
A Comprehensive Solution

for Grid Computing

OASIS Research Team

Version 3.2.1 2007-04-10 Copyright © 2001-2007 INRIA

ProActive v3.2.1 Documentation
A Comprehensive Solution for Grid Computing
OASIS Research Team

Disclaimer

ProActive is a GRID middleware Java library for parallel, distributed, and concurrent computing, also featuring mobility and
security in a uniform framework. With a reduced set of simple primitives, ProActive provides a comprehensive API allowing to
simplify the programming of applications that are distributed on Local Area Network (LAN), on cluster of workstations, on P2P
desktop Grids, or on Internet Grids. The library is based on an Active Object pattern that is a uniform way to encapsulate:

• a remotely accessible object,
• a thread as an asynchronous activity,
• an actor with its own script,
• a server of incoming requests,
• a mobile and potentially secure entity.

On top of those basic features, ProActive also includes advanced aspects, such as:

• Typed Group Communications,
• Object-Oriented SPMD,
• Distributed and Hierarchical Components,
• Security,
• Fault Tolerance with checkpointing,
• a P2P infrastructure,
• a powerful deployment model based on XML descriptors,
• File transfer capabilities over the Grid,
• a Graphical User Interface: IC2D.

ProActive is only made of standard Java classes, and requires no changes to the Java Virtual Machine, no preprocessing or
compiler modification; programmers write standard Java code. Based on a simple Meta-Object Protocol, the library is itself extens-
ible, making the system open for adaptations and optimizations. ProActive currently uses the RMI Java standard library as default
portable transport layer, and also provides optimized RMI with IBIS, and HTTP transport.

ProActive features several optimizations improving performance. For instance, whenever two active objects are located within the
same virtual machine, a direct communication is always achieved, without going through the network stack. This optimization is
ensured even when the co-location occurs after a migration of one or both of the active objects.

ProActive and the (de facto) Standards: ProActive has an architecture that allows the library to interoperate with various official
or de facto standards:

• Web Service Exportation,
• HTTP Transport, RMI/SSH tunneling Transport,
• ssh, scp, rsh, rcp,
• Globus GT2, GT3 and GT4, Unicore, GLite, ARC (NorduGrid), GSI-SSH,
• LSF, PBS, Sun Grid Engine, OAR.

Legal Notice

ProActive is a GRID Java middleware, with source code under LGPL license [http://www.gnu.org/copyleft/lesser.txt].

Copyright INRIA 2001-2007.

http://www.gnu.org/copyleft/lesser.txt

Contributors and Contact Information

Team Leader:

DenisCaromel
INRIA

2004, Route des Lucioles
BP 93

06902 Sophia Antipolis Cedex
France

phone: +33 492 387 631
fax: +33 492 387 971

Denis.Caromel@inria.fr

OASIS Team

Francoise Baude
Javier Bustos

Antonio Cansado
Vincent Cave

Arnaud Contes
Alexandre di Costanzo
Guillaume Chazarain

Christian Delbe
Ludovic Henrio

Fabrice Huet
Virginie Legrand

Mario Leyton
Clement Mathieu
Eric Madelaine

Stephane Mariani
Matthieu Morel
Marc Ozonne

Igor Rosenberg
Bernard Serpette

Past and External Contributors

Laurent Baduel
Alexandre Bergel

Roland Bertuli
Juan Casanova Rodriguez

Florian Doyon
Alexandre Fau

Stephane Jasinski
Felipe Luna

Elton Mathias
Olivier Nano

Nikos Parlavantzas
Arnaud Poizat
Romain Quilici
Nadia Ranaldo
Ward Vanlooy

Remi Vankeisbelck
Julien Vayssiere
Eugenio Zimeo

Public questions/comments/discussions should be posted on the ProActive public mailing list

proactive@objectweb.org

Mailing list archive at

http://www.objectweb.org/wws/arc/proactive

Post bugs to ProActive bug-tracking system GForge

http://gforge.inria.fr/tracker/?group_id=180

Contributors and Contact Information

i

mailto:Denis.Caromel@inria.fr
mailto:proactive@objectweb.org
http://www.objectweb.org/wws/arc/proactive
http://gforge.inria.fr/tracker/?group_id=180

Contributors and Contact Information

ii

Table of Contents

List of figures ...xvii

List of tables ..xxi

List of examples ..xxiii

Part I. Introduction .. 1

Chapter 1. Principles .. 3
1.1. Seamless sequential, multithreaded and distributed ... 3
1.2. Active objects: Unifying threads and remote objects ... 3
1.3. Model of Computation .. 4
1.4. Reusablilty and Seamless interface: why and how do we achieve it? .. 5
1.5. Hello world ! (tiny example) ... 5

1.5.1. The TinyHello class ... 5
1.5.2. Implement the required functionality ... 6
1.5.3. Creating the Hello Active Object .. 6
1.5.4. Invoking a method on a remote object and printing out the message .. 7
1.5.5. Launching .. 7

Chapter 2. ProActive Installation .. 9
2.1. Quick Start .. 9

2.1.1. To Test ProActive with the examples ... 9
2.1.2. To develop with ProActive .. 9

2.2. Download and expand the archive ... 9
2.3. Run a few examples for testing ..10

2.3.1. Local Example 1: Hello world ! ...10
2.3.2. Local Example 2: Reader/Writer ..10
2.3.3. Local Example 3: The Dining Philosophers ...10
2.3.4. Local Example 4: The N-Body Simulation ...10

2.4. CLASSPATH to set when writing application using ProActive ..11
2.5. Create a java.policy file to set permissions ...11
2.6. Create a log4j configuration file ...11
2.7. ProActive and IDEs (Eclipse, ...) ..12
2.8. Troubleshooting and support ...15

Chapter 3. ProActive Trouble Shooting ... 17
3.1. Enabling the loggers ..17
3.2. Hostname and IP Address ...17
3.3. Domaine name resolution problems ..17
3.4. RMI Tunneling ...17
3.5. Public remote method calls ...17

Part II. Guided Tour and Tutorial ... 20

Chapter 4. Introduction to the Guided Tour and Tutorial ... 21
4.1. Overview ...21
4.2. Installation and setup ...21

Chapter 5. Introduction to ProActive Features ... 23

iii

5.1. Parallel processing and collaborative application with ProActive ..23
5.2. C3D: a parallel, distributed and collaborative 3D renderer ...23

5.2.1. Start C3D ..23
5.2.2. Start a user ..24
5.2.3. Start a user from another machine ..25
5.2.4. Start IC2D to visualize the topology ...26
5.2.5. Drag-and-drop migration ..27
5.2.6. Start a new JVM in a computation ..28
5.2.7. Wrapping Active Objects in Components ..28
5.2.8. Look at the source code for the main classes ..29

5.3. Synchronization with ProActive ...29
5.3.1. The readers-writers ...29
5.3.2. The dining philosophers ...32

5.4. Migration of active objects ..38
5.4.1. Start the penguin application ...38
5.4.2. Start IC2D to see what is going on ...38
5.4.3. Add an agent ..38
5.4.4. Add several agents ..39
5.4.5. Move the control window to another user ..39

Chapter 6. Hands-on programming .. 41
6.1. The client - server example ...41
6.2. Initialization of the activity ...41

6.2.1. Design of the application with Init activity ...41
6.2.2. Programming ...42
6.2.3. Execution ..43

6.3. A simple migration example ..43
6.3.1. Required conditions ..43
6.3.2. Design ..43
6.3.3. Programming ...44
6.3.4. Execution ..45

6.4. migration of graphical interfaces ..46
6.4.1. Design of the migratable application ...46
6.4.2. Programming ...46
6.4.3. Execution ..47

Chapter 7. PI (3.14...) - Step By Step ... 49
7.1. Software Installation ..49

7.1.1. Installing the Java Virtual Machine ..49
7.1.2. Download and install ProActive ..49

7.2. Implementation ...49
7.2.1. MyPi.java ..49
7.2.2. Add the Deployment Descriptor ..50
7.2.3. Instantiate The Remote Objects ...50
7.2.4. Divide, Compute and Conquer ..50
7.2.5. Clean up ...50
7.2.6. Executing the application ...50

7.3. Putting it all together ..50

Chapter 8. SPMD PROGRAMMING ... 53
8.1. OO SPMD on a Jacobi example ...53

8.1.1. Execution and first glance at the Jacobi code ..53
8.1.2. Modification and compilation ..53
8.1.3. Detailed understanding of the OO SPMD Jacobi ...54
8.1.4. Virtual Nodes and Deployment descriptors ..58
8.1.5. Execution on several machines and Clusters ...59

8.2. OO SPMD on a Integral Pi example MPI to ProActive adaptation ..65
8.2.1. Introduction ...65
8.2.2. Initialization ..65
8.2.3. Communication primitives ...66
8.2.4. Running ProActive example ...68

Chapter 9. The nbody example .. 71

iv

9.1. Using facilities provided by ProActive on a complete example ...71
9.1.1. Rationale and overview ..71
9.1.2. Usage ...74
9.1.3. Source files: ProActive/src/org/objectweb/proactive/examples/nbody75
9.1.4. Common files ..75
9.1.5. Simple Active Objects ...76
9.1.6. Groups of Active objects ..78
9.1.7. groupdistrib ...79
9.1.8. Object Oriented SPMD Groups ...80
9.1.9. Barnes-Hut ..80
9.1.10. Conclusion ..81

Chapter 10. C3D - from Active Objects to Components ... 83
10.1. Reason for this example ..83
10.2. Using working C3D code with components ..83
10.3. How the application is written ..83

10.3.1. Creating the interfaces ...83
10.3.2. Creating the Component Wrappers ...84
10.3.3. Discarding direct reference acknowledgment ..85

10.4. The C3D ADL ..86
10.5. Advanced component highlights ...87

10.5.1. Renaming Virtual Nodes ..87
10.5.2. Component lookup and registration ..88

10.6. How to run this example ...89
10.7. Source Code ...89

Chapter 11. Guided Tour Conclusion ... 91

Part III. Programming .. 94

Chapter 12. ProActive Basis, Active Object Definition ... 95
12.1. Active objects basis ..95
12.2. What is an active object ..96

Chapter 13. Active Objects: creation and advanced concepts .. 97
13.1. Instantiation-Based Creation ..97

13.1.1. Possible ambiguities on the constructor ...97
13.1.2. Using a Node ...98

13.2. Object-Based Creation ..98
13.3. Specifying the activity of an active object ...99

13.3.1. Algorithms deciding which activity to invoke ...99
13.3.2. Implementing the interfaces directly in the class .. 100
13.3.3. Passing an object implementing the interfaces at creation-time ... 101

13.4. Restrictions on reifiable objects .. 102
13.5. Using the Factory Method Design Pattern ... 102
13.6. Advanced: Customizing the Body of an Active Object .. 103

