
Finite Model Generation for Distributed Java
Programs

R. Boulifa and E. Madelaine
INRIA Sophia-Antipolis, BP 93, 06902 Sophia-Antipolis Cedex, France

{rabea.boulifa eric.madelaine}@sophia.inria.fr

Abstract— We present techniques for analyzing the
source code of distributed Java applications, and building
finite models of their behaviour. The models are labelled
transition systems, representing the communication events
between the distributed objects. When combined with
techniques for abstracting the data values used by the
programs, and especially values used in the creation of
distributed objects, to bounded domains, our construction
terminates. We provide models suitable for automatic
verification, and typically for model checking. Moreover
our models are structured in a compositionnal way, so
that we can use verification techniques that scale up to
applications of realistic size.

I. INTRODUCTION

The use of formal verification techniques to enhance
the reliability of software systems is not yet widely
accepted, though there are a number of methods and
tools available. We are specifically interested here in
the behavioural properties of applications distributed
over local networks or on the Internet. Examples are
grid computing applications, entreprise applications over
heterogeneous and mobile networks and terminals, web-
services and e-commerce, etc. These applications make
heavy usage of various kinds of asynchronous protocols
for communication between remote components of the
application.

Ideally, one should be provided with a development
environment including high level languages for the
specification of the requirements of the system, and
automatic tools for checking the implementation against
the specification. At the heart of this is the ability to
generate, from the code of an implementation, a model
that is both precise enough to encompass the property
we want to prove, but small enough to be manageable
by the tools (and at least have a finite representation).

A number of tool developments have been done re-
cently, for example in the Slam project [1] for analysis
and verification of C programs, or in the Bandera project
[2] for sequential or multi-threaded Java programs. Typ-
ically this kind of tools use static analysis techniques,
coupled with abstraction and slicing, to produce a finite
model that is fed to various model-checking tools. The
whole process cannot be fully automatic, because the

data abstractions must be provided by the user, and also
because other forms of approximations are needed to
deal with the control flow of the program (and potential
dynamic creation of objects).

We are developing a similar framework, dedicated
to distributed Java applications in which communica-
tions between remote objects are done by asynchronous
method calls. We are interested in proving global prop-
erties of distributed applications, namely temporal prop-
erties capturing the significant events of the lifecycle
of distributed objects: sending of remote method calls,
receiving results from remote computations, selecting
and serving requests from the local request queue. Dis-
tributed applications fit naturally with compositionnal
models, and we take advantage of this for structuring
the models, thus keeping them much smaller, and we
rely on verification tools that make use of this structure.

We rely on a middleware called ProActive [3] that
provides the developer with a high-level programming
API for building distributed Java applications, ranging
from Grid computing to pervasive and mobile applica-
tions. ProActive has a formal semantics, that garanties
that programs behave independantly of their distribution
on the physical network; active objects are the basic units
of activity, distribution and mobility used for building
these applications.

A distributed or concurrent application built using
ProActive is composed of a number of medium-grained
entities called activities, distributed on various nodes.
An activity is composed of a set of objects, one of them
being active, and of a queue of pending requests (that
have been received and should be served later). The
active object has a specific service method that specifies
the order of requests that the object should serve.

Method calls to active objects are always asyn-
chronous with transparent future objects and synchro-
nization is handled by a mechanism called wait-by-
necessity. Note that while asynchronous, there is a guar-
anty of delivery, and a conservation of order for remote
method calls ; this is achieved thanks to a short rendez-
vous phase at request sending.

The verification tools we use to check our models (e.g.

QQQQQQQQQQQQQQQQQ

AAAAAAAAAAAAAAAAA

SIISIISIISIISIISIISIISIISIISIISIISIISIISIISIISIISII

AAAAAAAAAAAAAAAAA

QQQQQQQQQQQQQQQQQ
StampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStockStampStock

!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp

?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp?Req_NewStamp

?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp?Serv_NewStamp

!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp!Serv_NewStamp

!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp!Rep_NewStamp Serv_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStampServ_NewStamp

!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp

?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1

?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp

?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp

!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_StampServe_Stamp

Req_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStampReq_NewStamp

Rep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStampRep_NewStamp

?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp

?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp?Req_Stamp

?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp?Serv_Stamp

!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp

!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp

?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1?Rep_NewStamp1

!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp!Serv_Stamp

!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp!Rep_Stamp

?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2?Rep_NewStamp2

!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp!Req_NewStamp

Fig. 1. Constructed models for StampStock and SII

Evaluator [4]) are based on Process Algebras theories :
models are (finite) communicating labelled transition
systems, their semantics is considered modulo bisimu-
lation congruences, and their emphasis is on properties
related with bisimulation semantics, including safety and
liveness properties in modal branching time logics, and
more generally equivalence of models with different
level of refinement. These tools take advantage of con-
gruence properties to avoid state explosion of the models.
This approach allows us to build the models of our
applications on a per-object basis, and even to specify
their desired behaviour in a component-wise manner.

