
1

Verifying distributed systems with unbounded
channels

Régis Gascon & Éric Madelaine
INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis

2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex - France
Email: First.Last@sophia.inria.fr

Abstract—In the Vercors platform, we have implemented a
prototype algorithm for model-checking systems of distributed
components with unbounded FIFO channels. We describe this
algorithm, and comment on the pragmatical ways to use it on
simple cases.

Usually, verification tools deal with infinite-systems by
specifying abstractions that preserve the expected properties to
produce finite-state models. Such models can be represented
explicitly, by BDD-like structures, or even generated on-the-
fly. Checking of properties is then performed by a (potentially
exhaustive) search of the resulting state-space.

True “infinite-state” representations and algorithms allow
one to represent in a finite way some infinite-state systems,
and to prove some properties that would not be preserved by
finite abstractions. This is typically the case for unbounded
channels, for which there exist several (semi) decidable logic
fragments, and associated algorithms. Nevertheless, there are
few implementation of these theories, and we had to imple-
ment our own variant of a model-checking algorithm for finite
sate machines communicating through Fifo channels.

In this paper, we present the foundation of this algorithm,
and discuss our implementation, insisting on its pragmatic
aspects.

I. THEORETICAL FOUNDATIONS

A. Communicating Finite State Machines

The formal definitions we use are adaptions of standard
formalisms such as [2]. We consider communicating finite
state machines (CFSM) that are finite automata extended with
queues. A CFSM is a structure 〈Q, I, C,Σ, A, δ〉 such that Q
is a finite set of locations, q0 ∈ Q the initial location, C a
finite set of channels, Σ a communication alphabet, A a set
of actions and δ ⊆ Q×Op×Q the transition function. Op is
the set of operations defined by:

• for every τ ∈ A we have τ ∈ Op,
• for every c ∈ C and a ∈ Σ we have c?a ∈ Op (receive),

and c!a ∈ Op (send).

We will shortly write q
op−→ q′ whenever 〈q, op, q′〉 ∈ δ.

A network of CFSM is defined by a set of CFSM
M = {M1, . . . ,Mm} and a set of channels C =
{c1, . . . , cn}. We denote each CFSM of the network Mi =
〈Qi, (q0)i, Ci,Σi, Ai, δi〉. We suppose without loss of gener-
ality that C =

⋃
1≤i≤m Ci. We also define Σ =

⋃
1≤i≤m Σi.

For example, Fig. 1 shows a machine that receives messages
on channels ta and ts, sends on channels it and fm, and
has one internal action named noExecT.

A configuration of the network is a tuple 〈q, w1, . . . , wn〉 ∈
(Q1×· · ·×Qm)×(Σ∗)n where q = 〈q1, . . . , qm〉 is the global
state of the network and wi the content of channel ci for every
i ∈ {1, . . . , n}. Each location q(i) is called the local state of
Mi. The CFSMs can send and get messages from the channels
which are unbounded and Fifo. By lack of space, we omit here
the (straighforward) formal definition of the transition relation
between configurations.

B. Reachable configurations

An execution (or a run) is a sequence of configura-
tions respecting the one-step transition relation. We say that
〈q′, w′1, . . . , w′n〉 is reachable from 〈q, w1, . . . , wn〉 iff there is
a run from the second configuration to the first one.

q0q1 q2

q3 q4

ta?endT

ta?endReg

ts?newT

noExecT

ta?newT

fm!regFiles

ta?stop

it!TAStopped

Figure 1. Simplified behaviour of TA

Our tool relies on an semi-algorithm for computing the exact
set of reachable configurations. We cannot ensure termination
because CFSMs are Turing powerful. We will use additional
features to stop the algorithm in the sequel.

The set of reachable configurations in a network may be
infinite because the channels are unbounded. A set of queue
contents is represented by a union of deterministic finite
automata (DFA) in the same way than [4]. Each DFA in the
union is decomposed into a tuple of DFAs and each channel
corresponds to a particular DFA in the tuple.

Given a set of configurations X , we define Post(X) to be
the set of one-step successors of configurations in X , i.e.