13.6.1. Motivations .. 103
13.6.2. How to do it ... 103

13.7. Advanced: Role of the elements of an active object .. 104
13.7.1. Role of the stub .. 105
13.7.2. Role of the proxy .. 106
13.7.3. Role of the body ... 106
13.7.4. Role of the instance of class B ... 106

13.8. Asynchronous calls and futures .. 106
13.8.1. Creation of a Future Object ... 106
13.8.2. Asynchronous calls in details ... 107
13.8.3. Important Notes: Errors to avoid .. 112

13.9. Automatic Continuation in ProActive .. 113
13.9.1. Objectives ... 113
13.9.2. Principles .. 113

v

13.9.3. Example .. 114
13.9.4. Illustration of an Automatic Continuation .. 114

13.10. The Hello world example .. 118
13.10.1. The two classes ... 118
13.10.2. Hello World within the same VM ... 120
13.10.3. Hello World from another VM on the same host .. 121
13.10.4. Hello World from abroad: another VM on a different host ... 121

Chapter 14. Typed Group Communication ... 123
14.1. Overview ... 123
14.2. Creation of a Group ... 123
14.3. Group representation and manipulation .. 124
14.4. Group as result of group communications ... 125
14.5. Broadcast vs Dispatching .. 125

Chapter 15. OOSPMD .. 127
15.1. OOSPMD: Introduction .. 127
15.2. SPMD Groups .. 127
15.3. Barrier: Introduction .. 127
15.4. Total Barrier ... 128
15.5. Neighbor barrier .. 128
15.6. Method Barrier .. 129
15.7. When does a barrier get triggered? .. 129

Chapter 16. Active Object Migration .. 131
16.1. Migration Primitive .. 131
16.2. Using migration .. 131
16.3. Complete example ... 131
16.4. Dealing with non-serializable attributes ... 132
16.5. Mixed Location Migration ... 132

16.5.1. Principles .. 132
16.5.2. How to configure .. 134

Chapter 17. Exception Handling ... 135
17.1. Exceptions and Asynchrony ... 135

17.1.1. Barriers around try blocks .. 135
17.1.2. TryWithCatch Annotator .. 135
17.1.3. Additional API ... 136

17.2. Non-Functional Exceptions ... 136
17.2.1. Overview ... 136
17.2.2. Exception types .. 136
17.2.3. Exception handlers .. 136

Chapter 18. Branch and Bound API ... 139
18.1. Overview ... 139
18.2. The Model Architecture .. 139
18.3. The API Details ... 141

18.3.1. The Task Description ... 141
18.3.2. The Task Queue Description ... 141
18.3.3. The ProActiveBranchNBound Description ... 142

18.4. An Example: FlowShop .. 142
18.5. Future Work ... 144

Chapter 19. High Level Patterns -- The Calcium Skeleton Framework 145
19.1. Introduction .. 145

19.1.1. About Calcium ... 145
19.1.2. The Big Picture ... 145

19.2. Quick Example ... 146
19.2.1. Define the skeleton structure ... 146
19.2.2. Implementing the Muscle ... 146
19.2.3. Create a new Calcium Instance .. 147
19.2.4. Provide an input of problems to be solved by the framework ... 147
19.2.5. Collect the results .. 148

vi

19.2.6. View the performance statistics .. 148
19.3. Supported Patterns ... 148
19.4. Choosing a Resource Manager ... 148
19.5. Performance Statistics .. 148

19.5.1. Global Statistics .. 149
19.5.2. Result Statistics .. 149

19.6. Future Work ... 149

Part IV. Deploying ..152

Chapter 20. ProActive Basic Configuration ... 153
20.1. Overview ... 153
20.2. How does it work? ... 153
20.3. Where to access this file? .. 153
20.4. ProActive properties .. 154

20.4.1. Required ... 154
20.4.2. Fault-tolerance properties ... 154
20.4.3. Peer-to-Peer properties ... 154
20.4.4. rmi ssh properties .. 155
20.4.5. Other properties .. 155

20.5. Configuration file example .. 155

Chapter 21. XML Deployment Descriptors .. 157
21.1. Objectives .. 157
21.2. Principles ... 157
21.3. Different types of VirtualNodes .. 159

21.3.1. VirtualNodes Definition ... 159
21.3.2. VirtualNodes Acquisition ... 161

21.4. Different types of JVMs .. 162
21.4.1. Creation .. 162
21.4.2. Acquisition .. 163

21.5. Validation against XML Schema .. 163
21.6. Complete description and examples .. 163
21.7. Infrastructure and processes ... 165

21.7.1. Local JVMs ... 165
21.7.2. Remote JVMs ... 167
21.7.3. DependentListProcessDecorator ... 178

21.8. Infrastructure and services ... 179
21.9. Killing the application .. 180
21.10. Processes .. 180

Chapter 22. Variable Contracts for Descriptors .. 181
22.1. Variable Contracts for Descriptors .. 181

22.1.1. Principle .. 181
22.1.2. Variable Types ... 181
22.1.3. Variable Types User Guide ... 181
22.1.4. Variables Example .. 182
22.1.5. External Variable Definitions Files ... 183
22.1.6. Program Variable API .. 183

Chapter 23. ProActive File Transfer Model ... 185
23.1. Introduction and Concepts ... 185
23.2. File Transfer API ... 185

23.2.1. API Definition .. 185
23.2.2. How to use the API ... 185

23.3. Descriptor File Transfer .. 186
23.3.1. XML Descriptor File Transfer Tags .. 186

23.4. Advanced: FileTransfer Design .. 188
23.4.1. Abstract Definition (High level) ... 188
23.4.2. Concrete Definition (Low level) ... 188

vii

23.4.3. How Deployment File Transfer Works .. 188
23.4.4. How File Transfer API Works ... 189
23.4.5. How Retrieve File Transfer Works ... 189

Chapter 24. Using SSH tunneling for RMI or HTTP communications 191
24.1. Overview ... 191
24.2. Configuration of the network ... 191
24.3. ProActive runtime communication patterns .. 191
24.4. ProActive application communication patterns. ... 191
24.5. ProActive communication protocols .. 192
24.6. The rmissh communication protocol. ... 192

Chapter 25. Fault-Tolerance .. 195
25.1. Overview ... 195

25.1.1. Communication Induced Checkpointing (CIC) .. 195
25.1.2. Pessimistic message logging (PML) .. 195

25.2. Making a ProActive application fault-tolerant ... 195
25.2.1. Resource Server .. 195
25.2.2. Fault-Tolerance servers .. 195
25.2.3. Configure fault-tolerance for a ProActive application ... 196
25.2.4. A deployment descriptor example .. 196

25.3. Programming rules ... 198
25.3.1. Serializable .. 198
25.3.2. Standard Java main method ... 198
25.3.3. Checkpointing occurrence ... 198
25.3.4. Activity Determinism ... 199
25.3.5. Limitations .. 199

25.4. A complete example ... 199
25.4.1. Description .. 199
25.4.2. Running NBody example .. 200

Chapter 26. Technical Service ... 203
26.1. Context .. 203
26.2. Overview ... 203
26.3. Progamming Guide .. 203

26.3.1. A full XML Descriptor File ... 203
26.3.2. Nodes Properties ... 204

26.4. Further Information .. 204

Chapter 27. ProActive Grid Scheduler ... 205
27.1. The scheduler design: ... 205
27.2. The scheduler manual: .. 206

27.2.1. Job creation ... 207
27.2.2. Interaction with the scheduler .. 209

27.3. The Scheduler API ... 210
27.3.1. Classes .. 211
27.3.2. How to extend the scheduler .. 218

Part V. Composing ...224

Chapter 28. Components introduction ... 225

Chapter 29. An implementation of the Fractal component model geared at Grid Computing
.. 227

29.1. Specific features .. 227
29.1.1. Distribution .. 228
29.1.2. Deployment framework .. 229
29.1.3. Activities ... 229
29.1.4. Asynchronous method calls with futures .. 229
29.1.5. Collective interactions .. 229

viii

29.1.6. Conformance .. 229
29.2. Implementation specific API .. 229

29.2.1. fractal.provider ... 229
29.2.2. Content and controller descriptions ... 229
29.2.3. Collective interactions .. 229
29.2.4. Requirements ... 230

29.3. Architecture and design .. 230
29.3.1. Meta-object protocol .. 230
29.3.2. Components vs active objects .. 231
29.3.3. Method invocations on components interfaces .. 231

Chapter 30. Configuration ... 233
30.1. Controllers and interceptors ... 233

30.1.1. Configuration of controllers .. 233
30.1.2. Writing a custom controller ... 233
30.1.3. Configuration of interceptors ... 234
30.1.4. Writing a custom interceptor ... 235

30.2. Lifecycle: encapsulation of functional activity in component lifecycle ... 236
30.3. Short cuts ... 236

30.3.1. Principles .. 236
30.3.2. Configuration ... 239

Chapter 31. Collective interfaces ... 241
31.1. Motivations .. 241
31.2. Multicast interfaces .. 241

31.2.1. Definition .. 241
31.2.2. Data distribution ... 242
31.2.3. Configuration through annotations .. 243
31.2.4. Binding compatibility .. 244

31.3. Gathercast interfaces .. 245
31.3.1. Definition .. 245
31.3.2. Data distribution ... 246
31.3.3. Process synchronization ... 247
31.3.4. Binding compatibility .. 247

Chapter 32. Architecture Description Language ... 249
32.1. Overview ... 249
32.2. Example .. 250
32.3. Exportation and composition of virtual nodes .. 250
32.4. Usage .. 251

Chapter 33. Component examples ... 253
33.1. From objects to active objects to distributed components ... 253

33.1.1. Type ... 253
33.1.2. Description of the content ... 254
33.1.3. Description of the controller .. 254
33.1.4. From attributes to client interfaces .. 254

33.2. The HelloWorld example .. 255
33.2.1. Set-up ... 255
33.2.2. Architecture ... 256
33.2.3. Distributed deployment .. 256
33.2.4. Execution .. 257
33.2.5. The HelloWorld ADL files ... 259

33.3. The Comanche example .. 262
33.4. The C3D component example .. 262

Chapter 34. Component perspectives: a support for our research work 263
34.1. Dynamic reconfiguration ... 263
34.2. Model-checking .. 263
34.3. Pattern-based deployment ... 263
34.4. Graphical user interface .. 263

34.4.1. Howto use it ... 264
34.5. Other ... 264

ix

34.6. Limitations ... 264

Part VI. Advanced ..266

Chapter 35. ProActive Peer-to-Peer Infrastructure .. 267
35.1. Overview ... 267
35.2. The P2P Infrastructure Model .. 267

35.2.1. What is Peer-to-Peer? .. 268
35.2.2. The P2P Infrastructure in short .. 268

35.3. The P2P Infrastructure Implementation .. 273
35.3.1. Peers Implementation ... 273
35.3.2. Dynamic Shared ProActive Group .. 274
35.3.3. Sharing Node Mechanism ... 275
35.3.4. Monitoring: IC2D ... 275