Our contributions in this paper are:
� Finite, hierarchical models for distributed applica-

tions communicating through asynchronous method
calls, suitable for automatic verification of temporal
properties of the applications.

� A behavioural semantics for distributed Java/ProAc-
tive applications, in the form of SOS rules expressed
on the method call graph of the application, and a
procedure for executing these rules, that is garantied
to terminate producing a finite labelled transition
system (LTS) for each active object class in the
application.

II. COMPOSITIONAL MODELS FOR DISTRIBUTED

OBJECTS

Due to lack of space, we shall not give here a
full and formal presentation of the model and of their
construction, but rather try to stress the most important
points in the approach. The full paper is available in [5].

a) Synchronized Labelled Transition Systems: As
usual in the setting of process algebras and distributed
applications, we give the behavioural semantics of pro-
grams in terms of LTSs, which labels represent the
significant events we want to observe (communication
between activities, plus some local method calls). We
use hierarchical composition of LTSs, synchronized by

synchronization networks [6]; these can be viewed as
generic parallel composition operators, and we also use
them to express graphical networks [7] like those in
figure 1.

b) Decomposition: We want to build a (finite) LTS
for each activity in the system, and compose them by
synchronization networks, based on the messages they
exchange, namely requests to remote method calls, and
their responses. In the next section, we shall see how
we build a finite LTS for each active object class of an
application. In our graphical networks formalism, each
activity is enclosed in a box, and has ports corresponding
to the messages. A request queue is associated to each
activity, that we abstract also as a finite LTS. Figure 1
(taken from the specification of the chilean electronic tax
system) gives an example of two such activities, where
StampStock accepts request Stamp, and in turn sends
requests NewStamps to SII.

Inside each activity box, we find two LTSs, one for
the object behaviour model, and one for the queue
model. The ProActive library has primitives allowing the
programmer to control very precisely the inspection of
the queue and the service of requests; this is reflected in
the synchronization between the queue and the behaviour
LTSs.

c) Analysis of the topology: There is no hope to
enumerate exactly by static analysis all the activities
potentially created during the lifetime of an application,
because this set may be infinite, and because activities
may be created dynamically. The best we can do by static
analysis is to identify the (finite) set of activity creation
points in the source code, and to define an approximation
of the possible values of the creation arguments. This
will gives us a set of potentially created activities.

We currently have two approaches for this enumer-
ation. In the first approach, we compute a fully enu-
merated (finite) set of activities: in simple cases where
the topology is fixed and clearly identified in the source

2

code, static analysis will give us a full enumeration of
the activities. In cases where this is not possible, we rely
on a user-specified enumeration (e.g. as annotations in
the source code). In the second approach, we request
that the user provides an abstraction of all arguments
types into integers (or finite domains), and we keep these
integer parameters in our models. Parameterized models
will later be instanciated to finite models, if necessary,
before using standard verification tools. Moreover, this
abstraction can be tuned depending on the properties
we want to prove, keeping the model size as small
as possible; whenever possible, arguments that are not
significant for the analysis are abstracted away.

The second part of the topology information required
for building the networks is the set of links between the
activities. For each activity we compute those links: the
set of incoming requests is the set of public methods of
its active object, qualified by their arguments (abstracted
as in the previous paragraph). The set of outgoing
requests is computed from the program points where
a method of a remote active object is called; here the
identification of the remote object, and the arguments
passed to the method, are obtained symbolically, and
depends on the parameters of the current activity. In the
parameterized approach, we keep them in their symbolic
form. The set of service synchronization message, ob-
tained from the service primitives used in the service
method of the active object.

III. BEHAVIOUR OF ACTIVITIES

Now we switch to the behaviour of one activity, and
we describe the procedure for computing its LTS.

The behavioural semantics of an activity is described
as a set of SOS rules, based on the Method Call Graph
(MCG) of the activity, rather than its original source
code. The MCG is generated by usual static analysis
techniques, retaining the additional information useful
for the specific treatement of the ProActive primitives.
This makes the semantics (and the model production
procedure) much more compact than if we had to deal
with the full set of language constructions.

