Verification of systems communicating via unbounded channels

R. Gascon\*, É. Madelaine\* & V. Maisonneuve\*\*
\* INRIA - Projet OASIS & \*\* ENS Cachan

SAFA Workshop - December 3rd, 2008

# VERCORS in a nutshell

- Platform for specification of distributed applications.
- Based on the semantics features of the ProActive library. http://www-sop.inria.fr/oasis/ProActive/
- Generation of intermediate finite model.
- Various tools can then operate on these models: static analysis, model checking, code generation...
- The aim is to integrate the platform in a development environment, used by non-specialists.

#### Formal verification of pNets

- Basically, pNets are made of LTSs synchronized by mean of transducer (synchronization vector).
- Verifying pNets remains to verifies systems:
  - manipulating unbounded data,
  - having a parameterized topology,
  - using unbounded communication queues.
- Numerous sources of infinity
  - $\Leftrightarrow$  numerous complications for formal verification.
- Current platform uses only finite-sate based model-checkers.
- We want to apply infinite state model-checking techniques.

## Outline



2 Definition of the formal model

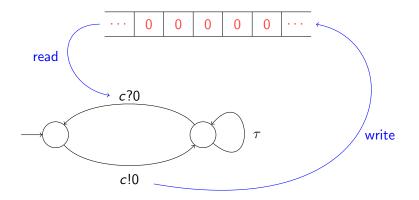




Definition of the formal model

#### Communicating finite state machines

Basically a finite state machine augmented with a set of queues.



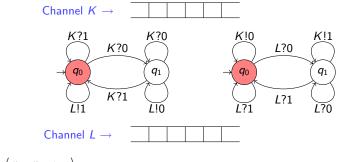
# Communicating finite state machines

Formally, a communicating finite state machines (CFSM) is a tuple

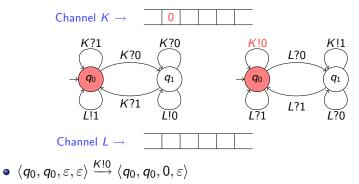
$$\mathcal{M} = (\textit{Q},\textit{q}_0,\textit{C},\Sigma,\textit{A},\delta)$$
 such that

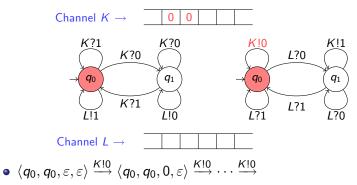
- Q = is a finite set of states,
- $q_0 \in Q$  is the initial state,
- C is a set of communicating channels/queues,
- $\Sigma$  is the alphabet of messages,
- A is a finite set of internal actions,
- $\delta \subset Q \times ((C \times \{?, !\} \times \Sigma) \cup A) \times Q$  is the transition relation.

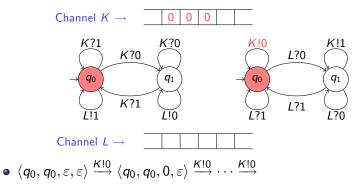
• Execution: Sequence respecting the transition relation.

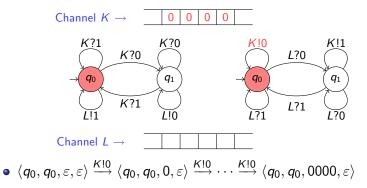


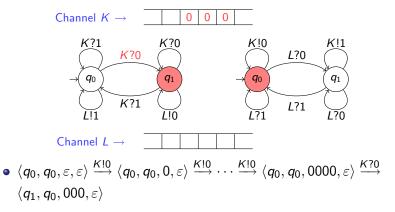
•  $\langle q_0, q_0, \varepsilon, \varepsilon \rangle$ 