35.4. Installing and Using the P2P Infrastructure ... 276
35.4.1. Create your P2P Network ... 276
35.4.2. Example of Acquiring Nodes by ProActive XML Deployment Descriptors 281
35.4.3. The P2P Infrastructure API Usage Example ... 283

35.5. Future Work ... 284
35.6. Research Work .. 284

Chapter 36. Load Balancing .. 285
36.1. Overview ... 285
36.2. Metrics .. 285

36.2.1. MetricFactory and Metric classes ... 285
36.3. Using Load Balancing .. 285

36.3.1. In the application code ... 285
36.3.2. Technical Service .. 286

36.4. Non Migratable Objects .. 286

Chapter 37. ProActive Security Mechanism .. 287
37.1. Overview ... 287
37.2. Security Architecture .. 287

37.2.1. Base model .. 287
37.2.2. Security is expressed at different levels ... 288

37.3. Detailed Security Architecture ... 289
37.3.1. Nodes and Virtual Nodes .. 289
37.3.2. Hierarchical Security Entities .. 289
37.3.3. Resource provider security features .. 291
37.3.4. Interactions, Security Attributes ... 291
37.3.5. Combining Policies ... 292
37.3.6. Dynamic Policy Negotiation .. 293
37.3.7. Migration and Negotiation .. 293

37.4. Activating security mechanism ... 293
37.4.1. Construction of an XML policy: ... 294

37.5. How to quickly generate certificate? .. 297

Chapter 38. Exporting Active Objects and components as Web Services 301
38.1. Overview ... 301
38.2. Principles ... 301
38.3. Pre-requisite: Installing the Web Server and the SOAP engine .. 302
38.4. Steps to expose an active object or a component as a web services .. 302
38.5. Undeploy the services ... 302
38.6. Accessing the services .. 303
38.7. Limitations ... 303
38.8. A simple example: Hello World ... 303

38.8.1. Hello World web service code ... 303
38.8.2. Access with Visual Studio .. 304

38.9. C# interoperability: an example with C3D .. 304
38.9.1. Overview ... 304

x

38.9.2. Access with a C# client .. 304
38.9.3. Dispatcher methods calls and callbacks ... 305
38.9.4. Download the C# example .. 307

Chapter 39. ProActive on top of OSGi .. 309
39.1. Overview of OSGi -- Open Services Gateway initiative .. 309
39.2. ProActive bundle and service ... 310
39.3. Yet another Hello World ... 311
39.4. Current and Future works .. 312

Chapter 40. An extended ProActive JMX Connector ... 313
40.1. Overview of JMX - Java Management eXtention ... 313
40.2. Asynchronous ProActive JMX connector ... 313
40.3. How to use the connector ? .. 314
40.4. Notifications JMX via ProActive .. 315
40.5. Example : a simple textual JMX Console ... 315

Chapter 41. Wrapping MPI Legacy code ... 317
41.1. Simple Wrapping ... 317

41.1.1. Principles .. 317
41.1.2. API For Deploying MPI Codes .. 318
41.1.3. How to write an application with the XML and the API .. 320
41.1.4. Using the Infrastructure .. 321
41.1.5. Example with several codes .. 323

41.2. Wrapping with control .. 324
41.2.1. One Active Object per MPI process .. 325
41.2.2. MPI to ProActive Communications .. 327
41.2.3. ProActive to MPI Communications .. 332
41.2.4. MPI to MPI Communications through ProActive .. 337
41.2.5. USER STEPS - The Jacobi Relaxation example .. 341

41.3. Design and Implementation ... 354
41.3.1. Simple wrapping ... 354

41.4. Summary of the API .. 356
41.4.1. Simple Wrapping and Deployment of MPI Code ... 356
41.4.2. Wrapping with Control ... 357

Part VII. Graphical User Interface (GUI) and tools ..363

Chapter 42. IC2D: Interactive Control and Debugging of Distribution and Eclipse plugin 365
42.1. Monitoring and Control .. 365

42.1.1. The Monitoring plugin ... 365
42.1.2. The Job Monitoring plugin .. 369

42.2. Launcher and Scheduler .. 371
42.2.1. The Launcher plug-in ... 371
42.2.2. The Scheduler plug-in .. 374

42.3. Programming Tools ... 374
42.3.1. ProActive Wizards .. 374
42.3.2. The ProActive Editor ... 374

42.4. The Guided Tour as Plugin .. 375

Chapter 43. Interface with Scilab .. 377
43.1. Presentation .. 377
43.2. Scilab Interface Architecture .. 377
43.3. Graphical User Interface (Scilab Grid ToolBox) .. 380

43.3.1. Launching Scilab Grid ToolBox ... 381
43.3.2. Deployment of the application ... 382
43.3.3. Task launching ... 383
43.3.4. Display of results .. 384
43.3.5. Task monitoring .. 385
43.3.6. Engine monitoring ... 386

xi

Chapter 44. TimIt API ... 387
44.1. Overview ... 387
44.2. Quick start ... 388

44.2.1. Define your TimIt configuration file ... 388
44.2.2. Add time counters and event observers in your source files ... 391

44.3. Usage .. 392
44.3.1. Timer counters ... 393
44.3.2. Event observers .. 393

44.4. TimIt extension ... 394
44.4.1. Configuration file .. 394
44.4.2. Timer counters ... 395
44.4.3. Event observers .. 395
44.4.4. Chart generation ... 396

Part VIII. Extending ProActive ...398

Chapter 45. How to write ProActive documentation .. 399
45.1. Aim of this chapter .. 399
45.2. Getting a quick start into writing ProActive doc ... 399
45.3. Example use of tags ... 399

45.3.1. Summary of the useful tags ... 399
45.3.2. Figures .. 400
45.3.3. Bullets .. 400
45.3.4. Code ... 400
45.3.5. Links .. 403
45.3.6. Tables ... 403

45.4. DocBok limitations imposed .. 403
45.5. Stylesheet Customization .. 404

45.5.1. File hierarchy ... 404
45.5.2. What you can change ... 404
45.5.3. The Bible .. 404
45.5.4. Profiling .. 404
45.5.5. The XSL debugging nightmare .. 404
45.5.6. DocBook subset: the dtd ... 405
45.5.7. Todo list, provided by Denis ... 405

Chapter 46. Adding Grahical User Interfaces and Eclipse Plugins 407
46.1. Architecture and documentation ... 407

46.1.1. org.objectweb.proactive.ic2d.monitoring ... 407
46.1.2. org.objectweb.proactive.ic2d.console .. 418
46.1.3. org.objectweb.proactive.ic2d.lib ... 418

46.2. Extending IC2D .. 418
46.2.1. How to checkout IC2D ... 418
46.2.2. How to implement a plug-in for IC2D ... 420

Chapter 47. Developing Conventions .. 437
47.1. Code logging conventions ... 437

47.1.1. Declaring loggers name .. 437
47.1.2. Using declared loggers in your classes .. 437
47.1.3. Managing loggers .. 437
47.1.4. Logging output ... 438
47.1.5. More information about log4j .. 438

47.2. Regression Tests Writing .. 438
47.3. Committing modifications in the SVN ... 438

Chapter 48. ProActive Test Suite API .. 439
48.1. Structure of the API ... 439

48.1.1. Goals of the API ... 439
48.1.2. Functional Tests & Benchmarks ... 439

xii

48.1.3. Group ... 440
48.1.4. Manager .. 440

48.2. Timer for the Benchmarks ... 440
48.2.1. The solution ... 441
48.2.2. How to use Timer in Benchmarck? ... 441
48.2.3. How to configure the Manager with your Timer? .. 441

48.3. Results .. 441
48.3.1. What is a Result? .. 441
48.3.2. What we don't use a real logger API? .. 442
48.3.3. Structure of Results classes in TestSuite .. 442
48.3.4. How to export results ... 442
48.3.5. Format Results like you want .. 443

48.4. Logs .. 443
48.4.1. Which logger? .. 443
48.4.2. How it works in TestSuite API? ... 443
48.4.3. How to use it? .. 443

48.5. Configuration File ... 444
48.5.1. How many configuration files you need? ... 444
48.5.2. A simple Java Properties file ... 444
48.5.3. A XML properties file .. 445

48.6. Extends the API .. 447
48.7. Your first Test ... 447

48.7.1. Description .. 447
48.7.2. First step: write the Test ... 447
48.7.3. Second step: write a manager .. 449
48.7.4. Now launch the test 450
48.7.5. Get the results .. 450
48.7.6. All the code ... 451

48.8. Your first Benchmark ... 452
48.8.1. Description .. 452
48.8.2. First step: write the Benchmark .. 452
48.8.3. Second step: write a manager .. 454
48.8.4. Now launch the benchmark 455
48.8.5. All the Code ... 456

48.9. How to create a Test Suite with interlinked Tests ... 458
48.9.1. Description of our Test ... 458
48.9.2. Root Test: ProActive Group Creation .. 458
48.9.3. An independant Test: A Group migration ... 460
48.9.4. Run your tests .. 460
48.9.5. All the code ... 461

48.10. Conclusion ... 465

Chapter 49. Adding a Deployment Protocol ... 467
49.1. Objectives .. 467
49.2. Overview ... 467
49.3. Java Process Class ... 467

49.3.1. Process Package Arquitecture .. 467
49.3.2. The New Process Class .. 468
49.3.3. The StartRuntime.sh script .. 469

49.4. XML Descriptor Process ... 469
49.4.1. Schema Modifications .. 469
49.4.2. XML Parsing Handler .. 470

Chapter 50. How to add a new FileTransfer CopyProtocol .. 473
50.1. Adding external FileTransfer CopyProtocol .. 473
50.2. Adding internal FileTransfer CopyProtocol .. 473

Chapter 51. Adding a Fault-Tolerance Protocol .. 475
51.1. Overview ... 475

51.1.1. Active Object side ... 475
51.1.2. Server side ... 477

Chapter 52. MOP: Metaobject Protocol ... 479

xiii

52.1. Implementation: a Meta-Object Protocol .. 479
52.2. Principles ... 479
52.3. Example of a different metabehavior: EchoProxy ... 479

52.3.1. Instantiating with the metabehavior .. 479
52.4. The Reflect interface .. 480
52.5. Limitations ... 481

Part IX. Back matters ...484

Appendix A. Frequently Asked Questions ... 485
A.1. Running ProActive ... 485

A.1.1. How do I build ProActive from the distribution? .. 485
A.1.2. Why don't the examples and compilation work under Windows? ... 486
A.1.3. Why do I get a Permission denied when trying to launch examples scripts under Linux? 486

A.2. General Concepts ... 486
A.2.1. How does the node creation happen? ... 486
A.2.2. How does the RMI Registry creation happen? ... 487
A.2.3. What is the class server, why do we need it? .. 487
A.2.4. What is a reifiable object? .. 487
A.2.5. What is the body of an active object? What are its local and remote representations? 487
A.2.6. What is a ProActive stub? .. 488
A.2.7. Are the call to an Active Object always asynchronous? ... 488

