural correctness of component assemblies. However, this
requires to set a proper semantics for the component structures.

2.3.6 Other Non-Component Specification Languages

We describe here two languages widely used in the specification of distributed systems:
LOTOS [ISO 89] and Promela [Gerth 97]. These languages provide standard means for defining
formal processes that can be used as input in verification tools; CADP [Garavel 07] for LOTOS,
and SPIN [Holzmann 03, Holzmann 97] for Promela for example. These languages are not meant
to define components, but processes in general – in particular protocols.
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We include LOTOS and Promela as reference to classic distributed system specification. LOTOS
in particular provides a high-level description of processes that can be used as entry to model-
checkers and can generate executable code.

2.3.6.1 LOTOS

The Language of Temporal Ordering Specification (LOTOS) is an ISO (International Standards
Organisation) specification language for the formal specification of open distributed systems. It
is based on the definition of the observable behaviour of a system, using definitions from process
algebras.

There are different flavours of LOTOS, among the most used one Basic LOTOS and Full LOTOS.

Basic LOTOS. LOTOS is useful for defining the behaviour of concurrent systems. Each part
of the system is a process that can perform internal observable actions, internal unobservable
actions, and communicate / synchronise with the environment through gates. A communication
on a gate is an action, that is trigerred if all processes synchronised on the gate of interest can
perform the same action synchronously. In other words, if there are N processes synchronising
on a gate, then all N processes must synchronise or none does. Synchronisation on a particular
action includes agreeing on predicates (guards) on the action data parameters.

process
definition

process
definition

behaviour
expression

behaviour
expression

process instantiation

behaviour expression

process Max3[in1, in2, in3, out] :=

hide min in

(Max2[in1, in2, mid] |[mid]| Max2[mid, in3,out])

where

process Max2[a, b, c] :=

a; b; c; stop

[]

b; a; c; stop

endproc

endproc

Figure 2.8: Example of a process definition in LOTOS

Example of LOTOS

An example of a process definition in
LOTOS can be seen in Figure 2.8. A
process Max3 defines 4 gates (in1, in2,
in3, out). The process Max3 is composed
of two instances of the same process Max2.
We can see the instantiations of process
Max2 rename the gates (a, b, c), and

both synchronise in the common gate mid.
This gate is not seen outside Max3 as the
specification specifies that the gate is hidden.
Max2 is a process that performs either the
sequence a,b,c or the sequence b,a,c and
stops (the execution is halted).
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The complete list of basic-LOTOS behaviour expressions is given in Figure 2.9, which includes
all basic-LOTOS operators. Symbols B, B1, B2 in the table stand for any behaviour expression.
Any behaviour expression must match one of the formats listed in column Syntax.

Name Syntax
inaction stop
action prefix
- unobservable (internal) i;B
- observable g;B
choice B1 [] B2
parallel composition
- general case B1 |[g1, . . . ,g2]| B2
- pure interleaving B1 ||| B2
- full synchronisation B1 || B2
hiding hide g1, . . . ,gn in B
process instantiation p [g1, . . . ,gn]
successful termination exit
sequential composition (enabling) B1 >> B2
disabling B1 [> B2

Figure 2.9: Syntax of behaviour expressions in LOTOS

We describe here the main operators of LOTOS.

The choice operators can be deterministic or non-deterministic depending on the number of
actions that can be triggered.

A process may be constituted of a hierarchy of processes; the global behaviour of the process is
given by every possible interleaving of the internal processes. Synchronisation of two processes
can be set as either visible or invisible actions using hiding operators.

Processes can stop (terminate), or not. Upon termination, a process may start or stop another
process. The latter is the disabling operator, which can be used to interrupt a process. This
operator is very useful for representing exceptions in programming languages: a process runs
continuously in its “usual” behaviour but may be interrupted abruptly by some event.

Full LOTOS. In Full LOTOS, abstract data types (ADT) allows one to represent values, value
expressions and data structures. ADT is derived from ACT ONE [Ehrig 85]; although ADTs
give LOTOS a huge expressive power, they are too complex to be widely adopted by software
engineers. The ADTs only define the essential properties of data and operations that any correct
implementation (concrete data type) satisfies, thus one has to write formal equations defining
the algebra for the data types.

Communication including data is somehow similar to value-passing, in which an emitter
process performs an action with variables evaluated by expressions, and a receiver process
performs actions offered with unbound variables. After the synchronisation, the variables in
the receiver are bound to the values offered by the emitter. Strictly speaking, there are no
emitter and receiver; instead, communication is set by an offer-agreement between processes.
Moreover, this is done in such a way that different aspects of the system specification can be
developed independently, and can be later synchronised by the intersection of the predicates
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over actions. Therefore, LOTOS provides a high-level representation of communication that can
still be implemented by the LOTOS compiler.

Example of Full-LOTOS

An example of a Full LOTOS specification
is found in Figure 2.10. Instead of a process,
Max3 is defined as a specification. However,
it is still valid to talk about a process.
The example shows the ADT definition of
“natural”. The designer has to specify
its sort, the operations, and then formal
equations defining the abstract type. When
the system size scale up, the specifications
of these ADTs become one of the main
drawbacks of Full LOTOS. The burdon of
defining these ADTs are not akin with the

goals of software engineers.
As far as pure synchronisation is concerned,
this process has exactly the same behaviour
as its basic LOTOS version (see Figure 2.8).
However, subprocess Max2 is now able
to accept any pair of natural numbers at
(formal) gates a and b , and offer the largest
between them at gate c. Consequently,
process Max3 will accept three natural
numbers at gates in1, in2, in3, in any
order, and offer the largest of them at gate
out.

specification Max3 [in1, in2, in3, out]:noexit
(* Defines a 4-gate process that accepts three natural numbers at three input gates,
in any temporal order, and then offers the largest of them at an output gate *)

type natural is
sorts nat
opns zero: → nat

succ: nat→ nat
largest: nat, nat→ nat

eqns ofsort nat
forall x:nat

largest(zero, x) = x
largest(x, y) = largest(y, x)
largest(succ(x), succ(y)) = succ(largest(x, y))

endtype (* natural *)

behaviour
hide mid in

(Max2[in1, in2, mid] |[mid]|Max2[mid, in3, out])
where

process Max2[a, b, c] : noexit :=
a ?x:nat; b ?y:nat; c !largest(x,y); stop
[]
b ?y:nat; a ?x:nat; c !largest(x,y); stop

endproc (* Max2 *)

endspec (* Max3 *)

Figure 2.10: Example of a specification in Full LOTOS

LOTOS in Components. On the other hand, in this thesis we use LOTOS in a very
different way. We encode method calls (offer / reception of values) within LOTOS through
synchronisation. This way, the behaviour of components can be mapped as a special encoding
into LOTOS. Supposing that primitive components are monothreaded, a simple encoding is as
follows.
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• A component is associated to a LOTOS process.
• The interfaces are communication points, so they can be mapped into gates.
• Remote method calls are expressed as synchronisation on gates. They are usually encoded

as two messages, one calling the remote method, and another with the response value.
• A composite component is a process in which its external interfaces are gates seen by an

external observer, subcomponents are subprocesses, and method calls on interfaces are
communication / synchronisation between these components.

• A primitive component is a process without inner processes.

The approach that is taken in this thesis is in this vein. We shall provide the designer a high-level
language that can be finally encoded in a formal language such as LOTOS.

2.3.6.2 Promela

Promela (for Process Meta Language) [Holzmann 03, Gerth 97] is another formal specification
language. It is designed to describe distributed systems, using a C-like syntax and CSP notation.

Processes denote the concurrent activities within the system and can be created at any point.
They communicate via message channels that implement synchronous or asynchronous com-
munications. An asynchronous communication is held by buffers that store messages in a FIFO
queue, whereas a synchronous communication channel is a rendez-vous between parties.

Statements from different processes are interleaved if they can be executed independently. It is
also possible to define blocks of statements that are atomic.

Variables must be declared and their type defined. The types vary from bit, boolean, byte and
interval of integers, arrays and records. New types can be defined based on these basic ones.

Statements are executable or blocked, meaning that the process will wait on a statement until
it can be executed. Variables can be local or global, the global ones simulating shared-memory.
These determine the synchronisations.

The models specified in Promela are non-deterministic finite state machines, therefore they can
be efficiently model-checked [Holzmann 03, Holzmann 97].

2.4 Tools

We now review some tools that can be used to design and verify distributed systems. We start
by describing explicit state model-checkers tools, then symbolic model-checkers.

Finally, we present some tools to design and verify distributed components. We will stress on
tools related to the Fractal component model.

2.4.1 Finite Explicit-State Model-Checkers

CADP. The CADP [Garavel 07] is a toolbox for the design of communication protocols
and distributed systems. It provides compilers for LOTOS, both basic and full LOTOS. The
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compilation generates C code that can be used for simulation, verification, and testing purposes.

The processes in LOTOS can also be transformed into explicit representations in CADP’s internal
formal of Labelled Transition Systems (LTS), called BCG.

CADP can also verify networks of processes, that are synchronised through synchronisation
vectors [Arnold 94] which in CADP are expressed in EXP format [Lang 05]. This allows one
to define many synchronisation operators, including all those in LOTOS. CADP supports
comparison and reduction of LTSs, through various kinds of equivalences (such as strong
bisimulation, observational equivalence, delay bisimulation, or τ∗a bisimulation, branching
bisimulation, and safety equivalence) and preorder relations (such as simulation preorder and
safety preorder).

The temporal logic used is called regular alternation-free µ-calculus, which is an extension of the
alternation-free fragment of the modal µ-calculus [Kozen 85, Emerson 86] with action predicates
and regular expressions over action sequences. It allows direct encodings of CTL [Clarke 99],
ACTL [Nicola 90], and PDL [Fischer 79]. Moreover, it has an efficient model checking algorithm,
linear in the size of the formula and the size of the LTS model.

SPIN. SPIN [Holzmann 03, Holzmann 97] (for Simple ProMeLa INterpreter) is a model-
checker for the Promela [Gerth 97] language. Given a set of correctness claims and a system
description, SPIN verifies whether or not those claims hold in the system. The system is specified
in Promela, and claims are given in Linear Temporal Logic (LTL) [Pnueli 77, Manna 92].

Processes are translated into finite automata, and the global behaviour of the system is defined
as the asynchronous interleaving product of all automata which is again an automaton. LTL
formulas can be converted into Büchi automaton (as shown in [Vardi 86, Vardi 94]). Verification
is then performed by computing the product between the global system behaviour and the Büchi
automaton. If the language accepted by the resulting product is empty.

The tool supports on-the-fly verification for reachability properties in order to avoid construct-
ing the full state space, and provides partial order reduction techniques. Besides being able to be
used as an exhaustive verifier, SPIN can also be used to simulate systems. This allows designers
to early prototype their systems, or to check some scenarios when the state space is too big to be
verified by an exhaustive check.

DiVinE. DiVinE (Distributed Verification Environment [Barnat 06]) is the finite model-checker
used by Component-Interaction Automata. DiVinE supports verification of properties specified
in Linear Temporal Logic (LTL) [Manna 92]), or as processes expressing undesired behaviour
(negative claims). It also supports distributed state-space generation, and algorithms for
distributed model-checking of LTL formulas.
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Verification is done with algorithms similar to those employed by the SPIN model-checker,
however DiVinE provides distributed versions of the algorithms. DiVinE can also verify SPIN-
compatible [Barnat 05] specifications written in Promela. Thus, as DiVinE allows for distributed
verification, the authors [Barnat 05] claim that DiVinE is useful when SPIN runs out of resources.

2.4.2 Bounded Model-Checkers

Bounded model-checkers [Burch 90] unroll the finite state machines for a fixed number of steps
and check whether a property is violated or not. The steps can be progressively increased, until
the formula can be proved. In verification, the specifications can be verified using on-the-fly
model-checking. This is supported by CADP in reachability formulas, and is the only example
of bounded model-checking in CADP.

Bounded model-checking can be related to solving the satisfiability (SAT) problem [Cimatti 02],
dated back to Davis and Putnam’s earlier work in the 60s [Davis 60]. SAT is the problem of
deciding whether the variables of a propositional formula can be assigned in such a way that
the formula evaluates to true.

2.4.3 Infinite Systems Model-Checkers

There are model-checking tools that can work on symbolic representations of systems, and
thus avoid unrolling the state machines. This allows for verification of infinite systems, where
parameters are unbounded. We briefly comment on two of these tools.

FAST. Fast Acceleration of Symbolic Transition systems (FAST) [Bardin 03] performs auto-
matic verification of systems augmented with (unbounded) integer variables. It uses acceler-
ation techniques to compute the effect of iterating a control loop of arbitrary length, and uses
heuristics to find automatically the good cycles to accelerate.

TReX. A Tool for Reachability Analysis of CompleX Systems (TReX) [Annichini 01] is able
to generate the set of reachable configurations. As input, it accepts timed automata with
parameters and counter variables communicating by shared variables and lossy channels. The
automata communicate through unbounded lossy FIFO channels.

The tool performs reachability analysis on symbolic structures [Abdulla 98]. This allows
for the representation of infinite sets of configurations, and it uses acceleration techniques
for computing the (exact) effect of the iteration of control loops. Again, termination is not
guaranteed, but the tool is also able to automatically find which cycles to accelerate.

2.4.4 Design and Specification Tools for Components

Fractal GUI. Fractal GUI [FractalGUI ] is the first application released for designing Fractal
components. Its main purpose is to provide a GUI for defining component types, component
hierarchies and component bindings – basically, a GUI for handling the ADL.
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Fractal GUI has built in code generation facilities. From the system specification, it generates
the Fractal ADL descriptions, and Java code skeletons for primitive components. The skeletons
include a rough implementation of Fractal’s default non-functional controllers (life-cycle and
binding controllers), and empty methods for each method defined in the component’s server
interfaces.

F4E. F4E (for Fractal For Eclipse) [F4E ] is a recent project for designing Fractal components
within Eclipse. It supports the standard Fractal DTD, and allows one to import / export standard
ADL files. It provides a graphical layout of the component system, as well as a tree-based
outline.

GIDE. GIDE (an IDE for the Grid) [GIDE ] is currently the only graphical editor for the GCM.
It supports the GCM DTD, and allows one to import / export GCM ADL files. Being based
on GCM, it supports the definition of multicast and gathercast interfaces, though there is no
support for designing the component’s membrane. Up to version 2.10, GIDE has adopted its
own graphical notation for representing components.

GIDE also features the generation of Java skeletons. This is, however, limited to templates of the
component without any control flow code as GIDE deals only with architectural specifications of
components. Another interesting feature it provides is the ability to set a component repository.
Moreover, GIDE provides runtime monitoring facilities of GCM components.

Wombat. Wombat [Martens 06] is an analysis tool for diagnosing SCA components. The
formalism is based on Petri nets [Reisig 85]. Wombat allows for checking systems w.r.t.
functional properties, in order to have an early compatibility check. It is mainly conceived for
checking BPEL specifications of components.

A prototype of Wombat is available as a plugin to IBM’s WebSphere Integration Developer
(WID).

Topcased. Topcased [Pontisso 06] is an open-source environment primarily for the design
of critical systems. It promotes model-driven engineering and formal methods as key tech-
nologies. One of the key elements is that it is fully integrated in the Eclipse Modeling
Framework [Budinsky 04], and it applies model transformations to interface with various kinds
of verification tools and formalisms.

Among the several tools found in Topcased, we highlight the editors for designing meta-models
(AADL [SAE Standards 04], Ecore [Budinsky 04], and UML [OMG 04]); engines for model trans-
formation (ATL [Jouault 06b]); and bridges towards model-checking engines (CADP [Garavel 07]).

Topcased can be used to design, simulate and analyse components. It allows one to use UML
component diagram for an architecture specification, and endow the diagrams with the missing
semantics. The behaviour can be given in different flavours, for example by activity diagrams
or Petri Nets. It supports structured analysis, which is convenient to analyse nested systems
including its control and data flow.
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Turtle. Turtle [Apvrille 04] is a UML profile dedicated to the modelling and formal verification
of real-time systems. It initially was not targeted at component systems. However, it can be
extended to deal with the design of components such as we did in [Ahumada 07].

One of the strengths of this profile is its formal semantics. Indeed, all Turtle diagrams are first
translated into an intermediate form called TIF - Turtle Intermediate Format – from which formal
specifications in LOTOS can be generated. Moreover, the Turtle profile is supported by a (open
source) toolkit named TTool, developed by the LabSoC laboratory from GET/ENST, including
editors for various UML views of the systems, and code generators for interfacing with LOTOS
and LOTOS-RT model-checking tools. It also supports code generation that is useful for system
simulation.

2.5 Applications of Formal Methods in Components

The purpose of this section is to give the reader a general overview of some of the applications
of formal methods in component development.

Detection of Errors. Detection of errors is the most classic applications of formal methods
in components. One can check for deadlocks or interface behavioural compatibility [Allen 97,
Magee 99, Plášil 02, Carrez 03, Reussner 03].

In [Adámek 04], SOFA extends the Behavior Protocols to capture faulty computations caused by a
“bad” component composition. SOFA splits faulty computations in two categories: 1) At some
point the computation cannot continue - no continuation error which includes two specific error
types: bad activity and no activity; 2) A computation is infinite (divergency error).

Checking Equivalences. Component substitutability is an interesting application to com-
ponents. The idea is to formally check whether a component can be replaced by another one.
Behavioural substitutability in components has been addressed by Moisan et al [Moisan 03].
They build a formal framework and associate finite state machine as behaviour descriptions of
components. Then, they formalise when a machine is a safe extension or the other, by defining a
preorder relation �. If M and M′ are finite state machines, then M′ is a safe extension of M M′

has a superset of the alphabet of M, and every sequence that inputs that is valid for M is also
valid for M′, and produces the same output once restricted to the alphabet of M.

Using CI Automata, the authors of [Černá 06] propose equivalences based on the set of
observable actions. This allows the level of accuracy to be defined for each context, and
then to use bisimulation to check for compatibility. The equivalence can be relaxed to check
for implementations that provide more functionality than the one specified. The relaxed
equivalences are then of great use to check for safe substitution of (trivially not identical)
components.
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Environment Construction. Another interesting aspect of component verification is how to
check the component in a closed environment [Parı́zek 07a]. For that, one option is to manually
define the test environment and then check for compatibility problems. Of course, we would like
to have tools for creating such environment automatically. This is presented in [Parı́zek 07b]; the
work is based on the construction of an environment by inverting the component’s protocol, i.e.
by computing all the valid sequences of calls that the environment could perform.

Refinement of the Specification. In Behavior Protocols (see Section 2.3.2), specifications can
be refined in a top-down design. The idea is to substitute the top component by a refined
version of the component, whose architecture behaviour is defined by combining the frame
protocols of its subcomponents. This refinement is recursively repeated through the hierarchy
until the inner-most primitive component whose architecture behaviour protocol is determined
by its implementation. There is a relation called protocol conformance [Plášil 02, Adámek 03] that
checks if an architecture protocol is compatible with the frame protocol. This relation allows for
checking errors within the specifications. Moreover, it makes possible to automatically generate
the architecture protocols based on the frame protocols of the subcomponents.

As a component implementation is a refinement of its specification, one can expect the
implementation to provide additional services, and maybe to require others as well. Using CI
Automata (see Section 2.2.4), [Černá 06] provides definitions to check whether an implementation
is a refinement of a specification or not.

• The implementation provides (resp. requires) all the services provided (resp. required) by
the specification.

• The implementation may provide (and require) services that are beyond the specification.
• When serving the services provided (and required) by the specification, the implementa-

tion respects the specification in all observable steps.

(iii) is the most interesting; it says that the implementation must require all services used in the
specification in order to be a correct implementation. This is required because a third component
may be expecting to be called.

Performance Prediction. Another trend of interest is performance prediction. Palla-
dio [Becker 08] is a component model that allows the designer to analyse the system for testing
designs w.r.t. response time of components. Their main focus is to deal with Quality of Service
(QoS) requirements of designs. For that, Palladio uses stochastic process algebras, being useful
for doing early analysis on possible bottlenecks, simulating the system, and so on.

Another example is Klaper [Grassi 08]. Klaper focuses on performance and reliability of designs,
providing a performance model generator that can map results back to the specification.
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Software adaptation. Even if software is well specified, it is often necessary to perform some
adaption when composing components [Nierstrasz 95]. Different levels of interoperability can
be defined [Canal 06]; signature, behavioural, semantic, and service level in increasing detail
of compatibility. For each one of these, some adaptation may be required when composing
components. The signature level refers to typical IDL specifications, signing the messages
components may send and receive; therefore, a simple adaptation would map method names
of the bound interfaces. The behavioural level extends the specification saying some information
about the protocol of how these messages can be accepted. This requires one to define
more complex criteria of what is a mismatch, the most common one being deadlock-freedom
[Yellin 97]. The semantic level relates to what a component actually does, by taking into account
not only the messages, protocols, but actually what what the functional behaviour is meant to
do. The service level extends the previous levels by including as well all kinds of non-functional
requirements a component such as QoS.

Software adaptation [Inverardi 01, Canal 06] promotes the use of adaptors to make mistmatch-
ing components work together. The adaptation can be performed at any of these levels, being
automatic ones related to signature and behavioural levels [Bracciali 02, Inverardi 03, Canal 08].
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Abstract

This chapter describes the context of the
thesis.
In the previous chapter, we have presented
several component models, among them,
the Grid Component Model (GCM). This
will be the component model for the rest
of the thesis. Therefore, this chapter

complements the previous discussion.

We also present its reference implementation
based on the ProActive middleware that
provides the facilities to deploy components
in Grids. Finally, we position our work w.r.t.
the GCM.

3.1 The Grid Component Model

The GCM [CoreGRID 06] is a component model that extends Fractal to deal with Grids.
The main characteristics the GCM benefits from Fractal are its hierarchical structure, the
enforcement of separation of concerns, its extensibility, and the separation between interfaces
and implementation.

The components are distributed among the Grid, therefore, they must deal with latency.
Concretely, GCM components are loosly-coupled. Their granularity is somehow in the middle
between small grain Fractal components and very coarse grain component models, like CORBA
Component Model (CCM) [OMG 05] where a component is of a size comparable to an application.

Also, extensions to Fractal are related to communication and distribution. The GCM doesn’t
impose fixed communication semantics (e.g., streaming, file transfer, event-based). However, for
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dealing with latency, most GCM frameworks will probably prefer some kind of asynchronous
communications. Communication between components always goes through its membrane,
which is also in charge of the control of the component.

Collective communication is of great interest in the GCM, and in this sense, the GCM defines
many-to-one and one-to-many communications. Their purpose is to optimise communications in
a large-scale environment, and is useful for distribution and synchronisation of data. Contrary to
other component models, this is tightly related to the infrastructure in which components will
be deployed; Grids are constituted of thousands machines and the design of applications must
take this into account.

We will structure the following of the section as follows. In Section 3.1.1 we will show
can how define GCM components. In Section 3.1.2 we will show how GCM deals with
collective communications. Then, in Section 3.1.3 we will show how the membrane can be
structured, which will derive us with limitations in the current GCM ADL definition discussed
in Section 3.1.4.

3.1.1 Architecture Description Language

The architecture in both Fractal and GCM is defined by an Architecture Description Language
(ADL). It is an XML-based format, defined by a DTD, that contains both the structural
definition of the system components (subcomponents, interfaces and bindings), and some
deployment concerns. Deployment relies on virtual nodes (VN) that are an abstraction of the
physical infrastructure on which the application will be deployed. The ADL only refers to
an abstract architecture, and the mapping between the abstract architecture and a real one is
given separately as a deployment descriptor. In this thesis, we don’t take into account the
infrastructure because we rely on the middleware for that. We consider that a component is
a unit of distribution, and that the component may latter be mapped to the infrastructure.

The ADL allows the designers to describe component types, component implementations,
component hierarchies and component bindings. Basically, the information found in an ADL
allows one to describe a component by its interfaces, subcomponents, bindings, and possibly
the class that implements its content. The interfaces are signed using yet another language, so-
called Interface Description Language (IDL). For the implementations we are interested in, the
IDLs are simply Java interfaces that sign an interface with their set of methods.

Both composite and primitive components are defined by an ADL, either in the form of a
hierarchical definition with the complete system, a separate definition for each component,
or a mixture of both. We briefly exemplify an ADL for the system in Figure 3.1. The
ADL of a primitive component is described in Figure 3.2, and the ADL of a composite
component is described in Figure 3.3. The composite component (Figure 3.3) shows 2 flavours of
subcomponents definitions. The first one, PrimitiveOnLeft, is a reference to an external definition,
whereas the second, PrimitiveOnRight, is defined inline in a hierarchical fashion.
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Figure 3.1: A composite component as defined in Fractal Specification

<definition name="PrimitiveOnLeft">
<interface name="a" role="server" signature="I"/>
<interface name="b" role="client" signature="J"/>
<interface name="d" role="client" signature="L"/>
<content class="PrimitiveOnLeftImpl"/>

</definition>

Figure 3.2: ADL of PrimitiveOnLeft (a primitive component)

<definition name="Composite">
<interface name="a" role="server" signature="I"/>
<interface name="b" role="client" signature="J"/>
<interface name="d" role="client" signature="L"/>
<component name="client" definition="PrimitiveOnLeft"/>
<component name="PrimitiveOnRight">
<interface name="c" role="client" signature="K"/>
<interface name="d" role="server" signature="L"/>
<content class="PrimitiveOnRightImpl"/>

</component>
<binding client="this.a" server="PrimitiveOnLeft.a"/>
<binding client="PrimitiveOnLeft.b" server="this.b"/>
<binding client="PrimitiveOnLeft.d" server="PrimitiveOnRight.d"/>
<binding client="PrimitiveOnRight.c" server="this.c"/>

</definition>

Figure 3.3: ADL of Composite (a composite component)

3.1.2 Supporting M to N Communications

To meet the specific requirements and conditions of Grid computing for multiway communi-
cations, Multicast and gathercast interfaces give the possibility to manage a group of interfaces
as a single entity, and expose the collective nature of a given interface. Multicast interfaces
allow method invocation and their parameters to be distributed to a group of destinations,
whereas, symmetrically, gathercast allow method invocations toward the same destination to
be synchronised.
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Multicast Interfaces: 1 to N Communications
Multicast interfaces provide abstractions for one-to-many communication. Multicast interfaces
can either be used internally to a component to dispatch an invocation received by the
components to several of its sub-entities, or externally to dispatch invocations emitted by the
component to several clients.

Figure 3.4: Multicast interfaces

A single invocation on a multicast interface is transformed into a set of invocations. These
invocations are forwarded to a set of connected server interfaces (Figure 3.4). The semantics
concerning the propagation of the invocation and the distribution of parameters are customis-
able. The result of an invocation on a multicast interface - if there is a result - is a list of results.
Invocations on the connected server interfaces may occur in parallel, which is one of the main
reasons for defining this kind of interface: it enables parallel invocations.

Typical examples of multicast are:

• broadcast: send the same message with the same parameters to each of the N server
interfaces;

• select: send a single message to one of the connected server interfaces;
• round-robin: the argument is split, and one call is made with each piece of the argument

(those messages are distributed in a cyclic way);
• scatter: same as round-robin except that the argument is necessarily split into N pieces and

thus each server interface receives a single message.

Gathercast interfaces: M to 1 Communications
Gathercast interfaces provide abstractions for many-to-one communications. Both gathercast
and multicast interface definitions and behaviours are symmetrical [Badrinath 00].

Gathercast interfaces can either be used internally to a component to gather the results of several
computations performed by several sub-entities of the component, or externally to gather and
synchronise several invocations made toward the component.

Gathercast interfaces gather invocations from multiple source components, and invoke a
single call on the bound interface (Figure 3.5). A gathercast interface coordinates incoming
invocations before continuing the invocation flow. The default behaviour is to synchronisation
barriers, gather incoming data, and redistributed the return values to the invoking components.
However, just as in multicast interfaces, this behaviour can be customised.
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Figure 3.5: Gathercast interface

3.1.3 Structuring the Membrane

Components running in dynamic environments need to adapt in order to cope with the needs.
In Fractal and GCM (Grid Component Model) component models, adaptation mechanisms
are triggered by the non-functional (NF) ∗ part of the components. The NF part, called the
membrane, is composed of controllers that implement the NF concerns. Instead of an arbitrary
implementation of the membrane, it is possible to apply the same structuring techniques
inherited from component-oriented designs. Such a structure is presented in [Baude 07] for the
GCM, and is highly inspired by the work done in AOKell [Seinturier 06]. In GCM, however, the
NF components are considered as full-fledged components, having an active object of its own.

Example

Figure 3.6 considers a naı̈ve solution for
securing communications. The secure com-
munications are implemented by three com-
ponents inside the membrane: Interceptor,
Decrypt, and Alert. First, the incoming
messages are intercepted by the Interceptor
component. It forwards all the inter-
cepted communications to Decrypt, which
can be an off-the-shelf component (written
by cryptography specialists) implementing
a specific decryption algorithm. The De-
crypt component receives a decryption key
through the non-functional server interface
of the composite (interface denoted by

number 1 in Figure 3.6). If it succeeds to
decrypt the message, the Decrypt component
sends the message to the internal functional
components, using the functional internal
client interface (interface denoted by num-
ber 2 in Figure 3.6). If a problem during
decryption occurs, the Decrypt component
sends a message to the Alert component. The
Alert component deals with the decryption
failures, for example, it can demand the
sender to resend the message. This is done
using the non-functional client interface
(interface denoted by number 3 in the
Figure 3.6).

3.1.4 Limitations of the GCM ADL

In the current state of the GCM ADL definition, there are some limitations of what can be
expressed. The language is not powerful enough to define the full set of features found in
the GCM. The ADL can certainly be extended to cope with most of the limitations listed here,

∗In other contexts, NF refers to other kinds of concerns, like security, QoS, performance. Some of these
could be addressed here, but in the GCM the usual controllers are those dealing with the component
life-cycle, the reconfiguration of the content, and by extension all “autonomic” features (self-healing, self-
optimising, etc).
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Figure 3.6: A composite membrane implemented by components

however this would require modifying at least the ADL parser within the middleware which is
not the interest of this thesis. We enumerate the limitations concerning our model.

1. There are no component types and instances. A component definition in the ADL is at
the same time a definition and a runtime instance. In other words, there is no such thing
as a component type and instance of a type, though it can be somehow “simulated”: a
component type is defined in a file, and instances of this type reference the file within the
“definition” attribute.

2. It is not possible to define internal interfaces. All interfaces in the ADL are considered as
external interfaces. This is a major flaw in the GCM ADL as it is not possible to define
interceptors explicitly for the same reason.

3. Non-functional components in the membrane are not standard.

Even if in [Baude 07] the authors proposed an extension to the ADL that handles a broader
set of features, it is not yet standardised. Moreover, the proposition [Baude 07] is still unable
to express internal interfaces, and interceptors; therefore, it will certainly be modified before
reaching a standard.

3.2 GCM/ProActive

The reference implementation of the GCM is built upon ProActive as presented in [Baduel 06].
We review first how ProActive works (in the frame of active objects), and then relate to the
implementation of the GCM.
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3.2.1 ProActive

ProActive [Caromel 06a] is a pure Java implementation of distributed active objects with
asynchronous remote method calls and replies by means of future references. A distributed
application built using ProActive is composed of several activities, each one having a distin-
guished entry point, the active object, accessible from anywhere. All the other objects of an
activity (called passive objects) can not be referenced directly from outside. Each activity owns
its own and unique service thread and the programmer decides the order in which requests are
served (or not). Each activity has a pending queue where the incoming requests are dropped.
Requests are asynchronous method calls addressed to the active object, and should be served
by the service thread. The requests are sent using a rendez-vous phase so there is a guarantee of
delivery and of order between incoming calls. During the rendez-vous a future (reference to the
future result) is created on the sender side thus allowing asynchrony. The responses are always
asynchronous; their synchronisation is done by a mechanism called wait-by-necessity.

Passive object ActivityActive object

Object referenceRequest Queue Future

y = OB.m(~x)

serve(m(~x))

value of y

OA

OB

A
B

QA

QB

f
2

3

1

Figure 3.7: Example of two activities communicating in ProActive

Figure 3.7 shows an example consisting of two activities, each one having a single active object
(entry points OA and OB) and a set of passive objects.

