Model Generation for Distributed Java Programs

Rabéa Boulifa and Eric Madelaine

INRIA Sophia-Antipolis
(rabea.boulifa, eric.madelaine)@sophia.inria.fr

Abstract

We present techniques for analyzing the source code of distributed Java applications,
and building finite models of their behaviour. The models are labelled transition systems,
representing the communication events between the distributed objects. When combined
with techniques for abstracting the data values used by the programs, and especially values
used in the creation of distributed objects, to bounded domains, our construction terminates.
We provide models suitable for automatic verification, and typically for model checking.
Moreover our models are structured in a compositional way, so that we can use verification
techniques that scale up to applications of realistic size.

1 Introduction

The use of formal verification techniques to enhance the reliability of software systems is
not yet widely accepted, though there are a number of methods and tools available. Ideally,
one should be provided with a development environment including high level languages for
the specification of the requirements of the system, and automatic tools for checking the
implementation against the specification. At the heart of this is the ability to generate,
from the code of an implementation, a model that is both precise enough to encompass the
property we want to prove, but small enough to be manageable by the tools (and at least
have a finite representation).

The first concern is naturally related to the work on abstract interpretation [8,10], that
can be used to abstract away from concrete data values. It is also related to slicing techniques
[3,11], that allows to restrict the analysis to the part of the program effectively related to
the property.

A number of tool developments have been done recently, for example in the Slam project
[2] for analysis and verification of C programs, or in the Bandera project [7] for sequential
or multi-threaded Java programs. Typically this kind of tools use static analysis techniques,
coupled with abstraction and slicing, to produce a finite model that is fed to various model-
checking tools. The whole process cannot be fully automatic, because the data abstractions
are provided by the user, and also because other forms of approximations are needed to deal
with the control flow of the program (and potential dynamic creation of objects).

We are developing a similar framework [4], dedicated to distributed Java applications,
in which communications between remote objects are done by asynchronous method calls.
We are interested in proving global properties of distributed applications, namely temporal
properties capturing the significant events of the lifecycle of distributed objects: sending
of remote method calls, receiving results from remote computations, selecting and serving
requests from the local request queue. Distributed applications fit naturally with composi-
tional models, and we shall take advantage of this for structuring the models, thus keeping
them much smaller, and also by using verification tools that make use of this structure.

We rely on a middleware called ProActive [5] is an example that provides the developer
with a high-level programming API for building distributed Java applications, ranging from
Grid computing to pervasive and mobile applications. ProActive has a formal semantics,
that guarantees that programs behave independently of their distribution on the physical
network; active objects are the basic units of activity, distribution, and mobility used for
building these applications.

The verification tools we use to check our models are based on Process Algebra theories :
models are communicating labelled transition systems [1], and their semantics is considered
modulo bisimulation congruences. Their emphasis is on properties related with bisimulation
semantics, including safety and liveness properties in modal branching time logics, and
more generally equivalence of models of different level of refinement. They take advantage of
congruence properties of the systems to avoid state explosion of the models. This approach
allows us to build the models of our applications on a per-object basis, and also to specify
their desired behaviour in a component-wise manner.

Our contribution in this paper is a behavioural semantics for Java/ProActive applica-
tions, given in the form of SOS rules working on the method call graph [9] of the active
objects. Assuming that we have (e.g. by abstract interpretation) a finite enumeration of the
active objects created during the application lifetime and a finite set of message labels, these
rules give us a procedure for building a finite LTS model for each object class, and a syn-
chronization network [1] representing the application. We guarantee that obtained network
is finite and the procedure for computing the behavioural model terminates.

The approach here is to build compositional models to keep individual LTS as small as
possible, and to use the compositionality features of the semantics (bisimulation congruences)
and of the checking tools to master the state explosion.

2 Background

2.1 ProActive

ProActive [5] is a 100% Java library for concurrent, distributed, and mobile computing whose
main features are transparent remote active objects, asynchronous two-way communications
with transparent futures, and high-level synchronization mechanisms. ProActive is built on
top of standard Java APIs and does not require any modification to the standard Java
execution environment, nor does it make use of a special compiler, preprocessor, or modified
virtual machine. The target environment can be either a multiprocessor workstation, a pool
of machines on a local network, or even a grid.