A.3. Exceptions .. 488
A.3.1. Why do I get an exception java.lang.NoClassDefFoundError about asm? 488
A.3.2. Why do I get an exception java.lang.NoClassDefFoundError about bcel? 489
A.3.3. Why do I get an exception java.security.AccessControlException access denied? 489
A.3.4. Why do I get an exception when using Jini? .. 490
A.3.5. Why do I get a java.rmi.ConnectException: Connection refused to host: 127.0.0.1 ? 490

A.4. Writing ProActive-oriented code ... 490
A.4.1. Why aren't my object's properties updated? ... 490
A.4.2. How can I pass a reference on an active object or the difference between this and ProAct-
ive.getStubOnThis()? ... 491
A.4.3. How can I create an active object? ... 491
A.4.4. What are the differences between instantiation based and object based active objects creation? . 492
A.4.5. Why do I have to write a no-args constructor? ... 492
A.4.6. How do I control the activity of an active object? ... 492
A.4.7. What happened to the former live() method and Active interface? 494
A.4.8. Why should I avoid to return null in methods body? ... 494
A.4.9. How can I use Jini in ProActive? ... 495
A.4.10. How do I make a Component version out of an Active Object version? 495
A.4.11. How can I use Jini in ProActive? ... 495
A.4.12. Why is my call not asynchronous? ... 495

A.5. Deployment Descriptors .. 495
A.5.1. What is the difference between passing parameters in Deployment Descriptor and setting properties
in ProActive Configuration file? .. 495
A.5.2. Why do I get the following message when parsing my xml deployment file: ERROR:
file:~/ProActive/descriptor.xml Line:2 Message:cvc-elt.1: Cannot find the declaration of element 'ProAct-
iveDescriptor' ... 495

Appendix B. Reference Card ... 497
B.1. Main concepts and definitions ... 497
B.2. Main principles: asynchronous method calls and implicit futures ... 498
B.3. Explicit Synchronization .. 498
B.4. Programming AO Activity and services .. 498
B.5. Reactive Active Object .. 499
B.6. Service methods ... 499
B.7. Active Object Creation: ... 501
B.8. Groups: ... 501
B.9. Explicit Group Synchronizations ... 502
B.10. OO SPMD ... 502

xiv

B.11. Migration .. 502
B.12. Components ... 503
B.13. Security: .. 503
B.14. Deployment ... 504
B.15. Exceptions ... 505
B.16. Export Active Objects as Web services ... 506
B.17. Deploying a fault-tolerant application ... 507
B.18. Peer-to-Peer Infrastructure .. 507
B.19. Branch and Bound API .. 509
B.20. File Transfer Deployment ... 510

Appendix C. Files of the ProActive source base cited in the manual 513
C.1. XML descriptors cited in the manual .. 513
C.2. Java classes cited in the manual ... 537
C.3. Tutorial files : Adding activities and migration to HelloWorld ... 598
C.4. Other files cited in the manual ... 604

Bibliography .. 611

Index ... 613

xv

xvi

List of Figures
1.1. Different computing deployment paradigms .. 3
1.2. Polymorphism ... 5
5.1. The active objects in the c3d application ..23
5.2. the dispatcher GUI is launched ...24
5.3. Specifying the host ..26
5.4. The C3D application when a new user joins in, seen with IC2D ...27
5.5. IC2D component explorer with the C3D example ..29
5.6. Using the readers script ..30
5.7. A GUI is started that illustrates the activities of the Reader and Writer objects. ...31
5.8. With philosophers.sh or philosophers.bat ...32
5.9. The GUI is started. ..33
5.10. Monitoring new RMI host with IC2D ..36
8.1. Running the Jacobi application, and viewing with IC2D ...56
8.2. With all communications ..57
8.3. With a barrier, there are many less comunications ..58
8.4. IC2D viewing the Jacobi application with 9 JVMS on the same machine ...59
8.5. Communication pattern - Step 1 ...66
8.6. Communication pattern - Step 2 ...67
9.1. NBody screenshot, with 3 hosts and 8 bodies ..72
9.2. NBody screenshot, with the application GUI and Java3D installed ..73
9.3. The nbody directory structure ..75
9.4. The equation of the force between two bodies ...76
10.1. Informal description of the C3D Components hierarchy ..83
10.2. IC2D component explorer with the C3D example ..87
12.1. The Model: Sequential, Multithreaded, Distributed ..95
12.2. A call onto an active object as opposed to a call onto passive one ..96
13.1. The components of an active object ... 105
13.2. A future object .. 107
13.3. Sequence Diagram - single-threaded version of the program .. 108
13.4. The components of an active object ... 109
13.5. The components of a future object before the result is set .. 109
13.6. All components of a future object ... 110
13.7. Sequence Diagram ... 111
13.8. Sequence Diagram ... 112
18.1. The API architecture. ... 139
18.2. Broadcasting a new solution. ... 140
19.1. Task Flow in Calcium .. 145
23.1. File Transfer Design ... 189
25.1. The nbody application, with Fault-Tolerance enabled ... 200
27.1. Representation of the scheduler and of its main objects ... 205
27.2. A short description of the mechanism of job deployment and submission ... 206
29.1. A system of Fractal components ... 227
29.2. A system of distributed ProActive/Fractal components (blue, yellow and white represent distinct locations) 228
29.3. Match between components and active objects .. 228
29.4. ProActive's Meta-Objects Protocol. ... 230
29.5. The ProActive MOP with component meta-objects and component representative ... 231
30.1. Using short cuts for minimizing remote communications. .. 238
31.1. Multicast interfaces for primitive and composite component .. 242
31.2. Broadcast and scatter of invocation parameters .. 242
31.3. Comparison of signatures of methods between client multicast interfaces and server interfaces. 245
31.4. Gathercast interfaces for primitive and composite components ... 246
31.5. Aggregation of parameters with a gathercast interface ... 246
31.6. Comparison of signature of methods for bindings to a gathercast interface .. 248
33.1. Client and Server wrapped in composite components (C and S) .. 256
33.2. Without wrappers, the primitive components are distributed. .. 257
33.3. With wrappers, where again, only the primitive components are distributed. ... 257
35.1. A network of hosts with some running the P2P Service ... 267
35.2. New peer trying to join a P2P network ... 269

xvii

35.3. Heart beat sent every TTU ... 270
35.4. Asking nodes to acquaintances and getting a node .. 272
35.5. Nodes and Active Objects which make up a P2P Service. .. 273
35.6. Dynamic Shared ProActive Typed Group. .. 274
35.7. nBody application deployed on P2P Infrastructure. .. 276
35.8. Usage example P2P network (after firsts connections) .. 279
35.9. A P2P Service which is sharing nodes deployed by a descriptor .. 283
37.1. A typical object graph with active objects ... 287
37.2. Certificate chain .. 288
37.3. Hierarchical security .. 289
37.4. Syntax and attributes for policy rules ... 291
37.5. Hierarchical Security Levels .. 292
37.6. The ProActive Certificate Generator (for oasis) ... 298
37.7. The ProActive Certificate Generator (for proactive) ... 298
38.1. This figure shows the steps when a active object is called via SOAP. ... 301
38.2. The dispatcher handling all calls ... 305
38.3. The first screenshot is a classic ProActive application ... 306
38.4. C# application communicating via SOAP ... 307
39.1. The OSGi framework entities ... 309
39.2. The Proactive Bundle uses the standard Http Service .. 310
40.1. This figure shows the JMX 3 levels architecture and the integration of the ProActive JMX Connector. 313
41.1. File transfer and asking for resources ... 317
41.2. State transition diagram .. 320
41.3. MPI to ProActive communication ... 332
41.4. ProActive to MPI communication ... 337
41.5. File transfer and asking for resources ... 338
41.6. Jacobi Relaxation - Domain Decomposition .. 342
41.7. IC2D Snapshot .. 354
41.8. Proxy Pattern .. 355
41.9. Process Package Architecture ... 356
42.1. The Monitoring Perspective ... 366
42.2. Monitor New Host Dialog ... 367
42.3. Monitor a new host .. 367
42.4. Set depth control ... 367
42.5. Set time to refresh .. 367
42.6. Refresh .. 367
42.7. Enable/Disable Monitoring .. 368
42.8. Show P2P objects .. 368
42.9. Zoom In ... 368
42.10. Zoom out ... 368
42.11. New Monitoring View .. 368
42.12. Virtual nodes List .. 368
42.13. Select the Job Monitoring view in the list ... 369
42.14. Select the Monitoring model .. 370
42.15. The monitoring views ... 370
42.16. Monitoring of 2 applications .. 371
42.17. The "Open Perspective" window ... 372
42.18. The open with action .. 373
42.19. The Launcher perspective .. 373
42.20. A wizard popup ... 374
42.21. The editor error highlighting .. 375
42.22. The plugin's interface .. 375
43.1. Main frame ... 382
43.2. Deployment of the application .. 383
43.3. Creation of a task ... 384
43.4. Display a result ... 385
43.5. State of Engines .. 386
45.1. A Drawing using the FIGURE tag ... 400
46.1. Graphical representation of the data .. 407
46.2. Class diagram ... 408
46.3. The world exploring itself for the first time ... 409
46.4. The Models .. 410
46.5. The Controllers and the factory .. 411

xviii

46.6. The Views .. 412
46.7. The data strucure of the monitoring plugin .. 413
46.8. Observable objects ... 414
46.9. Observer objects .. 415
46.10. Spy classes ... 416
46.11. Active Objects' events management ... 417
46.12. SVN Repository .. 419
46.13. ic2d.product .. 420
46.14. Create a new project ... 421
46.15. Specify name and plug-in structure .. 422
46.16. Specify plug-in content ... 423
46.17. The plug-in structure .. 424
46.18. Interface for editing the manifest and related files. .. 425
46.19. Configuration .. 428
46.20. Plug-in selection .. 429
46.21. About product Plug-ins ... 430
46.22. Workbench structure .. 431
46.23. Extensions tab (no extensions) .. 432
46.24. Extensions tab (org.eclipse.ui.perspectives) ... 433
46.25. Extensions tab (Example) .. 434
49.1. core.process structure ... 468
52.1. Metabehavior hierarchy .. 480

xix

xx

List of Tables
2.1. ProActive.zip contents ...10
8.1. MPI to ProActive ..68
13.1. Future creation, and asynchronous calls depending on return type ... 106
22.1. Variable Types .. 181
37.1. Result of security negotiations .. 293
41.1. Simple Wrapping of MPI Code .. 357
41.2. API for creating one Active Object per MPI process ... 358
41.3. MPI to ProActive Communications API ... 358
41.4. Java API for MPI message conversion ... 359
41.5. ProActiveMPI API for sending messages to MPI ... 360
41.6. MPI message reception from ProActive ... 360
41.7. MPI to MPI through ProActive C API ... 361
41.8. MPI to MPI through ProActive Fortran API .. 362
45.1. This is an example table .. 403
46.1. Observable and Observer objects .. 415