The method calls to active objects behave as follow:

1. When an object makes a method call to an active object (y = OB.m(~x)), the call is stored in
the request queue of the called object (QB) and a future reference is created and returned
(y references f ). A future reference encodes the promised return value, i.e. the result not
yet available of a method call to an active object.

2. At some point of the execution, the called activity decides to serve the method call
(serve(m(~x))). The request is taken from the queue and the method is executed.

3. Once the method finishes, its result is updated, i.e. the future reference ( f ) is replaced
with the concrete method result (value of y).
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When a thread tries to access a future reference before it has been updated with the concrete real
value, it is blocked until the update takes place (wait-by-necessity mechanism).

A developer can specify the policy on how to chose the requests to serve from the queue. In
practice this is done by implementing the runActivity method which is executed as soon
as the activity starts. The ProActive API provides several versions of serve methods (such as
blocking/unblocking serve, FIFO/LIFO order or based on queue filters among others). When
runActive is not provided by the user, the ProActive middleware implements a default FIFO
policy.

The ASP-calculus [Henrio 03, Caromel 05b] has been defined to provide a model for the
ProActive library and the aspects presented above. The most notable results that are used in
this thesis are the ones related to the future update. Concretely, in it proved in ASP that the
different update strategies have equivalent behaviours. In other words, ASP proves confluence
of future update. Therefore, the different future update strategies have only effects in the
system performance. Another important aspect of the implementation is that there is no shared
memory. This is central to maintain the confluence properties on future updates coming from
ASP-calculus.

3.2.2 ProActive’s implementation of the GCM

ProActive provides the reference implementation of the GCM. Components become active in
the same way than ProActive’s active objects: their membrane has a single non-preemptive
control thread which serves, based on different serving policies, method requests from its unique
pending queue. In fact, a composite component is only a dispatcher of services: requests from
the environment to its external server interfaces (including control requests) are dispatched to
inner components; similarly, calls coming from the content through its internal client interfaces
are dropped to the component’s request queue, and will be later dispatched towards the
environment.

A graphical view of a composite is shown in Figure 3.8.

Active
Object
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Subcomponents C

runActivity()

C.sEI
QueueC

C.cEI

ILF

ELF EBC

ELF EBC

C.sIEC.cIE

SubCk.sEI SubCk.cEI

SubCk

Figure 3.8: Implementation of a composite component in ProActive
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In the case of a primitive component, there is a unique active object that serves the requests.
A primitive component can be seen as an active object in which the communication with the
environment is defined through interfaces. Moreover, a primitive component is monothreaded.

In the case of a composite component, there is a unique active object in the component
membrane that serves the requests, and dispatches the requests to the bound interface related
to the service. The policy of how to serve requests is, however, always FIFO for composite
components. The idea is to minimise the complexity of the component by leaving composite
components as composing agents.

To sum up, requests to other components are method calls on client interfaces, implemented via
a rendez-vous protocol. Therefore, there is a delivery guarantee, and a order conservation of
incoming calls. The responses (when relevant) are always asynchronous with replies by means
of future references; their synchronisation is done by a wait-by-necessity mechanism.

3.2.3 Discussion on GCM Components and Futures

Futures are not in components only for convenience. In fact they play a major role in allowing
for hierarchical composition. The primitive components in GCM are monothreaded, meaning
there is a single thread that processes calls in the component’s request queue. Because of that,
without futures the system would systematically deadlock if the topology of request calls is not a
DAG (Directed Acyclic Graph). Concretely, a request call could not trigger an outgoing request,
i.e. if-ever a request call enters and leaves a component, the system will block. Futures also
allow further concurrency without introducing explicit synchronisation primitives.

If communications occurring over the bindings are synchronous, i.e. the caller component
will immediately block until the request call is treated, then the interfaces can be accessed
as usual objects, having methods with parameters and a return type. When components are
connected asynchronously, one must find a way to create a channel for the objects returned
by the components. Futures can be used as identifier of the asynchronous invocations over
components. Indeed, futures provide some kind of transparent channels that correspond to the
original bindings, but taken in the opposite direction: from the server to the client.

Components as an Abstraction for Distribution. Components relieve us from a difficult
analysis task: in a distributed object-oriented language with implicit futures, it is difficult to
identify the communication and the creation points of futures. Indeed, asynchronous method
calls are syntactically similar to local ones, and distinguishing one from the other can only be
the result of a static analysis step which is by nature imprecise, consequently identifying the
points where futures are created is also difficult. In a distributed component model like the
GCM, however, the only method invocations that are asynchronous are the ones performed on
interfaces. The topology of distribution and communication is directly given by the component
structure.

Unfortunately, although the component model provides a good abstraction for distribution and
specifies which calls are asynchronous, the flow of futures is still hard to approximate. In other
words, the component abstraction tells us where futures are created but not where they can go.
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The dynamic and transparent nature of futures implies that each result and each parameter of an
invocation may contain a future; thus the only safe assumption for parameters and results is that
any object received can be a future, and every field of this object can itself be a future. This leads
to a very imprecise approximation of the synchronisation in the system; this over-approximation
can always be improved by static analysis (when the system is closed), or by specification, as we
will propose in Section 5.5.

3.3 Evaluation of Specification Languages

Although some of the specification languages found in the literature address the formal
specification of components, they are not adequate to the specification of GCM components.
Most specification languages describe the component behaviour as the events performed by the
components. For instance this is the case for Behavior Protocols, Java/A and ArchJava. If we try
to apply similar techniques to GCM components, the specification will end up being a complex
mesh of events. Now we detail some of the issues in current specification languages when in
comes to the GCM.

Architecture Specification. The architecture in GCM extends from Fractal, and thus has
to deal with non-functional aspects. We do not see many difficulties in adapting current
approaches to the GCM architecture specification, though we do have to provide new operators
for dealing with the non-functional components and collective communications (one-to-many
and many-to-one).

Moreover, we find a good idea to use the same language to define the architecture and the
behaviour as done in Java/A and ArchJava. Having architectural primitives in the language is
the basis for allowing the behaviour to reconfigure the application (in autonomic computing for
instance), or to express user-given reconfiguration on-demand which are not available in Java/A
though partially in ArchJava.

Performing remote method calls. In Behavior Protocols we can easily express remote
method calls as an event, however, care must be taken with the future result. There will be
an event for receiving the result value and another (local) event accessing the future. As the
result can arrive at any time, this event would be interleaved with many other events that may
be performed by the component, and therefore it is complex.

If we take the work on Java/A and ArchJava, similar problems could be cited. Communications
are not meant to be asynchronous, and there is no high-level mechanism to deal with the
reception of the value.

Non-component specification languages such as LOTOS and Promela would even aggravate
these issues. They do not provide language primitives to refer to interfaces and method calls.
These require a manual encoding given by the designer, which is error-prone and complex.
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Data-driven synchronisation model. The GCM reference implementation, GCM / ProActive,
is based on a data-driven synchronisation model. Moreover, as futures can be transmitted,
components may have to synchronise with components to which they are not bound (but share a
computation path). We found no specification language that could be used in this aspect. Again,
we would require a manual encoding of this behaviour that is not aligned with our goals.

High-level view of the component behaviour . Distributed components such as the ones
in GCM are usually loosely coupled and their behaviour is characterised by services offered
to the environment. It is convenient, therefore, to have a specification language that provides
one the with an abstraction of the services offered by the component and afterwards, once the
designer has decided to use one of the services, the details of this service of interest.

We could not find such approach in any of the specification languages in the literature. The
closest is the use of sub statemachines in UML where the behaviour can be detailed separately.
Similar approaches can be taken in LOTOS and Promela, though these must be handled by the
designer as there is no given structure organising the behaviour specification.

Syntax and Semantics. Another important aspect is that usually specification languages
require some expertise in formal methods. In Behavior Protocols, as the language is based on
regular expressions we can expect the software engineer to rapidly adopt the formalism. On the
contrary, the Algebraic Data Types found in STSLib are too complex and will hardly be known
beforehand by the software engineer.

The solution provided in Java/A and ArchJava seems promising. The use of an augmented
Java compiler does provide the software engineer with “natural” syntax. However, on one
hand Java/A is limited to the expressive power of LTSs which we believe is insufficient to
easily describe the behaviour of distributed components (because of the problems related to
asynchronous communications described above). On the other hand, being based on the π-
calculus, ArchJava is complex and exposes formalisms that are not necessarily mastered by our
target users.

The non-component specification languages LOTOS and Promela are both high-level formalism,
but cannot be considered specification languages for components. They are highly influenced
by process algebras and thus are quite distant from usual programming languages.

Model and Code Generation. We believe that a good strategy for developing components
and hidding the complexity of formal methods is through synthesis of safe-by-construction
components. That is, to first define their behaviour, to verify it against the user requirements,
and then to generate code with guaranteed behaviour. These steps require one to generate the
behavioural models for the specification and afterwards to generate runtime code.

This approach is close to the approach used in STSLib though they do require software
engineers to master formal methods. On the contrary, Behaviour protocols does not envision the
generation of safe-by-construction code. Instead, they rather check whether an implementation
conforms to its specification. In Java/A and ArchJava the approach is to use a modified Java
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compiler to use the same sources for both verification and runtime, though only a small part of
the code is used for verification.

3.4 Positioning

Most difficulties in the specification of GCM components come when specifying the interaction
between futures, synchronisations, and the request queue. The transparent futures alleviate
the programmer from synchronisation difficulties from a programming language point of view.
Nevertheless, specifying and/or inferring about the synchronisations is complex. The use of
traditional specification languages would require a manual encoding of the behaviour of these,
meaning that the designer would need to specify:

• w.r.t. the services provided by a component:
– how are the services provided;
– what does a service do, i.e. how the service affects the control and data flow of the

component system.
• w.r.t. futures:

– which variables are futures;
– when these futures are updated (by explicit encoding of an update event);
– when access to a future is blocking or non-blocking (by tracking the first access to

the future);
– which method arguments contain futures, and how they affect the callee;

• w.r.t. request queue:
– how the component synchronises with its request queue.

Figure 3.9: Positioning of the Framework

The goal of this thesis is to develop a framework on which designers may rely for specifying,
verifying, and prototyping the system (see Figure 3.9) For specifying the system, we will develop
a novel specification language, designed in such a way that we will still be able to verify the
system, and to prototype the system. Because of these objectives, we will work on a formalism
that allows us to define behavioural models that can be created from the specification of GCM
components. Finally, for prototyping the system, we will work on code generators that will
provide skeleton code for GCM components, starting from their specification.
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Abstract

This chapter presents the formalism used in
this thesis. It is a formal and parametric
behavioural model called pNets. This
formalism is an extension of synchronisation
vectors [Arnold 94] to deal with value-
passing, families of processes.

The pNets formalism was previously pre-
sented in the theses of Boulifa [Boulifa 04]
and Barros [Barros 05]. In this thesis,
however, we formalise pNets, and use this
later in Chapter 6 during the behavioural
model generation of GCM components.

Motivation

In this chapter we give the formal definition of our intermediate language that we call
parameterized Networks of Synchronised Automata (pNets). This language is not a new calculus
in the tradition of theoretical computer science that gave birth to λ-calculus, π-calculus, or σ-
calculus, on which we would build new theories or new languages; nor is it a new process
algebra endowed with syntax, semantics, and equivalences, that could be used to study new
constructs for distributed computing. Rather, pNets give an intermediate and generic formalism
intended to specify and synchronise the behaviour of a set of automata. We built this model with
two goals: give a formal foundation to the model generation principles that we developed for
various families of (distributed) component frameworks, and build a model that would be more
machine-oriented and serve as a versatile internal format for software tools. This meanss that
it must be both expressive (from the universality of synchronised LTSs) and compact (from the
conciseness of symbolic graphs).

83
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The synchronisation product introduced by Arnold & Nivat [Arnold 94] is both simple and
powerful, because it directly addresses the core of the problem. One of the main advantages of
using its high abstraction level is that almost all parallel operators (or interaction mechanisms)
encountered so far in the process algebra literature become particular cases of a very general
concept: synchronisation vectors. We structure the synchronisation vectors as parts of a
synchronisation network. Contrary to synchronisation constraints, the network allows dynamic
reconfigurations between different sets of synchronisation vectors through a transducer LTS. Our
definition of the synchronisation product is semantically equivalent to the one given by Arnold
& Nivat.

At a next step, we use Lin’s [Lin 96] approach for adding parameters in the communications
events of both transition systems and synchronisation networks. These communication events
can be guarded with conditions on their parameters. Our agents can also be parameterized to
encode sets of equivalent agents running in parallel. This leads us to the definition of pNets,
that will later appear as a natural model of software systems. Indeed they correspond to
the way developers specify or program these systems: the system structure is parameterized
and described in a finite way (the code is finite), but a specific instance is determined at each
execution, or even varies dynamically.

The results of this chapter were published in [Barros 08].

4.1 Networks of Synchronised Automata

We now give the formal definitions of the model in two steps. In order to uniform notations, we
first define LTSs, Nets, and synchronisation product; these definitions are equivalent to those
found in the literature. Then we give the definitions of our parameterized structures (pLTS and
pNet), and of their instantiations; their semantics are in terms of standard (infinite) LTS.

Notations

In the following definitions, we extensively
use indexed structures (maps or vectors)
over some countable indexed sets. The
indexes will usually be integers, bounded
or not. When this is not ambiguous, we
shall use abusive vocabulary and notations
for sets, and typically write “indexed set
over J” when formally we should speak of
multisets, and still better write “mapping
from J to the power set ofA”.

We use uppercase letters A,B,I,J,. . . to range
over sets, and lowercase letters a,b,i, j,. . . to
range over elements of the sets. We write
ÃJ for an indexed multiset of sets (ÃJ =

〈A j〉 j∈J), and ãJ for an indexed multiset of
elements (ãJ = 〈a j〉 j∈J), where J can possibly
be infinite. For indexed sets of elements or
sets, we say ãJ = b̃I ⇔ J = I ∧ ∀ j ∈ J, a j =

b j (element-wise equality). We write 〈a.ãJ〉

for the concatenation of an element a at the
beginning of an indexed set, x̃J = ẽJ for an
indexed set of equations (〈x j = e j〉 j∈J), e{x̃J ←

ẽJ} for the parallel substitution of variables
x̃J by expressions ẽJ within expression e.
As part of our abusive notation, we ex-
tensively, and sometimes implicitly, use
the following definition for indexed set
membership: ãJ ∈ ÃJ ⇔ ∀ j ∈ J, a j ∈ A j.
Cartesian product is naturally extended to
indexed sets so that the following is verified:
a0 ∈ A0 ∧ ãJ ∈ ÃJ ⇒ 〈a0.ãJ〉 ∈

∏
j∈{0}∪J A j

We use the usual notions from (typed) term
algebras: operators, free variables, closed and
open terms, etc. Term algebras are endowed
with a type system, that include at least
a distinguished Boolean type and an Action
type.

We write s
α
−→ s′ for (s, α, s′) ∈→.
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4.1.1 Labelled Transition System

We model the behaviour of a process as a Labelled Transition System (LTS) in a classical way
[Milner 89]. The LTS transitions encode the actions that a process can perform in a given state.

DEFINITION 5 (LTS)
A LTS is a tuple (S , s0, L,→), where

• S (possibly infinite) is the set of states,
• s0 ∈ S is the initial state,
• L is the set of labels,
• → is the set of transitions: →⊆ S xLxS .

4.1.2 Synchronisation Network

We define Nets in a form inspired by [Arnold 94], that are used to synchronise a (potentially
infinite) number of processes.

DEFINITION 6 (NETWORK OF LTSS)
Let Act be an action set. A Net is a tuple 〈AG, J, ÕJ ,T 〉, where

• AG ⊆ Act is a set of global actions,
• J is a countable set of argument indexes,

– each index j ∈ J is called a hole and is associated with a sort O j ⊂ Act

• T is the transducer LTS (S T , s0T , LT ,→T ), and
– LT = {

−→v = 〈ag.α̃I〉. ag ∈ AG, I ⊆ J ∧ ∀i ∈ I, αi ∈ Oi}

Explanations

Nets describe dynamic configurations of
processes, in which the possible synchro-
nisations change with the state of the Net.
We call transducer the additional process
in the Net in charge of controlling and
synchronising the others, in a sense similar
to the Lotomaton expressions [Lakas 96,
Najm 92]. Lotomaton has been used to give
the operational semantics of (open) LOTOS
expressions.
A transducer in the Net is encoded as
a LTS which labels are synchronisation
vectors (−→v ), each describing one particular
synchronisation between the actions (αI) of
different argument processes, generating a
global action ag. Each state of the transducer

T corresponds to a given configuration
of the network in which a given set of
synchronisations is possible. Some of those
synchronisations can trigger a change of
state in the transducer leading to a new con-
figuration of the network; that is, it encodes
a dynamic change on the configuration of
the system.
We say that a Net is static when its
transducer contains only one state. Note
that each synchronisation vector can define
a synchronisation between one, two or more
actions from different arguments of the Net.
When the synchronisation vector involves
only one argument, its action can occur
freely.

DEFINITION 7 (SYSTEM)
A System is a tree-like structure which nodes are Nets, and leaves are LTSs. At each node a partial
function maps holes to corresponding subsystems. A system is closed if all holes are mapped, and open
otherwise.
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DEFINITION 8 (SORT)
The Sort of a system is the set of actions that can be observed from outside the system. It is determined
directly by its top-level structure:

• L for a LTS: Sort(S , s0, L,→) = L,
• AG for a Net: Sort(〈AG, J, ÕJ ,T 〉) = AG.

As this is often the case in process algebras, sorts here are determined statically as an explicit
component of the structure, and are upper approximations of the set of actions that the system
can effectively perform. The precision of this approximation depends naturally on the specific
model generation procedure, but in most cases an exact computation is not possible.

4.1.3 Building hierarchical Nets

A Net is a generalised parallel operator. Complex systems are built by combining LTSs in a
hierarchical manner using Nets at each level. There is a natural typing compatibility constraint
for this construction, in term of the sorts of the formal and actual parameters. The standard
compatibility relation is Sort inclusion: a system Sys can be used as an actual argument of a
Net at position j only if it agrees with the sort of the hole O j (Sort(Sys) ⊆ O j). Here also, the
compatibility relation may depend on the language or formalism that is modelled; for example
if actions represent Java-like method calls, the compatibility could take into account sub-typing.

“Adaptation” of the Sort could also be easily implemented as an intermediate Net, containing
only synchronisation vectors with a single active argument. This can express any kind of
mapping between Sorts, and especially any combination of relabelling and hiding.

Our behavioural objects being LTSs, and Nets being operators over LTSs, it is natural to give their
semantics in terms of products over LTSs. The definition of the synchronisation product below
conversely, defines the LTS representing any closed Net expression, computed in a bottom-up
manner. It is also possible to define a symbolic product over Nets that would reduce any open
Net expression to a single Net, in the spirit of [Lakas 96], but this is not necessary for our goals.

DEFINITION 9 (SYNCHRONISATION PRODUCT)
Given an indexed set P̃J of LTSs
P̃J = (S̃ J , s̃0J , L̃J , →̃J), and a Net 〈AG, J, ÕJ , T = (S T , s0T , LT ,→T )〉, such that ∀ j ∈ J, L j ⊆ O j, we
construct the product LTS (S , s0, L, →), where

• S =
∏

j∈{T }∪J S j,
• s0 = 〈s0T .s̃0J 〉,
• L ⊆ AG,
• and the transition relation→ is defined as:

s
lt
−→ s′ ⇔

s = 〈st.s̃J〉 ∧ s′ = 〈s′t .s̃
′
J〉 ∧

∃st
〈lt .α̃I〉
−−−−→ s′t ∈→T , ∃I ⊆ J, ∀i ∈ I, si

αi
−→ s′i ∈ →i ∧ ∀ j ∈ J\I, s j = s′j
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Explanations

The result of the product is also a LTS,
built upon the cartesian product of the LTSs
used as arguments and the transducer {T } ∪
J. The transitions of the product are those
described by the synchronisation vectors of
the transducer.

Moreover, as the producer is a LTS, it can
in turn be synchronised with other LTSs in
a Net. This property enables us to have
different levels of synchronisations, i.e. a
hierarchical definition for a system.

4.2 Parameterized Networks of Synchronised Automata

Next we enrich the above definitions with parameters in the spirit of Symbolic Transition Graphs
[Lin 96]. We start by giving the notion of parameterized actions. We leave unspecified here the
constructors and operators of the action algebra, they will be defined together with the mapping
of some specific formalism to pNets.

4.2.1 Parameterized Labelled Transition Systems

DEFINITION 10 (PARAMETERIZED ACTIONS)
Let V be a set of names, LA,V a term algebra built over V , including the constant action τ. We call:

• v ∈ V a parameter,
• a ∈ LA,V a parameterized action,
• BA,V the set of boolean expressions (guards) over LA,V .

Example

In Milner’s Value-passing CCS [Milner 89]
the action algebra has constructors “tau”,
“a” for input actions, “’a” for output
actions, “a(x)” for parameterized actions.

Then “’out(3)” is a closed output action
term, “a(x,y)” an open input action term
with parameters x and y, and “x+y=3” a
guard.

DEFINITION 11 (PARAMETERIZED LTS)
A parameterized Labelled Transition System (pLTS) is a tuple (V, S , s0, L,→), where:

• V is a finite set of parameters, from which we construct the term algebra LA,V ,
• S is a set of states; each state s ∈ S is associated a finite indexed set of free variables fv(s) = x̃Js ⊆ V ,
• s0 ∈ S is the initial state,
• L is the set of labels,→ the transition relation→⊂ S × L × S

• Labels have the form l = 〈α, eb, x̃Js′:= ẽJs′ 〉 such that if s
l
−→ s′, then:

– α is a parameterized action.
∗ the action defines input iv(α), possibly defining new variables iv(α) ⊆ V ;
∗ the action defines output oe(α) using action expressions.

– eb ∈ BA,V is the optional guard,
– the variables x̃Js′ are assigned during the transition by the optional expressions ẽJs′ with the

constraints:
∗ fv(oe(α)) ⊆ iv(α) ∪ x̃Js

∗ fv(eb) ∪ fv(ẽJs′ ) ⊆ iv(α) ∪ x̃Js ∪ x̃Js′
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Philo:runActivity

!Ext.request(Think)

!Ext.request(Eat)

!FG.request(f1,Take)

?FG.getValue(f1,Take)

!FD.request(f2,Take)getValue(f2,Take)
?FD.

request(Drop)
!FD.

!FG.request(Drop)

PhiloRunActivityLTS = 〈V, S , s0, L,→〉
with:

V = { f1, f2}

S = {si}, i ∈ [0:7]

L= { !Ext.request(Think), !Ext.request(Eat),
!FG.request( f1,Take), ?FG.getValue( f1,Take),
!FD.request( f2,Take), ?FD.getValue( f2,Take),
!FG.request(Drop), !FD.request(Drop) }

→ such that:
s0 : !Ext.request(Think) → s1,
s1 : !FG.request( f1,Take) → s2

...

Figure 4.1: Example of a pLTS

Example

Figure 4.1 is based on an implementation
of the philosophers problem in ProActive.
It represents the pLTS for the body be-
haviour of a Philo component (we will see
in Chapter 6 how we generate behaviour
models for these kind of components).
The action alphabet used here reflects
the communication schema: each remote

request sent by the body has the form
“!dest.request( f ,M( ˜arg))”, where dest is
the remote reference,M is the method name,
with parameters ˜arg, and f is a future
reference. More precisely, f is the identifier
of the future proxy instance. Requests that
do not require a response do not use a future
proxy.

4.2.2 Parameterized Synchronisation Networks

DEFINITION 12 (PARAMETERIZED NETWORKS)
A Parameterized Network (pNet) is a tuple 〈V, pAG, J, p̃J , ÕJ ,T 〉, where:

• V is a set of parameters,
• pAG ⊂ LA,V is a set of (parameterized) external actions,
• J is a finite set of holes, each hole j being associated with (at most) a parameter p j ∈ V and with a

sort O j ⊂ LA,V .
• T is the transducer LTS (S T , s0T , LT ,TT ), which transition labels (−→v ∈ LT ) are synchronisation

vectors of the form: −→v = 〈ag, {αt}i∈I,t∈Bi〉 such that:
– I ⊆ J

– Bi ⊆ Dom(pi)
– αi ∈ Oi

– f v(αi) ⊆ V

Explanations

Each hole in the pNet has a parameter p j,
expressing that this “parameterized hole”
corresponds to as many actual arguments
as necessary in a given instantiation of its
parameter (we could have, without chang-
ing the expressivity, several parameters per
hole). In other words, the parameterized
holes express parameterized topologies of

processes synchronised by a given Net. Each
parameterized synchronisation vector in
the transducer expresses a synchronisation
between some instances ({t}t∈Bi ) of some of
the pNet holes (I ⊆ J). The hole parameters
being part of the variables of the action
algebra, they can be used in communication
and synchronisation between the processes.
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A static pNet has a unique state, but it has state variables that encode some notion of internal
memory that can influence the synchronisation. Static pNets have the nice property that they
can be easily represented graphically. Such graphics are described in previous publications to
represent parameterized processes in the Autograph editor [Madelaine 92].

Ext: {Think, Eat}

Ph: {take?, take!, drop?}

Fork [k]

FG: {take!, take?, drop!}

Philo [k]

FD: {take?, take!, drop!}

PhiloNet = 〈V, pAG , J, p̃J , ÕJ ,T 〉with:

V = {k, f1, f2}

pAG = {Think(k), Eat(k), !TakeG(k), !TakeD(k),
?TakeG(k), ?TakeD(k), DropG!k, DropD!k}

J = {Philo, Fork}

pPhilo = k, pFork = k

OPhilo = {!Ext.request(Think), !Ext.request(Eat),
!FG.request( f1,Take), !FD.request( f2,Take),
?FG.getValue( f1,Take), ?FD.getValue( f2,Take),
!FG.request(Drop), !FD.request(Drop)}

OFork = {?Ph.request( f1,Take), ?Ph.request( f2,Take),
!Ph.getValue( f1,Take), !Ph.getValue( f2,Take),
?Ph.request(Drop)}

This pNet is static, T has a unique state, and transitions with the following labels:
LT = {
〈Think(k), !Philo[k].Ext.request(Think)〉
〈Eat(k), !Philo[k].Ext.request(Eat)〉
〈!TakeG(k), !Philo[k].FG.request( f1,Take), ?Fork[k].Ph.request( f1,Take)〉
〈!TakeD(k), !Philo[k].FD.request( f2,Take), ?Fork[k+1].Ph.request( f2,Take)〉
〈?TakeG(k), ?Philo[k].FG.getValue( f1,Take), !Fork[k].Ph.getValue( f1,Take)〉
〈?TakeD(k), ?Philo[k].FD.getValue( f2,Take), !Fork[k+1].Ph.getValue( f2,Take)〉
〈DropG(k), !Philo[k].FG.request(Drop), ?Fork[k].Ph.request(Drop)〉
〈DropD(k), !Philo[k].FD.request(Drop), ?Fork[k+1].Ph.request(Drop)〉 }

Figure 4.2: Example of a pNet

Example

The drawing in Figure 4.2 shows a (static)
pNet representing the classical philosophers
problem, with 2 parameterized holes (in-
dexed by the same variable k) for philoso-
phers and forks. On the right hand

side are the corresponding elements of the
formal pNet, in which we explicitly list
the sort of the holes (Ophilo and OFork), and
synchronisation vectors parameterized over
the index k and the future ids f1 and f2.

The sorts of our parameterized structures are sets of parameterized actions. This definition
extends the sorts from Definition 8:

DEFINITION 13 (PARAMETERIZED SORTS)
• The sort of a pLTS: Sort(V, S , s0, L,→) =

{
α | ∃l ∈ L. l = 〈α, eb, x̃Js′ := ẽJs′ 〉

}
= pAG

• The sort of a pNet: Sort〈V, pAG, J, p̃J , ÕJ ,T 〉 = pAG

4.2.3 Building hierarchical pNets

Except from the occurrence of parameters in the structure of labels, the rest of the construction
of complex systems as hierarchical pNet expressions is similar to the previous section, with the
additional parameterization of arguments: an actual (parameterized) argument of a pNet at
position j is a pair 〈Sys,D〉, where Sys is a pNet (or pLTS) that agrees with the sort of the hole
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(Sort(Sys) ⊂ O j), and D is the actual domain for the hole parameter p j, i.e. denotes the set of
similar arguments inserted in this hole.

We do not define a synchronisation product for pLTS that would give some kind of “early”
or “symbolic” semantics of our generalised pNets. Instead, we define instantiations of the
parameterized LTS and Nets, based on a (possibly infinite) domain for each variable.

Given a hierarchical pNet expression, and instantiation domains for all parameters in this
expression, the definitions below allow us to construct a (non parameterized) Net expression,
by applying instantiation separately on each pLTS and each pNet in the expression. This can
be performed both for closed or open pNet expressions, the result being, respectively, closed or
open Net expressions. In the former, closed Net expressions can then be reduced to a single LTS
(expressing the global behaviour) using the synchronous products in a bottom-up way.

DEFINITION 14 (PLTS INSTANTIATION)
Given a pLTS Pp = 〈V, S p, s0p , Lp,→p〉, with V = x̃V and given a countable domain for each variable
DV = {D(x)}x∈V , and an initial assignment ρ0 for the variables of the initial state s0p , the instantiation
Φ(Pp,DV ) is a LTS P = 〈S , s0, L,→〉, such that:

• S =
⋃

sp∈S p

{
sp{x̃V ← ẽV } | ∀x ∈ V, ∀eV ∈ D(x)

}
,

• s0 = s0p {fv(s0p )← ρ0(fv(s0))},
• L is the set of ground actions (i.e. closed terms) of the action algebra LA,V ,
• → (⊆ S xLxS ) =

⋃
t ∈→p

Φ(t) is the union of instantiations of the parameterized transitions, built
in the following way:

let t = s
lp=〈α,eb, x̃Js′

:= ẽJs′
〉

−−−−−−−−−−−−−−−→ s′p be a transition,
let Vt = fv(s) ∪ fv(α) ∪ fv(s′) the free variables of t, andDVt their instantiation domains, then

Φ(t) =
⋃

ẽVt∈DVt


if
(
eb{x̃Vt ← ẽVt } = False

)
then ∅

otherwise
let ψ = {x̃Vt ← ẽVt }

in
{
ψ(s)

ψ(α)
−−−→ s′

{
if
(
∃ j ∈ Js′ , x = x j

)
then x← ψ(e j)? else x← ex

}}


Apart from the proliferation of indexes, this definition is quite natural and straightforward; only
the case when variables of the target state are assigned during the transition needs care (see ? in
the equation), because the assigned open expressions ẽJs′ need themselves to be instantiated.

This operation has an upper-bound complexity that is exponential in the cardinality of the
instantiation domains, in number of states and transitions.

DEFINITION 15 (PNET INSTANTIATION)
Given a pNet Np = 〈V, pAG, J, p̃J , ÕJ ,T 〉, with the transducer T = (S T , s0T , LT ,TT ), and given
domains DV for variables in V , the instantiation Φ(Np,DV ) is a Net N = 〈A′G, J

′, Õ′J′ ,T
′〉, with

T ′ = 〈S T ′ , s0T ′ , LT ′ ,TT ′〉 constructed in the following way:

1) expand the parameterized holes: J′ = Φ(J) = d j∈JD(p j) where d is a disjoint union (or
concatenation) of sets; let J′j ⊂ J′ be the part of J′ corresponding to the expansion of hole number
j;

2) instantiate the sort of holes and the global sort:
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for i ∈ J′j, build Õ′i =
⋃

a∈O j
Φ(a)

A′G =
⋃

a∈pAG
Φ(a)

3) instantiate the transducer:
S T ′ = S T

s0T ′ = s0T

LT ′ =
⋃
−→v ∈LT
{Φ(−→v )} the expansion of the synchronisation vectors:

. for each −→v = 〈ag, {αi,t}i∈I,t∈Bi〉 let V = fv(−→v ),DV their instantiation domains,

. for each possible valuation ẽV of the variables in V,

. let φ = {x̃V ← ẽV } the corresponding instantiation function,

. expand each parameterized action by Φ(α j,t) = if j < I then 〈∗, ..., ∗〉

. else 〈x1, ..., x|J′i |〉, with xk = ∗ if k < Bi, φ(α j,t) otherwise,

. build Φ(φ,−→v ) as a vector of cardinality |J′| as the concatenation of subvectors

. x ∈ Φ(α j,t) for each hole j ∈ J,

. Φ(−→v ) = {Φ(φ,−→v )}φ
TT ′ =

⋃
(s,−→v ,s′)∈TT

{(s, a, s′), a ∈ Φ(−→v )}

Naturally, even if the above definition does not suppose finiteness of the parameter domains, it
will be used in practice with finite instantiation domains, and finite vectors.