Before building the MCG, we rely on abstract inter-
pretation techniques to abstract away from the infinite
data domains manipulated by the Java source code (in-
cluding the data passed as arguments to activity creation
and method calls already mentionned). We use also
slicing techniques [8] to eliminate portions of the system
irrelevant to the proof of some specific properties. This
is similar to what is done e.g. in the Bandera system [9]
(and in practice we use tools from the Bandera toolset).

The SOS rules give us a procedure for constructing the
LTS modeling the behaviour of an activity, traversing its
MCG, starting with its service method. The rules have
the following form:

���������
	��	��������
��������� �������� �!� �#"$�&%'�)(+*,�&(+-/.

�10�2 ���43 �&� 3 �&" 3 �&% 3 �&(3* �)(3- .
516

where 7'8:91;=<><>?A@CB is the current analysed MCG
node, B is the last LTS node created, D the currently
constructed LTS, E a mapping from MCG nodes
already visited to corresponding LTS nodes, F!G a stack
of (not yet visited) MCG nodes, and FIH (a finite
abstraction of) the current method call stack.

The rules are organized in the following three groups,
corresponding to the various types of the MCG nodes,
and to the specific ProActive primitives:J The rules describing the intra-activity constructions

of the MCG, dealing with intra-procedural control
flow and with local method invocation. Our treat-
ment of recursivity is guarantied to terminate: we
detect recursion whenever the name of the current
method is included in the method call stack (so
we never need to repeat a method name in our
representation of the call stack, which stays finite).
In the produced LTS, we only keep trace of (local)
method calls if they are useful for the properties we
want to prove, otherwise, the corresponding states
are merged.J The rules describing the communication between
objects; the events of our models are the requests
and responses of remote methods, and the local
service primitives.

cococococococococococococococococo rororororororororororororororororo
!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)

?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v) !Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)!Req_m(v)

?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)?Req_m(x)

!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)!Serv_m(x)

Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)Rep_m(v)

Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)Req_m(x)

Consider an object K�L (the current active object),
calling method M (with a non-void return type) of
a remote active object @CL .

co ro

!Req_m(x)

?Rep_m(v)

?Req_m(x)

!Serv_m(x)

!Rep_m(v)

We model these calls by message exchanges
between the 2 processes : K�L emits a requestN O ?CP _ MRQS T , that is instantaneously received by
@
L ’s queue as U O ?AP _ MRQS T . The rule for Remote

Method Call constructs a transition Q�BWV X+Y[Z _ H]_^A`aba1a�a�a�a�adc
B e�T in K�L ’s behaviour model, corresponding to

3

Q�� � X+Y[Z _ H]_^C`a a�a�a�a�a1a c �AebT transitions in @
L ’s queue model.
The remote object @
L may eventually decide to
serve this request. Starting the execution of the
method call within object @
L is modeled by a mes-
sage

� ?�@C7 _ M Q�S T local to @
L (a transition labelledN � ?A@C7 _ MRQS T in @CL ’s behaviour model and some
transitions labelled U � ?A@C7 _ M Q�S T in @
L ’s queue
model).
And finally, when method M returns a result, we

build a transition Q�B V X+Y � _ H]\���`a a�a�a1a�a�adc B eT in @
L ’s LTS,
that will be received as U O ? 9 _ M Q�7 T in K�L .J Finally the rules dealing with the wait-by-necessity
semantics for future values: computation in dis-
tributed objects being asynchronous, the result of
a remote method call may be received with some
delay. ProActive allows the calling activity to con-
tinue its local computation, until this value is really
needed, at which point it will eventually wait for the
value. This is represented in our model by interleav-
ing the return of the value (action U O ? 9 _ M Q�7 T) with
the sub-LTS representing the possible computations
of K�L between the method call and all possible first
utilisation points of the return value. For example,
the interleave of the LTS having the transitions
labelled xxx and yyy between these two points,
afterwards the transition labelled zzz modeling the
explicit using of the result, produces the following
LTS :

!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x)!Req_m(x) xxx yyy

xxx yyy zzz

?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v) ?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v) ?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)?Rep_m(v)

IV. MODELS FOR QUEUES

Each activity has a request queue, dealing with arrival
and service of requests. The queue is always accepting
requests (i.e. public methods of the active object). The
service method of the active object is in charge of
managing the order in which requests should be served,
depending on its own internal state. If unspecified,
requests will be served in FIFO order.

In most cases the queue is unbounded, and we cannot
give a complete model in terms of LTSs. We shall
artificially set a bound to the size of the queues. There are
many practical cases in which we need only a bounded
queue; however this is a global property of the system,
and we shall have to prove it whenever possible [10].