xxi

xxii

List of Examples
1.1. Class-based Active Object ... 4
1.2. Instantiation-based Active Object .. 4
1.3. Object-based Active Object .. 4
1.4. A possible implementation for the TinyHello class ... 6
2.1. A simple proactive-log4j file ...12
10.1. The UserImpl class, a component wrapper ..85
10.2. userAndComposite.fractal, a component ADL file ...86
10.3. How to rename Virtual Nodes in ADL files ..88
10.4. Component Lookup and Register ..88
13.1. Custom Init and Run .. 100
13.2. Start, stop, suspend, restart a simulation algorithm in runActivity method ... 101
13.3. Reactive Active Object ... 101
13.4. A possible implementation for the Hello class: .. 119
13.5. HelloClient.java .. 120
20.1. A configuration file example .. 156
21.1. C3D_Dispatcher_Render.xml .. 164
21.2. C3D_User.xml .. 165
43.1. Example: Interface Scilab .. 378
43.2. Descriptor deployment .. 380
45.1. JAVA program listing with file inclusion ... 401
45.2. XML program listing with file inclusion .. 402
46.1. MANIFEST.MF .. 426
46.2. ExamplePlugin.java ... 427
46.3. build.properties ... 427
46.4. plugin.xml .. 435
46.5. ExamplePlugin.java ... 435
47.1. declaring P2P loggers in the interface org.objectweb.proactive.core.util.Loggers ... 437
48.1. Example of HTML results ... 456
48.2. Agent class ... 465
C.1. examples/RSH_Example.xml .. 514
C.2. examples/SSH_Example.xml .. 515
C.3. examples/SSHList_example.xml ... 517
C.4. examples/SSHListbyHost_Example.xml ... 517
C.5. examples/SSH_LSF_Example.xml ... 519
C.6. examples/SSH_PBS_Example.xml ... 521
C.7. examples/SSH_SGE_Example.xml .. 523
C.8. examples/SSH_OAR_Example.xml ... 524
C.9. examples/SSH_OARGRID_Example.xml ... 526
C.10. examples/SSH_PRUN_Example.xml .. 528
C.11. examples/Globus_Example.xml ... 529
C.12. examples/Unicore_Example.xml .. 531
C.13. examples/NorduGrid_Example.xml .. 533
C.14. examples/SSH_GLite_Example.xml ... 535
C.15. examples/SSH_MPI_Example.xml ... 537
C.16. InitActive.java .. 538
C.17. RunActive.java ... 538
C.18. EndActive.java ... 538
C.19. core/body/MetaObjectFactory.java ... 540
C.20. core/body/ProActiveMetaObjectFactory.java .. 546
C.21. ProActive.java .. 588
C.22. core/process/ssh/SSHProcessList.java ... 588
C.23. core/process/rsh/RSHProcessList.java ... 589
C.24. core/process/rlogin/RLoginProcessList.java ... 589
C.25. core/descriptor/data/ProActiveDescriptor.java .. 595
C.26. Body.java .. 596
C.27. core/body/UniversalBody.java ... 598
C.28. InitializedHello.java .. 599
C.29. InitializedHelloClient.java .. 600

xxiii

C.30. MigratableHello.java ... 601
C.31. MigratableHelloClient.java ... 602
C.32. HelloFrameController.java .. 603
C.33. HelloFrame.java ... 604
C.34. P2P configuration: proactivep2p.xsd ... 605
C.35. P2P configuration: sample_p2p.xml .. 606
C.36. SOAP configuration: webservices/web.xml .. 607
C.37. MPI Wrapping: mpi_files/MPIRemote-descriptor.xml ... 610

xxiv

Part I. Introduction

Table of Contents

Chapter 1. Principles .. 3
1.1. Seamless sequential, multithreaded and distributed ... 3
1.2. Active objects: Unifying threads and remote objects ... 3
1.3. Model of Computation .. 4
1.4. Reusablilty and Seamless interface: why and how do we achieve it? .. 5
1.5. Hello world ! (tiny example) ... 5

1.5.1. The TinyHello class ... 5
1.5.2. Implement the required functionality ... 6
1.5.3. Creating the Hello Active Object .. 6
1.5.4. Invoking a method on a remote object and printing out the message .. 7
1.5.5. Launching .. 7

Chapter 2. ProActive Installation .. 9
2.1. Quick Start .. 9

2.1.1. To Test ProActive with the examples ... 9
2.1.2. To develop with ProActive .. 9

2.2. Download and expand the archive ... 9
2.3. Run a few examples for testing ..10

2.3.1. Local Example 1: Hello world ! ...10
2.3.2. Local Example 2: Reader/Writer ..10
2.3.3. Local Example 3: The Dining Philosophers ...10
2.3.4. Local Example 4: The N-Body Simulation ...10

2.4. CLASSPATH to set when writing application using ProActive ..11
2.5. Create a java.policy file to set permissions ...11
2.6. Create a log4j configuration file ...11
2.7. ProActive and IDEs (Eclipse, ...) ..12
2.8. Troubleshooting and support ...15

Chapter 3. ProActive Trouble Shooting ... 17
3.1. Enabling the loggers ..17
3.2. Hostname and IP Address ...17
3.3. Domaine name resolution problems ..17
3.4. RMI Tunneling ...17
3.5. Public remote method calls ...17

Part I: Introduction

Part I: Introduction

Chapter 1. Principles
GRID computing is now a key aspect, from scientific to business applications, from large scale simulations to everyday-life enter-
prise IT, including telcos and embedded domains. We are just entering the era of Ubiquitous Computing with many computers at
hand of every single individual - after the old days of mainframes and servers, hundreds of persons sharing the same machines, and
the quite current days of PCs, one person/one computer. Potentially spanning all over the world, involving several thousands or
several hundred thousands of nodes, the programming of Grid applications call for a new paradigms. The ProActive Grid solution
relies on systematic asynchronous method calls, allowing to master both complexity and efficiency.

Overall, ProActive promotes a few basic and simple principles:

• Activites are distributed, remotely accessible objects
• Interactions are done through asynchronous method calls
• Results of interactions are called futures and are first class entities.
• Callers can wait for results using a mechanism called wait-by-necessity

ProActive takes advantage of this sound programming model, to further propose advanced features such as groups, mobility, and
components. In the framework of a formal calculus, ASP (Asynchronous Sequential processes), confluence and determinism have
been proved for this programming model: CH05 and CHS04.

Asynchronous method calls with returns lead to an emerging abstraction: futures, the expected result of a given asynchronous
method call. Futures turn out to be a very effective abstraction for large distributed systems, preserving both low coupling and high
structuring.

Asynchronous method calls and first-class futures are provided in the unifying framework of an Active Object.

1.1. Seamless sequential, multithreaded and distributed

Most of the time, activities and distribution are not known at the beginning, and change over time. Seamless implies reuse,
smooth and incremental transitions.

Figure 1.1. Different computing deployment paradigms

A huge gap still exists between multithreaded and distributed Java applications which impedes code reuse in order to build distrib-
uted applications from multithreaded applications. Both JavaRMI and JavaIDL, as examples of distributed object libraries in Java,
put a heavy burden on the programmer because they require deep modifications of existing code in order to turn local objects into
remotely accessible ones. In these systems, remote objects need to be accessed through some specific interfaces. As a consequence,
these distributed objects libraries do not allow polymorphism between local and remote objects. This feature is our first require-
ment for a Grid Computing framework. It is strongly required in order to let the programmer concentrate first on modeling and
algorithmic issues rather than lower-level tasks such as object distribution, mapping and load balancing.

1.2. Active objects: Unifying threads and remote objects

Active Objects are the core of the ProActive computing concept. An Active Object is both a Remote Object (which allows to de-
ploy it on a distant host) and a Thread (which gives it its own activity, its own independant behaviour and in concurrency with

Part I: Introduction Chapter 1: Principles

3

other Active Objects deployed). Given a standard object, turning it into an Active Objects provides:

• location transparency
• activity transparency
• synchronization

Communications to an active object are by default asynchronous. So, an active object is: a main object + a single thread + a queue
of pending requests. As such, a reference to a remote object is equivalent to a reference to a remote activity. An activity is an ob-
ject ; but being in a non-uniform model, not all objects are active objects, the majority remaining standard Java objects. As there
cannot be any sharing, an active object is also a unit of computational mobility (see Chapter 16, Active Object Migration).

Note

The Active Object concept only requires modification of the instanciation code !

On activation, an object becomes a remotely accessible entity with its own thread of control: an active object. Here are given as ex-
ample three ways to transform a standard Object into an Active Object:

Object[] params = new Object[] { new Integer (26), "astring" };
A a = (A) ProActive.newActive("example.A", params, node);

Example 1.1. Class-based Active Object

public class AA extends A implements Active {}
Object[] params = new Object[] { new Integer (26), "astring" };
A a = (A) ProActive.newActive("example.AA", params, node);

Example 1.2. Instantiation-based Active Object

Object-based Active Objects Allows to turn active and set remote objects for which you do not have the source code; this is a ne-
cessary feature in the context of code mobility.

A a = new A (26, "astring");
a = (A) ProActive.turnActive(a, node) ;

Example 1.3. Object-based Active Object

Note

Nodes allow to control the mapping to the hosts. See Section 13.1.2, “Using a Node” for an example use of a Node,
and Section 21.2, “Principles” for a definition.

1.3. Model of Computation

Here is a summary of the computation model being used by ProActive:

• Heterogeneous model both passive and active objects
• Systematic asynchronous communications towards active objects
• No shared passive object , Call-by-value between active objects

Part I: Introduction Chapter 1: Principles

4

• Automatic continuations , a transparent delegation mechanism
• wait-by-necessity , automatic and transparent futures
• Centralized and explicit control , libraries of abstractions

To compare to Java RMI, a Java remote object is not by essence an activity. The fact that several threads can execute several re-
mote method calls simultaneously within a remote object does reveal that facet. When writing ro.foo(p);, what ro identifies is not a
remote activity, but just a remote object. This has several consequences, along with the presence of sharing between remote objects
that prevents them from being a unit of computational migration.

1.4. Reusablilty and Seamless interface: why and how do we achieve it?

Two key features:

• Wait-by-necessity: inter-objects synchronization. Systematic, implicit and transparent futures. Ease the programming of
synchronization and reuse of existing methods

• Polymorphism between standard and active objects
• Type compatibility for classes and not just for interfaces
• Needed and done for the future objects as well
• Dynamic mechanism (dynamically achieved if needed)

Figure 1.2. Polymorphism

1.5. Hello world ! (tiny example)

This example implements the smallest program in ProActive. This is the easiest program you could write, using the Active Object
concept. This is just to show quickly how code can be written, with minimal knowledge of the API.

You can get a more complete 'hello world' example, with deployment on a remote host, further on in the manual (Section 13.10,
“The Hello world example”).