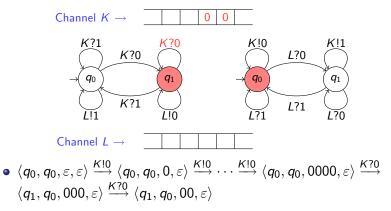


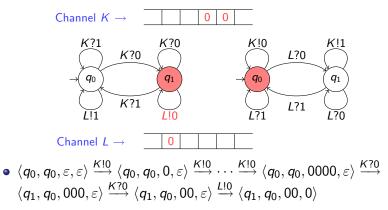


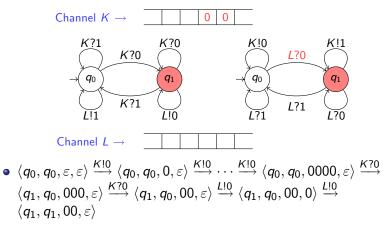


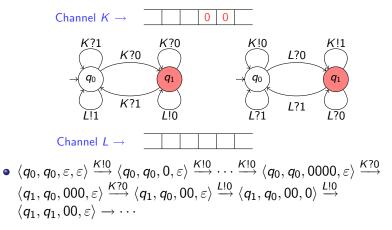












# **Operational Semantics**

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues  $\{K, L\}$ .
- Configuration: (q<sub>1</sub>, q<sub>2</sub>, w<sub>K</sub>, w<sub>L</sub>) (for a pair of CFSM)
   Global state + Queue contents
- Operations:
  - Send (non-blocking).

if  $\langle q_1, K! a, q_1' 
angle \in \delta_1$  then

$$\langle q_1, q_2, w_K, w_L \rangle \stackrel{K!a}{\longrightarrow} \langle q'_1, q_2, w_K \cdot a, w_L \rangle$$

- Receive (blocking).
- Internal Action.

# **Operational Semantics**

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues  $\{K, L\}$ .
- Configuration: (q<sub>1</sub>, q<sub>2</sub>, w<sub>K</sub>, w<sub>L</sub>) (for a pair of CFSM)
   Global state + Queue contents
- Operations:
  - Send (non-blocking).
  - Receive (blocking).

if  $\langle {\it q}_1, {\it K}? {\it a}, {\it q}_1' 
angle \in \delta_1$  then

$$\langle \boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{a} \cdot \boldsymbol{w}_{\boldsymbol{K}}, \boldsymbol{w}_{\boldsymbol{L}} \rangle \overset{\boldsymbol{K}!\boldsymbol{a}}{\longrightarrow} \langle \boldsymbol{q}_1', \boldsymbol{q}_2, \boldsymbol{w}_{\boldsymbol{K}}, \boldsymbol{w}_{\boldsymbol{L}} \rangle$$

• Internal Action.

# **Operational Semantics**

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues  $\{K, L\}$ .
- Configuration: (q<sub>1</sub>, q<sub>2</sub>, w<sub>K</sub>, w<sub>L</sub>) (for a pair of CFSM)
   Global state + Queue contents
- Operations:
  - Send (non-blocking).
  - Receive (blocking).
  - Internal Action.

if  $\langle {\it q}_1, au, {\it q}_1' 
angle \in \delta_1$  with  $au \in {\it A}$  then

$$\langle \boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{w}_K, \boldsymbol{w}_L \rangle \xrightarrow{\tau} \langle \boldsymbol{q}_1', \boldsymbol{q}_2, \boldsymbol{w}_K, \boldsymbol{w}_L \rangle$$

## Outline

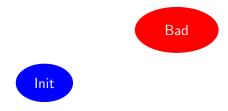


#### 2 Definition of the formal model

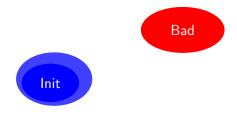


#### Perspectives

We consider the following problem:



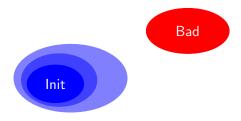
We consider the following problem:



We note:

•  $\operatorname{Post}(X) = \{x \mid \exists x' \in X \text{ s.t. } x \to x'\}.$ 

