
1

Software Un-security Exploitation Evaluation
Christèle Faure, christele.faure@safe-river.com

Abstract—The elaboration of a software attack is a long and
fragile process because each piece of information must be ”stolen”
from the software under attack without being noticed. Moreover
any added protection can disallow preliminary attacks necessary
to get these data. Existing tools search for vulnerabilities but
give no way to evaluate the security impact. We have defined a
methodology to study different aspects of security from the source
code of a piece of software. It may take as input the vulnerabilities
computed by another tool and allows for the investigation of their
possible exploitation. But it can also be used to answer other
security questions such as ”is my asset impacted by a given
software input”. We intend to automate this methodology using
static analysis based on abstract interpretation.

I. INTRODUCTION

Software security analysis is supported by different types of
tools: static tools (textual analysis, pattern matching, abstract
interpretation) detect potential vulnerabilities by symbolically
executing the software or dynamic tools (penetrating tools,
fuzzing tools, testing tools) find true vulnerabilities by per-
forming aggressive tests.

This paper focuses on the static aspects of security analysis
as advocated in [1], [2], [3]. More than two hundred static tools
claim to tackle software security. They search for software
vulnerabilities such as the well known buffer and stack over-
flows, but they also detect the presence of calls to dangerous
functions such as formatting functions (fprintf1), memory
copy functions (memcpy), input functions (scanf).
These tools can be classified with respect to the er-
rors they focus on: memory errors are detected by
Clousot, Sparrow or C Global Surveyor, run-
time errors are computed by Astrée, PolySpace,
Frama-C, Inspector, Lintplus, and dangerous calls are
tackled by Vulncheck (gcc option), CodeAssure
(RATS), Flawfinder, ITS4, and Security Analyst.
Static security tools also check for the respect of usual
or user defined coding rules (or principles) such as ”filter
input value before use”. Security Analyst, Fortify,
CodeAssure (RATS), ITS4 do offer this functionality to
some extent. Each of these tools searches for several classes
of vulnerabilities, but none of them detect all kinds of security
vulnerabilities.

Moreover, static tools detect only potential errors because
they cannot always prove that each error truly occurs at
runtime. Amongst static tools, the syntactic ones detect only
simple errors from patterns because they have no clue about
the potential executions: they generate false negatives (true
errors not detected) and try to limit false positives (false errors
detected). The semantic tools symbolically execute the piece
of software and generate no false negatives, but may generate

1The examples given in this paper are based on the C language but can be
mapped on most programming language.

false positive due to the over-approximations necessary to
assure the termination of symbolic execution.

Finally, whatever kind of tools is applied, the user is left
with the difficult challenge of proving that the potential error
can be used in true attacks. This is currently done manually by
experts who know how to built an attack from a vulnerability.
We have developed a methodology that helps evaluate if an
error can be used in an attack: on the first hand find out
if it could be exploited within attacks, and on the second
hand evaluate if the implemented defense means disable the
corresponding attacks. Our methodology takes both aspects of
security [4] into account: the attack elements present in the
piece of software but also the defense elements.

II. OUR METHODOLOGY

At the software level, the elaboration of an attack is an
iterative process that goes deeper and deeper into the piece of
software: one preliminary attack gives a piece of information,
and the next attack uses it to get a deeper piece of information.
When the hacker gets enough information to built a rewarding
attack, he elaborates and performs it. The obtained pieces of
information are of several kinds: execution time, runtime error,
output value, rejected input, error message ...

But in any case, the hacker makes use of the piece of
software itself to elaborate the attack: he queries the soft-
ware from its input channels, forces the execution throughout
vulnerabilities to change the intended behaviour and gets the
stolen information from the software output channels. The
same idea is used through the notion of attack surfaces [11],
[12] for security risk analysis. From this, we got the idea that
an analysis of the software itself (without knowledge about
the environment) is the first step towards security throughout:
(1) the identification of attack paths, and (2) the evaluation of
the defense means effectiveness.

We propose a four steps method to analyze a piece of
software for security:

1) Location of attack means,
2) Location of defense means,
3) Search for attack paths,
4) Search for unprotected attack paths.
Location of attack means

This step aims at generating the attack map i.e. locating
instances of attack elements into the piece of software. We
explained above that an attack is built from elements present
in the piece of software itself. We classify attack elements
as: Ī input functions (gets, scanf ...), V̄ classes of
vulnerabilities (buffer overflow, ...), Ō output functions, Ā
assets (file, variable ...), C̄ rights (root, user ...) or privileges
(high, low). The elements of classes Ī , Ō, C̄ are defined by the
development language and library specifications, those of class



2

Ā are defined by the user and the elements of class V̄ are either
known before hand (computed by static tools, dynamic tools,
test ...). The attack means located in the piece of software form
the software attack map described as (I,O,C,A, V ) where I
is the set of input points present in the piece of software, V is
the set of located potential vulnerabilities, O the set of output
points, A the set of located accesses to assets, and C the set
of rights or privileges change locations.