A distributed or concurrent application built using ProActive is composed of a number of
medium-grained entities (see Figure 1) called active objects which can informally be thought
of as “active components”. Each active object has one distinguished element, the root, which
is the only entry point to the active object. All the other objects inside the active object
are called passive objects and cannot be referenced directly from objects which are outside
of the active object.

=S

—_—— e - - - - - - —_—— e — - — —_—— -~

> Ppassive Object {__' Active Object Boundary

O Active Object Root — Object Reference

Fig. 1. A typical object graph with active objects

Each active object has its own thread of control and has the ability to decide the order
in which to serve incoming method calls that have been dropped into its pending requests
queue. Method calls to active objects are always asynchronous with transparent future objects
and synchronization is handled by a mechanism called wait-by-necessity. Note that while

asynchronous, there is a guaranty of delivery, and a conservation of order for remote method
calls; this is achieved thanks to a short rendez-vous phase at request sending.

ProActive provides primitives for dynamically creating and migrating active objects.
In the context of this paper, we shall not elaborate on those dynamic features, but rather
concentrate on the case where the active objects are already created and their topology is
fixed.

2.2 Method Call Graphs

Our analysis focuses on applications in which the interaction between active objects is done
by messages exchange: procedure or method calls (e.g. Figure 2). A model of program
capturing these interactions is the method call graph. The latest abstracts away all data
flow and focuses on control flow which methods are called during the execution and in what
order.

Definition 1 Starting with the main method of an application, its Method Call Graph
is a tuple MCG < (id,V,u, =T, —C) where

1. id is o qualified method name in the form Class.identifier or Package.identifier,

2. V is a set of nodes, each decorated by a node type in {ent(id), call(id), rep(id), seq, ret},

3. 1 :V — V is a partial function mapping nodes (representing a program point where a
future object is used) to the node where this future was defined,

4. =C9CV xV are the call edges of MCG,

5. =TCV x V are the (intra-procedural) transfer edges of MCG.

The node type indicates whether a node is the entry point of method (ent(id)), a call to
another method (local or remote) (call(id)), a reply point to a remote method call (rep(id)),
a sequence node (representing standard sequential instruction, including branching) (seq),
or a node in which the execution of the method terminates, either normally or with an
exception (ret).

The domain of a method named id is the set of its nodes, D(id) = V.

2.3 Labelled Transition Systems

As usual in the setting of process algebras and distributed applications, we give the be-
havioural semantics of programs in terms of labelled transition systems. The composition
of LTSs representing the behaviour of individual active objects, into the global LTS of the
application is expressed by synchronization networks [1]. We give here the notations that we
use for those notions:

Definition 2 Action. The alphabet of actions is o set A = {Im,m,?m} representing
method calls (local and remote), and reception of their results.

Definition 3 LTS. A labelled transition system is a tuple LTS = (S, s0, L, —) where S
is the set of states, sg € S is the initial state, L C A 1is the set of labels, — is the set of
transitions : —=C S x L x §. We write s = ' for (s,a,s') € —.

Graphical Nets. The operator for composing LTSs is a synchronization network. We give its
definition in a graphical form (as in [12]), before defining its semantics as a synchronization
product.

public class A { public class B {

void m0(){ void mi(int){
int i=0; 1——;
B.mi(i); if (:1>0)
} , mi(i);
} }
A.mOQ) B.m1(int)

Fig. 2. Java program with the corresponding method call graph

Definition 4 Net. A net is a pair Net = (B, L) where

— B is a set of Boxes, each box has a name Name(B) and a set of labels Ports(B) labelled
by actions in A,

— L is a set of links between ports, each link having the form Bl.pl 4 B2.p2 in which pl
is a port of box B1 and p2 is a port of box B2 and [an action in A.

The set of port labels of the box B; and the set of actions of links L are respectively denoted
Actions(B;) and Actions(L).

Synchronization Product. Given a Net with n boxes and their corresponding LTSs, we
construct a global system for the behaviour of the network, using the synchronization product
of [1]. Basically, each of the links of a network is represented by a synchronization vector in
Arnold’s setting.