A client object displays a String received from elsewhere (the original VM). This illustrates the creation of an Active Object.

Only one class is needed: we have put the main method inside the class, which when deployed will be an Active Object.

1.5.1. The TinyHello class

This class can be used as an Active Object, serving requests. Its creation involves the following steps:

• Provide an implementation for the required server-side functionalities
• Provide an empty, no-arg constructor
• Write a main method in order to instantiate one server object.

Part I: Introduction Chapter 1: Principles

5

public class TinyHello implements java.io.Serializable {
static Logger logger = ProActiveLogger.getLogger(Loggers.EXAMPLES);
private final String message = "Hello World!";

/** ProActive compulsory no-args constructor */
public TinyHello() {
}

/** The Active Object creates and returns information on its location
* @return a StringWrapper which is a Serialized version, for asynchrony */
public StringMutableWrapper sayHello() {

return new StringMutableWrapper(
this.message + "\n from " + getHostName() + "\n at " +
new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss").format(new java.util.Date()));

}

/** finds the name of the local machine */
static String getHostName() {

try {
return java.net.InetAddress.getLocalHost().toString();

} catch (UnknownHostException e) {
return "unknown";

}
}

/** The call that starts the Acive Objects, and displays results.
* @param args must contain the name of an xml descriptor */
public static void main(String[] args)

throws Exception {
// Creates an active instance of class Tiny on the local node
TinyHello tiny = (TinyHello) ProActive.newActive(

TinyHello.class.getName(), // the class to deploy
null // the arguments to pass to the constructor, here none

); // which jvm should be used to hold the Active Object

// get and display a value
StringMutableWrapper received = tiny.sayHello(); // possibly remote call
logger.info("On " + getHostName() + ", a message was received: " + received); // potential

wait-by-necessity
// quitting

ProActive.exitSuccess();
}

}

Example 1.4. A possible implementation for the TinyHello class

1.5.2. Implement the required functionality

Implementing any remotely-accessible functionality is simply done through normal Java methods in a normal Java class, in exactly
the same manner it would have been done in a non-distributed version of the same class. Here, the only method is sayHello

1.5.3. Creating the Hello Active Object

Now that we know how to write the class that implements the required server-side functionalities, let us see how to create the serv-

Part I: Introduction Chapter 1: Principles

6

er object. We want this active object to be created on the current node, which is why we use newActive with only two parameters
(done in the main method).

The code snippet which instantiates the TinyHello in the same VM is the following (in the main method):

TinyHello tiny = (TinyHello) ProActive.newActive(
TinyHello.class.getName(), // the class to deploy
null // the arguments to pass to the constructor, here none

); // which jvm should be used to hold the Active Object

1.5.4. Invoking a method on a remote object and printing out the message

This is exactly like invoking a method on a local object of the same type. The user does not have to deal with catching exceptions
related to the distant deployment.

As already stated, the only modification brought to the code by ProActive is located at the place where active objects are created.
All the rest of the code remains the same, which fosters software reuse. So the way to call the sayHello method in this example is
the following (in the main method):

StringMutableWrapper received = tiny.sayHello(); // possibly remote call
logger.info("On " + getHostName() + ", a message was received: " + received); // potential

wait-by-necessity

1.5.5. Launching

To launch the example, you may type:

linux> java -cp $CLASSPATH -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.TinyHello

windows> java -cp $CLASSPATH -Djava.security.policy=scripts\proactive.java.policy
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.TinyHello

There are also scripts in the scripts directory:

linux> cd scripts/unix/
linux> tinyHello.sh

windows> cd scripts/windows
windows> tinyHello.bat

1.5.5.1. The output

[apple unix]tinyhello.sh
--- Hello World tiny example ---------------------------------
> This ClassFileServer is reading resources from classpath
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
Created a new registry on port 1099
//apple.inria.fr/Node628280013 successfully bound in registry at //apple.inria.fr/Node628280013
Generating class: pa.stub.org.objectweb.proactive.examples.hello.Stub_TinyHello
Generating class: pa.stub.org.objectweb.proactive.core.util.wrapper.Stub_StringMutableWrapper
On apple/138.96.218.62, a message was received: Hello World!
from apple/138.96.218.62
at 03/11/2005 14:25:32

Part I: Introduction Chapter 1: Principles

7

Part I: Introduction Chapter 1: Principles

8

Chapter 2. ProActive Installation
ProActive is made available for download [http://www-sop.inria.fr/oasis/proactive/disclaimer.html] under a LGPL license
[http://www.gnu.org/copyleft/lesser.txt]. ProActive requires the JDK 1.5 [http://java.sun.com/j2se/1.5/] or later to be installed on
your computer. Please note that ProActive will NOT run with any version prior to 1.5 since some features introduced in JDK 1.5
are essential.

2.1. Quick Start

2.1.1. To Test ProActive with the examples

• Download and unzip the ProActive archive
• Set the JAVA_HOME variable to the Java distribution you want to use
•

Launch the scripts located in ProActive/scripts/unix or ProActive/scripts/windows
• no other setting is necessary since the scripts given with the example take care of everything

2.1.2. To develop with ProActive

• Download and unzip the ProActive archive
•

Include in your CLASSPATH the ProActive jar file (ProActive/ProActive.jar) along with ProActive/lib/javassist.jar, Pro-
Active/lib/log4j.jar, ProActive/lib/xercesImpl.jar, ProActive/lib/components/fractal.jar, ProActive/
lib/bouncycastle.jar

• Depending on your project needs, you might need to include other libraries located in the ProActive/lib directory.
• Don't forget to launch the JVM with a security policy file

[http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html] using the option -Djava.security.policy=pathToFile. A
basic policy file can be found at ProActive/scripts/proactive.java.policy. You can also specify a log4j configuration file
[http://logging.apache.org/log4j/docs/manual.html] with the property -Dlog4j.configuration=file:pathToFile. If not spe-
cified a default logger that logs on the console will be created.

Below are described the different steps in more details.

2.2. Download and expand the archive

You can download the archive file (a standard zip file) containing ProActive from the download section
[http://www-sop.inria.fr/oasis/proactive/disclaimer.html] of the ProActive home page. You will be asked to accept the licence
agreement and provide a few personal details including your email address. You will then within a few minutes receive an email.

Unzip the archive using your favorite ZIP program, such as Winzip [http://www.winzip.com/] under Windows or the unzip
[http://www.info-zip.org/pub/infozip/] command-line utility on most Unix systems. Unzipping the archive creates a ProActive dir-
ectory and all the files contained in the archive go into this directory and its subdirectories.

Here is a quick overview of the directory structure of the archive:

Directory or File Description

ProActive.jar ProActive bytecode that you need to include in the
CLASSPATH in order to use ProActive

ProActive_examples.jar The bytecode and resources of all examples included with Pro-
Active. This jar file needs to be included in the CLASSPATH
only when trying to run the examples. All examples rely on Pro-
Active and therefore the ProActive.jar file must be included in
the CLASSPATH as well. This is done automatically by the
scripts driving the examples. The source code is also included in
the src directory (see below)

Part I: Introduction Chapter 2: ProActive Installation

9

http://www-sop.inria.fr/oasis/proactive/disclaimer.html
http://www.gnu.org/copyleft/lesser.txt
http://www.gnu.org/copyleft/lesser.txt
http://java.sun.com/j2se/1.5/
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html
http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html
http://www-sop.inria.fr/oasis/proactive/disclaimer.html
http://www-sop.inria.fr/oasis/proactive/disclaimer.html
http://www.winzip.com/
http://www.info-zip.org/pub/infozip/
http://www.info-zip.org/pub/infozip/

ic2d.jar The bytecode and resources of IC2D. This jar file needs to be
included in the CLASSPATH only when trying to run the ap-
plication IC2D. IC2D relies on ProActive and therefore the Pro-
Active.jar file must be included in the CLASSPATH. This is
done automatically by the scripts launching the application. The
source code is also included in the src directory (see below)

lib The external libraries used by ProActive

docs ProActive documentation including the full api doc

scripts/unix Unix sh scripts for running the examples

scripts/windows Windows .bat batch files for running the examples

src For source version only, the full source code of ProActive

compile For source version only, the scripts to compile ProActive using
Ant.

Table 2.1. ProActive.zip contents

2.3. Run a few examples for testing

You can try to run the test applications provided with ProActive. Each example comes with a script to launch the application. De-
pending on you operating system, the script you need to launch is located either in ProActive/scripts/unix or ProActive/
scripts/windows. The source code of all examples can be found in the directory ProActive/
src/org/objectweb/proactive/examples.

2.3.1. Local Example 1: Hello world !

A simple example

• script : hello.sh or hello.bat
• source : examples/hello

2.3.2. Local Example 2: Reader/Writer

This example is the ProActive version of the Readers/Writers canonical problem. To illustrate the ease-of-use of the ProActive
model, different synchronization policies can be applied without even stopping the application. This example is based on a easy to
use Swing GUI.

• script : readers.sh or readers.bat
• source : examples/readers

2.3.3. Local Example 3: The Dining Philosophers

This example is one possible implementation of the well-known Dining Philosophers synchronization problem. This example is
based on a easy to use Swing GUI.

• script : philosophers.sh or philosophers.bat
• source : examples/philosophers

2.3.4. Local Example 4: The N-Body Simulation

Part I: Introduction Chapter 2: ProActive Installation

10

This example has more fancy GUI stuff. It can be used later on to see how to deploy on several machines, and also for the Fault-
tolerant features.

• script : nbody.sh or nbody.bat
• source : examples/nbody

2.4. CLASSPATH to set when writing application using ProActive

Note that if you use the scripts provided with the distribution to run the examples you do not need to update your
classpath.

In order to use ProActive in your application you need to place in your CLASSPATH the following jars files :

1. lib/ProActive.jar The library itself.
2. lib/javassist.jar in lib directory. It is used to handle bytecode manipulation.
3.

lib/log4j.jar Log4j [http://logging.apache.org/log4j/docs/manual.html] is the logging mechanism used in ProActive.
4. lib/xercesImpl.jar Xerces is the library used to parse and validate xml files, like Deployment Descriptors, Configuration

files and Component files (see Chapter 21, XML Deployment Descriptors, Chapter 20, ProActive Basic Configuration, and
Chapter 28, Components introduction).

5. lib/components/fractal.jar Fractal is the component model used for ProActive Components (see Chapter 28, Components
introduction).

6. lib/bouncycastle.jar This library is used by the ProActive security framework (see Chapter 37, ProActive Security
Mechanism).

You do not need to modify your CLASSPATH permanently as long as you include the two entries above using a Java IDE or a
shell script.

In addition to the jar files above you may want to add the following jar files. None of them are used directly by the core function-
nalities of ProActive but only in part of the library. Their are needed to compile all the code but they are not needed at runtime if
those specific functionnalities are not used.