Example

We give here a small instantiation of the philosopher system from Figure 4.2.

Φ (PhiloNet,D(k) = {1, 2},D( f1) = {1},D( f2) = {2}) = 〈A′G , J
′, Õ′J′ ,T

′〉with:

A′G = {Think(1), Think(2), Eat(1), !TakeG(1),...}

J′ = {Philo, Philo, Fork, Fork}

O′Philo(1) = {!Ext.request(Think), !Ext.request(Eat), !FG.request(1,Take), ...}
O′Philo(2) = {!Ext.request(Think), !Ext.request(Eat), !FG.request(1,Take), ...}
...

LT ′ = {
〈 Think(1), !Ext.request(Think), *, *, * 〉
〈 Think(2), *, !Ext.request(Think), *, * 〉
...
〈 !takeG(1), !FG.request(1,Take), *, ?Ph.request(1,Take), * 〉
〈 !takeD(1), !FD.request(2,Take), *, *, ?Ph.request(2,Take) 〉
... }

Expressivity

In [Barros 04], the authors gave examples
of pNets representing various kinds of
recursive functions: the “data flow” within
an index family of pLTSs is expressed by an
adequate indexing within the synchronisa-
tion vectors. But one should note that this
expressivity is gained from the properties
of the indexes domains (here integers with
standard arithmetic): the pNets formal
definition is (on purpose) separated from
the data domain definition, and does not
allow us, by itself, to provide any formal

expressivity result.
Another aspect of expressivity is the repre-
sentation of classical patterns of distributed
systems. We claim that pNets, used with
simple (first order) parameter domains,
provide powerful and easy representations
for our needs, including two-way or multi-
way synchronisation, dynamic composi-
tion operators, or dynamic creation/acti-
vation/orchestration of indexed families of
processes.

The first application of pNets published [Barros 04] was for ProActive distributed applications,
based on active objects, before the introduction of components. In [Barros 04, Boulifa 04], pNets
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was used as the formalism for a methodology for generating behavioural models for ProActive,
based on static analysis of the Java/ProActive code. The pNets model fits well in this context,
and allows one to build compact models, with a natural relation to the code structure: a
hierarchical pNet is associated to each active object of the application, and a synchronisation
network represents the communication between them.

Going from active objects to distributed and hierarchical components allows us to gain precision
in the generated models. The most significant difference is that required interfaces are explicitly
declared, and active objects are statically identified by components, so we always know whether
a method call is local or remote. Moreover, the pNets’s formalism expresses naturally the
hierarchical structure of components. This was presented in [Barros 05, Barros 08].

4.3 Data Abstraction

The main interest of the instantiation mechanism defined so far is the ability to build specific
domain instantiations with specific properties. In particular, if the instantiation domains are
finite, and are built in such a way that they constitute abstract interpretations of the initial
parameter domains, then the instantiated Net is finite. Moreover if parameters were only
used as value-passing variables in the original pNet (by contrast with parameters of the system
topology), then we can apply a result from Cleaveland and Riely [Cleaveland 94] to justify the
use of finite model-checking on our instantiated model:

PROPERTY 1
Let Sys be a closed pNet system, with parameters in V , (concrete) parameter domains DV , and abstract
parameter domainsAV , with the following hypothesis:

• eachAv is an abstract interpretationa of the corresponding concrete domainDv;
• the domains of pNet holes parameters in Sys are unchanged by the abstraction;

then the abstraction preserves the specification preorder.

a[Cleaveland 94] was using a slightly relaxed condition called “galois insertions”

The specification preorder [Cleaveland 94], or the better known testing preorder [Cleaveland 93]
are closely related to safety and liveness properties. Given a system and a specification (a set
of properties in temporal logics), one can build a “most abstract” (finite) value interpretation
relatively to the specification, and try to establish its satisfaction. If this succeeds, the result is
valid also for the concrete (potentially infinite) system; if it fails, one can select a more concrete
(= more values) interpretation and repeat the analysis.

Example

Unfortunately, the examples presented ear-
lier are too simple for giving a significant
example of abstraction. Rather let us use
an example extracted from a previous case-
study. It consists in modelling the chilean
electronic tax systems [Attali 04]. There we
were manipulating invoice documents that
could typically be described as structures

doct = 〈vendorid, invoiceid, date, content〉,
that would be check by government services
against 〈vendorid, invoiceid〉 records. In the
case-study, the abstract domain was doct =
〈vendorid ∈ [0..2], invoiceid ∈ [0..2]〉; this
is an abstract interpretation preserving all
safety properties involving at most 2 invoice
documents.
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The previous result does not apply when the instantiated variables are parameters of the system
topology. But the same procedure can be used to build a finite model for one or more finite
abstractions of the value domains. Even if this does not provide a proof of validity on the original
system, it is still a valuable debugging tool. As an example, one could check safety properties
involving Philo[1] and Fork[2] in the philosopher system, using an abstract domain for indexes
defined as {{1}, {2}, {others}}. But this will not prove that such a property holds for a system with
an arbitrary number of philosophers.

4.4 Conclusion

This chapter defines the pNets formalism, a powerful extension of labelled transition systems,
that features a better structure in terms of hierarchical synchronisation networks, and more
expressivity through the use of parameters at both LTS and Networks levels. This formalism
is used for representing the behavioural semantics of distributed systems.

This kind of semantic-level model is widely used in analysis and verification toolsets, because
it provides a compact and well-defined intermediate format for connecting code analysers or
code generators with model-checking or equivalence engines. When dealing with concurrent
or distributed systems, intermediate models often make strong hypothesis on the kind of syn-
chronisation and communication mechanisms addressed, for example LOTOS-like parallelism
in CADP, channels in Promela, or Petri nets in other cases. Our choice with the pNet model
is to have low-level primitives (LTS + synchronisation vectors) that are able to represent many
possible mechanisms. Another important trade-off is between parameterized representations
(close to developers code) and lower-level explicit-state encodings that are required by the
model-checkers.

We argue that the pNets model allows for finite and compact representation of systems,
expressive enough to capture a large family of behavioural properties of both synchronous and
asynchronous applications. We will show in Chapter 6 how the behaviour of GCM components
can be expressed using pNets.

Symbolic Product. In this chapter we have not defined a symbolic product for pNets. We
have chosen to only define the product of instantiated Nets. Nevertheless, it should be possible
to define it, similarly as done in STSLib [Fernandes 07]. This would allow for a late instantiation
which would avoid unnecessary intermediate state expansion. The resulting product should,
however, be equivalent once instantiated with the same parameter domains. We have not
included the symbolic product because we have not proven that both approaches are indeed
equivalent.
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Abstract

In this chapter we propose a textual specifi-
cation language for distributed components.
In Chapter 4 we have presented a formalism
called pNets for describing the behaviour of
processes. Nevertheless, the formalism is
too low-level to be used as a specification
language, and lacks of the high-level con-
cepts particular to the different contexts in
which we want to use it.
In this chapter we present a novel specifica-
tion language called Java Distributed Compo-

nents (JDC for short) to be used at design
phase of distributed components. The
language is endowed with enough formality
so it allows a constructive approach, namely
the generation of behavioural models which
can be model-checked, and the generation
of code skeletons with the control flow of
components.

Globally, this approach aims at generating
components with strong guarantees w.r.t.
their behaviour.
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Motivation

After evaluating the specification languages found in the literature (see Section 3.3), we found
that none fits well in the context of distributed components. In the GCM, most difficulties
come when specifying the synchronisations. From a practical point of view, we focus on
GCM/ProActive presented in Section 3.2.

The transparent futures found in GCM/ProActive alleviate the programmer from synchroni-
sation difficulties, allow for separation of concerns (the source code can be really independent
from the physical infrastructure), and give optimisation opportunities at the middleware level.
On the other hand, specifying and/or inferring about synchronisations becomes more complex.
To our knowledge, no specification language has been proposed within this context.

Instead of proving that legacy code is safe, in this chapter we seek a constructive approach
similar to [Coglio 05, Fernandes 07]. The idea is find a suitable specification language that can
be verified, and that can be used to generate safe by construction code. The language is called
Java Distributed Components (JDC for short). pNets is left as the underlying formalism that defines
the behaviour semantics of JDC specifications, and that interfaces with model-checkers.

In parallel, we have also been defining a graphical version of JDC to be used within VCE
(for Vercors Component Editor). The tool will be described in Chapter 7. Moreover, we will
also validate our approach by specifying a large case study called CoCoME [Rausch 08] within
Appendix A.

The results of this chapter were published in [Cansado 08c, Cansado 08b].

5.1 Foundations of the Specification Language

Distributed components tend to be coarse grain units of composition, and are often loosely-
coupled. In the following we present a specification language in the form of an extension of a
subset of Java for specifying these components. The language includes both the architecture and
the behaviour definitions, and is endowed with enough formality and control-flow information
so that we are able to:

• on one hand check the correctness of the system (Chapter 6): we build a behaviour model that
can be model-checked against temporal formulas;

• on the other hand generate safe components (Chapter 8): we want to generate the control
code of components that is guaranteed to respect the specification.

We opt for a Java-like language for several reasons: (i) it is close to the target expertise of
engineers, using common syntax such as method calls and data classes; (ii) it allows part of
the specification to be embedded within the code skeletons; (iii) it uses the same datatypes as in
the implementation, guaranteeing that operations on the datatypes are directly useful without
modification.
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5.1.1 Architecture

The architecture definition is closely related to classic ADLs. We will provide a Java-like
syntax for defining the architecture, which is used to define the component type, and expose
one level of the component implementation. In other words, we will define the component’s
subcomponents, and bindings.

One of the ideas is to leave room for further extensions that are not yet considered in the
language. Moreover, as the architecture is part of the language, defining reconfiguration
primitives that relate directly to the architecture is easier.

Among the extensions that we plan, we want to address parameterized topologies of component
systems. This will be done by including parameters in the component definition, and then using
expressions on the definitions to specify families of components. This is of particular interest in
Grids where the component system will be deployed on several clusters, with different number
of machines in each cluster. Another extension to classic ADLs is that we expose both external
and internal interfaces of the component, which allows us to define interceptors à la GCM
between calls coming in and going out the component.

5.1.2 Decomposing the Behaviour into Services

We propose to specify the component behaviour as a black-box specification. The specification
is given by a set of concurrent services, each one being an independent activity, or service. For
each service, we define a policy and then a detail of its behaviour.

The first part of a service is called the service policy; it defines how a component selects requests
depending on its internal state, and any behaviour the component triggers by its own. This is a
rough specification of the component protocol, however, it gives the user a good idea of how the
component should be used. For instance, the specification may define that a component must
serve requests in a particular order.

The second part of the service specifies what each external service exposed at the service policy
actually does. This behaviour is defined by a Java-like language that can be closely be mapped
to the Java programming model, using ProActive as the basis.

In the specification, we include an abstraction of the control and data flow, remote method calls
performed within the service method, and access to data. Although static analysis is required
in JDC to infer the system behaviour, it is easier than in standard Java. Remote calls are easily
identified by calls on the component’s client interfaces; future creation points are identified as
the results of these calls; there is no concurrency within the service method; and there is no
exception handling (for the sake of asynchrony).

5.1.3 Futures

Using transparent futures in the specification language brings the same advantages as in the
programming language: the system designer doesn’t have to wonder if a variable might contain
a future; or more precisely, no explicit synchronisation mechanism is needed for variables that
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may sometimes contain a future. This extends reusability of specifications as they may fit several
contexts, where values are remotely computed, or come from local instances. It is even possible
that the component that receives a future and the component that computes the future result
don’t share a direct binding. These two components must however be indirectly linked by a
communication path. We call these implicit communication channels.

A drawback of transparency of futures is non-determinism; it is in general not statically
decidable whether a variable is a future or not at a given point of the program. However,
additional synchronisation can be specified, ensuring that, after synchronisation upon a variable,
this variable is known to be value, or a future with a filled value.

5.1.4 Datatypes and Abstraction

The datatypes used in JDC are standard Java classes. This way the code-skeletons obtained by
our generation tools will be directly usable. On the one hand, arbitrary datatypes often have
large (possibly infinite) domains which can’t be model-checked directly. On the other hand, the
kind of behavioural properties we seek only require an abstraction of these datatypes. Therefore,
whenever verification is desired, the specification includes as well an abstraction of the user
types. This way, we are able to derive an abstract specification that contains only variables of
“simple” domains.

The abstraction keeps solely data influencing the control-flow and the synchronisations, how-
ever, it must preserve the behavioural properties in the sense of Cousot’s abstract interpre-
tations [Cousot 01]. If abstractions are finite and constitute abstract interpretations of the
initial parameter domains, then the model is finite. Following [Cleaveland 94], we build an
abstract interpretation of the system behaviour, from abstractions of the domains of the program
variables; this construction can be used for finite model-checking as it preserves safety and
liveness properties.

The abstractions are mappings of variables of user types to predefined first order datatypes
(simple types for now on). Simple types themselves are provided as Java classes, and as a
particular case, can be used in JDC programs. They are: point (or singleton), booleans,
enumerated types, integers, intervals of integers, strings, records of simple types, and arrays
of simple types.

In our work we decompose the abstraction in two steps: the first maps concrete types to
potentially infinite simple types allowing us to generate parameterized pNets models. From
pNets, we can apply many different proof methods, including inductive theorem proving
techniques, that can address a large family of properties. The second step is based on finite
partitions of parameter domains that depend on each set of properties to prove. In this case, the
abstraction produces finite pNets on which we can use explicit-state model-checkers.

Finally, our abstractions must consider futures. Even if a variable has insignificant values, access
to the variable may still trigger synchronisation. This makes the choice of a good abstraction
tricky, and some variables are only kept within the abstraction in order to signal eventual access
on them. In other words, these variables have an abstract domain with 2 values filled or non-filled.
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5.1.5 Discussion

In this language we have taken 2 opposite approaches. On the one hand, the behaviour is
defined using a high-level language that is much more abstract than a programming language.
Here, we do not want to give details about the implementation, but we still want to be able
to derive partial implementations (code skeletons). This approach goes from being abstract to
being concrete.

On the other hand, the data part of the language is very close to Java. In fact, we require the
designer to define its user-classes, and then to define mappings for the domains of variables
of type “user-class” towards our simplified simple types. This approach goes in the opposite
direction, from being concrete to abstract. The general idea is that as the specification relies on
datatypes from a programming language, we can expect the data part of the code skeletons to be
directly useful. Similarly, the abstraction of the data part will allow us to map the specification
to an abstract specification. This is a specification in which all variables are of simple types, and
therefore we know how to interface with verification engines.

What is common in both approaches is the goal: to generate components with guaranteed
behaviour. Generating code from a structured behaviour specification is feasible, and would
probably consits in generating code for simulating a state-machine. However, generat-
ing code for the data part of the language is much more difficult, though possible. In
STSLib [Fernandes 07] and in CADP’s Full LOTOS compiler [Garavel 89] for example, the
authors provide automatic implementations of Abstract Data Types. These abstract types are
incomplete by essence (most of the business code is missing), thus we expect the generated
code to require major changes in the implementation. Hence, the difficulty would be how to
guarantee that the new refinement preserves the system behaviour. This is why we rather ask
the designer to provide the abstractions and the user classes, which we think are more aligned
with the expertise of the final user.
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5.2 Architecture Specification

In the next sections, we present elements of the abstract and concrete syntax of JDC. Each box
defines a piece of JDC syntax, using:

• keywords in bold (e.g. component);
• terminal symbols written between simple quotes (e.g. ’{’);
• non-terminal symbols in monospace (e.g. Services);
• optional expressions with square-brackets (e.g. [ expr ]);
• choices with | (e.g. expr1 | expr2);
• concatenations of zero (resp. one) or more expressions with ∗ and + (e.g. expr∗, expr+);
• identifiers as id .

5.2.1 Defining a Component

The definition of a component type comprises its external interfaces with both provisions and
requirements, and a specification of its behaviour. The behaviour is either given by a black-box
specification in the form of a set of Services (Section 5.3), or by a composition of components, also
called Architecture (Section 5.2.2), or even by both. This is shown in Figure 5.1.

Component→ component id ’{’ �component definition�
external interfaces
Interface∗ �set of interfaces�

[ Services ] �black-box description�
[ Architecture ] �content description�

’}’
Interface→ server | client �interface role�

interface InterfaceType id ’;’ �type and name�

Figure 5.1: Syntax for defining a component

Each interface in a component has a role (either server or client), a type (a Java interface as in
most IDLs), and a name ∗. The interfaces defined within the context of the component definition
are external interfaces and can be bound to the environment. Interfaces determine both provided
and required services of a component; provided services are defined by server interfaces, and
required services are defined by client interfaces.

5.2.2 Composing Components

The composition of components is done within the architecture, see Figure 5.2. It exposes
the content of a component by means of its subcomponents, its internal interfaces, and the
bindings. The subcomponents are named and typed, the type being given by either an external
component definition, or by an inline definition. The bindings connect two interfaces among the
component’s internal interfaces and the subcomponents’ external interfaces.

∗In GCM, an interface also has a contingency (optional or mandatory), and cardinality (singleton,
collection, or multiple). These have not been included in JDC for the moment.
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Architecture→ architecture
contents
Subcomponent∗ �set of subcomponents�

internal interfaces
Interface∗ �set of interfaces�

bindings
Binding∗ �set of bindings�

Subcomponent→ component ComponentType id ’;’ �named subcomponent�
| Component �inline definition�

ComponentType→ id �reference to a type�
Binding→ bind ’(’ SourceItf ’,’

TargetItf ’)’ ’;’ �binds a pair of interfaces�

Figure 5.2: Syntax for defining an architecture

In the GCM, the relation between an internal interface and an external interface of a component
is arbitrary: interceptors can transform or intercept any incoming invocation. For simplicity,
in here we assume that there is an exact match for each pair of external-internal interfaces
(interfaces that have the same type and name, but with opposite roles); and that invocations on
an external (resp. internal) server interface is directly forwarded to the corresponding internal
(resp.external) client interface.

Example

The CoCoME example [Rausch 08] was
implemented using GCM / ProActive, and
detailed in Appendix A. It is a Point-Of-Sale
system, in which the cash desk deals with
the sales. The cash desk and its hardware

controllers are implemented as components.
In Figure 5.3 we show an extract of the
example, where an application component
has a single peripheral called Scanner; the
latter is controlled by a component.

component CashDesk {
external interfaces
server interface ApplicationIf appIf;
client interface ScannerIf scannerIf;
// ... external interfaces

architecture
contents
component Application application;
component Scanner scanner;

internal interfaces
server interface ApplicationIf appIf;
// ... internal interfaces

bindings
bind(this.appIf, application.appIf);
// ... bindings

}

Figure 5.3: Example of an architecture specification
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5.3 Behaviour Specification

When designing a system, the designer would like to adopt a top-down approach: specifying
first the behaviour of a component before going down into its architecture. To this aim, we
propose to specify directly the behaviour acceptable by the interfaces; this is called a black-
box behaviour of a component. Of course, different architecture definitions can match the same
component black-box. We leave the equivalence (or preorder) between a component black-box,
and its implementation (architecture) unspecified. Many existing work can apply, starting with
all notions of simulations and bisimulations inherited from process algebras. They have to be
adapted to our component model though, e.g. in a way similar to the component substitutability
relations of Component-Interaction Automata [Černá 06].

In GCM there are two kinds of components, primitives that are atomic components, and
composites that are components composed of other components. Primitives are monothreaded,
and concurrency is introduced by composites. The concurrency in JDC is specified by a set of
concurrent services within the Services block (see Figure 5.4). Each service denotes a sequential
process with its own set of local variables. A sequential process is split into the service policy
that defines the high-level protocol of the service, and a set of service methods that details the
behaviour of the methods exported by the component. Finally, a service also provides a set of
local methods that are not accessible directly by the environment.

Services→ services
Service+ �one or more concurrent services�

Service→ service ’{’
LocalVariableDecl∗ �variables of the component�
policy ’{’ Policy ’}’ �service policy�
ServiceMethodDecl∗ �service methods (exported)�
LocalMethodDecl∗ �local methods (not exported)�

’}’

Figure 5.4: Syntax for defining a service

The behaviour specification of the component is an abstraction of the control-flow, some
elements of data-flow, and access to data. Concretely, for the distributed components we deal
with, we want to focus on:

Access to the component’s request queue, the access to the queue is a blocking operation, therefore
it is essential to infer the system’s synchronisations.

Remote method calls, these represent communication between components. A remote call is
always asynchronous; it creates a request in request queue of the callee component, and creates
a future in the caller for dealing with the promised result. Remote calls are identified by calls on
client interfaces.

Future flow, these represent the creation of implicit communication channels for the responses of
futures between the component that computes the value of the future, and the component that
receives the reference to the future. The future flow can be identified by tracking future objects
in parameters and results of remote method calls.
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Data-access, these trigger synchronisations between components. They are identified using static
analysis, or given explicitly within the specification.

5.3.1 Service Policy

The service policy defines how incoming requests are selected from the queue depending on the
internal state of the component, and any behaviour triggered internally. In Figure 5.5, we present
its syntax. It basically is a (non-deterministic) state-machine, expressed by regular expressions.
The actions can express reactive or active behaviour.

Policy→ BasicPolicy [ ’;’ PermPolicy ] �policy definition�
BasicPolicy→ ServeMode ’(’ [ Filter ] ’)’ �reactive service�

| MethodCall �active service�
| BasicPolicy ’;’ BasicPolicy �sequence�
| BasicPolicy ’|’ BasicPolicy �choice�
| BasicPolicy ’n’ �n repetition�

PermPolicy→ BasicPolicy ’∗’ �infinite repetition�
ServeMode→ serveOldest | serveYoungest �request queue access prim.�

Filter→ ItfName �any method in this interface�
| ItfName ’.’ MethodName �this method�
| Filter ’,’ Filter �a list of filters�

MethodCall→ ItfName ’.’ MethodName ’(’ [ Expr ] ’)’ �remote method call�
| MethodName ’(’ [ Expr ] ’)’ �local method call�

Figure 5.5: Syntax for defining a service policy

The component behaviour can be seen as a machine that is constantly doing some work. This
is reflected by a policy defined within an infinite loop. We can define this in JDC with a policy
that ends in a permanent policy PermPolicy. Moreover, the component may be stopped in
between requests.

The reactive behaviour defines which kind of methods to select, and in which order to pick them
from the queue. This represents work that depends on the requests in the component’s request
queue. As an example, serveOldest(itf.m1, itf.m2) selects from the queue the oldest
request on the interface itf matching the method names m1 or m2; if none of them is in the
queue, the service blocks until one of them arrives. Then, the request is served, i.e., the control
is delegated to the service method representing the request.

Additionally, an active behaviour denotes spontaneous behaviour, i.e., some work that is done
without being requested. This can be either a remote method call, or a local method call; both
are affected by an expression on the component’s variables. In our example, a component
in charge of the scanner sends signals to the application component whenever a product is
scanned. The signals take the form of method calls on the application components. For the
scanner component, this behaviour is spontaneous as the interaction with the physical scanner
is abstracted away.
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The service policy is the only block authorised to access the queue. Basically, this ensures that
the code generated for the service policy will be complete w.r.t. how the component provides
services. Moreover, the state-machines are precise enough to ensure that the code generated will
be the final implementation of the runActivity() method of a GCM/ProActive component,
and no other method will access the component’s request queue. This is essential for
guaranteeing that the application fulfils its behavioural specification. More details are given
in Chapter 8.

Example

An example of a Service definition is found
in Figure 5.6, which is part of the behaviour
of the cash desk application from Figure 5.3.
The component has a single service (the
component is indeed monothreaded), and
its behaviour is mainly reactive. Concretely,
the component performs a local method call

init(), and then starts serving requests in
FIFO order. If there are no requests in its
queue, it blocks until one arrives.
If the component is set to stop, then after
it has finished processing a request, it will
stop, even if there are still pending requests
in its request queue.

services
service {

// variables of simple types
Bool expressMode;
public enum CashState{

IDLE, STARTED, PAYING
}
CashState cashState;
// ... other variables of simple types and user types

// initialises the system with some RPC and then treats calls in FIFO order
policy {

init(); // local method
serveOldest(applicationIf)*

}
// ... the service methods

}

Figure 5.6: Example of a service definition

5.3.2 Concurrent Behaviour

A primitive component is typically specified by a single Service. However, a component with
a single Service could also specify a composite component with a pipeline of subcomponents
inside as in Figure 5.7. In both the primitive and the composite with the pipeline, two request
calls are treated sequentially.

However, a single Service cannot express concurrency as it represents a sequential activity.
Instead, concurrency of requests is defined by multiple services within a component. Each
service is an independent activity serving requests in parallel, with its own set of local variables
and provided services.

A drawback of this approach is that it is not possible to define interference among the
services directly. That is, we must rely on an architecture definition that composes independent
components in order to express interference. Other alternatives would have introduced more
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complexity to the language; moreover, the generation of the control code would have been
difficult as the programming model doesn’t have explicit concurrency.

component Pipeline {
external interfaces
server interface Compute itf;

services // only one
service {
policy { serveOldest()* }
Result itf.compute(Data d) { ... }

}
}

Figure 5.7: Example of a pipeline component

Example

In Figure 5.8 we show different architec-
tures; on the left, the same cash example
from Figure 5.3; and on the right, a compo-
nent in which the two of its subcomponents
interfere.
For the cash desk, we may provide a black-
box definition with multiple services, one
for each of its subcomponents.

However, for the component system on
the right, the subcomponent A may change
the behaviour of component B. Seeing this
system from outside, we would observe
two processes that implement some kind of
shared memory. Therefore, we cannot par-
tition both components as two independent
processes.

Figure 5.8: Example of concurrent components

5.3.3 Service Methods

A service method is an abstraction of a service exported by a component. It is defined by means
of a subset of Java statements in which there is no exception handling, and no concurrency. This
includes the relevant dataflow between input parameters and results of the method, as well
as communication with required services. The service method has access to the component’s
variables, however, it doesn’t access the component’s request queue.

The Java syntax is extended to declare explicitly server methods. This is done by prefixing the
name of the server interface in which it is defined on the method name.

Client interfaces are accessed as usual objects but they cannot be transmitted to other components.
This last requirement is very important to ensure that all the interactions between components
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are realised through the client interfaces and bindings. However, it is possible to create alias of
interfaces, meaning that we will need static analysis to detect if they are transmitted to other
components.

void applicationIf.barcodeScanned(Barcode barcode) {
switch (cashState) {

case IDLE:
case PAYING:

break; // ignore signal
case STARTED:

Product product = cashDeskIf.getProduct(barcode);
if (product == null) {

eventBusIf.productBarcodeNotValid();
break;

}
if (expressMode && products.isFull())

// the specification has been violated
__ERROR("ExceededNumberOfProducts");

else {
products.add(product);
runningTotal.add(product.getPurchasePrice());
eventBusIf.runningTotalChanged(runningTotal, product);

}
}

}

Figure 5.9: Example of a service method

Example

An example of a service method is depicted
in Figure 5.9. The behaviour focuses
on a use-case where the cash desk may
provide an express mode for dealing with
short-sales (sales with a limited amount
of products). When the barcode of a
product is scanned, the component reacts
according to its internal state. Its usual
behaviour is to get the product informa-

tion by performing a remote method call
(getProduct(barcode)), add the prod-
uct to a list of products, and update
some information regarding the current sale
(runningTotal). The specification is quite
close to Java, notably the operations on the
variable product are the ones that would
be expected in a real implementation.

The ERROR() annotator. In a specification, it is useful to annotate undesired behaviours.
We provide this feature by including a special annotation ERROR(). Such an annotation
will be encoded as a special label ERROR() within the behavioural models, hence we can
automatically verify them using reachability check.

In the ProActive runtime, the middleware does not provide support for this behaviour. We can,
of course, simulate it by connecting to the ProActive logger, or forcing the application to throw
an exception.
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5.4 Specifying Abstractions

This section shows how to define and use abstractions of user types in JDC. One particularity
is that a class may have more than one abstraction defined, each one focusing on the significant
behaviour of a variable.

The abstractions ensure that we are able to generate behavioural models based on pNets. The
pNets format allows us to interface with several verification tools; for the moment we focus
on finite-state model-checkers, but using pNets we can potentially interface with infinite-state
model-checkers and theorem provers as well.

5.4.1 Formalisation of an Abstraction

A class is a tuple C =< −→m,
−→
f >, where −→m = {mi(−→a ) : τi} are the methods of C; −→a = {a j : τ j} are the

method arguments; and
−→
f = { f k : τk} the fields.

An abstraction of C is a class CA =< −−→mA,
−→
fA >, where each public method m({a j : τ j} : τ) of C

has one or more abstract method mA(−→aA) : {τA} with −→aA = {a
j
A

: τ j
A
} the abstract arguments. The

domains of the abstract arguments are sets of values in the abstractions of classes τi, and the
result is an abstract value in the abstraction of class τ.

For defining what is a good abstraction of the domains of the variables in the specification, we
need to identify:

• where in the specification are the variables of interest – those used in the properties to be
proved;

• what are the significant values of these variables of interest – these will determine their
abstract domain;

• which other variables in the program influence (through control-flow and data-flow) the
variables of interest – these other variables will also have a non-empty abstract domain.

For each variable of interest of type C, we attach an abstract domain in the following manner:

• for each public method m of C, and each possible abstract type of arguments and results
of m, we provide an abstract version mA that captures the accesses on the class variables,
accesses on the variables passed as arguments, and relevant results of them.

• the fields of the concrete variable that are of interest are included as a record. The domains
of these fields are such that they are precise enough w.r.t. the set of properties to prove.

• for each field of the variable of abstract type, map variables to abstract types, or ignore the
variables if they are not variables of interest. This is done recursively through the class.

5.4.2 Defining and Using Abstractions

In this subsection, we will describe how the designer defines and uses abstractions within the
JDC specification. The abstractions of variables of user types are part of the specification, and
must be given by the designer.
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An abstraction in JDC is similar to a Java class, with extensions to deal with non-determinism
and data abstraction. An important notion is that we may have to use different abstractions for
different variables of the same concrete type, within a given program. This means that in the
abstract program, we may need different versions of the abstract operators, depending on the
abstract types of the arguments.

Example

For example, consider a concrete program
with variables:

x : Int, y : Int

then the abstract program may have vari-
ables of abstract types:

x : Sign, y : [0..3]

The operator + may need to be defined for
arguments in Sign and [0..3].
We solve this problem in two phases: there
is a library of abstract classes (here Sign
and interval as abstractions of Int, with

standard abstract operators in each, such
that these libraries can be defined in a
generic way, and be reused easily.

e.g. + : Sign ∗ Sign→ Sign

Then for a specific program, the designer
defines abstract classes that inherit the
required abstract classes from the library.
Afterwards, the designer defines additional
abstract operators depending on the specific
abstraction of variables, and of the occur-
rences of the operators found in the code.

e.g. + : Sign ∗ [0..3]→ Sign

Abstraction→ abstraction id of id ’{’ �datatype abstraction�
TypeDecl∗ �type declarations�
Field∗ �local variables�
Constructor∗ �abstract constructors�
Operator∗ �abstract operators�

’}’
Constructor→ Type ’(’ args ’)’ �sign. of concrete constructor�

[ abstracted as Type ’(’ args ’)’
’{’ Body ’}’ ] �abstract version�

Operator→ Type id ’(’ args ’)’ �sign. of concrete operator�
[ abstracted as Type id ’(’ args ’)’

’{’ Body ’}’ ] �abstract version�
Field→ Type id �type & name of variable�

[ abstracted as Type ] �local mapping of a type�

Figure 5.10: Syntax for defining abstract types

The abstract type. Figure 5.10 shows the syntax for defining an abstract type. The abstract
type relates to a concrete type saying it is “an abstraction of the concrete type X”. It is possible
to declare new types, fields, constructors and operators that relate to the concrete type.