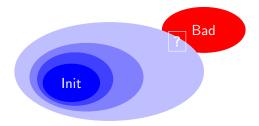
We consider the following problem:



We note:

- $\operatorname{Post}(X) = \{x \mid \exists x' \in X \text{ s.t. } x \to x'\}.$
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$

We consider the following problem:

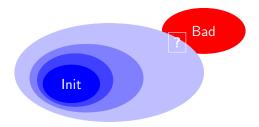


We note:

- $\operatorname{Post}(X) = \{x \mid \exists x' \in X \text{ s.t. } x \to x'\}.$
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$

• 
$$\operatorname{Post}^*(X) = \bigcup_{i \ge 0} \operatorname{Post}^i(X).$$

We consider the following problem:



We note:

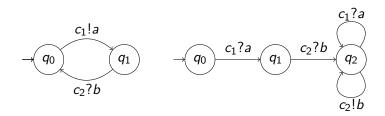
- $\operatorname{Post}(X) = \{x \mid \exists x' \in X \text{ s.t. } x \to x'\}.$
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$
- $\operatorname{Post}^*(X) = \bigcup_{i \ge 0} \operatorname{Post}^i(X)$ . UNDECIDABLE (semi-algorithm)

# Representing Sets of Configurations

- We need to represent possibly infinite sets of configurations.
- We associate to each tuple of states of the CFSM a set of finite state automata (FUDFA) over Σ.
- The set of configurations corresponds to the (regular) language associated to each state.

represents the set of configurations  $\langle q_1, q_2, a^*b, a \rangle$ .

### Complete example



| $\langle q_0, q_0  angle$ |             | $\langle q_0, q_1  angle$ |             |
|---------------------------|-------------|---------------------------|-------------|
| $\langle q_0, q_2  angle$ | →Ô)a × →Ô)p | $\langle q_1, q_0  angle$ |             |
| $\langle q_1,q_1 angle$   |             | $\langle q_1,q_2 angle$   | →O)a × →O)b |

3 x 3

Verification of systems communicating via unbounded channels R. Gascon, É. Madelaine & V. Maisonneuve

#### Basic Algorithm

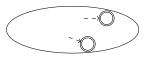
- Input: CFSMs  $\mathcal{M}_i = (Q_i, q_0, C_i, \Sigma_i, A_i, \delta_i)$  for  $i \in \{1, \dots, n\}$ .
- Suppose that
  - $S \subseteq Q_1 \times \cdots \times Q_n$  is a set of states to explore (ex:  $S = \{\langle q_0, \cdots, q_0 \rangle\}$ ),
  - *F* associates to each  $s \in Q_1 \times \cdots \times Q_n$  a FUDFA.

#### Naive semi-algorithm

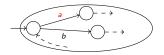
While  $S \neq \emptyset$  do Choose and remove some  $s \in S$ For all possible transition  $s \stackrel{\text{op}}{\to} s'$ Compute op(F[s]) as the effect the transition on F[s]If  $\text{op}(F[s]) \not\subseteq F[s']$  then  $S := S \cup \{s'\}$  $F[s'] := F[s'] \cup \text{op}(F[s]).$ 

(人間) (人) (人) (人) (人) (人)

• Add a letter (!*a*):

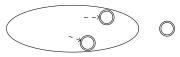


• Remove a letter (?a):

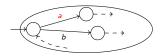


• Nothing to do with internal actions.

• Add a letter (!*a*):

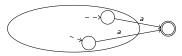


• Remove a letter (?a):

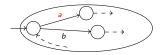


• Nothing to do with internal actions.

• Add a letter (!*a*):

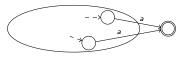


• Remove a letter (?a):

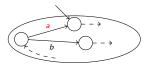


• Nothing to do with internal actions.

• Add a letter (!*a*):



• Remove a letter (?a):



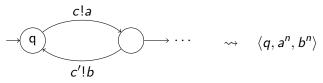
• Nothing to do with internal actions.