1. lib/jsch.jar Used when tunneling with rmissh.
2. lib/jini/*.jar Used to interface with Jini.
3. lib/globus/*.jar Used to interface with Globus.
4. lib/components/*.jar Used by the the Fractal components.
5. lib/ws/*.jar Used by the Web Services features in ProActive.
6. lib/ibis.jar Used by Ibis if configured as communication protocol.
7. lib/unicore/*.jar Used when deploying to a unicore site.
8. lib/glite/*.jar Used to deploy on gLite sites.

2.5. Create a java.policy file to set permissions

If you use the scripts provided with the distribution to run the examples an existing policy file named proactive.java.policy
will be used by default.

See Permissions in the JavaTM 2 SDK [http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html] to learn more about
Java permissions. The option -Djava.security.policy=pathToFile will specify which policy file to use within proactive. As a first
approximation, you can create a simple policy file granting all for everything :

grant {
permission java.security.AllPermission;

};

2.6. Create a log4j configuration file

Part I: Introduction Chapter 2: ProActive Installation

11

http://logging.apache.org/log4j/docs/manual.html
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

Note

If you use the scripts provided with the distribution to run the examples an existing log4j file named proactive-log4j
will be used by default.

the default logging level is INFO

log4j.rootLogger=INFO, A1

#A1 uses PatternLayout
#and displays the associated message (%m)
#using the platform dependant separator (%n)
#Use %M for method names
#see log4j documentation for details

log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%m %n

#this appender displays :
%c : name of logger,
%C : name of the class,
%M : method name,
%L : line number, and the message with the following pattern
#log4j.appender.A1.layout.ConversionPattern=%c - %C{1}@%M,line %L :%n %m%n

########### Change here default logging level on a
########### per-logger basis
########### usage is log4j.logger.className=Level, Appender

Example 2.1. A simple proactive-log4j file

2.7. ProActive and IDEs (Eclipse, ...)

We recommend you use the Eclispe IDE to develop your ProActive applications. You can get this tool on the Eclipse website
[http://www.eclipse.org] Just unzip and launch the eclipse executable. In order to develop your own ProActive application, you
will need to create an eclipse project :

File -> New ... -> Project

Then choose Java Project . A wizard should appear and ask you to enter the project name :

Part I: Introduction Chapter 2: ProActive Installation

12

http://www.eclipse.org
http://www.eclipse.org

In order to separate class files from source files (it can be useful if you write scripts which refer to these classes), you can check the
Create separate source and ouput folders in the Project Layout Frame, and click on configure default ... to choose the folders
names. Once you have choosen all informations about Project Name , Project location , you can click on Next .

You have to specify some java settings in order to set the application classpath. Select the Librairies tab and click on the Add Ex-
ternal Jar... button. Add the ProActive.jar and the librairies contained in the lib/ directory of the ProActive distribution.

The Librairies tab should look like this :

Part I: Introduction Chapter 2: ProActive Installation

13

You can see now on the navigator tab on the left side, that there is a new Project with the source and output folders you've just cre-
ated :

Part I: Introduction Chapter 2: ProActive Installation

14

You are now able to create classes and packages that use the ProActive library.

Note

There is one file which is problematic with Eclipse: src/
org/objectweb/proactive/examples/nbody/common/NBody3DFrame.java. If you have not installed java3d (ht-
tp://java3d.dev.java.net/), it will not compile (missing dependencies). So you should remove it from your project
build. To do that, from the navigator view:

• right-click on your ProActive project
• properties
• java build path
• in the source tab, choose excluded, then edit
• add src/org/objectweb/proactive/examples/nbody/common/NBody3DFrame.java
• click ok.

With the ant file (when you run compile$ build compile), there are no problems. The script checks the java3d in-
stallation before compiling the 3d class. When java3d is not installed, the nbody example only works only in 2d.

All is now configured to create your ProActive application. Click on the Finish button.

We are currently developing an Eclipse plugin that will help developers to easily create ProActive applications. Have a look at the
plugin documentation page, Chapter 42, IC2D: Interactive Control and Debugging of Distribution and Eclipse plugin .

2.8. Troubleshooting and support

If you encounter any problem with installing ProActive and running the examples, please make sure you correctly followed all the
steps described above. If it doesn't help, here is a list of the most common mistakes:

• Permission denied when trying to launch scripts under Linux Permissions do not allow to execute files. Just change the
permissions with chmod 755 *.sh

• Java complains about not being able to find ProActive's classes. Your CLASSPATH environment variable does not con-
tain the entry for the ProActive's or ASM's or Log4j's or Xerces' or Fractal's or BouncyCastle's classes. ProActive.jar,as-
mXX.jar, log4j.jar, xercesImpl.jar, fractal.jar, bouncycastle.jar must be in your CLASSPATH.

• Java complains about denial of access. If you get the following exceptions, you probably didn't change the file java.policy
as described in Section 2.5, “Create a java.policy file to set permissions”.

org.objectweb.proactive.NodeException:
java.security.AccessControlException: access denied
(java.net.SocketPermission 127.0.0.1:1099 connect,resolve)

at org.objectweb.proactive.core.node.rmi.RemoteNodeImpl.<init>(RmiNode.java:17)
at org.objectweb.proactive.core.node.rmi.RemoteNodeFactory._createDefaultNode

(RmiNodeFactory.java, Compiled Code)
at org.objectweb.proactive.core.node.NodeFactory.createDefaultNode(NodeFactory.java:127)
at org.objectweb.proactive.core.node.NodeFactory.getDefaultNode(NodeFactory.java:57)
at org.objectweb.proactive.ProActive.newActive(ProActive.java:315)

Part I: Introduction Chapter 2: ProActive Installation

15

http://java3d.dev.java.net/
http://java3d.dev.java.net/

...
Exception in thread "main" java.lang.ExceptionInInitializerError:
java.security.AccessControlException: access denied
(java.util.PropertyPermission user.home re ad)

at java.security.AccessControlContext.checkPermission (AccessControlContext.java, Compiled Code)
at java.security.AccessController.checkPermission(AccessController.java:403)
at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
at java.lang.SecurityManager.checkPropertyAccess(SecurityManager.java:1243)
at java.lang.System.getProperty(System.java:539)
at org.objectweb.proactive.mop.MOPProperties.createDefaultProperties (MOPProperties.java:190)
...

• Java complains log4j initialization If you get the following message, you probably made a mistake when giving the -
Dlog4j.configuration property to the java command. Be sure that the given path is right, try also to add file: before the path.

log4j:WARN No appender could be found for logger
log4j:WARN Please initialize the log4j system properly

• Examples and compilation do not work at all under Windows system: Check if your java installation is not in a path
containing spaces like C:\Program Files\java or C:\Documents and Settings\java. Batch scripts, indeed, do not run properly
when JAVA_HOME is set to such a directory. To get rid of those problems, the best thing to do is to install the jdk under a
space-free directory and path (e.g. C:\java\j2sdk.... or D:\java\j2sdk...) and then set the JAVA_HOME environment variable
accordingly.

If you cannot solve the problem, feel free to email us for support at proactive@objectweb.org. Make sure that you include a precise
description of your problem along with a full copy of the error message you get.

Part I: Introduction Chapter 2: ProActive Installation

16

mailto:proactive@objectweb.org

Chapter 3. ProActive Trouble Shooting
In this section we present common problems encountered while trying to use ProActive. For further assistance, please post your
question on the ProActive mailing list proactive@objectweb.org [http://forge.objectweb.org/mail/?group_id=7].

3.1. Enabling the loggers

To enable the debuging logger the following log file can be used:

-Dlog4j.configuration=file:ProActive/compile/proactive-log4j

In this file, the relevant loggers can be uncommented (by removing the leading #). For example, the deployment loggers are activ-
ated with the following lines:

log4j.logger.proactive.deployment = DEBUG, CONSOLE
log4j.logger.proactive.deployment.log = DEBUG, CONSOLE
log4j.logger.proactive.deployment.process = DEBUG, CONSOLE

3.2. Hostname and IP Address

To function properly, ProActive requires machines to have a correctly configured hostname and domain name. If the names of a
machines is not properly configured, then remote nodes will be unable to locate the machine.

To test if the involved machines are properly configured, in L(U)nix you can run the following commands:

$>hostname
localhost //This is an error!

$>hostname -i
127.0.0.1 //This is an error!

hostname should print the hostname of the machine as known by the other hosts, and hostname -i should return the network inter-
face accessible by other machines.

3.3. Domaine name resolution problems

To work around misconfigured domain names ProActive can be activated to use IP adresses through the following java property:

-Dproactive.useIPaddress=true

This property should be given as parameter to java virtual machines deployed on machines who's names can not be properly re-
solved.

3.4. RMI Tunneling

ProActive provides rmi tunneling through ssh for crossing firewalls that only allow ssh connections. Things to verify when using
rmissh tunneling:

• ProActlive/lib/jsch.jar must be uncluded in the classpath of the concerned machines.
• The jvm that is only accesible with ssh must be started using: -Dproactive.communication.protocol=rmissh
• A key without a passhprase must be installed on the machine accepting connections with ssh. It should be possible to log in-

to the site without using an ssh-agent and without providing a password.

3.5. Public remote method calls

Methods that will be called remotely on an active object must be public. While java will impose this restriction between classes of

Part I: Introduction Chapter 3: ProActive Trouble Shooting

17

http://forge.objectweb.org/mail/?group_id=7

different types, this problem usually takes place when invoking a remote method on an object of the same type.

class A{

public void foo(A a){
...
a.bar(); //This call will not be handled by the remote active object!!!
...
}

private void bar(){ //To fix this, change this method to public.
...
}

}

Part I: Introduction Chapter 3: ProActive Trouble Shooting

18

Part II. Guided Tour and Tutorial

Table of Contents

Chapter 4. Introduction to the Guided Tour and Tutorial ... 21
4.1. Overview ...21
4.2. Installation and setup ...21

Chapter 5. Introduction to ProActive Features ... 23
5.1. Parallel processing and collaborative application with ProActive ..23
5.2. C3D: a parallel, distributed and collaborative 3D renderer ...23

5.2.1. Start C3D ..23
5.2.2. Start a user ..24
5.2.3. Start a user from another machine ..25
5.2.4. Start IC2D to visualize the topology ...26
5.2.5. Drag-and-drop migration ..27
5.2.6. Start a new JVM in a computation ..28
5.2.7. Wrapping Active Objects in Components ..28
5.2.8. Look at the source code for the main classes ..29

5.3. Synchronization with ProActive ...29
5.3.1. The readers-writers ...29
5.3.2. The dining philosophers ...32

5.4. Migration of active objects ..38
5.4.1. Start the penguin application ...38
5.4.2. Start IC2D to see what is going on ...38
5.4.3. Add an agent ..38
5.4.4. Add several agents ..39
5.4.5. Move the control window to another user ..39

Chapter 6. Hands-on programming .. 41
6.1. The client - server example ...41
6.2. Initialization of the activity ...41