Both constructors and operators are abstractions of concrete constructors and operators resp.
As mentioned in Section 5.4.1, their arguments and results are abstract versions of those in the
concrete constructors and operators. The fields within an abstraction are variables of type simple
type, or of type usertype provided with the definition of its abstraction.
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Mapping. A concrete type can be globally mapped to an abstract type, meaning that all
variables of that concrete type will have the same abstract domain. Complementary, one can
selectively determine the abstraction for each variable. The latter is done by setting a local
mapping of a variable to an abstract type.

It is up to the designer to specify these abstractions and to provide the mappings for each
variable. However, we could offer the designer tools to support this mapping. Such a procedure
was used in the Bandera toolset [Dwyer 01]. There are a couple of differences: first, Bandera
starts from a Java program and generates a static approximation of it. This procedure is complex
and the result is imprecise by nature. We start from a specification of the system behaviour; this
is an abstraction with more information (given by the user) than what can be obtained by static
analysis of source code.

Second, the abstraction in Bandera maps variables of user types directly to finite abstract types.
In our work, the abstraction maps variables of concrete types to potentially infinite simple types;
this allows us to generate parameterized (and possibly infinite) models in pNets. In theory
this allows us to apply many different proof methods, including inductive theorem proving
techniques, and to address a larger family of properties. Currently, our platform uses explicit-
state model-checkers. In this case we define a second abstraction based on finite partitions of
parameter domains. The partitions are specific for each set of properties to prove, and produce
finite pNets.

Underspecification. It is often useful (or required) to underspecify what are the results of an
expression, possibly as the result is a set of abstract values. The language includes for that two
non-deterministic operators.

• ANY, non-deterministically returns any element of the abstract domain.
• ANYELEMENT, non-deterministically selects an element from a list.

Moreover, it is often not possible to statically decide whether a variable refers to a value or to
a future. The safe assumption is to consider such variable as possibly future. Here, we exploit
the fact that a non-future variable is semantically equivalent to a future variable with filled value.
Nevertheless, the user must keep in mind that some traces in the specification may never occur
in a concrete implementation. A solution can be then to make the specification more precise by
enforcing more synchronisation on a variable (by means of touch()). After the synchronisation,
the variable is known to be non-future.

There is an additional use for the primitive touch(). It synchronises on the variable without
describing which operations are applied. This allows details of the implementation to be filled-
in later without changing the synchronisations occurring in the system. Concretely, when
the touch() primitive is used together with a variable mapped to a Singleton domain, the
programmer will be able to read the variable as many times as she/he wants, and assign it
arbitrary (concrete) values. The component will continue to behave similarly, as the variable
does not contain significant abstract values (it is a Singleton domain), and there is guarantee
that no further synchronisation on the variable is possible.



110 Chapter 5. A Specification Language for Distributed Components

Example

Figure 5.11 illustrates an abstraction of a
variable of interest. This variable has
data that influences the control-flow by
triggering synchronisations, and changing
the data-flow.

In our cash desk example, there are “normal-
sales”, as well as “short-sales”. A short-
sale must not exceed a maximum number
of products, but there is no constraint on
the type of products. The abstraction of
the product list must, therefore, be precise
enough to take into account whether the
maximum has been exceeded or not, but
may abstract away the details about the
product information.

The abstraction we chose for the product
list does not count the number of products.
Instead, it focuses on the states the list can
have: the list can be either EMPTY, in a
useful state OK, or FULL. This abstraction

is imprecise w.r.t. the number of products
it has, so actions on the list are non-
deterministic. Adding a product from an
EMPTY state never reaches the limit for a
short-sale, however, from an OK state it may
(the transition between an OK state and a
FULL state is non-deterministic). Note that
the context guarantees that we never call
add() when the list is FULL.
The abstraction for the product is such
that we are able to signal access upon the
variable. This is necessary as the product
may be a future; indeed, in Figure 5.9
product is the return of a remote method
call and thus can be a future. Therefore,
the product is abstracted as a Singleton
domain (Product A) such that the access
is signalled by touch. Nevertheless, the
operations on product are not specified,
and the behaviour is “shielded” because the
touch primitive hides the internal details.

abstraction
ListProducts_A of ListProducts {

enum ListState { EMPTY, OK, FULL }
List<Product> products abstracted as
ListState;

ListProducts() abstracted as
ListProducts_A() {

products = EMPTY;
}

Product get() abstracted as
Product_A get() {

switch(products) {
case EMPTY:

return null;
case OK:

if (Bool.ANY())
products = EMPTY;

return Product_A.ANY();
case FULL:

products = OK;
return Product_A.ANY();

} }

Bool isFull() {
return (products == FULL);

}

void add(Product product) abstracted as
void add(Product_A product) {

product.touch();
switch(products) {

case EMPTY:
products = OK;
break;

case OK:
if (Bool.ANY())

products = FULL;
break;

case FULL:
break;

} } }

Figure 5.11: Example of a datatype abstraction



5.5. Extending the Interface Definition 111

5.5 Extending the Interface Definition

As we already mentioned, by switching from an object-oriented to a component-oriented design,
we make the application topology and dependencies explicit because: (i) every component
contains a single thread; (ii) all method invocations are restricted to calls on client interfaces; and
(iii) all future creation points are restricted to results of these method calls on client interfaces.
This removes some of the imprecision of the static analysis. Nevertheless, in open environments
it is still not possible to know whether a parameter (or any subfield) received in a method call is
a future or a value. This is due to transparency of first-class futures.

This section suggests an extension to the Interface Description Language (IDL) to improve
the precision of analysis and specification; we also explain how this extension prevents the
occurrence of some deadlocks.

5.5.1 Principles

In order to be safe, the behavioural model must be an over-approximation of the implemen-
tation, including a proxy not only for futures, but also for variables or parameters which may
be futures. Such imprecision is due to the undecidable nature of static analysis, and to the
transparent nature of futures.

Figure 5.12: Race condition in GCM / ProActive

We will start by considering the example of Figure 5.12. It consists of a Database, wrapped by a
component, that is accessed by a Client, yet another component. We have simplified the model
such that every component serves requests in FIFO order.

The Client component queries for some data, identified by the method call qm.query(s) which
creates a future d. The data s is properly formatted by the QueryManager component and then
forwarded to the Database component. Once the Client creates the future in the variable d, it
inserts a new entry into the table t with data from d; this is a method call performed directly
towards the Database.

The system may deadlock, though, due to a race condition on access to the Database. If the Client
accesses the Database before the QueryManager does, the Database will access the future d – thus
block –, but d will never be updated because the Database itself must update this future. In the
example, the deadlock is avoided if one enforces further synchronisation on the Client side in
order to guarantee that the Database always receives a value instead of a future.



112 Chapter 5. A Specification Language for Distributed Components

In other words, we would like to specify that some variables that are transmitted cannot be
futures. Up to now, the only way is by putting within the caller’s code a synchronisation for
ensuring that the future is filled with the result value. In our example, this would take the form
of a statement d.touch() in the Client component before calling the database. Nevertheless,
even under this scenario the Database doesn’t know that d will certainly contain a value. Thus,
the behavioural model for the Database still considers that d may be a future.

We have not yet detailed how the interface is signed (by an IDL) in JDC. The GCM IDL specifies
the interface signatures, but is insufficient to deal with transparent first-class futures. Based
on the interface signature, one does not know whether method parameters are futures or not.
Moreover, there is no way of controlling which parameters cannot be futures. Typing futures
would solve the issue, however, we would lose all the good properties shown in Section 3.2.3. A
better solution is to specify, within the IDL, which parameters (or fields) cannot be futures (i.e.
marking them as strict value); the other parameters are allowed to be futures or not. This is less
restrictive than typing because some parameters can still be either a value or a future.

In an open system this information cannot be inferred by static analysis. It is a contract on futures
that affects both client and server: client interfaces must ensure that method parameters match
the interface specification; server interfaces assume – and may test – that method parameters
agree with the interface specification. The contract also decreases the non-determinism in the
behaviour of the server side of the communication.

It is true that by the use of strict parameters there is less concurrency; components have to
enforce further synchronisations before performing remote invocations. On the other hand,
behavioural models are more precise and closer to real executions; the programmer can specify
parameters that are known to be non-futures.

5.5.2 Interface Specification

The difficulty is finding, statically, a proper abstraction for the parameter structure. In theory,
every subfield of every parameter may be a future. Therefore, a static representation of arbitrary
types is impractical. Here we suggest a relatively precise approximation; marking a field as strict
value, means that, recursively, all its subfields (known at runtime during serialisation) are strict
values as well. Similarly, not marking a field implicitly means that, recursively, all its subfields
(except the marked ones) may be futures. This applies for the IDLs used in both JDC and GCM.

In the example of Figure 5.12, a solution to the deadlock mentioned before is to force value-
passing of d. Based on Java 1.5 Annotations the specification of the interface DB looks like:

interface DB {
Data query(Query q);
void insert(Table t, @StrictValue Data d);

}

On the practical side, if d is still a non-filled future by the time the method insert(t, d) is
invoked, the invocation is halted until the future is updated. This way, the system is guaranteed
to be deadlock-free.
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An implementation in ProActive

The main modification in ProActive would
be in the Meta-Object-Protocol (MOP). Con-
cretely, the MOP must:
on the client side: during serialisation, any
parameter marked as strict value will enforce
an explicit synchronisation on the related
object; the overhead is payed only for
methods with annotated futures.

on the server side: during deserialisation,
any parameter marked as strict value can be
checked not to be a future; to avoid over-
head, one may assume that the sender re-
spects the contract because it was previously
checked during serialisation. Moreover, the
affected parameters will never block because
they are guaranteed to be concrete values.

5.6 Conclusion

Our contribution in this chapter is to provide a high level specification language for distributed
software components, called JDC. Our approach is to define the architecture, the behaviour, and
an abstraction of data within the specification language.

The two main design criteria for this language are: (i) the specification is formal enough in order
to generate behavioural models that can be model-checked, and (ii) the specification allows for
the generation of code skeletons that include the control code of components.

For accomplishing these goals we have mixed two opposed strategies. On the one hand, we
define the language in a much higher abstraction level than a programming language; on the
other hand, the data part of the language is the one typically found in a programming language.
The former, being simple, allows for the generation of guaranteed control code. The latter, being
close to the programming language, allows the data part of the generated code to be directly
useful.

In order to allow for the generation of behavioural models, the data part is provided with
abstractions for the domains. These abstractions map variables of user-defined types, to our simple
types. The latter are the datatypes supported by our pNets formalism, and thus are able to
interface with model-checkers.

The architecture definition is closely related to classic ADLs, defining the component type, its
subcomponents, and bindings. More interesting is our approach for defining the component
behaviour, in which we give a rough definition of the services provided by the component
(service policy), and afterwards a precise definition of the behaviour of each service.

Moreover, we also provide extensions to traditional interface description languages (IDLs) in
order to avoid deadlocks. Precisely, we tackle deadlocks due to non-determinism whether a
variable is a future or a value. We do this by annotating which arguments in a method call
cannot be futures, allowing the unannotated ones to be futures or not. The result is that we lift
some synchronisation from the behaviour up to the interface level, which yields more precise
behavioural models and avoids some deadlocks.

Limitations. This work builds on the GCM, however, at the moment only the core of it is
addressed. We plan to extend the language to cope with other interesting features, such as
group communications and non-functional aspects (dynamic reconfiguration).
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The abstractions of user classes must guarantee that they are abstract interpretations [Cousot 01]
of the user classes given a set of properties. This is not something we would like to give a
software engineer without a tool support. Moreover, the abstract version of a user class should
be able to deal with operations on sets of abstract domains. In the current definition of the
language, we only consider basic operators that select any value within the type domain, or
enumerate all of them.



6
Building Behavioural Models

Contents
6.1 Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Sort for the Functional Behaviour . . . . . . . . . . . . . . . . . . 117

6.1.2 Components defined by a Service Definition . . . . . . . . . . . 118

6.1.3 Components defined by an Architecture Definition . . . . . . . 119

6.1.4 Extending the Model with Controllers . . . . . . . . . . . . . . . 121

6.2 Transparent First-Class Futures . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Static Representation of a Future . . . . . . . . . . . . . . . . . . 125

6.2.2 Locally-used Futures . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.3 Transmission of Futures . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.4 Summary: How to Build a Future Proxy? . . . . . . . . . . . . . 129

6.3 Functional Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Model for a Component Service . . . . . . . . . . . . . . . . . . 130

6.3.2 Model for the Service Policy . . . . . . . . . . . . . . . . . . . . . 131

6.3.3 Model for the Service and Local Methods . . . . . . . . . . . . . 133

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 Transmission of Futures . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Detecting Blocked Components . . . . . . . . . . . . . . . . . . . 142

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Abstract

This chapter defines models and algorithms
that allow us to generate behavioural mod-
els of components specified with JDC. We
base the model generation on:
First, the generation of the control part of
components; this is based on the analysis
of the system architecture, which defines
the communication between communica-

tion but leaves undefined the functional
behaviour of the components. This defines
the control behaviour of components.
Second, the generation of pNets encoding
the functional behaviour of a component
that complements the control model. This
is done through a static analysis step on the
JDC behaviour specification.
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Motivation

In this chapter, we develop behavioural models based on the pNets formalism (see Chapter 4)
that can be generated from JDC specifications (see Chapter 5). We show that the design of JDC
is akin with the generation of behavioural models.

Architecture: the architecture definition of JDC gives us the topology of the system, by defining
the communication links and the component hierarchy. We will use the communication
links to create synchronisation vectors that encode the synchronisations and data-flow.
The component hierarchy will be used to define the hierarchy of pNets in such a way that
it represents a mapping of components into processes.

Abstractions of user types: the abstractions allow us to map variables of user-types to variables of
simple-types, the latter being the only supported types in pNets.

Communication strictly through interfaces: the use of strict communications allow us to compute
the Sort of the pLTSs, and identify the creation of futures.

Decomposition of the behaviour as services: the structure allows us to build the functional be-
haviour of the component following a pattern described in this section. Roughly, it
constitutes of a control part orchestrated by the service policy, and of a functional part
driven by the service and local methods.

First, in Section 6.1 we generate behavioural models for the control part of components; this step
leaves undefined the Service behaviour. These models allows us to set the communication links
between components and map components to processes. This allows us to define the Sort of
the functional behaviour of components, effectively decoupling the control from the functional
behaviour. Extending this approach, we will show in Section 6.1.4 how to include some
controllers in the model in order to statically verify properties of some basic reconfiguration
and deployment.

Second, as part of the communication links between components, in Section 6.2 we will describe
a static representation of futures. In this step, it is important to track which variables hold
futures, in order to infer which are the blocking operations, and where we shall put proxies
for futures.

Third, in Section 6.3 we generate behavioural models for the Service behaviour. We reuse the
structuring of the Service definition in JDC (service policy + methods) to fill the pNets of the Service
behaviour.

Finally, in Section 6.4 we present two use cases in which our models can be applied.

This chapter is greatly inspired by the work done by Boulifa [Boulifa 04] and Bar-
ros [Barros 05]. In [Boulifa 04], the author presented algorithms for automatically gen-
erating behavioural models for ProActive (Java) active objects. In [Barros 05], the author
presented behavioural models for GCM/ProActive components. Here we adapt and extend
these works to components defined with JDC; our contributions are explicitly stressed.
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6.1 Control Structure

In this section, we show how the control structure of components defined by JDC can be
automatically generated.

Section 6.1.1 defines the component model; this will identify the external actions of the
component.

Then, Sections 6.1.2 and 6.1.3 give a structure for filling the component Sort. Section 6.1.2 gives
the structure for a component given by a Service definition, and Section 6.1.3 gives the structure
for a component given by an Architecture definition.

Finally, Section 6.1.4 extends the previous models when we are interested in checking some basic
reconfiguration and deployment.

6.1.1 Sort for the Functional Behaviour

The first thing to do is to map the actions that are observable from the exterior of a component.
We know that these will be given by the both client and server interfaces. We compute the Sort
for the component, see Figure 6.1.

pNets(C)

!request(fid, cItf.M)

!response(fid, val) ?response(fid, val)

?request(fid, sItf.M)

Figure 6.1: Sort of the pNet of a component

For each server interface sItf, an incoming remote method call is of the form: ?request( fid,

sItf.M) that represents a request for a method call M, which result should update the future
fid – we shall implicitly denote f for fid when it is convenient. The response (update of the
future) is an action !response( fid,val); it updates the future fid with the value val. In the case
the result type of the method call is void, there is no return action.

For each client interface cItf, an outgoing remote method call is of the form: !request( fid,

cItf.M) that represents a request for a method callM, which result should update the future fid.
The response is an action ?response( fid,val), if any.

Now, depending whether a component provides us with an architecture describing its subcom-
ponents or with a service definition, we will create two models that fill in his pNet.
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6.1.2 Components defined by a Service Definition

When the component is defined by a Service definition, the behavioural model consists in a
hierarchy of pNets as shown in Figure 6.2. Basically, requests arrive at the component’s request
queue, and the service (here called Body) serves requests from queue or performs work of its
own. Moreover, this is a model as well for a primitive component in GCM/ProActive.

pNets(C)

Body

Queue

Proxy

!request(fid, cItf.M)

?serve*(filter)

?response(fid, val)

?request(fid, sItf.M)

!response(fid, val) [f = 〈pp, c〉]
?getValue(fid, val)

Figure 6.2: Behavioural Model of a component

Request Queue. The request queue is modelled by a pNet that en-queues all external request
calls, and allows one to select en-queued requests.

The queue can be modelled in different ways, the most straight-forward (and naı̈ve) being a
pLTS encoding the behaviour of the queue. This is a structure that has external actions for en-
queueing a request (?request( fid,method)), and for dequeueing a request with a specific policy
(?serve∗(filter)). serve∗ is the policy (either serveOldest or serveYoungest). However,
care must be taken when creating the queue, because in general the state-space is exponential in
the queue length and in the number of possible requests. Remark that the number of possible
requests depend on the number of different parameters once instantiated with finite domains.

The queue in GCM components is meant to be infinite. Therefore, abstracting the component
queue into a finite-state representation requires the designer to find, if any, the maximum
number of simultaneous requests in the queue. In the ProActive implementation, if ever the
component queue is full, the callee component will be blocked trying to complete the rendez-
vous protocol (see Section 3.2.1) which is not the normal behaviour of GCM components.

Proxies for Futures. The remote calls on client interfaces cItf are actions performed by
the Body, though synchronised by the future proxy. The proxy is a pNet that encodes the
asynchronous behaviour of components. Once the call is performed, the proxy is ready to receive
the result value. The Body can synchronise with the Proxy with the action ?getValue( fid,val)

to access the content of the future.

We will detail the behaviour of proxies in Section 6.2, however for the sake of this section we
introduce the main concepts here. The Proxy is given by a pLTS created for each remote method
call (method call on a client interface). Futures are tagged with the program point pp, and
with a counter c. The counter is required in order to allow families of futures to be created;
more precisely, in a loop, two successive remote method calls at the same program point create
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two different futures at the same program point. This is a finite parameterized approximation
considering that the loop is finite.

In the behavioural model, this means that there is a proxy for each one of these futures, i.e.
the proxy is parameterized by f = 〈pp, c〉. There are different models for proxies depending
whether the future is transmitted or not. Moreover, we will see in Section 6.2 that if a future is
transmitted as a return value, then the proxy must be in charge of sending the response action
!response( fid,val). Otherwise, it is up to the Body to return this value as a usual method call.

Body. The component Body is a pNet that implements the component (user) functional
behaviour. In JDC, this is given by the Service definition in JDC through the service policy and
the service and local methods. We create a pNet that fills the body from this information, which
will be detailed in Section 6.3.

6.1.3 Components defined by an Architecture Definition

An Architecture specification in JDC is the specification of a composite component. We model
the composite component as a pNet, and each of its subcomponents as a pNet as well. This is a
hierarchical construction of the behavioural model.

In GCM, composite components have a membrane that interacts with the environment. The
membrane dispatches incoming method calls to internal subcomponents, and dispatches
method calls going out the component to the environment. This can be seen as a primitive
component that serves requests from the queue and performs (dispatches) the request to the
bound interfaces. Therefore, we model the membrane as a pNet similar to the component from
Figure 6.2.

Structure. The composite is modelled by a pNet with a control part (the membrane), and
pNets for each subcomponent. The structural information is found within the Architecture
definition in JDC, or more generally through ADLs in the case of Fractal or GCM.

Supposing that the component C has 2 subcomponents A and B as in Figure 6.3, this will create
a pNet as in Figure 6.4.

Figure 6.3: A composite component exposing its architecture

Note that the internal communication between components A and B do not go through the
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Membrane

pNets(A) pNets(B)

pNets(C)

?response(fid, val)

?response(fid, val)!response(fid, val)

?request(fid, i1.M)

!request(fid, i3.M)

!request(fid, i2.M)

!request(fid, i1.M)

?response(fid, val)?response(fid, val)

!request(fid, i2.M)

Figure 6.4: Behavioural model of a composite component

membrane, however all external communication does. The pNets of A and B have well-defined
Sorts, so they can later be filled in independently.

Membrane. As the membrane is a dispatcher of services, we know exactly its functional
behaviour. In Figure 6.5 we depict the membrane behaviour. It is a pNet as follows:

Proxy

Proxy

Queue

Body

Membrane

?response(fid, val)

?response(fid, val)?serveOldest
(fid,M)

!request
(fid,M)

!request(fid, i2.M)

!response(fid, val)

?request(fid, i1.M)

!request(fid, i2.M)?response(fid, val)!request(fid, i1.M)

Figure 6.5: Behavioural model of a component membrane

• it has a queue that represents the composite component’s request queue; both requests
coming into the component and going out of the component are en-queued in this queue.

• it has a Body that dispatches method calls to the bound interfaces; the Body serves
requests and its only action is to perform a new request on the bound interface affected
by the request. If the method call is not void, then there will the a response. However,
the response is not handled by the Body, but by the proxies. This way the Body is free to
process the next request.

• proxies for retransmitting the response values to fill futures. In Figure 6.5 we show
two proxies, however they are identical. They only help us understand the membrane
behaviour. The proxy on the left is in charge of communication due to the component’s
server interfaces; it will forward the response values coming from the inner subcomponent
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A to the environment. The proxy on the right is in charge of communication due to
the component’s client interfaces; it will forward the response values coming from the
environment to the inner subcomponent B.

6.1.4 Extending the Model with Controllers

The non-functional control of components was previously given by Barros [Barros 05], and
more formalised in [Barros 08].

We have changed the communication between the Body, Proxy, and the environment; this
avoids a causal ordering problem in the model shown in [Barros 05]. We have also defined
how the Binding Controller interacts with the environment.

The previous models were suitable for representing the functional behaviour of components.
Even if in JDC we still do not have any reconfiguration primitives, it is still interesting to
included these controllers. For instance, check for the correct system deployment, or model
the behaviour of some basic reconfiguration. For that, we can automatically generate controllers
à la Fractal/GCM from the structural information.

6.1.4.1 Primitive Components

For the moment we do not describe how the components deal with futures (see Section 6.2).
In Figure 6.6, we first study some control processes, namely a controller for dealing with the
component’s life-cycle (LF), and a controller for serving functional and non-functional requests
(NewServe).

LF

NewServe
Queue

Body

Proxy

?serve

!return

!start

!bind/unbind ( ˜arg)

(bind/unbind ( ˜arg))

!started

!stopped

?serve
(start/stop)

!start/stop

started

(1) !serve∗

!caller.response

(caller, f,M( ˜arg))

(NF( ˜arg))
(2) !serveFirst

(3) !serveFirstNF

(f,M( ˜arg))

(NF( ˜arg))

(M( ˜arg))
?caller.request?request

(NF( ˜arg))

?response

(f2,M( ˜arg))
!cItf.request

!bind/unbind ( ˜arg)

!stop

(f2,M( ˜arg))

Figure 6.6: Behaviour model for a GCM/ProActive Primitive

The component’s life cycle is controlled by a pLTS called LF. Its behaviour is described in
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Figure 6.7, which is simply a machine aware of the component’s state, either started or stopped,
and that signals this state to the rest of the component parts.

LF

?start ?stop

!stopped
?start !started

!stopped !started

?stop

Figure 6.7: pLTS for the Life Cycle (LF) controller

NewServe implements the treatment of control requests. The action “start” fires the process rep-
resenting the method runActivity() in the Body. “stop” triggers the !stop synchronisation
with Body (Figure 6.6). This synchronisation should eventually lead to the termination of the
runActivity() method (!return synchronisation).

In JDC, we suppose that the component is immediately set to start; however, a trivial extension
is to add an initialisation phase, the “normal” activity and then a finalisation phase. These
correspond to the initActivity, runActivity, and endActivity proposed in Figure 7.5
in Page 155. The end of the initialisation would wait first wait for a signal to start activity,
and before serving each new request, the component checks whether it has been set to stop by
consulting the life-cycle controller.

The Queue pNet can always perform any of these three actions:

1. serve the first functional method corresponding to the serve API primitive used in the
body; this is reflected by either serveOldest or serveYoungest primitives of JDC.

2. serve a control method only at the head of the queue; and
3. serve only control methods in FIFO order, bypassing the functional ones.

Which of these actions is performed will depend on the life-cycle controller. The latter
constraints the possible actions by synchronising on either !started or !stopped actions.
More precisely, the synchronisation vectors are affected by the actions !started and !stopped
coming from the LF pLTS. This virtually controls which actions will be allowed within the
component’s pNets.

It is relevant to say that these three behaviours are exactly those implemented by the ProActive
middleware, supposing no advanced features are used (i.e. overridding the default component
behaviour with a customised one). Stopping a component in the GCM means that its functional
activity is suspended, while NF calls are still processed; the latter allow reconfiguring the
component. In our model, reconfiguration actions will only be allowed when the life-cycle is
ready to emit the !stopped action.
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6.1.4.2 Composites Components

The implementation of the GCM composite component (Figure 3.8 in Page 78) is modelled by
Figures 6.8. Figure 6.9 is the component membrane that fits in the interceptor of Figure 6.8.

In Figure 6.8, we show the behaviour for composite components. The behaviour of subcompo-
nents is represented by the box named SubCk. For each interface, there is a Binding Controller
with the pLTS; cII and sII for internal interfaces, and cEI and sEI for external interfaces.
Primitive components have a similar automaton without subcomponents and internal interfaces.
The interceptor of this drawing represents the behaviour of the component’s membrane.
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Figure 6.8: Synchronisation pNet for a GCM Composite Component
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Figure 6.9: Behaviour of a composite membrane



124 Chapter 6. Building Behavioural Models

Membrane. The membrane of a composite component in GCM/ProActive is an active object.
When started, it serves functional or control methods in FIFO order, forwarding method calls
between internal and external functional interfaces. When stopped it serves only control
requests. The membrane with controllers is depicted in Figure 6.9. This is an extended version
of the model from Figure 6.5.

The Queue and LF (Life-Cycle Controller) in Figure 6.9 are the same as presented in Sec-
tion 6.1.4.1.

Binding Controller. The interfaces of a component abstract the component from its envi-
ronment. Moreover, interfaces are in charge of routing calls coming in and going out the
component. For the same reason we need to include in our pNet models controllers that simulate
the behaviour of the interfaces. We call these Binding Controllers (BC). In Figure 6.10 we show
such a controller for an interface It f1 of component C.

?bind(Ci.Itf)

!unbound

?unbind(Ci.Itf)

!bound(Ci.Itf)

Ci.Itf

?bind(Ci.Itf)
→ Ci.Itf

?unbind(Ci.Itf)

!bound(Ci.Itf) !unbound

BC
Itf1

SubCk BC
Ci.Itf

!E(unbound, C, Itf1)
(visible up to the top level pNet)

?M( ˜arg)

!Ci.Itf.M( ˜arg)

Figure 6.10: pLTS for the Binding Controllers

The BC is an automaton that memorises the attached interface. Interfaces may be bound and
unbound. The expected behaviour is to trigger an error if a method call is performed over an
unbound interface, or to redirect the call if it is bound.

An unbound error is a distinguished error action !E(unbound,C, It f1), visible at the higher level
of hierarchy. When the interface is bound, the call will be forwarded (synchronously) to the
environment.
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6.2 Transparent First-Class Futures

The results of this subsection were published in [Cansado 08b].

Up to this point we have described how to automatically generate the control part of compo-
nents. Missing parts are: how the futures can be modelled, detailed in this section; and how to
create a pNets for the functional behaviour, detailed in Section 6.3.

The objective of this section is to give a behavioural model for transparent first-class futures.
We assume that the accesses to the component interfaces and the creation point of futures are
given in the functional behaviour of the component (Body). We call future update the operation
consisting in replacing a reference to a future by the value that has been calculated for it.

6.2.1 Static Representation of a Future

The representation of a future must allow the contained object to be accessed, i.e. to synchronise
futures. We call waitFor the primitive allowing the update of a future to be awaited (this
primitive has also been named touch or get [Flanagan 99]). When futures are transparent, this
waiting operation is automatically performed upon an access to the content of the future. For the
moment, we consider that futures cannot be passed between remote entities, and thus the future
is necessarily accessed by the same entity that created it (at another point of the execution).

The objective is to be able to provide a model for the following piece of code:

f=itf.foo(); // creation of a future
if (Bool)

f.bar1(); // wait-by-necessity if bool is true
f.bar2(); // wait-by-necessity only if bool is false

In this piece of code, if f.bar1() is executed, then f must be filled; in this case f.bar2() will
be necessarily non-blocking. Otherwise, f.bar2() may or may not be blocking depending if
the future f is already filled by the time the call is performed. Note that it is much simpler in
frameworks in which futures are explicit, i.e. if futures are typed.

The previous example shows that futures are filled transparently at any time. Thus, whenever
it is not statically decidable whether an object is a future or a value, it must be assumed as a
future. This is an over-approximation that will, at least, include all possible synchronisations
a variable may trigger. Therefore, static analysis of a program with futures requires the set of
abstract values to be multiplied by two.

Indeed, statically each variable is either known to contain a value which is not a future, or,
equivalently, a filled future, ranging in the domain of the usual static domain for values; or the
variable may be a future, and when the future will be filled its value will range in the domain of the
usual static domain for values. Note that an object that is not a future is semantically equivalent
to a filled future. In abstract interpretation [Cousot 77] it would be easy to construct a lattice for
this new abstract domain: suppose without futures, the abstract domain is a lattice (D,≺), then
the new abstract domain taking futures into account is the lattice D′ = D∪{ f ut(a)|a ∈ D} equipped
with the order ≺′ built such that if a ≺ b, then a ≺′ b, a ≺′ f ut(b), and f ut(a) ≺′ f ut(b). Indeed the
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abstract value a gives more information than f ut(a). To summarise, statically, the value for our
objects are either “filled” or “potentially non-filled”; these abstract values are composed with
the usual abstract values required for the analysis.

In the ProActive middleware, the example above creates a proxy in the first line, and all calls
to the future stored in f would go through the proxy object, leading, if necessary, to a wait-by-
necessity. For our model, the idea is the same: the variables have the “classical” static abstract
domain, and the augmented lattice is taken into account by an additional automaton with the
behaviour of a proxy. Initially, the proxy is in an empty state where the object can only be filled
with a value, so any access to the variable will be blocking. In general, two instances of the
same method call have two different futures, so the proxies are parameterized by the instance of
method call.

6.2.2 Locally-used Futures

In Figure 6.11, we show a first model on how two components communicate. This corresponds
to the pNets model of the communication between two activities in ProActive depicted in
Figure 3.7 in Page 77.

The action request( f,M(args)) puts the request in the server’s queue, and initialises the
local proxy. The call contains the identifier of the future to be updated, f . Once computed, the
value of f is updated (response( f , val)). The pair 〈pp, c〉 is the future identifier f .

Proxy

Queue

Body

Body

Proxy

Counter

Client Role Server Role

Proxy[pp].