Definition 5 Synchronization Product.
Given a Net N 2 (B,, £) and n LTSs {(S;, S0i, Li,—:)}i=1..n, we construct the product
LTS (S, so, L, —) where S C IT;—1. (Si), so = ITi—1. n(50:), L = Actions(L),

=2 {s 5 §| 5 =< 81,...,8, >,8 =< s\,...,8, >and 31 € L. | = B;,.p;, —

Biy-piy Biy-pjs . . 1
By pjy, 8iy —— 8}, Siy —— 8, Vi F Q1,1 57 = 8;}

3 Informal semantics of ProActive distributed applications

In the current version of the ProActive middleware, an application is a (flat) collection of
active objects, that can be dynamically created, migrated, and terminated. We shall associate
a process to each active object of the application, and build a synchronization network to
represent the communication between active objects.

We are not interested here in properties related to the location of objects in the physical
network, so we can discard all information on location and migration. We are interested in
the creation and termination of objects, but we shall limit ourselves in this work to a static

and finite topology of processes, that can be approximated by static analysis techniques [10],
based on the primitives for active object creation, e.g.:

ProActive. newActive (Class, Args, Node)

Static analysis will also give us, for each process, the set of services it offers (public
methods) and the set of services it uses (method calls to other active objects), allowing us to
build the synchronization network between the objects.

The model of an active object is the product of two LTSs, the first encoding (a bounded
approximation of) its pending request queue, the other representing its behaviour, that the
user has programmed in the special runActivity method. The construction of this behaviour
includes the unfolding of local method calls (of the active object itself, and of local passive
objects) ; the termination of this procedure is obtained by detection of (mutually) recursive
method calls modulo a finite abstraction of the call stack (see next section).

We have said that the events of our models are the requests and responses of remote
methods. Consider an object co (the current active object), calling method m (with a non-
void return type) of a remote active object ro:

z = ro.m (argl , ... , argn);
CcO ro
'Req_m ,\
?Req_m
+1Serv_m
Req m
IReq_m <2 ?Req_m r'Rep_m
co ro (serv_m /
?Rep_m 'Req_m ?Rep_m ~
- Rep_m

Fig. 3. Message exchanges between the processes co and ro

We model these calls by message exchanges (Figure 3) between the two processes: co
emits a request !Req m, that is instantaneously received by ro’s queue as ?Req_m. The
remote object ro may eventually decide to serve this request. Starting the execution of the
method call within object ro is modelled by a message Serv_m local to ro. And finally,
when the method returns a result, ro emits a reply message !Rep _m, synchronously received
by co as TRep_m.

From the current object point of view, the response is asynchronous : the wait by necessity
semantics of ProActive says that the reply message can be received at any time between
emission of the request and the first effective usage of the returned object, i.e. the access
to a field or method of this object; or an explicit awaiting of this result. We model this
mechanism by interleaving the response message with the behaviour of co between these two
points.

The Request Queue of an active object deals with arrival, service and disposal of requests.
It is always ready to accept incoming messages. The synchronization with the runActivity
LTS is done through the service primitives of ProActive, that allow the user to inspect and
select specific requests in the queue.

4 Model construction

An application is a set of active objects. We model the system by LTS in a compositional way.
Active objects are connected by synchronized network whose links represent the exchange
of messages.

We use static analysis techniques to establish for each application :

— an enumeration of its active objects creation points and an enumeration of the links (the
set of incoming and outgoing requests) between the objects,

— its method call graph,

— predicate Active(O) indicating for each object O belonging to this application whether
O is a ProActive or a Java (passive) object.

Besides given a property to be proved, we require the user to provide an abstract interpre-
tation for all data types in its application. This abstraction will retain only data information
(active objects and messages parameters) relevant to this property. In practice, tools like
the Bandera abstract specification language can be used.

Property : Whenever all domains of this abstraction are finite, we obtain a network with
finite topology, and the procedure for computing the behavioural model is guaranteed to
terminate.

4.1 Network construction

We suppose that we have a function enumerating all active object creations in a ProActive
application. This set in principle need not be finite, because some applications would create
active objects dynamically. In practice, most interesting properties would involve only finitely
many instantiations of any given active object class. So, we need to consider only a finite
number of objects. Depending on the topology of the application, the enumeration may be
obtained by static analysis, or directly provided by the user.

The result of the active object enumeration is expressed as:

1. O = {0;} a finite number of active object classes.
2. A finite number of instantiations for each class, depending on the possible values of the
arguments passed at their creation, denoted Dom/(O;).