A general model would be a finite queue of length B ,
in which each cell can host all possible values for the
method name and (abstracted) arguments. This is still a

huge state-space, exponential in the number of distinct
requests. Fortunately, it is often possible to factorize this
structure into separated queues dealing with independant
request types. We use information from static analysis to
perform this factorization.

?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1

?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2 ?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1

?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2

?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1

?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2 ?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1

?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2

?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2 ?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2?Req_m2

?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Serv_m2?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1?Req_m1

?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1?Serv_m1

Fig. 2. An example of queue with size 2 receiving 2 requests

V. CONCLUSION

We have presented techniques for producing finite
models representing the behaviour of distributed Java ap-
plications. These models encode the message exchanges
between remote objects (method calls and responses),
and are suitable for using with automatic model checkers
or equivalence checkers.

The model generated for each distributed object is a
process, built as the composition of (communicating)
finite labelled transition systems. The key points here
are to use compositional models to keep individual LTSs
as small as possible, and to use the compositionality
features of the semantics (bisimulation congruences) and
of the checking tools to master the state explosion.

The model generation procedure is based on the
Method Call Graph of the application components. In
this sense, it is not restricted to Java code, and could be
applied to other language constructs as well. However we
rely heavily on the semantics of communication of the
Java/ProActive middleware, that provides the primitives
for distributed object creation and transparent migration,
guaranties the atomicity of remote requests sendings,
etc. Application to other frameworks would require the
adaptation of the semantics at a similar level.

We also make heavy usage of abstraction and slicing
techniques, for keeping our models finite and as small
as possible. This is similar to the techniques used in
the Bandera system [2] in the case of sequential or
multi-threaded Java programs. Yet our models are very
different in nature from those of Bandera, since we are
interested in the communication between objects, rather
than the internal states of programs. In practice, we could
not generate our models from the internal representation
(BIR) of the Bandera toolset, that is a fully flattened
(though symbolic) representation of the state space.

4

We are currently extending the intermediate formats
representing hierarchical labelled transition systems to
take into account fully parameterized systems. This gives
us models that are closer to the source code (so we
have less static analysis work to perform). It also leaves
us with the choice of computing afterwards a finite
instantiation of the parameterized system before using
"standard" model checking tools, or to use directly the
new generation of tools that deal directly with parame-
terized systems.

The models we have presented are hierarchical at the
level of activities (plus some limited structuration within
each activity). The compositionality of the approach will
allow us much higher benefits with the next version of
the ProActive middleware, in which activities will be-
come distributed components, with the ability of building
bigger components from smaller ones. In this setting, it
will be essential to have behavioural specifications of the
components, and methods to ensure that compositions of
distributed components are correct with respect to those
specifications.

We are currently working on the implementation of
the analysis platform, and shall report on experimental
results on realistic ProActive applications. Future di-
rections of this work include extensions of the ProAc-
tive communication models, e.g. taking into account
group communication and security policies.

REFERENCES

[1] S. K. R. Thomas Ball, “Automatically validating temporal safety
properties of interfaces,” in Workshop on Model Checking of
Software (SPIN 2001), ser. LNCS, no. 2057. Springer-Verlag,
2001.

[2] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Laubach, and
H. Zheng, “Bandera: Extracting finite-state models from java
source code,” Int. Conference on Software Engineering (ICSE
2000), 2000.

[3] D. Caromel, W. Klauser, and J. Vayssière, “Towards seamless
computing and metacomputing in Java,” Concurrency Practice
and Experience, vol. 10, no. 11–13, pp. 1043–1061, November
1998.

[4] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-
checking for regular alternation-free mu-calculus,” in 5th Inter-
national Workshop on Formal Methods for Industrial Critical
Systems FMICS’2000, Berlin, Apr. 2000.

[5] R. Boulifa and E. Madelaine, “Model generation for distributed
java programs,” full version under submission, see our web page
at: http://www-sop.inria.fr/oasis/vercors/.

[6] A. Arnold, Finite transition systems. Semantics of communicating
sytems. Prentice-Hall, 1994.

[7] V. Roy and R. de Simone, “Auto and autograph,” in Workshop
on Computer Aided Verification, New-Brunswick. LNCS 531,
Spring-Verlag, June 1990, pp. 65–75, also available as RR-4460.

[8] D. Binkley and K. B. Gallagher, “Program slicing,” Advances in
Computers, vol. 43:1-50, 1996.

[9] H. Z. Matthew Dwyer, John Hatcliff, “Slicing software for model
construction,” Journal of High-order and Symbolic Computation,
2000.

[10] R. Boulifa and E. Madelaine, “Preuve de propriétés de comporte-
ment de programmes proactive,” INRIA, Tech. Rep. RR-4460,
May 2002, in french.

5