?response
(val)

getValue(val)

!getValue(val)
serve

response(c, val)

?Counter[c].call

!Counter[c].

?Proxy[pp].
[c]

(〈pp, c〉,M( ˜arg))

Proxy[pp].

[pp]

getValue(c, val)

request(c)

?Counter[c].
response(val)

?request

?caller.request(f,M( ˜arg))

(caller, f,M( ˜arg))

!caller.response(f, val)

!o.request(〈pp, c〉,M( ˜arg))

!o.request

Figure 6.11: Model of a communication between two components

The model shown in Figure 6.11 is similar to the ones presented by Boulifa [Boulifa 04]
and Barros [Barros 05]. In this work, we slightly changed the encoding of the rendez-vous
(see Section 3.2.1); the original proposal did not guarantee causal ordering. Moreover,
we decided to give the behaviour of the proxy explicitly as a hierarchy of pNets, one
parameterized with the program point (pp), and another parameterized with a counter (c).

6.2.3 Transmission of Futures

The models presented by Boulifa [Boulifa 04] and Barros [Barros 05] did not allow futures
to be transmitted. This subsection extends the models into this direction.
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Futures can be transmitted in the parameters of a method call, or in the return value of a method
call; in all of these cases, the futures are transmitted in a non-blocking manner. Because of that, a
future in an activity may have been created locally or by a third-party. In both cases, the activity
is aware of the future identifier. The references of futures known by a component are local. Only
when synchronising the components the references must match the data-flow. In pNets, the
matching of the references is done using synchronisation vectors; they allow us to synchronise
different labels which we use to link the future references. This technique allows us to create
the behavioural model for each component independently. The proxies will therefore include an
action !forward(val) forwarding value val.

On the practical side, different future update strategies can be designed for propagating the
values that should replace future objects. Despite having differences in performance, the update
policies have equivalent behaviour, proved using ASP in [Caromel 05b]. This leaves freedom
to choose any update policy. Indeed, the behavioural models proposed behave similarly to
a concrete implementation, but have different update strategies. We will first show some
properties our models.

Let σC be a valid execution on component C, pNets(C) the behavioural model of C, and fid a
future, then the model is built in such a way that:

PROPERTY 2
if getValue( fid, val) in σC, then Proxy( fid) is in pNets(C)

Comment

As a consequence of this property, the model
has a proxy dealing with every future a
component may receive. Due to imprecision
of the abstraction, the component may even

have proxies for futures that would never
exist at run-time. However, any potential
synchronisation is considered within the
model.

PROPERTY 3
if the value of fid is computed, then all proxies of fid are updated eventually

Comment

The property is true even for proxies that
don’t exist at run-time. The property is
guaranteed by construction: (i) the proxy
that creates fid initially synchronises with the
remote method call. The proxy then waits
for the result (value of fid). When the value
of fid is updated, the proxy forwards the
value of fid to all components to which the
local component has sent the reference fid.
(ii) all other proxies of fid are initially in a
state in which they are ready to receive

the value of fid; this guarantees they will
also be able to be updated. When the
proxy is updated, it forwards the value of
fid to all components to which the local
component sent the reference fid. In fact,
a proxy forwards the value of a future to
all components it has sent the reference to
synchronously. Therefore, each proxy only
needs one port “forward” for each future,
independently of the number of components
to which it sent the reference.
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PROPERTY 4
the update of proxies that do not exist at run-time has no influence in the behavioural model

Comment

Depending on the data-flow, some compo-
nents will receive the value of fid, though
the reference fid was not transmitted. In this
case, the reference fid is also unknown to the

given component, and thus the content of
the future is innaccessible, i.e. the business
part of the component is not affected.

We will provide a model for each scenario. When:

1. a component sends a future created locally as a method call parameter,
2. a component sends a future created by a third-party as a method call parameter,
3. and a component returns a future within the return value of a method call.

Sending a future created locally as a method call parameter. In Figure 6.12, the Client
performs a method call M1 on Server-A, and creates a Proxy( f) for dealing with the result.
Then the Client sends the future to a third activity (Server-B) in the parameter of the
method M2( f ). From Server-B’s point of view, there is no way of knowing if a parameter is
(or contains) a future, so every parameter in a method call must be considered as a potential
future. Server-B includes, therefore, a proxy for dealing with the parameter f of the method
callM2. For the sake of comprehension, however, in the figure the identifiers for futures already
match the data-flow.

Client

Server−B

Server−A

Body

Queue Body
serve(M2(f))

(f ,val)
forward

!call(f,M1)

Proxy(f)

?response
val

!forward(val)

?call

call(f,M1)

response(f,val)

!call(M2(f))
call
(M2(f))

(f,val)
getValue

(f,val)
getValue

!getValue(val)

val
?forward

Proxy(f)

val
!getValue

Figure 6.12: Model for sending a future created locally as a method call parameter

Sending a future created by a third-party as a method call parameter. The previous
example is extended such that Server-B transmits the future f to Server-C. This is partially
depicted in Figure 6.13. The proxy in Server-B, after receiving the value of the future
(?forward(val)), forwards the value to the components it has sent the future reference.

Returning a future. In Figure 6.14 an activity (Server-B) creates a future f2 and then
transmits f2 to the Client within the result of the method call M1(args). The behavioural model
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Server−C

Server−B

Queue Body
serve(M2(f))

?forward
val

!forward
val

val

Proxy(f)

val
?forward

call(M3(f))

(f ,val)
forward

getValue(f,val)

!getValue

Figure 6.13: Model for sending a future created by a third-party as a method call parameter

is slightly different from the one in ASP: instead of returning a future, there is a proxy on the
server in charge of forwarding the concrete value once it is known; no value or future is sent to
the Client in the meanwhile. Using this mechanism, the behavioural model of the Client is
the same no matter whether Server-B returns a value or a future. Moreover, Client remains
as usual; the result of the method callM1(args) has a proxy Proxy( f1) dealing with the result. It is
up to the proxies of the Client and the Server-B to synchronise in order to match the expected
behaviour. Concretely, the action with the response to the Client (response( f1, val)) is
synchronised with the forward action (forward( f2, val)) of the Proxy( f2); it will then update
the Proxy( f1). If the Client accesses the future, then it synchronises with its local proxy,
Proxy( f1).

Client

Server−B Server−A

Proxy(f1)Body

Queue

response
(f1,val)

Queue

Body
response
(f2,val)

Queue

!forward
(f2,val)(f1,val)
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!call

!forward

?response
val

val

Proxy(f2)

call
(f2,M2(args))

serve
(f ,M(args))

Body

!getValue
?call

val

Figure 6.14: Model for returning a future

6.2.4 Summary: How to Build a Future Proxy?

We showed in this section that it is possible to specify the behaviour of proxies for futures
providing a good approximation of the future flow is given. To summarise:

• Each proxy finishes with a !getValue transition to allow the access to the future value.
• At the future creation point (i.e. on the caller side of a remote method invocation), a proxy

starts by two transitions: ?call for synchronising with the remote call, and ?response

for synchronising with the response.
• In the other activities that can receive the future, the proxy starts a single transition
?forward for receiving the forwarded future value

• If the activity may send the future to another one, then the !getValue transition is
preceded by a !forward one.

• Proxies that are only used for transmitting a future reference as the value of another future
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do not synchronise on the action !getValue because they simply forward the value they
receive as the value for another future. Assigning a future reference to another future is
directly ensured at a higher-level, that is to say by the composition itself. This ensures that
the behavioural model is still compositional as no name of an externally created future
exist in the proxy.

6.3 Functional Behaviour

In this section we generate the functional behaviour of the component. This is the behaviour
that is specified within the black-box view of the JDC specification.

The behaviour will fill-in the Body pNet of the Service structure (Section 6.1.2). For this, we will
suppose that the control part of the component is already built and we will provide a suitable
pNet with the missing behaviour, i.e. a closed pNet for the Body which call the Service pNet.

To create the functional behaviour, we have supposed that the JDC specification has been
provided with abstractions for variables of user classes (see Section 5.4).

6.3.1 Model for a Component Service

The Service pNet is built from the JDC behaviour specification of a component. It is a pNet that
refines the Body pNet, by defining subnets for the service policy, for the service methods, and
for the local methods. In Figure 6.15 we sketch the behavioural model for the Service.

Queue

Service
Policy

Service
Method

Local
Method

incoming requests

serve request

Service

triggers

response

request

forward

Proxy

pNets(C)

[i] [j]

[n]

[f ]

Figure 6.15: Model of a component with multiple services

We also need a model for dealing with multiple services. As each service in JDC is an
independent sequential program, we define a pNet with a unique entry point. All the entry
points are triggered by the component’s request queue that feeds all services.

Component Variables. Care must be taken with the component’s variables. They are shared
between the component’s methods. On the contrary, there is no shared memory in pNets.

The shared variables are set as parameters of the top pNet of each component. Inner pNets
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have their own parameters, and for all parameters that represent shared variables, they must be
renamed in order to match the name of variable on the top.

Implementation of shared memory

The implementation of this shared memory
mechanism must rely on the instantiation
tool. One way is to define shared variables
as parameters present in all actions; this lit-
erally means the component state is pushed
into each process activation, and pulled back
when returning to the caller process.

In the thesis of Barros [Barros 05], he
proposes a tool named FC2Instantiate
that provides such functionality. In the
tool, all variables are global, meaning that
assignments of variables are performed
synchronously among all processes.

6.3.2 Model for the Service Policy

In JDC, the service policy is described by a regular expression (see Section 5.3.1). Hence, the
transformation to pNets is straightforward.

The reactive behaviour is transformed into two actions, one synchronised with the queue
(!serve(Itf.M( ˜arg))), and another that fires the affected service method (!call(Itf.M( ˜arg))).
The serve will be an instance of either serveOldest or serveYoungest and the behaviour is
handled by the Queue. When the service method is fired, the service policy is blocked until the
called method returns with an action ?return.

Similarly, the active behaviour is transformed into an action that fires the method directly. It will
block the service policy until it returns with an action ?return.

A concatenation (Policy ’;’ Policy) of two policies is done by a deterministic internal
transition that links both partitions of the pLTS.

A choice (Policy ’|’ Policy) of two policies is done by a non-deterministic internal transition.

The repetition (Policy ’n’) uses a counter variable for simulating a loop.

The permanent policy (PermPolicy ’*’) is a non-deterministic choice between repeating the
same policy, or finishing the component activity. We can also provide a variation in which it
only leaves the loop if the component’s life-cycle controller is set to stop.

Example

We use the classic Dinning Philosophers
example in this section. The system
architecture is depicted in Figure 6.16.
Figures 6.17 and 6.18 provide the service
policies and the pNets generated from the
service policies of the Philosopher compo-
nent and the Fork component respectively.

The Philosopher is an “active” component
in the sense that it continuously performs
remote method calls without synchronising
with its request queue. On the other hand,
the Fork is a “reactive” component as it
responds to requests.
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Figure 6.16: Philosopher System Architecture

policy

call(think) call(eat)

policy {
(
think();
eat()

) *
}

Figure 6.17: pNets generated for the Philosopher’s service policy

policy

serveOldest(forkIf .take)

serveOldest(forkIf .drop)

policy {
(
serveOldest("forkIf.take");
serveOldest("forkIf.drop")

) *
}

Figure 6.18: pNets generated for the Fork’s service policy
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6.3.3 Model for the Service and Local Methods

For building the pNets with the behaviour of the methods in JDC, we need to perform some
static analysis on the specification. It is not the goal of this work to define a static analysis tool.
On the contrary, we shall define here what can be expected from a static analysis tool, and use
these results later in the model generation. Then, we create a pLTS for each service and local
method.

An advantage of working on JDC is that the analysis is easier that when using Java active objects
as in [Boulifa 04]. User-classes are replaced by abstract versions that will not contain any remote
method invocations, the access to futures is identified, and business code is not present. In other
words, the Java code is abstracted (in the sense of data types and domains), sliced (no business
code), and simplified (access to data and remote method calls).

6.3.3.1 eXtended Method Call Graph

In JDC, the initial behaviour of a component is necessarily given by its service policy.
Therefore, we do not need to analyse which is the entry point of the XMCG. Moreover, we
are absolutely sure which are the components, whereas in the previous work [Boulifa 04],
the active objects were dynamically assigned and instantiated. In other words, determining
if an object was active or not was not always statically decidable.

The analysis on active objects by Boulifa [Boulifa 04] was imprecise w.r.t. whether calls
were local or remote, thus the analysis required to include an additional edge with an non-
deterministic choice between local and remote method calls.

In JDC, this is fixed because we know that calls on client interfaces are remote, otherwise
they are local.

Each component will be statically analysed in order to define its eXtended Method Call Graph
(XMCG). The XMCG [Boulifa 04] is a structure containing: the results of usual class and control-
flow analysis; sequential code encoding the data-flow; and constructs relative to JDC, namely
futures, remote method calls (and responses), and accesses to the component’s request queue.

An XMCG is a tuple 〈M,V,
calls
−−−→C ,

succs
−−−−→T 〉, where:

• M are methods,
• V is a set of nodes,
• calls
−−−→C is an inter-procedural (method calls) transfer relation,

• and
succs
−−−−→T is an intra-procedural (sequential control) transfer relations.

The nodes in V are typed as:

• ent (c,m, args) the entry node of method m ∈ M, called by object c,
• call (calls) encoding method calls (local or remote),
• pp (lab) encoding an arbitrary program point with label lab,
• ret (val) encoding the return node of a method with result value val,
• use ( f , val) encoding the access point of future f with value val.
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call nodes have a set of non-deterministic outgoing method call edges, calls(n), with ∀c in

calls(n),∃n′.〈n, c, n′〉 ∈
calls
−−−→C , each call being either:

• Remote (itf.m, args, var, f ) for a call to method m of a client interface itf through the proxy f ,
• Local (o.m, args, var) for a call to method m of a local object o.

Sequential Programs. In order to provide concise behavioural models, the goal is to group
code that encodes the data-flow as an atomic (local) action. We look for the largest set of
statements in which there are no communication nor synchronisation. This is depicted in the
XMCG by letting all paths within a sequential program to have at most one communication,
synchronisation or local call (the frontiers).

The outgoing transfer edge is a tuple 〈succs(n) = MT,N〉, with 〈n,MT,N〉 ∈
succs
−−−−→T . MT is a meta-

transition; it represents a sequential program with a non-empty set of resulting states N. The
resulting states are therefore the exit points of the meta-transition.

Frontiers of the Meta-Transitions. Communication, synchronisation, and local method
calls are frontiers of the meta-transitions. Therefore, they must be identified in the static analysis
step. They correspond to nodes of type call (calls) and use ( f , val) in the XMCG.

Communication is restricted to calls performed on client interfaces. They will always have the
form itf.m(args), where itf is a client interface, m is a method, and args are the arguments of the
method call.

Synchronisation are of two kinds: access to a future’s content ( f.getValue()), and access to
component’s request queue (serve∗(filter)).

Local method calls are those calls performed on local objects. They will activate the process
corresponding to the local method call with the variables it needs (component’s local variables
and method arguments). The calling process is blocked until the callee finishes with some result
(if any).

Comment

Each communication/synchronisation will
have an action in the resulting behavioural
model. This will let the model to be

built bottom-up (as the model may be
hierarchically synchronised), and to verify
formulas involving communication.

Example

In Figure 6.19 we depict the JDC speci-
fication of the local methods used in the
Philosopher component. The corresponding
XMCG call graph is found in Figure 6.20.
think and eat are the local methods of the
component, and are the ones responsible of
performing the remote calls and synchronis-
ing on futures. The call graph is a precise
representation of the component activity as
there is no non-determinism, and all method
calls are identified as either local or remote.

If we perform the analysis on the service
policy as well, we would have the com-
plete call graph of the component, seen in
Figure 6.21. The latter, however, is not
necessary in JDC because the pNets for
the service policy can be directly derived
without computing the XMCG, though it
can be useful for providing complementary
information to the designer. Previous work
by Boulifa [Boulifa 04] require this complete
call graph.
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void think() {
int f1 = forkL.take();
f1.waitFor();
int f2 = forkR.take();
f2.waitFor();

}

void eat() {
forkL.drop();
forkR.drop();

}

Figure 6.19: Local Methods of the Philosopher component
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Figure 6.20: XMCG of the Philosopher component (necessary analysis)
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PP(1)

call(think)

call(eat)

ret

call(forkL.take,f1)

call(forkR.take,f2)

ent(eat)

call(forkL.drop)

call(forkR.drop)

ret

ent(think)

Remote(forkL.drop)

Remote(forkR.drop)

Local(think)

Local(eat)

Remote(forkR.take,f2)

Remote(forkL.take,f1)

use(f1,val)

use(f2,val)

Figure 6.21: XMCG of the Philosopher component (complete analysis)

6.3.3.2 Building the pNets

Once we have built the XMCG for a component, we need to create the pNets model that fills-in
the Service pNets. For each method m, we use the Procedure Method-Behav (m, n, XMCG),
where n is the entry node of m in the XMCG, to compute the corresponding pLTS.

In Figure 6.22 we write the rules for creating pLTSs from the XMCG. These rules have been
extracted from previous work done by Boulifa [Boulifa 04], thus we do not comment on the
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details of the rules. Nevertheless, some changes have been realised. We removed the rule for
accessing the request queue because neither the service methods nor local methods are allowed
to access the queue. We also updated the rule DO-CALL to reflect that remote method calls are
well identified due to the component model.

Method-Behav (m, n, < M, V ,
calls
−−−→C ,

succs
−−−→T>) :

Aut.init = { f resh s0}; Map = ∅; Caller = ∅; ToDo = {< n, s0 >}

while ToDo , ∅

ToDo.choose < n, s >
if Map(n) then DO-LOOP-JOIN
else
select n in
ent(c,m,args) : DO-ENTRY
call(calls(n)) : DO-CALL
pp(lab) : DO-PP
use(f,val) : DO-FUTURE
ret(val) : DO-RETURN

unless n=Ret
let MT ,N = succs(n) in
foreach ni in N do

fresh si; ToDo.Add < ni, si >

Aut.add s1
MT )
−−−→ S = {si}i

DO-ENTRY (c, m, args) =
f resh s1; Caller = c, Map = Map ∪ {n 7→ s1}

Aut.add s
?Call m(c,args)
−−−−−−−−−−→ s1

DO-PP (lab) =

if observable(lab) then Aut.add s
Obs(lab)
−−−−−−→ ( f resh s1), Map = Map ∪ {n 7→ s1}

else s1 = s

DO-CALL (calls(n)) =
fresh s1, Map = Map ∪ {n 7→ s1}

foreach call in calls(n)
match call with

"Remote(itf.m,args,var,f)": Aut.add s
! f .Q m(it f ,args)
−−−−−−−−−−−→ s1

"Local(o.m,args,var)": Aut.add s
!o.Call m(args)
−−−−−−−−−−→ ( f resh s2)

DO-RETURN (val) =

Aut.add s
!Caller.Ret m(val)
−−−−−−−−−−−−→ ( f resh s1)

DO-JOIN-LOOP () =
s1 = Map(n)
Aut.replace(s, s1)

DO-FUTURE (fut,val) =

Aut.add s
?U m( f ut,val)
−−−−−−−−−→ ( f resh s1)

Map = Map ∪ {n 7→ s1}

Figure 6.22: Rules for creating pLTSs from the XMCG

Example

Figure 6.23 provides the pNets model gen-
erated for the Philosopher component. It
is the synchronisation of the service policy

of Figure 6.17 and the XMCG call graph of
Figure 6.20.
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policy
Philosopher

Proxy(f1) getValue(f1,val)

call(eat)

ret(eat)ret(think)

call(think)

?call(eat)
!request(forkL.drop)

!request(forkL.drop)

!ret

!request(forkR.drop)

!request(forkR.drop)

?call(think)

!request(forkL.take,f1)

!request(forkR.take,f2)

!request(forkL.take,f1)

!request(forkR.take,f2)

!ret

?getValue(f1,val)

eatthink

getValue(f2,val)
?getValue(f2,val)

response(f1,val)

Proxy(f2)
response(f2,val)

Figure 6.23: pNets generated for the Philosopher component
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6.4 Applications

In this section we provide two applications of the behavioural models defined in this chapter.

In Section 6.4.1 we show a component system that stresses on transmission of futures. We show
the behavioural model that we create, and some properties of the model.

In Section 6.4.2 we show how the behavioural models can be used to detect components blocked
due to access to a future that will never be updated.

6.4.1 Transmission of Futures

In this example, we do not take into account any reconfiguration nor deployment. The system
is composed like in Figure 6.24. It contains a component A that requests some services of
B, and stores the return value in a variable f . Component A doesn’t access the return value
f immediately; instead, it forwards f to the component E, and possibly forwards f to the
component F. Finally, A accesses f . Component B is a composite component that wraps a
primitive component named C. The component C, when serving the method foo(), requests
a service to D by means of its wrapper, B, and returns.

Figure 6.24: Component system with multiple transmission of futures

In GCM/ProActive, this would instantiate 6 active objects; one per primitive component (A,
C, D, E, F), plus one per composite component (B). The active object for B mediates services:
requests coming from the composite’s server interfaces are dispatched to a subcomponent,
requests coming from its subcomponents client interfaces are dispatched towards an external
component. For that it makes extensive use of first-class futures; it serves a request, performs a
remote method call, creates a future for holding the result, and then sends back the future to the
caller. In other words, B delegates the requests it receives to components C and D, returning the
future corresponding to the delegated method call.

6.4.1.1 Behavioural Model

Figure 6.25 shows the top level structure of the model created for the system above. Components
E and F have similar behaviours. Components B and C are detailed in the pNets model BC
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depicted in Figure 6.26 (which is as well a model for a composite component). In this example,
we index each future by the name of the component that created it.

BC DA

E

F

Proxy(fA)

Body

Queue

Body

Body

Queue

(fA,val)
?forward

(fA,val)
?forward

(fA,val)
forward

call(fA,foo)

response(fA,val)

!call(fA,foo)

response(fBC,val)

call(fBC,foo)

getValue(fA,val)

(fA,val)
getValue

val
?forward

Proxy(fA)

val
!getValue

call(hoo(fA)) call(gee(fA))

?call(hoo(fA))

Figure 6.25: pNets model of the component system from Figure 6.24

In the pNets model of A, futures are forwarded to several activities; a future is sent as parameter
of the method calls to E and F in request(gee( fA)) and request(hoo( fA)) resp. A proxy
is created in each callee with the identifier ( fA) matching the proxy of the caller, i.e. Proxy( fA).
Proxy( fA) in the net of A, after receiving the concrete value, will forward the value to both
activities E and F. This is seen as an action forward( fA, val). As a remark, the update of
Proxy( fA) in F is done no matter if the component is called or not, however if the call is never
performed the proxy is unreachable (its identifier is unknown). Moreover, the reader may have
noticed that the model for component A is missing the component’s request queue. This is an
optimisation considering that the component does not access the queue.

B

C

BC

Proxy(fB1) Proxy(fB2)

Body

Queue

Queue

Body

response
(fB1,val)

!forward

?response
val

val

Proxy(fC)

?call
bar

!forward
(fB2,val)

?response
(fC,val)

response
(fC,val)

!forward
(fC,val)

?response
(fB1,val)

!call(fC,bar)

call

?response
(fB2,val)

!call
(fB2,bar)

!forward(fC,val)

(fB1,foo)

!response
(f ,val)

?call
(f,foo)

Figure 6.26: pNets model of components B and C

Figure 6.27: Components B and C
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Figure 6.26 shows the behavioural model for components B and C. Component B creates the
proxies Proxy( fB1) and Proxy( fB2) for the calls foo and bar resp. B doesn’t access the
proxies, so the responses of the calls are forwarded directly by the proxies. The same models
applies for component C. It creates a proxy Proxy( fC) when calling bar. C returns the future
fC , so Proxy( fC) is the one forwarding the value it receives as a response to B.

6.4.1.2 Properties

In terms of behaviour, the value of f has no impact on the control flow, thus it is abstracted to a
single abstract representative dot. It is the proxy that takes care of the abstract values filled and
non-filled, meaning that we only care if the future has been filled or not and when it is accessed.
We use the CADP [Garavel 07] toolbox for generating the state-space and for the verification;
the complete LTS for the system has: 12 labels, 575 states and 1451 transitions; when minimised
using branching bisimulation 52 states and 83 transitions remain. Some properties have been
proved using alternation-free µ-calculus formulas [Mateescu 00]:

PROPERTY 5
System is deadlock-free

Comment

As the program loops (it restarts to an initial
state given by the while loop) we proved in
CADP that, on the global-state space, every
state has at least one successor. Moreover,

that the initial state is always accessible, i.e.
the component model can be “reset” to an
initial state.

PROPERTY 6
All futures are necessarily updated

Comment

This is proved by stating that the call on
itfB.foo() in component A will update
all futures in a finite number of actions.
In pNets, this is (see Figure 6.28): starting
in a state where request( fA,foo) is
performed, all leading traces will perform
the future updates along the transmitting

chain. More precisely, as no future is
returned until a real value is known, when D
computes the value, the components of the
chain (D, B, and C) reply. Those response
messages follow all the chain leading to A.
Finally, A forwards the value to E and F
(forward( fA, val)).

ANYANY ANY ANY ANYANY

call
(fa,foo)

response response
(fBC,val) (fC,val)

response
(fB1,val)

response
(fA,val) (fA,val)

forward

Figure 6.28: Automaton representing the traces where futures are updated
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PROPERTY 7
System deadlocks if the composite doesn’t support first-class futures

Comment

This property shows one of the design
criteria of composite components: they
were implemented in GCM/ProActive us-
ing first-class futures of ProActive.
Suppose that the programming language
doesn’t support the transmission of futures,
which implies that a method call must
return a value (if any). Figure 6.29 shows
a modified version of the composite B with
this behaviour. When the component B
receives a request ?request( f,foo), the

Body of B should: call the component
C (action !request( fB1,foo)), access the
return value (action getValue( fB1 , val)),
and then return the value of fB1 (action
!response( f , val)). The value of fB1 is
computed by component C on a service
that must go through component B. There-
fore, this value will never get computed
as component B is blocked synchronising
on getValue( fB1 , val). Such a scenario
systematically results in deadlocks.

B

Proxy(fB1) Proxy(fB2)

!response
(f,val)

?response
(fB1,val)

Body

Queue

?response
(fB2,val)

!call
(fB2,bar)

?call
(fC,bar)

!response
(fB2,val)

?call
(f,foo)

!call
(fB1,foo)

getValue
(fB1,val)

getValue
(fB2,val)

Figure 6.29: pNets model of a composite without first-class futures

PROPERTY 8
System deadlocks if itfB.foo() is synchronous

Comment

In this scenario, the system deadlocks in a
similar way than before; if foo() is syn-
chronous, then this call blocks component
B until the result is known. What it means
is that a synchronous call cannot trigger a

flow that goes through a composite twice.
This is a common pitfall for inexperienced
programmers with GCM/ProActive that we
can fortunately detect within our models.
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6.4.2 Detecting Blocked Components

We now investigate how can we detect components blocked indefinitely due to an access to a
future that will never be filled. For this, we will reuse the database example previously shown
in Page 111, depicted in Figure 6.30.

Figure 6.30: Race condition in GCM / ProActive

The system may deadlock due to the race condition on on access to the Database. Using our
behavioural models, we can detect such error by means of deadlock search, i.e. checking if
every state has at least one successor.

Figure 6.31: Two components running continuously

Now, suppose the database example is put in parallel with two components that run continu-
ously as in Figure 6.31. Using the same analysis over the complete system, no deadlock is found:
indeed, some part of the system is constantly doing some work, i.e., in the global state-space
every state has at least one transition. What we need is a finner grain definition of a blocked
component.

In the ASP-calculus, synchronisations happen upon access to a future and when serving a
request from the request queue. In the following we consider components that serve requests
in a FIFO order, and thus no synchronisation on a request is made. Therefore, all deadlocks in
a system must be related to access to a future. More precisely, there must be at least a future
that is accessed and that is never updated. This gives us a starting point for defining what is a
(non)-blocking future.

We will slightly change the model in such a way that everytime the component accesses a future,
there is first a visible, non-synchronised action waitFor( f). After that, the component must
perform the usual synchronised action getValue( f , val) where the content of the future is
retrieved.

Unfortunately, due to an unfair scheduler, a subsystem (e.g. the Ping-Pong component system
from Figure 6.31) could interact indefinitely while some components never progress. This is
reflected in the synchronous product of the system; once the action waitFor( f) is performed,
the action getValue( f , val) is reachable but not inevitable.
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Therefore, we impose some kind of fairness in traces. We use the definition of fair reachability of
predicates as given by Queille and Sifakis [Queille 83].

DEFINITION 16 (FAIR SEQUENCE)
A sequence is fair iff it does not infinitely often enable the reachability of a certain state without infinitely
often reaching it.

Then, within the global state-space, we are interested in fair sequences of the future access. A
component system obeys the fair sequences hypothesis if all possible sequences of its global
state space are fair.

DEFINITION 17 (FAIR FUTURE ACCESS)
Given a (closed) component system, a future f is fair iff, under fair sequences, if each time the action
waitFor( f) is performed, then the action getValue( f , val) is eventually reached.

An equivalent µ-calculus formula in the syntax of CADP model-checker is:

[
true∗.waitFor( f ). (¬getValue( f , val))∗

]
〈(¬getValue( f , val))∗ .getValue( f , val)〉 true

Now, we can define what a non-blocking component is:

DEFINITION 18 (NON-BLOCKING COMPONENT)
A distributed component is non-blocking iff every future it accesses is fair.

When synchronisations are only due to future access∗, an interesting consequence from this
definition is that a non-blocking distributed component system is deadlock-free. In other words,
if the system deadlocks, then there is at least one component blocked waiting for a future.

Therefore, for proving that each component accesses to all of its futures eventually, we can list
all futures it accesses (by listing all actions of type getValue), and express it as a conjunction
of the formula presented for fair futures. The main advantage of our approach is that this can
be encoded in a model-checker, and thus we can ensure that every needed future reference is
updated; in other words the program will have the expected behaviour: every access to objects in
the program will occur.

∗In GCM/ProActive for example, if components implement a FIFO service policy, than we can consider
that the only synchronisations are due to future access.
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6.5 Conclusion

In this chapter we have shown how JDC specifications can derive behavioural models. The
model generation relies on two parts:

First, one that builds the control behaviour of components. In this phase most of the information
that is required comes from the analysis of the component structure, and from the flow of futures.
For the latter we develop behavioural models that allow us to check for problems related to
future synchronisation.

Second, we propose a model for the functional part of components. This requires us to apply
static analysis on the specification in order to infer a method call graph. This is easier in JDC than
using (non-structured) active objects because we can identify precisely the remote method calls,
and thus the creation of futures. The method call graph is later used in the model generation to
create parameterized labelled transition systems encoding the behaviour.

6.5.1 Perspectives

Optimising the Queue. An interesting optimisation for the queue can be exploited by
analysing the service policy. When the serving policy is not FIFO, it is possible to build a pLTS
for the queue that factorises the accesses in a smart way. For example, if the component serves
only the method m1 in a state, and only the method m2 in another state, then it would be possible
to create two pNets processes. Each one of these processes will deal with a queue that accepts
only m1 or m2, effectively eliminating unnecessary interleaving. Some proofs of this factorisation
have been given by Boulifa [Boulifa 04], however the service policy language gives room for
further optimisation.

All queues used in our models are represented by pLTSs encoding the usual behaviour of
a queue. However, an interesting open question is whether including queues as first-class
language constructs in the pNet model would provide us more efficient representations to feed
the verification tools, in our case to explicit-state model-checkers. A promising alternative is to
use infinite-state model-checking (see Section 2.4.3). They are able to use acceleration techniques
in order to compute the exact effect of iterating a control loop of arbitrary length, using automata
with counters and unbounded FIFO queues. The contents of the queue must be described using
regular expressions, though, and to our knowledge there is limited work on mixing traditional
model-checking techniques with infinite-state model-checking.