For each such object, we build a Box B(O,, k), named by the object class O; and an
index k in Dom(0O;).

Then for each active object class, we analyze the relevant source code (starting with the
runActivity method of the object main class), to compute its ports and the corresponding
links:

1. The set of public methods of the active object main class gives us the set of "receive
request" ports 7Req _m of its box.

2. We then identify in the code the variables carrying "active objects" values, using usual
data flow analysis techniques, and taking into account their creation parameters. Amongst
those objects, one is identified as the "current object", the others are "remote objects".

3. For each call to a method of the current active object, we add a "local" port m to the
current box.

4. For each call to a method of a remote object, we add a "send request" port !Req _m to
the current box, linked to the corresponding port of the remote object box, and if this
method expects a result, a "response” port !Rep m.

In the previous procedures, we can choose, depending on the properties we want to prove,
to tune the precision of the model construction: the parameters (other than those already
used in the boxes enumeration) of local or remote method calls can be taken into account
if needed : in this case the corresponding ports and links will be indexed by the possible
values of those parameters. This is similar in spirit to abstraction or slicing techniques used
in other frameworks.

The behaviour of an active object is programmed in its runActivity method ; it specifies
how the requests arriving in the object request queue are served, and the requests that the
object sends to others. The box of an active object is in turn structured in a runActivity LTS
and a request queue LTS connected by a synchronization network. We build a box B(.A) for

the runActivity LTS and a box B(Q) for the queue. The ports and links computed between
these boxes are determined by the set of public methods of this active object:

For each method m, a “send” port !Serv_m and a “receive” port ?Serv_m are added
on B(A) and B(Q) respectively, and a link between them. If m expects a non-void result,
a "send” port !Rep m is added on B(A). An example of a generated Net is displayed in
Figure 5.

The request queue of an active object runs independently of its body, and is always
accepting arriving requests (of correct type). It is synchronized with the object body through
the Serv_m actions, and with remote objects by their Req _m actions. The model of the
queue is a LTS Q constructed in generic way by ad graph grammar from the set of method
coming in it and its bound.

4.2 Behaviour computation

In the following section we give a construction function =>4 of active objects activity de-
scribing a traversal of the method call graph of an active object class, and the corresponding
building of the LTS. This function is specified in terms of a set of transition rules in SOS
style:

{Premise}x
<wv = pattern, n, A, M, S, S > =>4 <o, n, A M, S, 6 S >

where

— v = pattern is the current analyzed MCG node, together with its value,

— n is the last LTS node created,

— A the currently constructed LTS. The empty LTS is denoted by @, and the LTS reduced
to a single node is denoted by this node itself,

— M is a mapping from MCG nodes already visited to LTS nodes,

— 8, a stack of MCG nodes; empty stack is denoted by [] and push on top of the stack is
denoted by v : S,

— S, a method calls stack.

We need some auxiliary constructions, to be used in the rules.

Definition 6 Sub-LTS. A sub-LTS, of the LTS A = (S, so, L ,—), denoted AT, gives
LTS A' defined by ' C S, L' C L, sh =n, »'= {51 = 59 €= |3z € L*. n = 5, €—
and 32’ € L*. 55 = m €—}

Definition 7 Interleaving operator. Interleave a sub-LTS A0 with an action o, denoted
A || =, gives the pair o LTS and a node, [A',s'] defined by S' = {si|s € S} U {s,|s € S},
L'=Lu{a}, s) = s, ='= {s11 = 591 and s1, — s2,|51 — 83 €=} U {s1; — 81|51 € S},
s’ = Skr

Definition 8 Connection operator. The connection of LTSs A and A’ as s € S, denoted
Aa A, gives A" defined by S" =SUS', L' =LUL', s§ = s, ="'=(— U=

Definition 9 Substitution. Operation consisting in replacing a node n by a node m, i.e
replace allmn = n' bym S 0/ and alln' S n by n' 5 m, is denoted A[m/n)

We are ready now to describe the construction rules of the LTS corresponding to the
active object’s behaviour from the runActivity method MCG which encapsulates this be-
haviour. At the beginning we have

< v = ent(runActivity), 0, 0, M, [], []>

Note that each MCG node visited is mapped to a corresponding node in the LTS and
added to M. In the rules description the unused fields by construction are grayed.