Post(X) = {〈q′, w′1, . . . , w′n〉 | ∃〈q, w1, . . . , wn〉 ∈ X and
op ∈ Op s.t. 〈q, w1, . . . , wn〉

op−→ 〈q′, w′1, . . . , w′n〉}.
For any set of configurations X represented with DFAs,
computing the representation of Post(X) is easy. The effect
of send operations on the queue representations is to append



a new final state to the DFA encoding the receiving channel.
The effect of receive operations is to change the starting state
of the DFA if the message can be read. Thus, we can try
to compute the set of reachable configurations as the fixpoint
of (Reachi)i≥0 such that Reach0 = X0 and Reachi+1 =
Reachi ∪Post(Reachi) where X0 is the set of initial config-
urations.

C. Acceleration

This computation does not terminate if the number of
states is infinite. But we can improve this method. Consider
a loop transition of the form q

c!a−→ q. We can directly and
exactly represent the result of iterating this cycle with a DFA
that accepts the language a∗. This is called an acceleration.
Accelerable cycles correspond to regular languages that can be
represented with DFAs. A method to select accelerable cycles
and compute the result of acceleration is described in [2]. We
can use this to improve the algorithm. Let Adm(X) be a user
defined set of accelerable cycles from configurations in X .
Given a set of configurations X and a cycle γ ∈ Adm(X),
we set

Post∗γ(X) = {〈q, w′1, . . . , w′n〉 | ∃〈q, w1, . . . , wn〉 ∈ X
s.t. 〈q, w1, . . . , wn〉

γ∗−→ 〈q, w′1, . . . , w′n〉}

where 〈q, w1, . . . , wn〉
γ∗−→ 〈q, w′1, . . . , w′n〉 iff there is a run

from 〈q, w1, . . . , wn〉 to 〈q′, w′1, . . . , w′n〉 applying a finite
number of times the successive operations of γ. The computa-
tion of Reach can be rewritten as the fixpoint of (Reach′i)i≥0

such that Reach′0 is the set of initial configurations and

Reach′i+1 = Reachi ∪
⋃

γ∈Adm(Reach′i)

Post∗γ(Reach′i)∪Post(Reach′i).

Our tool implements this approach with heuristics for the
selection of cycles. The set Adm(X) we consider is a subset
of the set of cycles that can be theoretically accelerated.

II. PRESENTATION OF THE METHOD AND TOOL

A. The implementation

Our verification tool is part of the Vercors platform for
the specification and verification of distributed component
systems [6]. The platform allows a graphical specification of
the system from which is generated a formal model. Then var-
ious tools can be used for safety analysis or code generation,
including classical finite-state model-checkers combined with
abstraction techniques.

The present work is a first tentative to use infinite-system
methods in the Vercors platform. Implementing infinite-state
algorithms make the verification closer to the semantics of
the formal model. The case of unbounded Fifo channels is
certainly the one where the theory is the most advanced, and
useful for our application domain. Other domains would also
be interesting, in particular some decidable logics for counters.

Our prototype has been implemented in JAVA as an Eclipse
plugin. The CFSMs are defined using Vercors graphical editor
and saved in separate files. Several instances of the same
CFSM can be loaded and the messages and channels of the

different instances can be renamed. So, the tool also allows
for a basic form of parametrization of the topology and
instantiation of the system.

The current implementation contains a heuristic for accel-
eration: the set of accelerated cycle is restricted to sequences
of send operations, sequences of receive operations and se-
quences of send/receive operations restricted to a single write
channel and a different single read channel. This is a smaller
set of cycles that in the theoretical results of [2]. In practice
the other possible cases would be much more costly.

B. Exploring the state space

The most convenient scenario for our semi-algorithm is
when the computation converges. In this case, we obtain the
exact set of reachable states. However, in many cases the
computation does not terminate, for instance because cycles
induce non regular sets of queue contents, but also when
the selected cycles produce growing DFA representations. We
have implemented two mechanisms to control these cases, and
to reduce the practical complexity of the search:
• The user can specify a global state or a configuration

(global state + channels state) that is searched for reach-
ability. In case of success, this is naturally smaller than
exploring the full state space.

• Bounds on the search can be set, in terms of number of
iterations of the main loop, of size of the generated DFAs,
or of number of generated states.

• The user can define filters, that will reduce the amount
of information displayed during the search; this is quite
significant, because the display of DFAs in terms of
regular expressions is costly.

In this prototype we have concentrated on functionalities
rather than fine tuning of the data representation; a lot of space
complexity could certainly be gained easily. Nevertheless, let
us give an example showing basic figures about the algorithm.