Static approximation of the topology under reconfiguration. In the current state of JDC,
the system topology is static (there is no reconfiguration). Even if reconfiguration is allowed, it
is still possible to build a finite (parameterized) approximation of the topology. In this case,
the topology of a distributed component system is dynamic and (possibly) unbounded, because
components can be created dynamically. Finite approximation† would still be possible due to:
(i) there is a finite set of component definitions, (ii) and there is a finite number of lines that

†A proof of a static approximation was presented by Boulifa [Boulifa 04]; however, the proof refers to
the dynamic creation of active objects only.
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instantiate components. Therefore, one can expect to build a finite number of parameterized
network of processes.
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Abstract

This chapter presents the architecture of our
verification platform. We present the tools
developed to aid the software engineer in
designing and verifying component-based
systems.
While the full JDC language has no tool
support yet, we have defined a graphical

language that is a subset of JDC. We present
our graphical editor for this language, and
tools that allow us to interface with state-of-
the-art verification engines.
We include as well two case-studies mod-
elled and analysed using early versions of
our tools.

Motivation

The goal of this section is to describe the platform we are creating for the design and verification
of GCM components. The general approach is to provide tools that will assist the designer from
the early states of design up to a useful prototype of the system. One important aspect is that
we want software engineers to analyse their designs without being experts in formal methods.

Rather than creating a specific verification engine (such as a model-checker), we implement
tools that generate the behavioural models described in Chapter 6. These models are based on
the pNets formalism (see Chapter 4), thus we provide tools that allows us to efficiently interface
models in pNets with existing state-of-the-art model-checkers.
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7.1 Platform Overview

Figure 7.1: The Vercors architecture

In Figure 7.1 we sketch the architecture overview of the specification and analysis platform that
we are building, so-called Vercors.

Front-End. We provide a graphical tool called VCE (for Vercors Component Editor) for
designing components, detailed in Section 7.2. VCE is built as an Eclipse plug-in using code
generated using the Topcased environment. VCE supports a graphical language for defining
components in the same spirit than JDC. A JDC specification can be edited directly in a text
editor, or could be generated from the diagrams of VCE.

For the moment, JDC has been conceptually defined, but does not have any tool support. An
Eclipse plug-in would ease the JDC development, and give an integrated interface to the various
analysis and generation functions of the platform.

The platform has two goals. One dealing with verification of designs, and the other with code
generation.

Model Generator. The kernel of our platform is the generation of behavioural models. For
that, we take as input the specifications given by VCE diagrams or JDC specifications. The first
step is to deal with data abstraction: data types in a JDC specification are standard, user-defined
Java classes, but they must be mapped to Simple Types before generating the behavioural
models and running the verification tools. The abstraction is part of the JDC syntax, but the
tool will offer guidance on the definition of correct mappings (correct abstract interpretations).
This phase ends-up with a “JDC Abstracted Specification” in which all data are Simple Types,
that are provided as a predefined library.

Such an Abstract Specification will then be given as input to our model generator ADL2N (see
Section 7.3), that implements the behavioural semantics of the language, and builds a model
in terms of pNets, including all necessary controllers for non-functional and asynchronous
capabilities of the components. In particular it will ensure that the abstraction is compatible
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with the data flow within the components. Potentially this step could be automatically derived
from the syntax of a formula.

Additionally, ADL2N implements a second step of abstraction, that uses finite partitions of the
Simple Types to build finite models for classical (explicit-state) model-checkers. In any case the
pNets objects are hierarchical and very compact: the datatypes in pNets are kept parameterized
– not instantiated; and families of components are families of processes in pNets – this is
particularly interesting in Grids, e.g. a set of workers in a master-worker pattern.

Prover. Our Vercors platform is using the CADP toolset [Garavel 07] for state-space gen-
eration, hierarchical minimisation, (on-the-fly) model-checking, and equivalence checking
(strong/weak bisimulation). The properties to prove are fed into CADP in the form of regular
µ-calculus formula.

In the future, we would like to specify these properties within JDC, which would be be subject
to the same abstractions, and finally be translated into regular µ-calculus formula. We also plan
to use other state-of-the-art provers, and in particular apply so-called “infinite system” provers
to deal directly with certain types of parameterized systems.

Code Generator. Another central part of the platform will be the code generator that is
not (yet) currently developed. Its main purpose is to generate code with skeletons of GCM
components. These skeletons include the control flow, data flow, and the synchronisation code
in such a way that it is guaranteed to behave similarly to its specification – see Section 8.1.

GCM Runtime. The reference implementation of the GCM is GCM / ProActive, and will
provide the technical services for deployment and executing components created from our code
generator. However, we will require the programmer to refine the implementation by adding the
missing business code in such a way that the behaviour is the same as specified – see Section 8.1.
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7.2 Vercors Component Editor

VCE (for Vercors Component Editor) is our graphical component editor for designing compo-
nents. It provides diagrams for defining the component architecture (see Section 7.2.1), and
diagrams for defining the component behaviour (see Section 7.2.3).

The tool, seen in Figure 7.2, is implemented using Model-Driven-Architecture tools, with a
Topcased Ecore meta-model at its kernel.

Figure 7.2: Screenshot of VCE

For every primitive component (meaning here a component with no subcomponents), it is
mandatory to give a statemachine diagram with its behaviour, whereas for composites it is
optional when the component is provided with its architecture.

7.2.1 Diagrams for Architecture Specification

The architectural part of VCE was presented as a tool paper in [Cansado 08d].

In this section we present the architectural definition of our component editor. The editor is
based on concepts from the Fractal and GCM models, but we have significantly changed some of
the graphical notations. One important change is the representation of components. Fractal sets
the role of an interface based on the orientation (left/right, top/down). While these conventions
make interpretation of small diagrams easier, the diagrams do not scale well. We prefer to use
a more classical notation with no orientation constraints, and interface types distinguished by
icons and/or colours.
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7.2.2 Graphical Language

In general, we can consider our meta-model as a Domain-Specific-Language or as a UML profile.
We have reused part of the look & feel found in UML, particularly the icons for depicting
interfaces.

Interfaces. The interface drawings are taken from UML component diagrams when possible.
The server interfaces are shown as filled circles (e.g. interfaces I, IA, IB, IR1 in Figure 7.3), and
client interfaces as semi-circles (e.g. interfaces IC, IR, IR2 in Figure 7.3).

Within our meta-model we also distinguish between external and internal interfaces. External in-
terfaces are accessible by the environment; and internal interfaces accessible by the component’s
subcomponents.

There are also collective interfaces. These are Multicast and gathercast interfaces, for which we
have created new custom icons. Collective interfaces are not considered in UML, and hence it
was not possible to reuse existing ones. In Figure 7.3, we show the icons Multi and Gather

that represent these interfaces respectively. The interface Multi broadcasts incoming messages
to components A and B, and the interface Gather gathers and synchronises calls coming from
interfaces IC towards the component C.

Content. The content of a component is represented as a white rectangle inside the compo-
nent, and the membrane is the grey area that surrounds the content. In the case of a primitive
component, we do not include its content, therefore it is depicted by a grey-filled rectangle.

Binding. A binding between a pair of interfaces is presented as an arrow from a client interface
to a server interface. We have no support for composite bindings found in Fractal. We stick to
GCM in this matter by delegating this kind of behaviour to interfaces and components.

Figure 7.3: Example of composite component exposing its content
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Membranes and Non-Functional Components. By exposing the component’s membrane
it is possible to control non-functional (NF) aspects. We depict the membrane with a grey area;
in composites it surrounds the content, and in primitives it fills the whole figure.

The access rights of each interface are defined by marking each interface either as functional or
NF. Examples of NF interfaces are I NF Control and I NF in Figure 7.4. These interfaces are
connected to NF components that handle the component’s life-cycle.

Figure 7.4: Example of a component exposing its membrane

VCE allows the designer to intercept functional calls entering or leaving a component. The
interception takes place as NF components that are connected to the component’s external
functional interface, and to component’s internal functional interface; they are called interceptors.
This is a convenient way of implementing security aspects, or to check and adapt the component
protocol.

In Figure 7.3, the binding 〈IR1, IR2〉 forwards the calls from the internal interface to the external
interface. In Figure 7.4, however, the calls are intercepted and sent to a NF component called
Interceptor.

7.2.2.1 Model Validation

To ensure the integrity of the user model, we define a minimum set of invariants that every
model must hold. These invariants are defined with OCL (Object Constraint Language) [Obj 03],
and complement the meta-model by expressing constraints that were left undefined. By defining
the rules using OCL, we let our meta-model open. This allows us, in theory, to define different
set of rules depending on particular implementations of the GCM.

However, checking for interface compatibility is not feasible using OCL. This would require us
to define, within the meta-models, the full interface compatibility of Java. Instead, interface
compatibility will be checked independently by our tool using hand-made Java code.

The errors are mapped back to the user diagrams. Back in Figure 7.2, the designer connected the
external interface with a subcomponent’s interface. This error was detected, and reported as a
red cross on the object that violated the constraint in the Problems tab, in the Outline view, and in
the diagram.
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7.2.2.2 Interfacing with ADLs

We are able to generate ADLs from these diagrams useful within GCM. In its current state, we
only generate GCM ADL files with the definition of the content. The membrane is still not taken
into account because the ADL for dealing with non-functional aspects is still being defined.

Moreover, we also allow the designer to import ADLs in XML. The layout, however, is manual
meaning that the user needs to manually place the components in the diagram.

7.2.2.3 Differences between JDC and VCE

The architecture definition in JDC is very close to that found in VCE. The main differences
are those related to NF specification of components. We have added NF interfaces and NF
components in the graphical language. Moreover, the implicit bindings found in JDC between
external and internal interfaces are put visible in VCE. This allows us to control on how the
routing between external and internal interfaces takes place.

We have also added support for GCM’s collective interfaces (multicast and gathercast) which
are not supported by JDC.

7.2.3 Diagrams for Behaviour Specification

The behaviour specification presented in this section is ongoing work. We have still not set
the concrete graphical language, nor it is implemented. This work is, however, an extension
of our previous work [Ahumada 07] on synchronous specifications of Fractal components
using UML 2.

For the behavioural modelling we chose to use a variant of UML 2 State Machine Diagrams.
Indeed, these diagrams specify sequences of events managed by various components. The
diagrams provide a behavioural structure that matches those of JDC: the component has a
service policy, and then a detailed specification of each of its service methods. There are variables
in the components that are visible (and shared) by all submachines a machine may have, and are
initialised with an additional state machine called InitActivity.

The request queue of the components are implicit in the semantics of the language. Therefore, it
is not necessary to define them in state machines. The same is true for proxies implementing
the asynchronous communications of futures in JDC. The designer uses futures as special
variables, and the model generation will take care of adding the necessary proxies in the
behavioural model. For the moment, we have chosen to have explicit futures in this variant
of the specification language. This way the static analysis is simpler, and we can explicitly have
an access to a future as a synchronisation primitive.

The state machines diagrams allow developers to define states, to perform method calls, to
synthesise behaviour with submachines (submachine operator), to define complex transitions
(meta-transitions, Section 6.3.3.1) between states (with choice operators, guards, and mixing of
data and control flow), to specify actions over variables, and to abstract away implementation
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choices (non-deterministic choice operator). Moreover, there are distinguished start and stop
operators for defining initial and final machine states. The stop operator returns execution to its
parent machine; if the machine is a root, the machine halts. A local method call is also defined
by a submachine.

The meta-transitions code a sequential behaviour with a unique communication or synchroni-
sation. For that, they have a unique entry point but multiple exit points. Each one of the exit
points denote a possible execution that ends up with a communication, synchronisation or a
local method call.

We consider method calls to be composed of two separate events: the call itself, and the access
to its return value (for non-void calls, which is stored in a local variable). A remote method call
is of the form: <var>::=<itf.methodName>!<expr> with <itf.methodName> the client
interface and method call invoked, <var> the name of the variable that will store the result
value (future), and <expr> an expression for evaluating the method call’s arguments. We have
still not defined how futures can be accessed, however it will require an explicit synchronisation
primitive on the variable.

Service Policy. The service policy is defined as a state-machine named runActivity. By
default, the service policy is FIFO, though the designer can define a custom policy as in JDC.
This is done by using JDC’s queue access primitives (see Section 5.3.1).

Service Methods and Local Methods. The behaviours of the service and local methods
are defined by state machines. There must be one such state machine for each public method
offered on a provided interface of the component, and it appears in the component behaviour
with a header starting with the keyword service. This header has a specific syntax, taking care
of the bindings of arguments coming from the method call, and the bindings of the parameters
define at the interface. When the interface is parameterized, these parameters represent control-
flow affecting a precise interface within the component.

Collective Interfaces. We have still to define how data distribution is to be given in VCE. We
will probably provide the designer with default libraries, and leave room, if needed, for giving
a state-machine with custom behaviour for the interfaces.
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Example

An example of a behavioural definition of a
component is shown in Figure 7.5. It is based
on a Buffer component from the classical
Producer-Consumer problem.
The first two machines (from left to right)
represent an initialisation machine, and
the runActivity state-machine. The
runActivity submachine is using pre-
defined service policy methods from JDC,
named Serve*. These methods allow for
various policies of selection and execution

of requests in the queue. In the example
depending on some internal variable buff,
the component will serve Put or Get
methods from its request queue.

Next, we provide samples of the service
methods Put and Get. Get is a state
machine that returns a value to the caller
component. Put is another state machine
that stores a value in the component’s local
variable buff.

Put body
entry/ x=buff.push(val)

Ready

Ready

buff.isFull()buff.isEmpty()

else

active component Buffer
BufferImpl buff;

policy initActivity (Int size) policy runActivity ()

Init body
entry/ buff.init(size)

Data x;
method ....

Get body
entry/ x=buff.pop()

service putItf.Put : void (Data val)

! return (x)

service getItf.Get ()        : int

ServeOldest(Get)

ServeOldest (Put)

ServeOldest ()

Figure 7.5: Example of State machines for a Buffer component
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7.3 A Tool for Creating the Control Network

ADL2N (Figure 7.6) is a tool written in Java that (quasi-)automatically builds the behavioural
models in pNets seen in Chapter 6. Currently, its input are the system’s ADLs and IDLs.

Figure 7.6: Screenshot of ADL2N

Basically, ADL2N analyses the ADLs of the system and builds the control part of the com-
ponents (see Section 6.1). ADL2N does not take as input the behavioural definition for the
moment, therefore the models it creates are “open” pNets. Concretely, ADL2N will only set the
Sort of the Body (functional behaviour of the component).

In the mid-term we will integrate ADL2N within VCE. This will allow us to use the behavioural
specification of components together with the generated control network; this yields the
complete system behaviour.

In practice the user of ADL2N uses a GUI to specify at the same time the methods that will be
visible, the arguments that are significant for the proofs, and finite domains for these arguments.

The visibility of methods and the abstraction depend on the formulas to be checked. Although
it should be possible to infer safe abstractions given a set of formulas, for the moment it is up
to the user to provide finite abstractions of the data domains. The finite abstract domains are
defined in ADL2N in order to interface with explicit state model-checkers.

Output. The pNets formalism does not have a concrete format. Therefore, we rely on the
FC2Parameterized [Barros 05] format that provides us similar expressivity.

ADL2N creates two files: one file with the parameterized network in FC2Parameterized format;
the other file with the finite instantiations for the parameter domains defined by the user.
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7.3.1 Interfacing with Model-Checkers

The models created by ADL2N are parameterized. We provide two tools part of our framework,
namely FC2INSTANTIATE and FC2EXP ∗ that create finite instantiations of the models, and
transform the files into the input formats of the model-checkers.

FC2Instantiate. Given a system of communicating LTSs with parameters and the domain
of its unbound parameters, FC2INSTANTIATE is a Java tool that generates a finite system of
communicating automata by translating each of the parameters to all the values in its domain.
The formal definition of the algorithm used in the instantiation was presented in Section 4.2.3.
The input is a parameterized network in FC2Parameterized and finite instantiations of the
parameter domains. The output is a finite network in FC2 format†.

We use FC2INSTANTIATE to create the finite networks by feeding the finite abstractions and the
parameterized network, both given by ADL2N.

FC2Exp. Finally, in order to use the CADP verification tool, the FC2 format must be
transformed into the input formats of CADP. This is done by a tool called FC2EXP; it translates
network of labelled transition systems in FC2 format to the input format of CADP. The sets
of synchronisation vectors are translated into the hierarchical EXP format [Lang 05], and the
labelled transition systems into BCG format [Lang 05].

Using the Model-Checker. We use several engines from the CADP toolbox in our verifi-
cation process. Being based on process algebras theory, the CADP toolbox provides among
many others: a compiler for high-level protocol descriptions written in the ISO language LOTOS,
on-the-fly capabilities, distributed space-generation and several diagnostics. All these features,
although not originally intended at component verification, fit nicely within our platform for
such purposes.

Concretely, we use the Evaluator model-checker from the CADP toolset, that features a very
efficient check of branching-time logics, together with on-the-fly generation, cluster-based
distributed state-generation, tau-confluence reduction, etc.

∗Both tools were previously presented by Barros [Barros 05]
†The FC2 format definition can be found in the FC2Tool user manual [Ressouche 94]
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7.4 Case-Studies

We have tested earlier versions of our tools within two case-studies:

1. A prototype implementation of a WiFi Internet access within an airport [Ježek 05]; this
is a case-study of a collaboration between the Charles University in Prague and France
Telecom. Our results were published in [Barros 06], and summarised in Section 7.4.1.

2. A Point-Of-Sale (POS) trading system example called CoCoME [Rausch 08]; this is a
common example of component systems which yielded a tutorial book for comparing
software component models. In Appendix A we show our contribution to this initiative,
published in [Cansado 08a]. We summarise them here in Section 7.4.2.

7.4.1 WiFi Internet Access within an Airport

For simplicity we focus only on a subset of the system. It consists in a client (identified by an
IP address), who tries to connect to a wireless network providing Internet access. Any client
accessing a web page should be at first authenticated; if not, the client end ups in a login web
page. At the login page, the user is asked either for a valid ticket id, or for a frequent flyer id
(if the user is registered in a frequent flyer programme). Once authenticated, the user is granted
access to any web page he desires until his time-lease expires.

Web
Server

Internet

Arbitrator

IAccess

ILogin

IInternet

Access
Policy

ILogin

Firewall
User(ip)

IFTAuth

IReconfigure

FrequentFlyer

FreqFlyer
Database

Classifier
FlyTicket

IDBQuery

IRedirect

IDBQuery

FreqFlyer
Classifier

DB 2

DB 1

IDBQuery

Figure 7.7: Simplified architecture of the WiFi Internet Access example

The architecture of interest can be seen in Figure 7.7. The main component inside the Firewall
is AccessPolicy, which routes the traffic between the WebServer and the Internet based on
the firewall rules. The network resulting of the ADL analysis performed by ADL2N for the
component Firewall is shown in Figure 7.8.

The behaviour of primitive components was specified in LOTOS. The LOTOS specifications were
compiled into LTSs using the CAESAR tool of CADP, and actions were mapped into compatible
ones generated by ADL2N.

In the case-study we did not include asynchronous controllers, therefore we limited the
communication to synchronous rendez-vous in which there are no queue nor proxies in
components. For the other parameters, we provided ADL2N with finite abstract domains
representing full partitions of the domains. There are 3 distinguished values for the possible web
pages url: one for the login page, one for the web page requested by the user in the Internet
and a third one for every other possible web page. We consider only 2 abstract ticket ids, one
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Figure 7.8: pNet obtained by ADL analysis for the Firewall component

encoding a distinguished ticket given by the user and the other for remaining tickets. Since only
the distinguished ticket is valid, then the authentication is granted only if the system successes
in finding this ticket. For the validity of the tickets, a boolean representing a valid/invalid ticket
is enough as we do not take into consideration the time control. Similarly, the system has two
databases, one representing the database with the ticket needed.

The full functional behaviour of the system is easily generated in a single desktop machine
(Pentium 4 3GHz, 1GB RAM); this model was built with all remote method calls kept visible.
Ignoring the components drawn in dash lines of the Figure 7.7, the LTS of the system has
2152 states with 6553 transitions (non-minimised) and 57 states with 114 transitions (reduced),
both with 17 visible labels, while the biggest primitive component has 5266 states with 27300
transitions. One could also reduce the size of the various parts of the models, taking into account
the set of actions that occur in the formulas to be proved, and using environment interfaces to
reduce the intermediate construction sizes. Finally, for bigger systems, it is possible to use the
on-the-fly facilities of CADP for the state space generation, or even to compute the state space
in a distributed manner on a computation grid.
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Figure 7.9: LTS for the deployed Firewall component
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We also tested the correct deployment of the Firewall component. This was done by including
in the model generation the life-cycle and binding controllers. This yielded a model with 41
visible labels, 29750 states with 85254 transitions for the non-minimised model, and 327 states
with 1034 transitions for the minimised model. A slice of the resulting automaton can be seen
in Figure 7.9. It shows a sequential trace of binding actions, followed by a transition labelled
endDeploy. Afterwards, there are two major blocks of actions: the actions allowed when the
component is stopped, and the actions allowed when the component is started.

7.4.2 CoCoME

The CoCoME case-study consists in a Trading System as it can be observed in a supermarket
handling sales. This includes the processes at a single Cash Desk. Typical operations are scanning
products using a Bar Code Scanner or paying by credit card or cash. A general schema of the
architecture can be seen in Figure 7.10. The subset of CoCoME we modelled consists in 16
components, 5 of them being composites. Furthermore, composite components were designed
with up to 5 layers of hierarchy, stressing the need of hierarchical component models.

Figure 7.10: The CoCoME overview

The Cash Desk is the place where the Cashier scans the products the Customer wants to buy
and where the payment (either by credit card or cash) is executed. Furthermore it is possible
to switch into an express checkout mode which allows only Customer with few goods paying
with cash. To manage the processes at a Cash Desk, a lot of hardware devices are necessary (Card
Reader, Cash Box, Cash Desk GUI, Light Display, Printer, Scanner).

We specified the system using JDC and an old version of VCE called CTTool [Ahumada 07].
From these specifications, we created by hand a GCM/ProActive implementation showing how
the control code can be generated from the JDC specification. From the same specification,
completed by abstraction functions, we have shown how to generate models suitable for
verification, in the form of parameterized networks of synchronised transition systems.

For a synchronous model (no queues nor proxies), and parameters with abstract domains ranged
over by intervals of size 2 and 3, the synchronous product has: 81 visible labels (message
instances), 1.25MM states with 3MM transitions without minimisation, and 9.800 states with
33.000 transitions after branching minimisation.
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We were able to verify some use-case scenarios:

• Main Sale Process. We proved in the state-space generated by CADP that this trace is
feasible, and that it is not possible to start a new sale before booking the former one.

• Booking an Empty Sale. We showed that the specification allows an empty sale to be booked,
which seems to be an under-specifcation of the system.

• Successful Sale with Insufficient Money. We found an error in the specification. There is no
verification whether the amount entered in the Cash Box is enough to cover the bill.

• Safety of the Express Mode. The system ends-up in an inconsistent state if an express mode
signal is triggered during an ongoing sale.

More details can be found in the Appendix A.

7.5 Conclusion

In this chapter we have presented a general overview of our platform. The platform is meant to
allow designers to specify their systems, to verify behavioural properties, and finally to generate
components with guaranteed behaviour.

The platform is still under development. The front-end of the platform is partially implemented
and allows the designers to define their components using a graphical language. There are also
tools for creating the control part of components, with the possibility to individually select which
actions (method calls and arguments) can be hidden as internal actions.

We also provide tools for interfacing with current state-of-the-art model-checkers. These are
based on abstraction onto finite models. The designer provides finite abstractions for the
domains of variables and we create finite models that can be used within model-checkers (such
as CADP).

Finally, there is still no support for code generation. The required tool should be based
on the work presented in Section 8.1 and would provide programmers with a prototype
implementation that serves as starting point for deploying safe components.
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Abstract

In this chapter we present perspectives to
JDC. On the one hand, we present the ideas
for algorithms that generate, from the JDC
specification, code skeletons for distributed
components. The generated code relies on
the reference implementation of the GCM,
and the result is code guaranteed to conform

by construction with the specification.
On the other hand, we discuss several lan-
guage extensions that have not been taken
into account. These deal with a broader
range of GCM features such as many-to-one
and one-to-many communications, as well
as advanced features specific to ProActive.

8.1 Building Safe-By-Construction Components

In the previous chapters we presented a low level model for the behavioural semantics of
distributed components, a specification language for distributed components, and procedures to
build the behavioural models of components from their specifications. This allows us, in theory,
to prove whether the specifications are safe in some sense. However, does the implementation of
a (component) system conform to its specification? There are two classic ways of answering this
question: either one builds a model of the implementation and proves that the implementation
is a refinement of the specification (or that the implementation does not violate the specification),
or one uses a constructive approach [Coglio 05, Fernandes 07] in which the implementation
satisfies the specification by construction. In this section we focus on the latter approach.

Roughly speaking, we will show how to generate the control code of the distributed component,
and we set rules stating what the user can do in the remaining code. This control code
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includes every possible communication and synchronisation the component may perform with
its environment. The generated code is based on the definition of the component architecture,
and is formed by an ADL definition, plus GCM/ProActive code skeletons from the specification.

8.1.1 Runtime Requirements

A first step in generating code for distributed components is to set an adequate runtime support
(library or middleware). For this, it is useful to summarise the features that the component
model of choice should support.

We basically need a component model and middleware supporting:

• Hierarchical distributed components. The specifications of components in JDC are hierar-
chical, and components are distributed. We believe these are good features that must be
reflected in the runtime.

• Asynchronous method calls. Distributed components require asynchronous communica-
tions to deal with latency. Moreover, we have supposed in JDC that all communications
were asynchronous, therefore we need a runtime that implements the same behaviour.

• Transparent futures. The specifications in JDC do not declare futures explicitly. However,
we could choose to generate code with explicit futures as the analysis of components allow
us to identify (in most cases) which variables are futures. The drawback of generating code
with explicit futures is that we must statically decide whether a variable will be a future
or not. However, this may vary depending on the set of components (the environment).
Therefore, we would have to generate code that matches a particular environment. On
the contrary, if futures are transparent the same code is valid within a wider context.

• First-class futures. The futures in JDC can be transmitted in a non-blocking manner. This
property must be supported by the runtime of choice due to the same reasons stated
above.

• Customisation of the service policy. The runtime must allow one to select which requests to
serve and in which order.

• Abstraction from the physical infrastructure. The JDC specification does not include any
detail about the physical infrastructure. This property is definitively to be preserved. We
seek a middleware that provides hooks to later map components to physical resources.

Moreover, we require the runtime to have only 2 strict operations:

• access to the request queue; and
• access to the content of a future.

Of course, these requirements are akin with GCM/ProActive as JDC was mainly conceived as a
specification language for this kind of components.

Alternative. Another candidate is Creol [Johnsen 06]. Creol is a formal framework that
supports active objects that communicate through asynchronous method calls similar to those
found in ProActive. Futures are explicit, however, which would force us to type futures in the
generated code.
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On the other hand, in Creol active objects are multithreaded. It could be interesting to study the
relation with JDC’s concurrent Services.

There is also a component version of Creol [Owe 07], but components are not hierarchical.
They also provide an interesting approach of defining deontic contracts, where two (or more)
components must agree on what is obliged, permitted, and forbidden.

8.1.2 Implementation Overview of a GCM/ProActive Component

We briefly review now how a GCM/ProActive code looks like. A component in GCM is typed
by the set of its (external) interfaces. This is preferably defined within a separate ADL file for
each component definition.

Both primitive and composite components have ADL definitions that define the component
type. For primitive components, the ADL includes the signature of the class that implements
the component behaviour. For composite components, the ADL includes the architecture
that the component implements but no behaviour other than the default one provided by the
middleware (dispatch incoming calls to the bound interfaces). In Subsection 8.1.3 we show
details on the ADLs.

Once defined by the ADL, a primitive component is implemented by a Java class. This
corresponds to a object-oriented implementation of a component. Figure 8.1 shows a template
implementation of a primitive component in GCM/ProActive.

1 // usual header, which includes the package and imports
2

3 public class ComponentName implements
4 RunActive, // denotes a GCM component
5 BindingController, // GCM non-functional controller
6 MyServerInterface, ... // list of server interfaces {
7 // client interfaces, which include type and name
8 private MyClientInterface itf;
9 // local variables

10 private ...
11 // local methods
12 private void localMethod() { ... }
13

14 // service method (methods defined within the server interfaces)
15 public ...
16

17 // GCM controllers
18 public String[] listFc () { ... } // and others
19

20 public ComponentName () { } // empty constructor required by ProActive
21

22 // service policy
23 public void runActivity(Body body) {
24 Service service = new Service(body);
25 localMethod(); // call to a local method
26 while (body.isActive()) {
27 serveOldest(); // serve in FIFO order indefinitely
28 }
29 }
30 }

Figure 8.1: Code structure of a primitive component implementation in GCM/ProActive
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The component class implements all server interfaces. This is, for each method defined in the
component’s server interfaces, the class implementation has a method with the same name
giving its behaviour. Note that this pattern is prone to collision of method signatures; if two or
more interfaces define a method with the same signature, only one implementation is possible
for this method.

The client interfaces are fields of the component class. This allows any method within the
component to access the environment through the name of the interface.

As the component is active, i.e. that is has its own thread of control, the GCM compo-
nent implements the RunActive interface. Then, there is a distinguished method called
runActivity that has access to the component’s request queue. By default, ProActive gives
a FIFO implementation of this method, but in general the method implements an application-
dependent policy. In the example, the component calls a local method (line 30), and then serves
methods from its request queue in a FIFO order (line 32) until the component is stopped (variable
isActive set to FALSE).

Other interfaces like the BindingController can be implemented to allow reconfiguration.
These interfaces are used by the middleware to change the component’s bindings when stopped.

8.1.3 Generating the ADLs

There are several strategies that can be used to generate the components’ ADLs. For instance,
one may generate an ADL file with every component definition, or an ADL file for each
component, or a mixture of both.

Our approach is to set an ADL file for each JDC component definition; this file takes the role
of a component type, named componentName.fractal. We find this strategy better than
using a single hierarchical file because it provides a grey-view of the component architecture
at each layer of the hierarchy, meaning that at each level the ADL only exposes how sibling
components interact to implement the parent component. Moreover, this approach is the only
way of representing a component type in GCM and, therefore, the only way of defining several
instances of the same component type.

Example: Several instances of the same type

An example of 2 subcomponents of the same
type can be seen in Figure 8.2. Subcompo-
nents A and B, defined within a component
named Composite, reference the compo-
nent type C. The type of C is defined by a sec-
ond file C.fractal. Both subcomponents

will be initialised identically and will have
the same behaviour. Nevertheless, GCM
components are statefull, meaning that A
and B will have their own (non-shared) local
memory.

For each Architecture specification of a component, the compiler generates a composite compo-
nent. The composite architecture is expressed with the GCM ADL (Architecture Description
Language). It includes the component’s external interfaces, subcomponents, and bindings at
this level of hierarchy. For the moment, we do not consider the internal interfaces because the
current GCM ADL definition has no support for them.
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<!-- File Composite.fractal -->
<definition name="Composite">
<component name="A" definition="C"/> <!-- Subcomponent of type C -->
<component name="B" definition="C"/> <!-- Subcomponent of type C -->
...

</definition>

<!-- File C.fractal -->
<definition name="C"> <!-- Defines a type -->
...

</definition>

Figure 8.2: Composite component defining a component type, and two instances of this component

For components that are defined directly through a single Service, we generate an ADL defining
its type (interfaces), and a reference to a Java class that contains the code skeleton. This class will
be described in Section 8.1.4.

We also generate an additional GCM component for dealing with components defined with
multiple services. Each service will be implemented by a GCM primitive component; another
GCM composite component, that relates to the JDC specification, is created that wraps all these
subcomponents. For this, each service must have a disjoint set of server interfaces – there are
no particular constraints to client interfaces. The result is a container component that delegates
services as in Figure 8.3.

Figure 8.3: Architecture for Multiple Services

Finally, the physical infrastructure is abstracted by relating only to virtual nodes on which the
component will eventually be deployed. These are specified as tags in the ADL. The GCM
deployment, which is defined elsewhere, is then in charge of mapping a virtual node to a
machine in the Grid.