v1 =T vy fresh(init(n))

< vy = ent(runActivity), 0, 0, M, [|, []> (ENT_RUN)
= a< vy, n, n, MU{v1 — n}, ||, runActivity : [] >
v =% vy v =T vy Passive(O) fresh(n')
< v =call(Om), n, A, M, Sn, > (L_Carr)
=< vg, 1, .A<1(nl>n'), MU {v1 = n}, vy Sy, >

The first method analyzed is the method named runActivity; at the entry point the
initial LTS node is then created (ENT__RUN rule). For a call to a local method we construct
a transition labelled with the name of this called method (L _CALL rule) ; afterwards this
method is inlined (its MCG is analyzed). The continuation node v} is save on the node stack
for later analysis.

m # runActivity Rec(v1)

(EnT1)
< v = ent(m), n, A, , v S, >=a< v, n, Aln'/n], , Sn, >
—Rec(v1) wv1 —T vy
(EnT2)
<wvi =ent(m), n, A, M, 5., Sm > =a<wvz, n, A, MU{vi—n}, 5., m:8Em >

where Rec(v1) is the predicate: M(v1) = n' A Iname € Sim. v1 € D(name)

The next set of rules deals with the structure of local method (method of passive
objects of the current active object) invocation. Rule L CALL has created a visible event
corresponding to a method call, but we must now recognize recursive calls, using the mapping
M, and a finite abstraction of the method call stack (a method name appears only once
in the stack). This is the role of the Rec(v) predicate: if an entry node v has already been
visited the M(v) is defined. And if its method name is present in the call stack, then we
have detected a recursive call, and we build the corresponding cycle in the generated LTS.
Otherwise the name of the method is pushed on the call stack, and we continue analyzing
this method.

v g M v =T vy v1=Tws ... v =T,
(SEQ
< v =seq, n, Ay M, Sn, > =A< v, n, A, MU;{vi—n}, vs:...:0,:Sn, >
M(Ul) :n'
(LooP-JOIN)
<wvi, n, A, , v S, >=a<uv, n, Aln'/n], , Sn, >

Sequence nodes represent sequential instructions and branching. Thus no transition is
constructed. In the case of branching, the alternative nodes are pushed onto the stack nodes
for later visit (SEQ rule).

The (LooP-JOIN rule) applies to all type of nodes that already have been visited. Then
corresponding LTS node is substituted to the current LTS node, eventually creating loops
or joins in the LTS.

M) =n'
(RET1)
<wvi=ret, n, A, M, v:Sq, >=a<v, n/, A, MU{vi — n}, Sn, >
v & D(m)
(RET2)
<wvi=vret, n, A, M, v:8n, m:8m >=>a<v, n, A, M\D(m), Sn, Sm >

At a return node, we check whether the nodes waiting on the node stack. If they belong
to the same method we go and process them (RET1 rule). If not, we pop this method from
the call stack and we remove its nodes from the mapping before continuing the analysis
(RET2 rule).

Note that those rules will not apply if the node stack is empty ; this case will terminate
the LTS construction procedure.

m =T vy s =call(m) fresh(n')

< vy = call(serve), n, A, M, S, > (SERV)
!Serv_m ’I’LI), MU {'Ul — ’I’L}, , >

—=a< v, n', Ad(n

This is a call to one of the service primitives of the library, e.g. service.blockingServeOldest(m,).
The service primitives allow to select a request in the queue and run it. The call graph con-
structed in this case has a first call(serve) node without a call edge (we do not represent
the serve primitive itself), immediately followed by a call(m) node. So we simply construct
a transition labelled !Serv_m, and go to the next node.

v =7 vy fresh(n')

< v =rep(m), n, A, M, 5, > (REP)
'Rep m
== a< va, 1, Aq(nLn'), MUA{vi —n}, 5., >

When a request returns a non-void result, the control graph will have a special rep node
following the call(serve); call(m) sequence. At this point we construct a transition labelled
!Rep m, the emission of response to the remote caller (REP rule).

v =T vy Active(O) fresh(n')

< v =call(O.m), n, A, M, 5., > (R_CAarLr)
=A< v2, 1, Aq(nMn'), MU {v1 —n'}, S, >

In the case of the call to a remote method, the call graph has no call edge (because it was
built separately for each active object). We construct a transition holding the label |Req m,
emission of the request named by the method name towards this remote object (R_ CALL
rule).