The Integrated Toolkit (IT) in Fig. 2 is a system made of
several (hierarchical) distributed components, typical of grid
applications (see [5]. The detailed role of these components
is not important here. It is modelled by a total of 6 CFSMs,
communicating through 5 Fifo channels. We model this ex-
ample by associating a CFSM and a request queue to every
components. The behaviour of primitive components (TA, TS,
JM, FIP, FTM) and the control part of composites (IT, FM)
are described by CFSMs: the behaviour of component TA is
shown in Fig. 1, and the part of the CFSM associated to IT
that rules the stop procedure in Fig. 3. Components can send
messages to the queues of other components but can read
messages only in their own queue.

The computation of its full reachable state-space would not
converge. Typical properties one could check are:
(1) is there states where every component is waiting for new
requests ?
(2) can a component (e.g. TA) be stopped with a non-empty
queue ?

When checking for reachability of configuration (1), we first
tried to bound the number of iterations of the main loop. After
15 iterations, the program already indicates that the queue

2



q1 q2 q3 q4 q5 q6

q′
2 q′

3
q4 q5 q′

6
q7 q8

q9
ta!stop ts!stop

ts!stop

it?TAStopped it?TAStopped it?TAStopped it?TAStopped it?TAStopped

it?TSStopped

it?TSStopped

jm!stop

jm!stop

it?JMStopped

it?JMStopped fm!stop it?FMStopped

ITStopped

Figure 3. Stopping procedure of IT

IT
TA TS JM

FM
FIP FTM

Figure 2. Integrated Toolkit (IT)

representation is very large (2460 DFAs and a total of 19096
states). Displaying the content of channels in this case is not
very useful because the corresponding regular expressions are
too long. So our next try was to limit the size of the DFAs (this
does not mean bounding the size of the queues). The resulting
state-space is much smaller (78 automata and 275 states), and
allowed us to examine the queue contents in a reasonable form;
e.g. the content of channel ta is (NewT∗ ·EndReg∗ ·EndT∗)∗,
meaning that ta contains (at least) a message.

Similarily, we checked that configuration (2) can be reached,
that is a situation usually considered as a bug in some
distributed component systems (when other components are
waiting these requests to be served).

III. CONCLUSION

We have implemented an algorithm of an infinite-state
model-checker for communicating finite-state machines with
unbounded Fifo channels. This prototype is part of the Vercors
platform, and is used for the verification of properties of
asynchronous component systems.

The algorithm is a semi-decision algorithm, able to construct
exact representations of the system configurations when the
(unbounded) channel contents are regular. We have discussed
several ways of controlling the search, and shown an example
of usage of the tool.

We have shown some properties that were proved, involving
unbounded channel content, that could have not have been
treated using finite abstractions.

Similar research exist in other teams, in particular the LASH
tool that implements efficient data structures based on [2],
but does not provide any state-space or search procedure.
The work by [3], and also the TReX tool [1] also provide
analysis procedures for unbounded channels, but based on
over-approximations of configuration sets rather than exact
representations.

The main focus of our work here was on the applicability
of the method in the context of the Vercors platform. Much
work is still required, in particular in practical complexity, but
also in term of usability by non-specialist users.

In the longer term, we will study other (semi) decidable
logic fragments, in particular for representing counters and
arithmetics, and also the combination of such fragments.

REFERENCES

[1] A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for
reachability analysis of complex systems. In CAV’01, volume 2102 of
LNCS, pages 368–372. Springer, 2001.

[2] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs (extended abstract). In SAS’97, volume 1302 of LNCS, pages
172–186. Springer, 1997.

[3] T. Le Gall, B. Jeannet, and T. Jéron. Verification of communication
protocols using abstract interpretation of fifo queues. In AMAST’06,
volume 4019 of LNCS, pages 204–219. Springer, 2006.

[4] S. Roy and B. Chakraborty. A finite union of DFAs in symbolic model
checking of infinite systems. In CIAA’06, volume 4094 of LNCS, pages
277–278. Springer, 2006.

[5] E. Tejedor, R. Badia, P. Naoumenko, M. Rivera, and C. Dalmasso.
Orchestrating a safe functional suspension of GCM components. In
CoreGRID integration workshop. Integrated research in grid computing,
2008.

[6] The Vercors platform: VERification of models for distributed
communicating COmponants, with safety and Security.
http://www-sop.inria.fr/oasis/index.php?page=vercors.

3