Location of defense means
This step aims at generating the defense map i.e. locating
instances of defense elements into the piece of software.
The defense elements are actual implementations of general
security principles such as for example: ”prefer white testing
(test of correct possibilities) to black testing (test of incorrect
possibilities)”, ”filter the value imputed from the environment
before using it”, ”protect the accesses to assets”. The defense
elements are user defined and should be known beforehand.
In practice, the defense means are implemented as call to
functions from user defined dedicated libraries: the filtering
functions check for the accepted patterns (white testing) within
a string or the accepted value for a numerical variable, and
the protection functions encode/decode messages, check for
the rights or privileges. Within a piece of software, the calls
to defense functions form the software defense map.

Search for potential attack paths
This step aims at computing the attack paths that go through
the software execution and cross attack means. But all the
executions path linking attack means cannot be the base of an
attack. For example, an execution path which does not first
encounter an input points cannot lead to an attack because it
cannot be activated. The hacker needs to control the piece of
software and can only do it from the input channels.
We define attack patterns as sequences of attack means from
I,O,A, V . For example, I → V → A → O represents the set
of attacks that start from an input point, end at an output point,
and cross a potential vulnerability before an access to an asset.
An attack paths is denoted by i → v → a → o where i ∈ I ,
v ∈ V , a ∈ A and o ∈ O. Potential attack paths that match a
given attack pattern are searched for by forward analysis on
the piece of software. All attack paths matching the chosen
patterns are considered: if a potential execution path cross all
these program points, then the actual path is considered as an
attack path otherwise it is rejected.

Search for unprotected potential attack paths
This step aims at computing the potential attack paths that do
not cross defense means as expected. The defense elements
mainly protect the inputs, outputs and assets and their usage
is specified from coding rules that lead to defense patterns.
From the software defense map and the software potential
attack paths, this step compute the subset of unprotected
potential attack paths. The elements from the defense map
executed along a path are identified for each path. If all the
defense elements specified by the defense patterns are present
on the path, then it can be considered as protected. If one
defense mean is missing, then the attack path is considered as
unprotected.

This methodology enables to study different aspects of
security. Amongst the possible questions, one can answer for

example the question ”could a vulnerability be exploited” by
investigation the pattern I → V → A → O or I → V → O,
the question ”could an asset flow out of the software” by
investigating the patterns A → O, or the question ”could
an asset be impacted by a vulnerability” by studying pattern
V → A.

The first two steps of this method are easy to perform
manually because most of the elements can be identified at
a glance in the source code of the piece of software. The two
other steps are a lot more complex because they require the
identification of certain execution paths within the software.
The execution paths are in general over-approximated by
syntactic paths present in the source code. The search for
syntactic paths is tedious, error prone and fairly unprecise but
is the only possible manual way to realize this step.

III. CONCLUSION

We have manually tested our methodology on small exam-
ples and we want to automate it to be able to evaluate it on
industrial applications.

We have specified a tool to support this methodology. The
tool should apply static analysis based on abstract interpreta-
tion [6] to be aware of execution paths and (1) identify attack
and defense cartographies from a knowledge base of defined
attack and defense elements, (2) compute execution paths that
cross sequences of attack and defense elements as defined by
attack patterns and defense rules.

We will start the development of the tool from a naive notion
of what attack and defense elements are, and some very simple
attack patterns and defense rules. But we intend to elaborate
more sophisticated data by studying known attacks, as well as
development rules for security. At the end of this work, the
tool will be extended with new attack and defense elements,
but also with more complex attack and defense patterns.

We want to prototype first a tool for C, but the objective
is to support C, C++ and Java. We do not want to develop
standard components such as the frontend, the alias analyzer,
the value analyzer, and have therefore chosen to develop our
tool as a plugin into an existing framework. We intend to
evaluate four frameworks for static analysis: Frama-C [7],
PAG [8], SATIRE [9], gcc [10].

REFERENCES

[1] Secure Programming with Static Analysis. Chess B. and West J. Addison-
Wesley Software Security Series. 2007.

[2] Software Security. Building Security In. McGraw G. Addison-Wesley
Software Security Series. 2006.

[3] Static Detection of Exploitable Vulnerabilities in Input Dependencies.
Robin Van Schendel, Master thesis, 2007.

[4] Low level Software Security: Attacks and Defenses. Ulfar Erlingsson,
Microsoft Research, 2007.

[5] Common Criteria for Information Technology Security Evaluation, Part
1: Introduction and general model, September 2006.

[6] Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. Patrick Cousot
& Radhia Cousot. In Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 238–252, Los Angeles, California, 1977. ACM Press, New
York.

[7] Frama-C, http://frama-c.cea.fr/
[8] PAG, http://www.absint.com/pag/
[9] SATIRE, http://www.complang.tuwien.ac.at/satire/



3

[10] GCC plugin, http://gcc.gnu.org/wiki/plugins
[11] Fending off future attacks by reducing attack surface, M. Howard, 2003.
[12] An Approach to Measuring A System’s Attack Surface, Pratyusa K.

Manadhata, Kymie M.C. Tan, Roy A. Maxion and Jeannette, CMU
Technical Report CMU-CS-07-146, August 2007.