<virtual-node name="primitive-node" cardinality="single" />

8.1.4 Generating the Java code skeletons

In this section we study how to generate code skeletons for primitive components. We base the
generation on the behavioural definition given by a service in JDC.

The code generator will create code skeletons that contain the control flow of the component.
It is important to remember that a primitive component has its own (unique) thread of control,
independent from the queue, that will be responsible for accessing the queue and performing
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some work. The component is only able to serve another request once the previous request has
been processed (the control returns to the runActivity method).

Queue. The queue is implemented automatically by ProActive by means of declaring the
component as an “active object”. Therefore, the component has an independent thread which is
permanently ready to en-queue a new request, and provides access primitives to the rest of the
component.

Futures. The futures are also handled automatically by the middleware. Variables are not
typed as futures or not, and the middleware decides at runtime whether a call on a variable is a
blocking operation or not.

Main class. The component implementation consists in a Java class with a specific pattern
(Figure 8.1). This class implements all server interfaces that will set all methods accessible from
outside (besides some control methods needed by the middleware, detailed in Section 8.1.4.1).
We rely on the strong functional behaviour encapsulation of GCM for this matter. We add some
constrains, though: all server interfaces must have different names, and methods defined in
these server interfaces must have unique signatures.

The service policy is implemented by ProActive’s runActivity() method as we will detail in
Section 8.1.4.2.

For each service method, we generate templates with the expected control and data flow; more
in Section 8.1.4.3.

Finally, we add into the component class the service’s variables. These members are private;
their types are those defined in the JDC specification. In this part of the code generation we take
party of having real user-classes within the specification, as the programmer will not need to
modify code that references these variables.

8.1.4.1 GCM controllers

The GCM controllers we create allow basic reconfiguration operations. We automatically
generate them using the information from the JDC’s definition of a primitive component; the
specification of the behaviour is not needed here.

Figure 8.4 depicts the automatically generated code. It shows an implementation of the
BindingController interface from Fractal and GCM which sets technical services for
rebinding components. We only provide the simplest behaviour for the BindingController
interface; to list interfaces and to rebind interfaces∗. An example of such code can be seen below,
with CASHBOXEVENTIF being the name of a client interface of the component.

For starting and stopping components, ProActive already implements a life-cycle controller;
this is enough for performing basic reconfiguration. By basic reconfiguration we mean

∗This is similar to the code generated by FractalGUI [FractalGUI ] and Fraclet [Fraclet ]
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// Implementation of the Controller interfaces
public String[] listFc () {return new String[] { CASHBOXEVENTIF };}

public Object lookupFc (final String clientItfName) {
if (CASHBOXEVENTIF.equals(clientItfName))

return cashBoxEventIf;
return null;

}
public void bindFc (final String clientItfName,final Object serverItf){

if (CASHBOXEVENTIF.equals(clientItfName))
cashBoxEventIf = (CashBoxEventIf)serverItf;

}
public void unbindFc (final String clientItfName){

if (CASHBOXEVENTIF.equals(clientItfName))
cashBoxEventIf = null;

}

Figure 8.4: Automatically generated GCM controllers

reconfiguration that does not require customisation of the life-cycle controller. By default, when
a stop signal is received, the life-cycle controller broadcasts the signal to inner subcomponents.
However, if the application has a dependency cycle, then this strategy may cause a deadlock (we
can check this using our behavioural models). Though, a custom implementation of the life-cycle
controller may wait for a stable component state before proceeding with the reconfiguration.

8.1.4.2 Service Policy

The service policy is implemented by the runActivity method in ProActive. It receives a
reference to the active object’s body as parameter, which provides access to the component’s
request queue.

Generating a skeleton for the runActivity is simple considering that the service policy is a
regular expression. The service policy could also be specified using a state machine as in VCE
(see Section 7.2.3). The latter provides more expressive power than that found in JDC because
one can specify expressions on the component’s variables that is not possible in JDC right now.
Nevertheless, in the following we only give details of the simpler subset found in JDC.

The generated code is based on the ProActive API as follows:

Queue Access Primitives. The two request queue access primitives of JDC (serveOldest
and serveYoungest) can be implemented using ProActive’s blockingServeOldest()

and blockingServeYoungest() methods. Both access primitives may be called without
parameters (any method will be matched), or with a filter (only methods matching the
filter will be affected). For that case, the API provides the interface RequestFilter for
implementing filters on the component’s request queue. We implement this interface with
the class RequestFilterJDC; this implementation allows us to select requests matching an
interface and/or a method name.

ServeMode→ serveOldest | serveYoungest �request queue access prim.�
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Remote Method Call. A remote method call is a statement in Java identical to the one in
JDC. The asynchronous semantics are taken care by ProActive.

MethodCall→ ItfName ’.’ MethodName ’(’ [ Expr ] ’)’ �remote method call�

Local Method Call. A local method call from the service policy will simply delegate the
thread of control to the related method.

MethodCall→ MethodName ’(’ [ Expr ] ’)’ �local method call�

Sequence. The sequence operator is implemented by sequencing two blocks of Java code.

BasicPolicy→ BasicPolicy ’;’ BasicPolicy �sequence�

Choice. The choice operator is implemented by a non-deterministic choice between the two
policies.

BasicPolicy→ BasicPolicy ’|’ BasicPolicy �choice�

‘n’ Repetition. Repetition is implemented by a while loop with a counter.

BasicPolicy→ BasicPolicy ’n’ �n repetition�

Permanent Policy. The permanent policy is implemented by a while loop that is repeated un-
til the component is stopped. This is represented by the statement while (body.isActive()).

PermPolicy→ BasicPolicy ’∗’ �infinite repetition�

Example

In Figure 8.6 we show an example of
code generated from the JDC service policy
specification from Figure 8.5.
The component will perform two remote
method calls saleStarted() and
saleFinished() on the client interface
cashBoxEventIf, and then will non-
deterministically behave as two separate
scenarios which will join again when the
iteration in the policy ends.
The non-deterministic behaviour is sim-
ulated in Java by a random choice in

(new AnyBool()).isTrue(). Note that
a concrete implementation will probably
modify this random choice accordingly.

Continuing with the example, the compo-
nent also accesses its request queue, select-
ing the request matching the method name
changeAmountCalculated. Finally, the
component activity loops indefinitely, which
is captured by the main while loop.

More details of the example can be found in
Appendix A.
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policy {
( cashBoxEventIf.saleStarted();

cashBoxEventIf.saleFinished();
(

cashMode();
cashAmount();
serveOldest(controlIf.changeAmountCalculated);
cashBoxEventIf.cashBoxClosed()

)
|
( creditCardMode() )

)*
}

Figure 8.5: Example of a JDC service policy

public void runActivity(Body body) {
Service service = new Service(body);
while (body.isActive()) {

cashBoxEventIf.saleStarted();
cashBoxEventIf.saleFinished();
if ((new AnyBool()).isTrue()) {

cashMode();
cashAmount();

// serveOldest(controlIf.changeAmountCalculated)
RequestFilterJDC filter = new RequestFilterJDC();
filter.addInterfaceMethod("controlIf", "changeAmountCalculated");
service.blockingServeOldest(filter);

cashBoxEventIf.cashBoxClosed();
} else

creditCardMode();
}

}

Figure 8.6: Example of a JDC service policy implemented in GCM/ProActive’s runActivity

8.1.4.3 Service Methods

Language definition. The exact language definition for specifying the behaviour is missing
in JDC. We have left open how the service methods are defined. As a first step we expect to deal
with a simplified subset of JDC that we call aJDC (for Abstract JDC).

In aJDC, datatypes are always of type simpletypes, and futures are typed. One can think of aJDC
as a JDC specification in which of variables of user types have been replaced by their abstract
versions. Moreover, a static analysis step has determined precisely whether a variable is a future
or not; in the case this is not possible, the user must solve the ambiguity.

On one hand, the goal of this simplified flavour of JDC is to provide an easy starting point for
the code generators. On the other hand, the goal is to obtain an easy mapping towards our
graphical language in VCE (as proposed in the state-machine of Section 7.2.3).

aJDC can be defined as a Domain-Specific-Language (DSL), and rapidly implemented using
TCS [Jouault 06a]. TCS uses Meta-Modelling techniques to implement support within Eclipse
for textual languages in the form of DSL.



172 Chapter 8. Perspectives

Synchronisation. The key aspects of the generated code rely on the synchronisations. To be
sure that the generated code behaves exactly as defined in JDC, the synchronisations must be
exactly those inferred in JDC.

In JDC, the explicit synchronisation primitive touch() can be expressed in ProActive with an
API call ProActive.waitFor( f), where f is the variable to perform the synchronisation.
A call to this method is allowed whether f is a future or not; in case f is not a future, the
middleware ignores the invocation.

In the case a variable f in JDC was abstracted into a Singleton abstract domain, after a
synchronisation ProActive.waitFor( f) the variable can be freely manipulated as any
ordinary Java variable. As the variable does not contain significant values, the only effect on
the control flow could be an eventual synchronisation that is already performed and specified.

If f does not have a Singleton domain, after a synchronisation ProActive.waitFor( f) the
variable can be read (and access any read-only method), but changing its value must be done
with caution. The new concrete value must have the same abstract value in the abstraction,
otherwise the user could have changed the control flow of the application.

Non-Determinism. Typically the programmer will have to refine the generated code to
deal with non-determinism. In JDC, we have included an explicit enumeration of the abstract
domain. We can only provide a simulation of this behaviour within the generated code, and it
will be up to the programmer to fill in the exact implementation.

Annotations. An approach is to leave part of the generated code as Java annotations. This can
help the programmer to identify what part of the code is related to control, and on the other hand
it could be used by tools in order to assist static analysis. An example of how annotations could
be used together with JDC is as follows. We annotate the generated code for the runActivity
from Figure 8.6 in Figure 8.7.

In the example, the generated code is annotated with marks to identify remote method calls
(@RPC), loops (@while), conditional choices (@if), external data (@USERCLASS), and access to
the request-queue (@service). The programmer has decided to include a logger (monitor)
that was not included within the JDC specification. These annotations allow us to easily endow
Java with additional semantics.

Annotating the code is also of great interest in order to keep the specification and the
implementation synchronised. The work on Fraclet [Fraclet ] uses Java annotations in order
to represent components, interfaces, bindings and Fractal controllers in a compact way. This is
later translated by the compiler into plain Java, but relieves the programmer from the burdon of
writting code that has been already specified.

8.1.4.4 User Classes

We do not try to generate the user classes. On the contrary, they must be provided by
the designer, together with the definition of their abstractions. Therefore, we should have
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public void runActivity(Body body) {
monitor.addMessage("Start");
Service service = new Service(body);
@while (body.isActive()) {

@RPC cashBoxEventIf.saleStarted();
monitor.addMessage("Sale Started");
@RPC cashBoxEventIf.saleFinished();
monitor.addMessage("Sale Finished");
@if (@USERCLASS(new AnyBool()).isTrue()) {

monitor.addMessage("Cash Mode");
cashMode();
cashAmount();

// serveOldest(controlIf.changeAmountCalculated)
RequestFilterJDC filter = new RequestFilterJDC();
filter.addInterfaceMethod("controlIf", "changeAmountCalculated");
@service.blockingServeOldest(filter);

@RPC cashBoxEventIf.cashBoxClosed();
} else {

monitor.addMessage("Credit-Card Mode");
creditCardMode();

}
}

}

Figure 8.7: Example of annotated code to be used together with JDC

a support in order to assist the designer in this process, similarly as showed in the Bandera
toolset [Dwyer 01].

Another issue that leave open is how can we allow refinement of these classes. For example,
the signature of user classes will probably change during the implementation to include new
arguments, so the code we generate should be refined as well.

8.1.5 Rules for Modifying the Generated Code

We now enumerate the rules that the programmer must follow in order to ensure that the
generated code has the same behaviour as specified in JDC.

We call safe an implementation that completes the code skeletons by an implementation
following the rules:

1. The ADLs cannot be modified by the programmer. Doing so would break the system
architecture and the consistency of the generated code.

2. The request queue is not accessible by the implementation code. In other words, only the
automatically generated code for the runActivity() method is allowed to access the
queue.

3. The implementation may not perform remote method invocations other than those
specified in JDC. In other words, method calls on client interfaces are only those
automatically generated. Otherwise, the programmer would change the component’s
protocol for both caller and callee.
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4. Within the user-classes, every field that has been omitted in the abstract version of the
class must be strictly a value. In other words, only variables that are considered in the JDC
specification may contain futures, but other variables may be defined within user-classes
as long as they are strictly non-futures. The goal is to forbid new variables from enforcing
further synchronisation on futures that have not been specified. For guaranteeing such
behaviour, we should rely on the middleware; however, ProActive does not yet implement
any mechanism for specifying which variables cannot be futures. Another option is to use
static analysis to verify these properties.

5. The component’s variables, given by the set of variables in the JDC specification, should
always have values in the abstract domains as defined in the specification. In other words,
these variables may be modified with multiple concrete values as long as they all have
the usual abstract values in the abstract domain. Moreover, the first access to a variable
declared in JDC (thus possibly a future) must be the one automatically created by the
code generator. Afterwards, the implementation may freely access the variable in a read-
only mode, or change the variable to other concrete values (under the constraint above).
The goal is to be sure that the control flow of the component is the one defined by the
specification.

6. The implementation may include any business code interleaved within the generated
code. This should not have an influence on the control flow of the generated code.

Checking these properties would rely on a static analysis of the implementation. Rules 3 and
4 are checked using aliases analysis. However, verifying rule 5 is more complex. If we wish
to perform this automatically, we would require an abstraction function that takes variables of
concrete domains and returns its abstract values. Then, a static analysis of the implementation
could check if the behaviour has changed.

8.2 Language Extensions

Among the large number of language extensions that we can think of, there are two sets that can
be defined here: those related to GCM in general, and those related to ProActive.

8.2.1 Extensions dealing with the GCM

Collective communication. The main element in GCM that is not dealt with by JDC is
many-to-one and one-to-many communication (also called multicast/gathercast).

It is not only a matter of defining an interface as multicast/gathercast. We need to define its
behaviour for capturing, at least, the distribution of data to bound interfaces. This distribution
is user-defined, therefore we can provide a library with the most common distribution policies,
but we must also let the designer specify new policies. Complementarily, we need to adapt our
behavioural models in order to take this into account.
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Parameterized Topologies. Once collective communication is supported, another key as-
pect is to define parameterized topologies of components. This is particularly interesting in
Grids, where the topology is, in general, parameterized by the number of clusters, and by
the number machines in each cluster. In a master-worker pattern for example, we would like
to define parallel and identical components for the workers. We have been working in this
direction in our VCE tool and in JDC. Some prototypes are presented in the CoCoME use-case
detailed in Appendix A, and in the grammar of Figure 8.8.

Component→ component id ’(’[ FormalParams ]’)’ ’{’ �param. component�

Subcomponent→ component
ComponentType ’(’[ ActualParam ]’)’ �partial specialisation�

id [ Expr ] ’;’ �multiple components�

Interface→ [ BoolExpr ] (server | client) �guard and role�
interface InterfaceType id [ Expr ] �indexed interfaces�

Binding→ [ BoolExpr ] bind’(’ �bind if guard is true�
Comp[ Expr ]’.’SourceItf[ Expr ]’,’ �source interface�
Comp[ Expr ]’.’TargetItf[ Expr ]’)’ �target interface�

Figure 8.8: Syntax for parameterized topologies of components

What we need to do is to add parameters to the component architecture. That is, the component
has parameters denoting a family of components. These parameters can be used to define
collections of interfaces, give partial instantiations of subcomponents, and so on. For the
bindings, the references will be expressions on the variables, allowing for conditional bindings.

Moreover, the parameters can have influence on the data-flow, defining routes and data
distribution. This is why we should base this work on the collective interfaces [Bruneton 06].

Non-Functional Components. There has been work within the GCM community 3.1.3 to
define non-functional (NF) within the membrane. For the time being, we only worked on the
architecture definition of NF components in VCE (see Section 7.2). The difficulty here is to define
the exact interaction between different NF components. There is still no concensus within the
GCM community on what (and how) NF components are allowed to do. Therefore, we are
awaiting for further research into this trend, and investigating what could be interesting to
represent within the behavioural models.

A major relevance of NF components is that by structuring the membrane, the component
becomes more compositional. This is in the sense that Fractal proposes a white-box view of the
NF aspects. This means that, in theory, a NF interface could be used to change arbitrary values
in the component. On the contrary, by structuring the membrane, the designer would have to
say exactly what is to be changed, and who has access rights for that. Therefore, we can expect
to deal with components in a much more compositional way, which heals state-explosing in
model-checking.
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Reconfiguration primitives. It should not be difficult to define a small set of reconfiguration
primitives that address most of use cases of dynamic reconfiguration. Moreover, we already
have defined models for dealing with basic reconfiguration such as stopping a component and
changing its bindings. Therefore, we think that this should be the main research path in JDC as
it is definitively aligned with our goals.

Similar projects, such as SOFA 2.0 (see Section 2.1.2.3), limit reconfiguration to pre-existing
reconfiguration patterns. This is also another trend that must be considered, and JDC could
be the language used to define these patterns in a high-level abstraction.

Limited Concurrency. Another trend for research in JDC is its limited concurrency. Con-
currency can only be expressed through an architecture that exposes the interaction of services
through subcomponents. This leads to designs in which a service is strongly tied to a primitive
component, so refinement of subcomponents is limited.

There are two reasons why this was not yet considered in JDC. First, we do not have an
equivalence relation between the black-box definition and its architecture implementation.
Second, we do not want to build a complex specification language with many synchronisation
primitives and parallel operators, which would be more complex than those found in the
programming language.

One option would be to include access to some shared resources, either in the form of shared
variables or shared methods. However, it is not clear how to generate GCM code that complies
with this kind of specifications. Another approach is the one taken by LOTOS. LOTOS includes
a parallel operator where one can specify parallel processes that communicate through some
shared gates. This can be used to define configuration patterns, but then again this is somehow
expressing an architecture where interfaces and bindings are synchronisations on gates.

8.2.2 Extensions dealing with ProActive

An important issue about JDC is that it does not take into account specificities of ProActive
(the reference implementation of the GCM). It was indeed the goal of JDC to deal with GCM
implementations in general. We will present in the following some extensions that could be
useful for dealing specifically with GCM/ProActive.

Advanced Synchronisation Primitives. The ProActive API provides advanced control on
synchronisations, which can enhance the application performance and may avoid deadlocks.
Nevertheless, if rich primitives are used, the deterministic properties inherited from the ASP-
calculus cannot be guaranteed any longer.

The most used one is the ProActive.isAwaited( f)method. It allows one to check whether a
future f has been filled or not (in the case of a non-future variable this is trivially true). However,
this makes the program immediately dependent on how futures are updated (i.e. there is no
confluence on future update strategies). On the contrary, the models we provided in Chapter 6
require confluency of future update strategies. In particular, we have used a different update
strategy than the one implemented in ProActive.
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Similarly, the ProActive API provides a non-blocking access to the request queue. This allows for
full introspection of the request queue. We will definitively not support this as it would make
verification through model-checking unfeasible. However, there is still room including some
queue access primitives. For example, we can imagine that a boolean predicate for filtering
some methods can be applied without major impact in the state-space. Moreover, believe that
adding non-blocking access to the request queue will only locally affect the model, precisely
only the model of the queue.

Asynchronous Exception Handling. Yet another feature in ProActive is asynchronous
exception handling [Chazarain 05, Caromel 05a]. Roughly, the idea is to allow a method call
to be performed asynchronously even if the method may raise an exception. The exception is
only dealt with when the catch of the try/catch block is reached, or on a strict access to
the future variable (which will finally throw an exception). However, transmitting a future in
the meanwhile must also be a strict operation. This is to avoid problems if-ever an exception is
thrown within a future which should have never been existed in a sequential execution.

The implementation of such exception handling breaks the semantics of ASP, so properties on
confluence are no longer valid. Therefore, once again the behavioural models for futures we
proposed in Section 6.2 are not valid.

Immediate Services. An immediate service in ProActive is a method that is executed within
the callee by the caller thread. This means that the active object “allows a remote thread” to
execute and modify the state of the active object. Moreover, the synchronisation must be handled
explicitly by the programmer.

We have not deal with immediate services because we consider that it should not be used by
the GCM programmer. We believe that programming with immediate services is error-prone,
and we are sure that it completely breaks the model inherited from ASP-calculus. It could be
useful though, for programmers of the ProActive middleware. Therefore, including support for
immediate services in JDC could help the development of ProActive.

8.3 Conclusion

In this chapter we presented a small set of remaining work for JDC. We have outlined how we
could create safe-by-construction components based on JDC specifications, and then reviewed
language extensions that are required in order to deal with a broader range of GCM features.

The generation of safe GCM components is based on code generated from a verified JDC
specification. The code includes the architectural definitions of components, as well as part of the
behaviour implementation. The latter, is mainly focused on the remote method calls performed
by the component, and the synchronisations that may eventually happen. The generated code
is not final, as it is built upon an abstract specification of the system. However, the programmer
may refine the generated code with business code such that the control code is unmodified. This
is still an early work on the generation of GCM components from a specification. There is no
tool that implements the ideas described in this chapter, and one of the open questions is how
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designers can refine the generated code with tool support (or annotations) in order to guarantee
that the behaviour is unmodified.

We also reviewed extensions to JDC that address a broader set of GCM paradigms. These
take the form of many-to-one and one-to-many communications, parameterized topologies of
components, non-functional components, and reconfiguration primitives. We discussed the
need for a better handling of concurrency in JDC, that is currently limited to the architecture
definition.

Complementary, we also reviewed extensions that tackle particular features found in the
ProActive API. These features allow the optimisation of communications by exposing futures
and synchronisations. These are mainly characteristics that we wanted to hide from the designer,
but that are very useful for developers of the ProActive middleware.
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Conclusions

What this thesis has sought from the very beginning is the support for the development
of safe components. Our work has focused both on the modelling and the specification of
distributed components. The thesis objective has been to narrow the gap between component
implementation and component specification.

A sound analysis of a system can be obtained through behavioural models which provide an
abstract representation. However, behavioural models tend to be too low-level to be used as
a system specification. Therefore, in order to specify and analyse distributed components, this
work has envisioned a formal framework adapted to the expertise of software engineers. We
have provided behavioural models suitable for verification of distributed component systems;
and provided an expressive language that allows one to define a high-level abstraction of the
system behaviour.

To summarise, our work takes away complexity “inherent” to software specification from the
designer, and puts it on the verification tools.

9.1 Contributions

We now highlight the main contributions of this thesis.

Hierarchical Formalism. We have formalised a hierarchical model to support the definition
of behavioural models. The first part of the thesis presented a formalism called pNets. The
formalism is particularly adapted for modelling components because it describes the model as
a hierarchy of communicating processes, and provides a symbolic representation of the system.
Another strong contribution of the formalism is that is does not make strong assumptions on the
kind of synchronisation used, and it handles data within the processes. The formalism can also
be thought of as an intermediate language that interfaces with state-of-the-art verification tools.
This provides a sound formalism to define various kinds of behavioural models.

High-Level Specification Language. We have provided a high-level specification language
for specifying distributed components that is suitable for software engineers. The pNets
formalism is well adapted to the kind of behavioural models we want to express. However it
is too low-level to be directly used by our target users. Therefore, we have defined a high-level
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specification language rich enough to capture the communication, synchronisation, control-flow,
and data flow inside components. We have designed the specification language to be formal
enough to build behavioural models, but endowed with a syntax familiar to our target users.
This allows an easier adoption of software engineers.

Integrate Architecture with Behaviour. We have integrated the architectural and be-
havioural definitions into a single specification language. Components provide software
composition which can be intuitively represented. With that in mind, the specification language
includes not only the behavioural, but also the architectural definitions. Of course the
architectural definition deals with structural definitions as in most ADLs, but also provides
language primitives if we ever need to reference the structure within the behaviour. The
behavioural definition, on the other hand, takes care of the component’s control and data flow,
but can also have concrete primitives making references to the system architecture. This avoids
architectural erosion.

Components as Services. We have provided, first an intuitive definition of the component
behaviour through the service policy, and then a detailed definition of each service. We noticed
that distributed components had some kind of control part that orchestrated the services offered
to the environment. That was a good starting point to define the behaviour. Hence, we have
defined the component’s service policy that give us a rough definition of what the component
provides to the environment, and then we focus on a more detailed definition of each of these
services. This makes component behaviour easy to understand.

Simplify the Specification. We have simplified the behaviour specification by specifying
the component activity instead of the events. We specify just what the component does, and use
static analysis techniques in order to infer the exact behaviour (all the events performed by the
component). This defines the complex synchronisations of distributed components in a simple way.

Generate Verifyable Behavioural Models. We have defined and generate verifyable
behavioural models from instances of the specification language. The analysis of the specifi-
cations gives us information about the architecture, remote method invocations, future flow,
synchronisation on access to the content of a future, and access to the component’s queue. This is
enough to automatically generate behavioural models based on our pNets formalism; moreover,
the behavioural models can be verified by model-checkers. This gives a verifyable abstraction of the
system’s behaviour.

A Compositional Static Representation of the System. We have defined behavioural
models that are a static representation of the system and can be built in a compositional way. A
strong contribution of the work is to provide a static representation of futures, particularly when
futures can be transmitted to other components in a non-blocking manner. The behavioural
models encode the asynchronous behaviour of components, including a request queue for
buffering the requests, and proxies for futures. We propose an abstract domain for futures,
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and then static representations for the various ways futures can be transmitted; moreover, we
do this is in a compositional way. This gives a compositional static representation of the system that
can be verified.

Narrow the Gap between Specification and Implementation. We have provided a
mechanism that can generate behavioural models and code skeletons from the same spec-
ification. The specification language is adequate to generate a skeleton of the component
implementation with strong guarantees w.r.t. their specification. This is done by structuring
the service policy such that the control of the component can be automatically generated, and
defining rules for the reminder of the component behaviour. This ensures strong guarantees on the
runtime behaviour.

Use User-Classes within the Specification. We have included user-classes and abstract
versions in the specification language. This guarantees that the generated code uses correct
implementations of data. Moreover, this guarantees that the behavioural model generation uses
datatypes compatible with our pNets formalism, but more importantly, this guarantees that the
model is a safe abstraction of the specification.

9.2 Comparison to Other Approaches

In this last section, we compare our approach to existing approaches. The evaluation of existing
specification languages given in Section 3.3 shown us the main drawbacks when dealing with
GCM components. To summarise, we highlighted that most specification languages are fit to
define the architectural part of the GCM (though limited to functional concerns) but are not
adapted to a data-driven synchronisation model. Particularly, this meant that futures (and more
precisely transparent first-class futures) required a manual encoding of their behaviour.

Architecture Specification. In this work, most novel contributions are related to be-
havioural definition of components. Nevertheless, our graphical language found in VCE (see
Chapter 7.2) gives a new language for defining the architectural part of the GCM. In there
we have included primitives for dealing with one-to-many and many-to-one communications,
but more importantly, we have given the means for structuring non-functional aspects of
components.

With respect to JDC, the architectural definition is the one we classically find in existing ADL
languages. Nevertheless, as it is given together with the behavioural definition, we believe it is
easier to extend the language for dealing with reconfiguration. The idea of augmenting Java for
this is similar to that in Java/A and ArchJava, though Java/A does not consider reconfiguration
whereas in ArchJava reconfiguration is based on π-calculus.

Asynchronous Semantics. In this work we have focused on how distributed components
equipped with asynchronous semantics can be specified. As the events triggered by the use of
futures can be highly interleaved within the component behaviour, classic approaches such as
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the ones used in Behavior Protocols (describing the events through regular expressions), Java/A
(describing the interface behaviour through LTSs) do not provide high-enough abstractions to
the designer. We believe that our work is complementary to these works in the sense that we
provide a much higher abstraction of the behaviour definition and afterwards we infer which
are the events that can be triggered by the components. Therefore, the resulting behavioural
model includes the component’s events, matching the abstraction level of the other approaches.

Data Abstractions. With respect to the data part of the language, a novel approach is
that we did not try to generate sound implementations of the user classes. We believe that
the implementations of the user classes will require major modifications before being useful.
Therefore, guaranteeing the behaviour of the data part of the generated code would not be
possible. This is not the case for the control part of the language, in which it is much easier
to separate the code dealing with the control from that of the calculation. Combining both
generated control code with user-provided user classes is easier and safer.

If we compare this approach with existing ones, in STSLib the authors generate classes from
Algebraic Data Types (ADTs). However, the ADTs comprise the abstract behaviour that any
implementation of data types should have. This is done by defining equations that are quite
distant from the expertise of software engineers.

More related to our approach would be the work on Bandera on static analysis of Java code.
Nevertheless, their goal is to assist the generation of sound abstractions of the user classes. Once
the abstractions are defined, they abstract the Java source code which can be finally verified
(model-checked). They do not consider, yet, the abstractions of futures (and particularly access
to futures). Moreover, they focus on Java source code so they need to take care of the business
code whereas our approach starts from an abstraction of the control and data-flow of distributed
components.

Formalism. Comparing the pNets formalism with other formalism can be made in several
trends. The pNets formalism is meant to describe the behaviour of distributed systems in general
so it is somehow closer to LOTOS and Promela than to ASP. It is also difficult to compare it with
Behavior Protocols because Behavior Protocols is specific to components, whereas pNets solely
describes some behaviour but lacks of semantics.

LOTOS is a standarised formalism that addresses distributed systems in general as well.
However, in LOTOS the behaviour is given through communicating processes that must
agree on actions in order to communicate. In pNets we use a generalised parallel operator
(synchronisation vectors) that subsumes the parallel operator found in LOTOS. The data part
found in LOTOS, on the contrary, is much more expressive than the simple types found in pNets.
This makes LOTOS very expressive, though complex.

ASP is a formalism used to prove properties of distributed active objects (or components)
in general whereas we can use pNets to prove the behaviour of a particular application.
Additionally, in ASP we can formalise the behaviour of a program whereas in pNets we describe
its behaviour. With respect to analysis, pNets has been conceived to interact mostly with
automatic checkers, particularly with model-checkers. ASP, on the contrary, requires a theorem-
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prover in order to analyse a program; even more, as ASP is very expressive, it is highly non-
deterministic and thus it is difficult to automatically generate proves.
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Šimeček. DiVinE – A Tool for Distributed Verification (Tool Paper). In Computer
Aided Verification, volume 4144/2006 of LNCS, pages 278–281. Springer
Berlin / Heidelberg, 2006.

[Barroca 92] Leonor M. Barroca & John A. Mcdermid. Formal Methods: Use and Relevance
for the Development of Safety-Critical Systems. Comput. J., vol. 35, no. 6, pages
579–599, 1992.

[Barros 04] Tomás Barros, Rabea Boulifa & Eric Madelaine. Parameterized Models for
Distributed Java Objects. In Forte’04 conference, volume LNCS 3235, Madrid,
2004. Spinger Verlag.



BIBLIOGRAPHY 187

[Barros 05] Tomás Barros. Formal Specification and verification of Distributed Component
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[Plášil 02] František Plášil & Stanislav Visnovsky. Behavior Protocols for Software
Components. IEEE Transactions on Software Engineering, vol. 28, no. 11,
2002.

[Pnueli 77] Amir Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57. IEEE,
1977.
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Abstract

In this appendix we validate our approach in
a large case-study. This work is part of the
CoCoME initiative to establish a common
case-study to analyse different component
models and modeling techniques.
We specify the CoCoME common example
in both JDC specification language and its
graphical version VCEa.

From these specifications we generate be-
havioural models that allows us to analyse
the system behaviour the system. We verify
various use-case scenarios described in the
CoCoME reference manual.
We also present a hand-made implementa-
tion of the code that will be generated from
JDC.

aWe use an earlier version of VCE called CTTool

Motivation

In this appendix apply our specification methods on a common example of component
based software engineering. This example is called Common Component Modelling Example
(CoCoME [Rausch 08]). As its name suggests, CoCoME is an initiative for defining a common
component example, and may be used for comparing different component models. The subset
of CoCoME we modelled consists in 16 components, 5 of them being composites. Furthermore,
composite components were designed with up to 5 layers of hierarchy, stressing the need
of hierarchical component models. In fact this system necessitates hierarchical components,
component multiplicities, collective communications (for addressing a specific component and
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broadcasting a message), modelling of exceptions, and synchronous and asynchronous method
calls.