#### How to improve convergence?

• FUDFA allows to compute directly the result of infinitely iterating some cycles:



• Pb: Cycles can induce non-regular sets of queue contents:



• Need for characterization of accelerable loops.

## Algorithm with accelerations

#### Improved semi-algorithm

```
While S \neq \emptyset do

Choose and remove some s \in S

For all cycle \theta from s

If Adm(\theta) then

Compute \theta(F[s]) as the effect of \theta^* on F[s]

If \theta(F[s]) \not\subseteq F[s'] then S := S \cup \{s'\}.

For all possible transition s \stackrel{\text{op}}{\to} s'
```

- Additional functions needed:
  - Research and selection of cycles,
  - Computation of acceleration.

## Cycle selection and acceleration

- All the material needed can be adapted from Boigelot's thesis.
  - exact characterisation of accelerable cycles,
  - computation of the acceleration.
- For every sequence of operations  $\sigma$ ,
  - $\sharp_!(\sigma)$  is the number of send operations,
  - $\sharp_{?}(\sigma)$  is the number of receive operations.
- A sequence involving only one queue is counting iff
  - $|\Sigma| = 1$  and  $\sharp_!(\theta) > \sharp_?(\theta)$ ,
  - $|\Sigma| > 1$  and  $\sharp_!(\theta) > 0$ .
- Given a system with queues  $\{c_1, \ldots, c_n\}$  and a cycle  $\theta$ ,  $\theta_{|i|}$  is the sub-sequence of transitions manipulating  $c_i$ .

# Fundamental Results [Boigelot 98]

• For systems with only one queue, the result is the following.

#### Theorem (Single-queue systems)

For every set of configurations X and cycle  $\theta$ , the set  $\text{Post}^*_{\theta}(X)$  is FUDFA representable.

• The result for systems with several queues is more restrictive.

#### Theorem (Multi-queue systems)

For every set of configurations X and cycle  $\theta$ , the set  $\text{Post}^*_{\theta}(X)$  is FUDFA representable iff there do not exist i and j s.t  $\theta_{|i}$  and  $\theta_{|j}$ are counting.

- Algorithm implemented in JAVA.
- Input: A set of CFSMs sharing a set of channels: text format or graphical editor (eclipse plugin).
- Computes successively the set of reachable states step by step + acceleration (at each iteration).
- Halting condition: Violated safety condition or predefined parameter (number of iterations).
- Few expriments on large scale examples for the moment.

#### More details about the implementation

The algorithm follows strictly the method described:

- We store the whole system in a transition table.
- Cycles:
  - we reseach elementary cycles only (research could be parametrerized),
  - non-counting cycles are added to the transition tables (meta transitions).
- A FUDFA is associated to each global state and the main loop of the algorithm can be executed.
- We use our own methods to handle the FUDFA.

- Modeling of unbounded communication queues (FIFO).
- Reachability algorithm based on:
  - Automata representation of queues,
  - Acceleration operations for selected cycles.
- Implementation of this algorithm into a prototype.

Perspectives

## Future Work - Queue Manipulation

- In the current prototype:
  - Computing the set of states from which one can infinitely iterate a cycle.
  - Extend the tool to check linear temporal properties.
  - Improve data structure and algorithm.
- Adding counter in the queue representation [Bouajjani & Habermehl]

$$\stackrel{a (t_1)}{\rightarrow} \times \stackrel{b (t_2)}{\rightarrow} \& t_1 = t_2 \quad \rightsquigarrow \quad \langle a^n, b^n \rangle$$

+ New definition of acceleration.

• Considering more service policies.

## Future Work - Verification of pNets

- Treating the other unbounded parameter.
  - Adding datas:
    - that can be finitely abstracted,
    - that can be represented by automata and combined with the current representation [Bardin et al].
  - Considering parameterized topologies.
- Defining a specification language for safety properties.