; 'Req_m ?Rep_m
LN

p(vr) =v2 n' = M(v2) (n

<wi, n, A, M, S, >=a<vh, n'", A< A, M, 5., >

n') €= [A,n"] = (Al

) U1 T U'z

(Furt)

One interesting feature of ProActive is the notion of the wait-by-necessity : it is only when
the result of a method call (future value) is used that this result is awaited; synchronization
by rendez-vous. In our model we preserve this feature. The MCG is marked by the y mapping,
that identifies the point of creation of a given future, for each of its first points of utilisation.
The effective return of the future value (the transition labelled ?Rep m), is interleaved with
the part of the LTS comprised between its definition point and its first utilisation points
(Fut rule).

5 Example

We illustrate our work on an example borrowed from work made with the Chilean adminis-
tration to provide electronic procedures for their sales and taxes system. It involves software
pieces that will run at different locations (government and companies) and communicate
through the Internet. The specification involves both safety (protocols) and security (au-
thentification, secrecy, ...) aspects.

The whole system is huge in size, and we shall only describe here a small part of the Ven-
dor processes, in charge of managing the invoice’s Stamps delivered by the administration
(SIT) to a given Vendor. This Vendor subsystem is composed of 4 components; we concen-
trate here on the dialog between the “StampStock” component and the corresponding SII
component : the vendor requires a number & of “stamps”, and the SII will eventually answer
by sending an authorization code for a number x of stamps. This specification is depicted
in a parametrised manner in Figure 4.

We have proved a number of temporal properties on this system, for example that ‘it’s
not possible to cancel an invoice which has been never emitted” or “ Every buyer which
makes a purchase will eventually receive an invoice”.

Now we give the code of a ProActive implementation of a StampStock object. It receives
external Stamp requests. It is more specific than the specification : it asks for more stamps
immediately after having received the previous stamps. The response from SII can arrive at
any time, but will only be used when the stock is down to 0 (last else branch).

10

[any x] ?"getNewAnulStamp(x)"

I"reqNewAnulStamp()"

BaseVendor

[any b, any K] lemit(b,k)

[any K] ?regNewld(k)

IdInvoice

[any k, any id] !giveNewld(k,id)

stamp()

Istamp() ?stamp()

emit(b,k)

regqNewld(k) ’
"giveNewld(k,id)"

StampStock

"[stock > 0] stamp() "

IreqNewStamps()

' regNewStanips)” [Ce)ny,x] 2getNewStamps(x)

[any Xx] ?getNewStamps(x)

[any b] ?emit(b)

IreqNewld()

InvoiceProcess(k)

[any id] 'annulateSii(id)

[any id] ?giveNewld(id)

[any b, any id] ?acceptedBuyer(b,id)

[any b, any id] ?refusedBuyer(b,id)

[any b, any id] !sentBuyer(b,id)

(l) [any v, any id] ?"refuseBuyer(v,id)"

[any b, any id] I"sentBuyer(b,id)"

[any b, any id] ?"acceptedBuyer(b,id)"

I"reqNewStamps()"

[any x] ?"getNewStamp(x)"

"Vendor(v)"

regNewStamps()

—

getNewStamps(x)

any v] ?"req|)"

?'reqNewStamp()"

‘igetNewStamp()"

Yye—— ([any x, any v] I"getNewStamp(v,x)"

Fig. 4. Specification of a Vendor (partial)

sl

public class StampStock implements RunActive {

protected

SIT sii;

public Boolean stamp () {
stock ——;

return (new Boolean(true)); }

public void runActivity(Body body) {
Service service = new Service(body);
boolean stampsRequested = false;
Integer newStamps = new Integer (0);
while (body.isActive()) {

if (!stampsRequested) {
newStamps = sii. NewStamps();
stampsRequested = true; }
else if (stock > 0)
service. blockingServeOldest ();
else {int ns = newStamps. intValue ();

stock = stock + ns;

stampsRequested = false; }}}}

The model generated for the StampStock and SII classes, for a small instantiation of the
object parameters (stock <= 2), is shown in Figure 5. The queue of StampStock has been
arbitrarily bounded to 2, while the queue of SIT can be provably bounded to 1. It can be
shown that this implementation is correct versus its specification.