We have chosen to include in this appendix only the specification of two components, with the
required views of each, with the JDC text, and some of the CTTool∗ diagrams as illustrations.
The first one is the (composite) Cash Desk component, for which we include and explain:

• its black-box view with the definition of external interfaces, and the specification of its
visible behaviour;

• its architectural view with its subcomponents and bindings;
• its GCM view, with excerpts of the generated ADL code.

The second one is the (primitive) Cash Box Controller component, with:

• its black-box view with its interfaces and behaviour, with much more details on the
definition of its service methods;

• no architecture as it is primitive;
• an abstraction specification of a user-defined datatype;
• pieces of generated Java/ProActive code;
• a fragment of its deployment specification.

The contents of this annex were published in [Cansado 08a]. The interested reader may find
useful to compare this work with the ones provided by Java/A [Knapp 08], SOFA [Bureš 08],
and Fractal [Bulej 08].

A.1 Description of the Case-Study

The example studied in this appendix consists in a Trading System as it can be observed in a
supermarket handling sales. This includes the processes at a single Cash Desk. Typical operations
are scanning products using a Bar Code Scanner or paying by credit card or cash. A general
schema of the architecture can be seen in Figure A.1.

Figure A.1: The CoCoME overview

∗CTTool is an old version of VCE, presented in [Ahumada 07]
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The Cash Desk is the place where the Cashier scans the products the Customer wants to buy
and where the payment (either by credit card or cash) is executed. Furthermore it is possible
to switch into an express checkout mode; this mode allows only Customers with few products
paying by cash.

To manage the processes at a Cash Desk, a lot of hardware devices are necessary (Card Reader,
Cash Box, Cash Desk GUI, Light Display, Printer, Scanner).

Using the Cash Box which is available at each Cash Desk, a sale is started and finished. Also the
cash payment is handled by the Cash Box.

To manage payments by credit card a Card Reader is used.

The Cashier uses the Bar Code Scanner in order to identify all the products the Customer wants
to buy. At the end of the payment process a bill is produced using a Printer. Each Cash Desk is
also equipped with a Light Display to let the Customer know if this Cash Desk is in the express
checkout mode or not.

Besides the Cash Desks, the system includes an Inventory. This is, however, simplified in our
case-study. We consider only that the Inventory will stock the bills and provides information on
the products, such as price and availability.

Finally, there are a set of banks accessible by the system. They are external entities for which we
only provide an abstract specification.

A.2 Modeling the CoCoME

Before starting with those examples of component specifications, let us define what are the
different views that we use.

A.2.1 Black-box View

We call black-box view of a component its externally visible architecture and behaviour.
Therefore it includes the common part of both primitive and composite component: the list of its
interfaces (defining which are client and server interfaces), and the definition of these interfaces
(the Java methods and their signatures). The black-box view allows the component to be used
without exposing its internals.

A.2.2 Architectural View

The architectural view gives a one-level refinement of a component as a composition of
subcomponents. For each one of these subcomponents, the designer must provide its black-
box view. Note that, when an architecture is provided for a component, the policy section in
the black-box definition is optional as it is implicitly defined by the architecture.

For the CoCoME model, we have specified the architecture, whenever given in the CoCoME
reference, of every component except for the Inventory. The latter was given only a black-box
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specification to simplify the model. Within this section we show the architecture of the Cash Desk
component.

A.2.3 GCM View

Our objective is to generate GCM components from the JDC specification. JDC is rich enough to
be able to generate automatically both the ADL describing the structure of the application, and
the skeleton of the primitive components in ProActive.

For the composite components, the ADL can be automatically inferred from the architectural
view presented above. For the primitive components, the ADL mainly consists in the definition
of interfaces and can be generated automatically. The skeleton of the Java class implementing the
primitive can be generated from the JDC black-box specifying the behaviour of the component.
The user then only has to write the business code, resolving all the abstractions and non-
determinism present in the black-box definition.

Concerning non-functional aspects, they are not specified for now in the JDC. Thus it is also
the role of the programmer to provide and compose these aspects. In general, most of those
aspects are provided by the component middleware, e.g. Fractal requires basic management
controllers to be implemented by each component. In most cases, dealing with non-functional
aspects consists in invoking operations on these controllers. For the moment, those invocations
have to be performed manually by the programmer; but on the long term basis we would like
to include them in the JDC so that it is possible to study and verify the interaction between
functional and non-functional concerns.

The generation of code from the JDC specification is not working yet; thus based on the JDC
specification we wrote the GCM/ProActive code for the CoCoME example. This code consists of
a set of composite components defined in the ADL, and a set of primitive components written in
Java and using ProActive. Recall that, at deployment, a thread is created for each primitive and
each composite component, and those components communicate by asynchronous method calls
with transparent futures, leading to a parallel and distributed implementation of the application.

A.2.4 Deployment View

The deployment view of an application is out-of-scope for this work. However, since the
modelling of distributed aspects is an important part of a specification, this section outlines
the ProActive deployment scheme, and shows how the distribution nature of GCM components
can be captured. Further, using the CoCoME architecture as an example, it is shown how to map
the components to the physical infrastructure.

ProActive and GCM comprehensive deployment framework is based on the concept of Virtual
Node (VN). A VN is above all an application abstraction that, at modelling or programming time,
captures the distributed nature of a system. Typically, a given application is specified to deploy
on several VNs (e.g. each component on a separate VN), each capturing a specific entity or
related set of entities of the application. At deployment, each VN is mapped to one or several
machines on the network, using appropriate protocols.
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The number and characteristics of VNs are chosen by the application designer, providing both
guidance and constraints to be used and enforced at deployment time. Both parallelism and
de facto distribution can be captured by VNs. Moreover, the designer can also specify multi-
threaded constraints by using a single VN for several components, capturing a forced co-
allocation. When building composite components, one has the possibility to merge some inner
VNs into a single one, specifying co-allocation of the corresponding inner components. One also
has the possibility to maintain at the level of the composite some of the inner VNs, specifying an
independent mapping of the corresponding inner components to the physical infrastructure.

A VN has several characteristics. The most important is its cardinality, which can be single or
multiple. The former captures the fact that a single node of the infrastructure has to be used
to execute the corresponding component, the later gives the possibility at deployment to map
the component on several machines. This powerful possibility is to be related to multicast and
gathercast interfaces: a collective interface often corresponds to a Multiple VN with the same
cardinality.

At deployment time, all the VNs of the CoCoME specification will be mapped to one or several
machines of the physical infrastructure using an XML file. The ProActive implementation makes
it possible to choose from many protocols to select and access the actual nodes (rsh, ssh, LSF, PBS,
Globus, etc.), and to control the number of components per machine, and per process (JVM).
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A.2.5 Specification of the Cash Desk Component

In this subsection, we specify the Cash Desk component. We give its black-box specification
together with a matching architecture specification. Finally, we outline its implementation
within the GCM/ProActive.

A.2.5.1 Black-Box View of the Cash Desk

The black-box of the Cash Desk starts by defining its server and client interfaces. In there, we
see that the bankIf is a collection interface as it addresses multiple banks, but method calls are
routed to one bank at a time.

component CashDesk(int numOfBanks) {
interfaces
server interface CardReaderControlIf cardReaderControlIf;
server interface ApplicationEventHandlerIf applicationEventHandlerIf;
client interface BankIf banksIf[numOfBanks];
// ... all 10 other interfaces

}

These interfaces must be properly defined. For example, in the code below we see the definition
of the ApplicationEventHandlerIf interface, which exposes the full method signature
using user-classes.

public interface ApplicationEventHandlerIf {
void saleStarted();
void saleFinished();
void cashAmountEntered(CashAmount moneyAmountEntered);
void cashBoxClosed();
void creditCardScanned(CreditCardScanned creditCardScanned);
void pinEntered(PIN pin);
void paymentMode(PaymentMode paymentMode);
void expressModeDisabled();
void expressModeEnabled();
void productBarcodeScanned(ProductBarcode barcode);

}
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No matter how the component is to be implemented (either by a primitive or a composite
component), in JDC it is mandatory to provide a behavioural specification, either in the form
of a black-box definition, or in the form of its architectural implementation, or both. For this
component, we provide a black-box specification; this starts with the service policy defined with
a regular expression. In the case of the CashDesk, there are multiple services denoting that there
are multiple processes visible from the outside. This stands for a compact representation of the
interleavings admitted by the component.

services
service { // CardReaderController

policy {
((emit() | serveOldest(cardReaderControlIf.expressModeDisabled))*;
serveOldest(cardReaderControlIf.expressModeEnabled);
serveOldest(cardReaderControlIf.expressModeDisabled))*

}
void emit() {

if (__ANY(bool)) // non-deterministic choice
cardReaderEventIf.creditCardScanned(__ANY(CreditCard));

}
// ... cardReaderControlIf.expressModeEnabled
// ... cardReaderControlIf.expressModeDisabled

}
service { // CashDeskApplication

locals {
CashState cashState;
// ... other local variables

}
policy {

init(); expressModeDisabled();
serveOldest(applicationEventHandlerIf) *

}
void applicationEventHandlerIf.saleStarted() {

switch (cashState.getState()) {
case cashState.IDLE:

cashState = cashState.STARTED;
break;

case cashState.STARTED:
case cashState.PAYING:

__ERROR(NotIdleException);
break;

}
}
// ... other methods

}
}
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Note that each service defines its own service methods and possibly its own local variables.

A.2.5.2 Architectural View of the Cash Desk

As the black-box specification only defines the externally visible behaviour and not how it
is implemented, there are, of course, several architecture definitions that match the same
component’s black-box specification. A possible architecture implementing the CashDesk is
shown in the following. Note that we added a logger just to trap and print exceptions but it
does not influence the component behaviour.

The first part of the architecture defines the subcomponents which compose the component.
When applies, they are provided with parameters for their correct deployment as with the
CashDeskApplication.

architecture CashDesk(int numOfBanks) {
contents

component CashDeskApplication(numOfBanks) application;
component CashReaderController cashReader;
component CashDeskGUI cashDeskGUI;
component cashBoxController cashBoxController;
component LightDisplayController lightDisplayController;
component PrinterController printerController;
component ScannerController scannerController;

Then, we define the bindings section exposing how the functional delegation takes place, and
synchronisations between components. Note that it is possible to address either a specific
component or a specific collection interface.

bindings
// application
bind(this.applicationEventHandlerIf, application.applicationEventHandlerIf);
bind(application.cashDeskConnectorIf, this.cashDeskConnectorIf);
bind(application.eventBusIf, this.eventBusIf);
bind(application.saleRegisteredIf, this.saleRegisteredIf);

// bind all bank interfaces
for (int i: numOfBanks) {

bind(application.banksIf[i], this.banksIf[i]);
}

// cashReader
bind(this.cashReaderControlIf, cashReader.controlIf);
bind(cashReader.eventIf, this.eventIf);

// cashDeskGUI
bind(this.cashDeskGUIControlIf, cashDeskGUI.controlIf);

// cashBoxController
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bind(this.cashBoxControllerControlIf, cashBoxController.controlIf);
bind(cashBoxController.eventIf, this.cashBoxControllerEventIf);

// lightDisplayController
bind(this.lightDisplayControllerControlIf, lightDisplayController.controlIf);

// printerController
bind(this.printerIf, printerController.printerIf);

// scannerController
bind(scannerController.scannerIf, this.scannerIf);

}

The corresponding ADL file, in XML format, will be generated from this part of the specification.
It will then be used both to generate the synchronisation structures for the model-checker, and as
an input to the component factory of ProActive at deployment time, but all this is left as future
work for the moment.

A.2.5.3 GCM View of the Cash Desk

Now, we present a simplified ADL description of the Cash Desk component. It focuses on
the Cash Desk Application subcomponent, the other subcomponents being similar. The ADL
description starts with the definition of the external interfaces of the Cash Desk component,
together with their roles (client or server).

<component name="CashDesk">
<interface signature="CashDeskLine.if.LightDisplayControlIf" role="server" name="

lightDisplayControlIf"/>
<interface signature="CashDeskLine.if.CardReaderControlIf" role="server" name="

cardReaderControlIf"/>
<interface signature="CashDeskLine.if.CashDeskGUIIf" role="server" name="cashDeskGUIIf

"/>
<interface signature="CashDeskLine.if.CashBoxControlIf" role="server" name="

cashBoxControlIf"/>
<interface signature="CashDeskLine.if.PrinterIf" role="server" name="printerIf"/>
<interface signature="CashDeskLine.if.ApplicationEventHandlerIf" role="server" name="

applicationEventHandlerIf"/>
<interface signature="if.CashDeskConnectorIf" role="client" name="cashDeskConnectorIf"

/>
<interface signature="if.SaleRegisteredIf" role="client" name="saleRegisteredIf"/>
<interface signature="CashDeskLine.if.CardReaderEventIf" role="client" name="

cardReaderEventIf"/>
<interface signature="CashDeskLine.if.CashBoxEventIf" role="client" name="

cashBoxEventIf"/>
<interface signature="CashDeskLine.if.ScannerEventIf" role="client" name="

scannerEventIf"/>
<interface signature="if.BankIf" role="client" name="bankIf"/>
<interface signature="CashDeskLine.if.EventBusIf" role="client" name="eventBusIf"/>
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Then the subcomponent Cash Desk Application is described by its external interfaces, this
component is a primitive one (line 180), so the path of its implementation is given (line 179).

<component name="CashDeskApplication">
<interface signature="CashDeskLine.if.ApplicationEventHandlerIf" role="server" name=

"applicationEventHandlerIf"/>
<interface signature="if.CashDeskConnectorIf" role="client" name="

cashDeskConnectorIf"/>
<interface signature="if.SaleRegisteredIf" role="client" name="saleRegisteredIf"/>
<interface signature="CashDeskLine.if.EventBusIf" role="client" name="eventBusIf"/>
<interface signature="if.BankIf" role="client" name="bankIf"/>
<content class="CashDeskLine.CashDesk.CashDeskApplication"/>
<controller desc="primitive"/>

</component>
<component name="CardReaderController"> ... </component>
<component name="LightDisplayController"> ... </component>
<component name="ScannerController"> ... </component>
<component name="PrinterController"> ... </component>
<component name="CashBoxController"> ... </component>
<component name="CaskDeskGUI"> ... </component>

Finally, the bindings of the Cash Desk Application are described, in this example only two kinds
of bindings are shown: import bindings like the first one, and export bindings like the others.

<binding client="this.applicationEventHandlerIf" server="CashDeskApplication.
applicationEventHandlerIf"/>

<binding client="CashDeskApplication.cashDeskConnectorIf" server="this.
cashDeskConnectorIf"/>

<binding client="CashDeskApplication.saleRegisteredIf" server="this.saleRegisteredIf"/
>

<binding client="CashDeskApplication.eventBusIf" server="this.eventBusIf"/>
<binding client="CashDeskApplication.bankIf" server="this.bankIf"/>
...
<controller desc="composite"/>

</component>

A.2.5.4 Deployment View of the Cash Desk

When defining the Cash Desk Line composite, a VN CashDeskLineVN, cardinality Multiple
is specified as the composition of all the CashDeskVN. The effective cardinality of this VN is
attached to the number of cashDesks (numOfCashDesks in the specification).
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A.2.6 Specification of the Cash Box Controller Component

In this section, we specify the Cash Box Controller component. We give its black-box view, but the
architectural view does not apply because we do not decompose the behaviour of the Cash Box
Controller into subcomponents.

A.2.6.1 Black-Box View of the Cash Box Controller

The component has a client and a server interface, and defines a non-trivial service policy. The
controller can be seen as an active component in the sense that it triggers events regarding the
Cash Box, so it is not awaiting for any signal to be received.

component CashBoxController {
interfaces

server interface CashBoxControlIf controlIf;
client interface CashBoxEventIf eventIf;

services
service {

policy {
( eventIf.saleStarted(); eventIf.saleFinished();
( cashMode(); cashAmount(); serveOldest(controlIf.changeAmountCalculated);

eventIf.cashBoxClosed() )
|
( creditCardMode() )

)*
}

There are no state variables (variables defined within the “locals” block), nevertheless the
component is not stateless; the service policy implicitly defines that the component cycles
through some states, each one defining which are the actions that the Cash Box Controller may
do. For example, the component only serves requests from the queue when a client is paying
with cash; otherwise, the component is seen as a machine sending events regardless of the
environment (as the environment does not take the hardware interaction into account).

The component defines local methods and service methods; the latter have their method names
prefixed by the interface they belong. For the method changeAmountCalculated(..), and
from the behavioural point of view, we are only interested in the access to the variable sent as
argument, but not what we actually do with it; so the behavioural model can block the execution
until the concrete value of the variable is known.

// local methods
void cashMode() {

eventIf.paymentMode(new PaymentMode(CASH));
}
void creditCardMode() {

eventIf.paymentMode(new PaymentMode(CREDIT));
}
void cashAmount() {

eventIf.cashAmount(__ANY(CashAmount));
}

// service methods
void controlIf.changeAmountCalculated(CashAmount changeAmount) {

changeAmount.waitForValue();
}}

} // end of CashBoxController black-box definition
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There are some non-deterministic choices, both in the events that may be sent, and in the
data sent. For example, we do not know exactly which amount the user paid, so we use the
“oracle” function ANY(CashAmount) to choose any value within the variable domain. It will
be up to the data abstraction to define this domain, or in the case of the implementation, to the
programmer to define its real value. A mapping of this class into Simple Types is given as:

public class CashAmount {
private double amount abstracted as enum {"ZERO", "NOT_ZERO" };

public __ANY() {
return new enum {"ZERO", "NOT_ZERO" };

}
public double getAmount() abstracted as {

return amount;
}
public void add(CashAmount purchasePrice) abstracted as {

if (this.amount == "ZERO" && purchasePrice.getAmount() == "ZERO")
amount = "ZERO";

else
// non-determinism within the data abstraction as a negative
// value could leave the amount in zero
amount = __ANY(CashAmount);

}}

A.2.6.2 GCM View of the Cash Box Controller

Next, we give the implementation of the Cash Box Controller primitive component. This Java
code is to be instantiated as an active object (in Java implementing the RunActive interface).
The active object implements the CashBoxControlIf server interface and contains a field
named cashBoxEventIf implementing the client interface of the component. Finally, it also
implements Fractal’s BindingController interface to allow dynamic binding of its interfaces.

public class CashBoxController implements CashBoxControlIf, BindingController,
RunActive {

public final static String CASHBOXEVENTIF_BINDING = "cashBoxEventIf";
private CashBoxEventIf cashBoxEventIf;

public CashBoxController () { } // empty constructor required by ProActive

Note that necessary hooks for Fractal controllers are implemented on the form of the four first
methods of the object. These are generated automatically.

// Implementation of the Controller interfaces
public String[] listFc () {return new String[] { CASHBOXEVENTIF_BINDING };}

public Object lookupFc (final String clientItfName) {
if (CASHBOXEVENTIF_BINDING.equals(clientItfName))

return cashBoxEventIf;
return null;

}
public void bindFc (final String clientItfName,final Object serverItf){

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))
cashBoxEventIf = (CashBoxEventIf)serverItf;

}
public void unbindFc (final String clientItfName){

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))
cashBoxEventIf = null;

}
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Recall that changeAmountCalculated is the only method of the server interface, requests
addressed to this component will be asynchronous calls to this method. It corresponds to the
same method as in the black-box view above.

// Implementation of the functional interfaces
public void changeAmountCalculated(CashAmount changeAmount) {

// the amount to be returned as change
System.out.println(changeAmount.getAmount());

}

Then, the service method in ProActive (runActivity) implements the service policy. It is the
kernel of a ProActive component as it exposes the component’s behaviour, and is called by the
middleware when the component is started. It consists of a set of invocations on the client inter-
face (cashBoxEventIf), together with a blocking service on the changeAmountCalculated
method. This method is a direct translation of the policy section of the black-box presented
above and should not be modified by the ProActive programmer.

public void runActivity(Body body) {
Service service = new Service(body);
while (body.isActive()) {

cashBoxEventIf.saleStarted();
cashBoxEventIf.saleFinished();
if ((new AnyBool()).prob(50)) {

cashMode();
cashAmount();
service.blockingServeOldest("changeAmountCalculated");
cashBoxEventIf.cashBoxClosed();

} else
creditCardMode();

}}

By contrast the service method and the local (private) methods that are declared in the
JDC (CashBoxController service declaration will contain the true functional code of the
component, and are directly modifiable.

private void cashMode() {
cashBoxEventIf.paymentMode(new PaymentModeImpl(PaymentModeImpl.CASH));

}
private void creditCardMode() {

cashBoxEventIf.paymentMode(new PaymentModeImpl(PaymentModeImpl.CREDIT));
}
private void cashAmount() {

cashBoxEventIf.cashAmountEntered(
new CashAmountImpl(1000)); // the client paid 1000

}
} // end of CashBoxController implementation

A.2.6.3 Deployment View of the Cash Box Controller

If we want to model a system where a cashBoxController can be instantiated on its
own processing element, then a VN, for instance named cashBoxControllerVN, cardinality
single has to be specified and exported at the level of the Cash Desk. At the next level, when
building the Cash Desk Line component, the middleware will be able to take care of transforming
this VN into an appropriate VN at the composite level.
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<exportedVirtualNodes>
<exportedVirtualNode name="cashBoxControllerVN">
<composedFrom>

<composingVirtualNode component="this" name="cashBoxControllerVN"/>
</composedFrom>

</exportedVirtualNode>
</exportedVirtualNodes>
<content class="CashDeskLine.CashDesk.CashBoxController"/>
<virtual-node name="cashBoxControllerVN" cardinality="single"/>

A.3 Analysis

The models obtained in the previous section allow us to generate both parameterized and finite
abstractions of the system behaviour, either for a single component, or for an arbitrary assembly.
In principle, this allows for checking:

• simple “press-button” properties, like the absence of deadlocks, or the absence of certain
types of events (predefined error events),

• more complex temporal properties expressed as temporal logic formulas, or in a formal-
ism that can be translated into the temporal logic language understood by the model-
checker,

• conformance between the implementation of a component (computed from the behaviour
of its architecture) and its black-box specification, expressed as an equivalence or a
preorder relation (as in [Černá 06]).

In this appendix we only consider verification performed on the finite abstraction of the model,
and the verification is done by the Evaluator model-checker (from the CADP toolset). Both the
parameterized case (using “infinite-state” engines), and the conformance checking are left for
further work.

In the following pages, we give examples of verification of the CoCoME requirement scenarios,
that we have performed with an old version of VCE (see Section 7.2) called CTTool.

A.3.1 System Verification

The JDC tool support itself being not yet available, we have conducted the analysis activities
in this section using directly the capabilities of CTTool: it works by generating LOTOS code
that implements a (synchronous) semantics of UML component diagrams and state-machines
(including data-types), and passing this LOTOS code to the CADP verification toolset. CTTool
itself includes a user interface that hides most of the verification engine complexity, and provides
a number of menus for controlling the CADP functions.

There are many ways of encoding formulas. Some of them are very powerful as µ-calculus, but
at the same time hardly usable by non-experts. So, having software engineer’s expertise and
JDC in mind, we propose to write formulas using automata. Transitions contain predicates with
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logic quantifiers and states can be marked as either acceptance or rejection. The automata may
change to any state whose transition predicates are satisfied. If a final state is unreachable, the
formula is false. Moreover, there are special predicates:

• ANY meaning that any label satisfies the predicate;

• NOT(i), (i AND j), (i OR j) meaning that any label but i given satisfies the
expression, both i and j must satisfy the expression and either i or j may satisfy the
expression respectively; and

• ANYOTHER meaning that all labels not satisfying other transitions from the state satisfies
the predicate.

Then, formulas are readable and easy to write, and have language constructs compatible with
both CTTool’s state-machines and JDC’s regular expressions.

A.3.1.1 Absence of Deadlocks

There are basic formulas that can be proved, the most common being the absence of deadlocks.
In the case of our CTTool specification, this ends-up being trivially false because of two reasons:

• the specification of exceptions: in our specification, any time an exception is raised, we
just block the system. So we may want to search for deadlocks that are not following an
exception;

• the synchronous semantics of CTTool components: in CTTool, components are mono-
threaded, and communications are synchronous. As a result, the system deadlocks
due to race conditions over the EventBus. Concretely, events are not atomic within the
EventBus, so a controller may trigger an event (and therefore block the EventBus) while
the Application is running an ongoing sale. At this moment, if-ever the Application needs
to access any of its controllers (through the EventBus), the system deadlocks.

To show this, we write a formula expressing that all deadlocks are the consequence of an
exception, and to model-check this formula. More precisely we write the negation, i.e. that
any transition is followed by some other transition as long as an exception has not been raised.

NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY
truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

The answer we get when we evaluate the former formula is “false” (the formula does
not stand). As a diagnostic we receive a trace in which the ScannerController triggers a
ProductBarCodeScanEvent, blocking the EventBus. Meanwhile, the application is trying to
synchronise with the EventBus for querying the price of the previously scanned product.
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Note that these kind of scenarios would not be present in a real ProActive application because of
the asynchronous method calls which buffers requests in the queues: we have more deadlocks
in a synchronous implementation of the system than those we would have with ProActive.
Nevertheless, using the CTTool specification we were able to prove some interesting scenarios,
and to find some errors (or underspecifications) within the reference CoCoME specification.

A.3.1.2 Main Sale Process

To illustrate the capabilities of our approach to verify more specific properties, we have checked
(still in the synchronous model) some of the usage scenarios listed in the CoCoME specification.
Our first scenario is defined in CoCoME’s requirements as a trace in UML sequence diagram.
We successfully verified that this trace is feasible in the state-space generated by CADP. An even
more interesting scenario can be encoded as a negation of the following: a sale starts; before it
finishes, valid products are scanned; the client pays with enough cash; the sale is not registered
and a new sale starts. CADP’s diagnostic strikes out that it is not possible to start a new sale
before booking the former one.

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted

NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)

ProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScannedProductScanned

ANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHERANYOTHER

CashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEnteredCashAmountEntered

NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)NOT(BookSale AND SaleStarted)

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted
falsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalse

A.3.1.3 Booking an Empty Sale

Although it may not be an error, it is strange that a system allows an empty sale to be booked.
This trace was found when searching for the shortest path (by using Breadth-First Search
algorithm) that books a sale. Alternatively, a software engineer may want to explicitly verify
if this scenario is feasible with the automaton below. A sale is started; no products are scanned;
the sale is booked.

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted BookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSaleBookSale

NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)NOT(ProductScanned AND BookSale)

truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

A.3.1.4 Successful Sale with Insufficient Money

We found that it was possible to book a sale even if the client pays with insufficient money. The
problem is reflected by the fact that there is no way of aborting a sale when paying with cash,
and there is no verification whether the money fulfils expenses. Note that this issue was verified
running the CoCoME reference implementation – which allowed the buyer to pay $0 – and going
through the UML specification – which has nothing relative to it. In fact, the insufficient funds
exception was only foreseen within a credit card payment. Nonetheless, in general, once a sale
is started, it is not possible to abort, so the system must book the sale before proceding.
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Note that for this scenario, the data abstraction plays an important role as it plays a role in the
control-flow of the application. The amount that the client pays then is abstracted with two
values: one with insufficient money and the other with sufficient money.

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1> CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0> BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>
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truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

A.3.1.5 Safety of the Express Mode

A non-precised scenario was found. There is nothing within the CoCoME reference specification
that states when a Cash Desk may switch from/to an express mode. In fact, the system ends-up in
an inconsistent state if an express mode signal is triggered during an ongoing sale. This scenario
can be found using the following property:

ExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProductsExceededNumProducts

NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)NOT(ExpressModeEnabled)

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted

NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)

truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue
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Conclusion

In this appendix we presented a large case-study for validating our approach. We aim at
integrating at the level of the specification language the architecture specification and its
implementation together with the black-box behaviour of the components in order to generate
safe code by construction.

We specified the system using JDC and CTTool. From these specifications, we created by hand a
GCM/ProActive implementation showing how the control code can be automatically generated
from the JDC specification. From the same specification, completed by abstraction functions,
we have shown how to generate models suitable for verification, in the form of parameterized
networks of synchronised transition systems.

Finally, the CTTool specification was used to check for safety properties of the reference CoCoME
specification scenarios. Because of our synchronous encoding, the EventBus component ended-
up being a source of deadlocks. As a result of this verification activity, we found a number of
interesting features, that we interpreted as bugs or under-specifications in the CoCoME official
definition.

Limitations. There are number of features that are not considered in this approach: we do not
consider any “performance” aspect of the specification (response time or other quality of service
measures); neither do we try to fully specify the functional part of the code (data computation),
as could be done in some proof-assistant based approaches.

Other limitations come from the early state of some of our software platform: our model
generator is currently limited to the synchronous interpretation of the component systems
(only the synchronous controllers are generated), so the features relying on asynchronous
communication, and in particular the existence of functional deadlocks in Grid-based systems
cannot be analysed. These developments are planned for the next version of the tool. Currently
we have no direct support for the JDC language itself, so we rely on the existing CTTool platform
to provide an alternative tool suite. We are working on an analysis platform with direct support
for JDC, in which the CTTool diagrams will only be an alternative syntax for the specification.
The JDC development platform will include an Eclipse plug-in, a Java code generation tool, a
model generation tool, and a JDC formula compiler. With them, we hope to answer the software
engineer’s needs when developping distributed components.





Formal specification and verification of distributed component systems

Abstract

Components are self-contained building blocks. They communicate through well-defined
interfaces, that set some kind of contract. This contract must guarantee the behavioural
compatibility of bound interfaces. This is particularly true when components are distributed
and communicate through asynchronous method calls.

This thesis addresses the behavioural specification of distributed components. We develop a
formal framework that allows us to build behavioural models. After abstraction, these models
are a suitable input for state-of-the-art verification tools. The main objective is to specify, to
verify, and to generate safe distributed components.

To this aim, we develop a specification language close to Java. This language is built on top
of our behavioural model, and provides a powerful high-level abstraction of the system. The
benefits are twofold: (i) we can interface with verification tools, so we are able to verify various
kinds of properties; and (ii), the specification is complete enough to generate code-skeletons
defining the control part of the components. Finally, we validate our approach with a Point-Of-
Sale case-study under the Common Component Model Example (CoCoME).

The specificities of the specification language proposed in this thesis are: to deal with hierar-
chical components that communicate by asynchronous method calls; to give the component
behaviour as a set of services; and to provide semantics close to a programming language by
dealing with abstractions of user-code.

Spécification formelle et vérification des systèmes des composants distribuées

Résumé

Les composants sont des blocs logiciels qui communiquent par des interfaces bien définies. Ces
interfaces définissent un contrat avec l’environnement. Ce contrat doit garantir la compatibilité
comportementale des interfaces. Cette compatibilité est en particulier importante quand des
composants sont distribués et communiquent par des méthodes asynchrones.

Cette thèse se base sur les spécifications comportementales des composants distribués. Nous
développons un cadre formel qui nous permet de construire des modèles comportementaux
pour ces composants. Après une phase d’abstraction, ces modèles peuvent être utilisés en entrée
pour des outils de vérification modernes. L’objectif principal est de spécifier, vérifier et au final
de produire des composants distribués avec un comportement garanti.

Pour ce faire, nous développons une langage de spécifications proche de Java. Ce langage est
établi sur notre modèle comportemental, et fournit une abstraction puissante de haut niveau
du système. Les avantages sont les suivants: (i) nous pouvons nous connecter avec des outils
de vérification: ainsi nous sommes capables de vérifier plusieurs sortes de propriétés ; et
(ii), les spécifications sont assez complètes pour produire des squelettes de code de contrôle
des composants. Finalement, nous validons notre approche avec un cas d’étude à l’aide
d’un exemple commun de système à composants (“Common Component Model Example
(CoCoME)”).

Les particularités du langage proposé sont : traiter des composants hiérarchiques qui commu-
niquent par des appels de méthodes asynchrones; donner le comportement d’un composant
comme l’ensemble de services; utiliser une sémantique proche d’un langage de programmation;
et traiter des abstractions de code utilisateur.
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