?R;g»stamp

I N

(%ﬁtmp

1Rep_Stamp

! Req(?\lewaa'np

!Rep_Stamp” 2Rep_NewStampl

“Rep-NewStamp2

2Serv_Stamp
Serve_Stamp 1Serv_Stamp 'Req_NewStamp
Reg-NewStamp
Rep_Stamp Y
“?Req_Stamp
“Rep_NewStampl.
2Serv_Stamp JServalamp\
A
Q StampStock

Fig. 5. Constructed models for StampStock and SII

11

Req_NewStamp

, /Q\ S Newstanp
Rep_| R‘*—I y
e AL isev Nedsamp

'?Req_NewStamp
2Serv_NewStamp

Q

s

6 Conclusion

We have sketched a method for constructing finite asynchronous models for distributed Java
applications built with the ProActive library. The models are hierarchical labelled transition
systems, suitable for analysis with verification tools based on bisimulation semantics. The
behaviour of distributed objects is obtained by SOS-style rules, from the method call graph
of the application.

We have illustrated this approach on a distributed implementation of the Chilean invoice
and tax declaration system and we have checked some properties. We are working on relating
our behavioural semantics with the operational model of ProActive [6], to get correctness
results.

One of the crucial hypotheses used in this work is the ability to enumerate by static
analysis a finite number of distributed objects. This allows us in practice to prove many
useful properties. But there are now a number of verification tools, either automatic or
partially automatic (e.g. Moped, Trex, or Harvey), that can deal with some kind of finite
representations of infinite systems, or with parametrised systems. We are working on an
extension of our intermediate model (LTSs and Nets) that supports parametrised systems ;
the models will be more compact than in the fully instantiated version, and may be directly
user with this new generation of tools.

We shall also extend the approach to take into account other features of the middleware,
and in particular the primitives for group communication, and for specifying distributed
security policies. Last but not least, ProActive active objects are also viewed as distributed
components in a component framework. In the next version, it will be possible to assemble
distributed objects to form more complex components. This will increase the impact of the
compositionality of our model, and the importance of being able to prove that a component
agrees with its (behavioural) specification.

References

1. A. Arnold. Finite transition systems. Semantics of communicating sytems. Prentice-Hall, 1994.

2. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In Proceedings of the SPIN Workshop), LNCS 2057. Springer-Verlag, 2001.

3. D. Binkley and K. Gallagher. Program slicing. Advances in Computers, 43:1-50, 1996.

4. R. Boulifa and E. Madelaine. Finite model generation for distributed Java programs. In
Workshop on Model-Checking for Dependable Software-Intensive Systems, San-Francisco, June
2003. North-Holland.

5. D. Caromel, W. Klauser, and J. Vayssiére. Towards seamless computing and metacomputing
in Java. Concurrency Practice and Ezperience, 10(11-13):1043-1061, November 1998.

6. Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and deterministic objects.
In Proceedings of the 81st ACM Symposium on Principles of Programming Languages. ACM
Press, 2004. To appear.

7. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Laubach, and H. Zheng. Bandera: Extracting
finite-state models from java source code. Int. Conference on Software Engineering (ICSE),
2000.

8. P. Cousot and R. Cousot. Software analysis and model checking. In E. Brinksma and K.G.
Larsen, editors, Proceedings of the 14th International Conference on Computer Aided Verifi-
cation, CAV 2002, Copenhagen, Denmark, LNCS 2404, pages 37-56. Springer-Verlag Berlin
Heidelberg, 27-31 July 2002.

9. J. Dean D. Grove, G. DeFouw and C. Chambers. Call graph construction in object-oriented
languages. In Conference on Object-Oriented, pages 108-124, 1997.

10. J. Feret. Dependency analysis of mobile systems. In Furopean Symposium on Programming
(ESOP’02), number 2305 in LNCS. Springer-Verlag, 2002. © Springer-Verlag.

11. J. Hatcliff M. Dwyer and H. Zheng. Slicing software for model construction. Journal of High-
order and Symbolic Computation, 2000.

12. V. Roy and R. de Simone. Auto and autograph. In Workshop on Computer Aided Verification,
New-Brunswick, pages 656—75. LNCS 531, Spring-Verlag, June 1990. also available as RR-4460.

12