6.2.1. Design of the application with Init activity ...41
6.2.2. Programming ...42
6.2.3. Execution ..43

6.3. A simple migration example ..43
6.3.1. Required conditions ..43
6.3.2. Design ..43
6.3.3. Programming ...44
6.3.4. Execution ..45

6.4. migration of graphical interfaces ..46
6.4.1. Design of the migratable application ...46
6.4.2. Programming ...46
6.4.3. Execution ..47

Chapter 7. PI (3.14...) - Step By Step ... 49
7.1. Software Installation ..49

7.1.1. Installing the Java Virtual Machine ..49
7.1.2. Download and install ProActive ..49

7.2. Implementation ...49
7.2.1. MyPi.java ..49
7.2.2. Add the Deployment Descriptor ..50
7.2.3. Instantiate The Remote Objects ...50
7.2.4. Divide, Compute and Conquer ..50
7.2.5. Clean up ...50
7.2.6. Executing the application ...50

Part II: Guided Tour and Tutorial

7.3. Putting it all together ..50

Chapter 8. SPMD PROGRAMMING ... 53
8.1. OO SPMD on a Jacobi example ...53

8.1.1. Execution and first glance at the Jacobi code ..53
8.1.2. Modification and compilation ..53
8.1.3. Detailed understanding of the OO SPMD Jacobi ...54
8.1.4. Virtual Nodes and Deployment descriptors ..58
8.1.5. Execution on several machines and Clusters ...59

8.2. OO SPMD on a Integral Pi example MPI to ProActive adaptation ..65
8.2.1. Introduction ...65
8.2.2. Initialization ..65
8.2.3. Communication primitives ...66
8.2.4. Running ProActive example ...68

Chapter 9. The nbody example .. 71
9.1. Using facilities provided by ProActive on a complete example ...71

9.1.1. Rationale and overview ..71
9.1.2. Usage ...74
9.1.3. Source files: ProActive/src/org/objectweb/proactive/examples/nbody75
9.1.4. Common files ..75
9.1.5. Simple Active Objects ...76
9.1.6. Groups of Active objects ..78
9.1.7. groupdistrib ...79
9.1.8. Object Oriented SPMD Groups ...80
9.1.9. Barnes-Hut ..80
9.1.10. Conclusion ..81

Chapter 10. C3D - from Active Objects to Components ... 83
10.1. Reason for this example ..83
10.2. Using working C3D code with components ..83
10.3. How the application is written ..83

10.3.1. Creating the interfaces ...83
10.3.2. Creating the Component Wrappers ...84
10.3.3. Discarding direct reference acknowledgment ..85

10.4. The C3D ADL ..86
10.5. Advanced component highlights ...87

10.5.1. Renaming Virtual Nodes ..87
10.5.2. Component lookup and registration ..88

10.6. How to run this example ...89
10.7. Source Code ...89

Chapter 11. Guided Tour Conclusion ... 91

Part II: Guided Tour and Tutorial

Chapter 4. Introduction to the Guided Tour
and Tutorial
4.1. Overview

This tour is a practical introduction to ProActive, giving an illustrated introduction to some of the functionality and facilities
offered by the library, by means of a step-by-step tutorial.

• First off, we give an explaination on how to install and configure ProActive, in Section 4.2, “Installation and setup”.
• Next are introduced several features of the library through some running examples, in Chapter 5, Introduction to ProActive

Features.
• Then are given some details on how this is put down in code, and you will be challenged to write your bits of code, in

Chapter 6, Hands-on programming. This should give you practical experience on how to program using ProActive.
• Chapter 8, SPMD PROGRAMMING, will show how to use the OO-SPMD (Object-Oriented Single Program Multiple Data)

programming paradigm.
• The second-last part is the complete N-Body example, in Chapter 9, The nbody example. This application is first written

trivially, then some speed-ups are inserted, to show how ProActive can help you.
• Finally, we close the tutorial off by showing some components. In Chapter 10, C3D - from Active Objects to Components,

the C3D example is wrapped with components, and is this way exposed as components.

We hope this will help your understanding of the library and the concepts driving it.

If you need further details on how the examples work, check the ProActive applications
[http://www-sop.inria.fr/oasis/ProActive/apps/index.html] page.

4.2. Installation and setup

Follow the instructions for downloading and installing ProActive, in Chapter 2, ProActive Installation.

The programming exercises in the first part imply that you:

• Don't forget to add the required libraries to your classpath (i.e. the libraries contained in the ProActive/lib directory, as well
as either the proactive.jar archive, or the compiled classes of proactive (better if you modify the source code)

• use a policy file, such as ProActive/scripts/proactive.security.policy, with the JVM option -
Djava.security.policy=/filelocation/proactive.java.policy

Set the CLASSPATH as follow, putting on one line:

Under linux:

export CLASSPATH=.:./ProActive_examples.jar:./ProActive.jar:./lib/bcel.jar:\
./lib/asm.jar:./lib/log4j.jar:./lib/xercesImpl.jar:\
./lib/components/fractal.jar:./lib/bouncycastle.jar

Under windows:

set CLASSPATH=.;.\ProActive_examples.jar;.\ProActive.jar;.\lib\bcel.jar;\
.\lib\asm.jar;.\lib\log4j.jar;.\lib\xercesImpl.jar;\
.\lib\components\fractal.jar;.\lib\bouncycastle.jar

Concerning the second part of the tutorial (examples of some functionalities):

• Note that the compilation is managed by Ant [http://jakarta.apache.org/ant] ; we suggest you use this tool to make modifica-
tions to the source code, while doing this tutorial. Nevertheless, you can just change the code and recompile using com-

Part II: Guided Tour and Tutorial Chapter 4: Introduction to the Guided Tour
and Tutorial

21

http://www-sop.inria.fr/oasis/ProActive/apps/index.html
http://www-sop.inria.fr/oasis/ProActive/apps/index.html
http://jakarta.apache.org/ant

pile.sh (or compile.bat under windows)
• The examples used in the second part of this tutorial are provided in the /scripts directory of the distribution.

The scripts are platform dependant: .sh files on linux are equivalent to the .bat files on windows.

Part II: Guided Tour and Tutorial Chapter 4: Introduction to the Guided Tour
and Tutorial

22

Chapter 5. Introduction to ProActive
Features
This chapter will present some of the features offered by ProActive, namely:

• parallel processing: how you can run several tasks in parallel.
• synchronization: how you can synchronize tasks.
• migration: how you can migrate Active Objects.

5.1. Parallel processing and collaborative application with ProActive

Distribution is often used for CPU-intensive applications, where parallelism is a key for performance.

A typical application is C3D.

Note that parallelisation of programs can be facilitated with ProActive, thanks to asynchronous method calls (see Section 13.8,
“Asynchronous calls and futures”), as well as group communications (see Chapter 14, Typed Group Communication).

5.2. C3D: a parallel, distributed and collaborative 3D renderer

C3D [http://www-sop.inria.fr/oasis/ProActive/apps/c3d.html] is a Java benchmark application that measures the performance of a
3D raytracer renderer distributed over several Java virtual machines using Java RMI. It showcases some of the benefits of ProAct-
ive, notably the ease of distributed programming, and the speedup through parallel calculation.

Several users can collaboratively view and manipulate a 3D scene. The image of the scene is calculated by a dynamic set of ren-
dering engines using a raytracing algorithm, everything being controlled by a central dispatcher.

Figure 5.1. The active objects in the c3d application

5.2.1. Start C3D

Using the script c3d_no_user, a "Dispatcher" object is launched (ie a centralized server) as well as 4 "Renderer" objects, which
are active objects to be used for parallel rendering.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

23

http://www-sop.inria.fr/oasis/ProActive/apps/c3d.html

Figure 5.2. the dispatcher GUI is launched

The bottom part of the window allows to choose which renderers should participate in the rendering. You may want to stop using a
given machine (because for instance it is overloaded), and thus remove it from the renderers used in the current computation.

5.2.2. Start a user

Using c3d_add_user,

• Connect on the current host (proposed by default) by just giving your name.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

24

For example, the user 'alice'

• Spin the scene, add a random sphere, and observe how the action takes place immediately
• Add and remove renderers, and observe the effect on the 'speed up' indication from the user window.

Which configuration is the fastest for the rendering?

Are you on a multi-processor machine?

Note

You might not perceive the difference of the performance. The difference is better seen with more distributed nodes
and objects (for example on a cluster) .

5.2.3. Start a user from another machine

Using the c3d_add_user script, and specifying the host (set to local host bydefault)

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

25

Figure 5.3. Specifying the host

If you use rlogin, make sure the DISPLAY is properly set. You must use the same version of ProActive on both machines!

• Test the collaborative behavior of the application when several users are connected.

Notice that a collaborative consensus must be reached before starting some actions (or that a timeout occured).

5.2.4. Start IC2D to visualize the topology

You will need at first to start IC2D using either ProActive/scripts/unix/ic2d.sh or ProActive/scripts/windows/ic2d.bat depending
on your environment.

In order to visualize all Active objects, you need to acquire ('Monitoring/Monitor a new RMI host' menu):

• The machine on which you started the 'Dispatcher'
• The machine on which you started the second user

You'll need to type in the edit field asking it the name of each machine and the RMI port being used separated by a colon.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

26

Figure 5.4. The C3D application when a new user joins in, seen with IC2D

• Add random spheres for instance, and observe messages (Requests) between Active Objects.
• Add and remove renderers, and check graphically whether the corresponding Active Objects are contacted or not, in order to

achieve the rendering.
• You can textually visualize this information by activating 'add event timeline for this WorldObject' on the World panel with

the right mouse button, and then 'show the event list window' on the top menu window

5.2.5. Drag-and-drop migration

From IC2D, you can drag-and-drop active objects from one JVM to another. Click the right button on a C3DRenderingEngine, and
drag and drop it in another JVM. Observe the migration taking place.

Add a new sphere, using all rendering engines, and check that the messages are still sent to the active object that was asked to mi-
grate.

As migration and communications are implemented in a fully compatible manner, you can even migrate with IC2D an active ob-
ject while it is communicating (for instance when a rendering action is in progress). Give it a try!

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

27

Note

You can also migrate Active Objects which create a GUI. If you do that for the User, you will see the graphical win-
dow beiung destroyed, and rebuilt once more.

5.2.6. Start a new JVM in a computation

Manually you can start a new JVM - a 'Node' in the ProActive terminology - that will be used in a running system.

• On a different machine, or by remote login on another host, start another Node, named for instance NodeZ

linux> startNode.sh rmi://mymachine/NodeZ &
windows> startNode.bat rmi://mymachine/NodeZ

The node should appear in IC2D when you request the monitoring of the new machine involved (Monitoring menu, then 'monitor
new RMI host'.

• The node just started has no active object running in it. Drag and drop one of the renderers, and check that the node is now
taking place in the computation

• Spin the scene to trigger a new rendering
• See the topology

Note

If you feel uncomfortable with the automatic layout, switch to manual using the 'manual layout' option (right click on
the World panel). You can then reorganize the layout of the machines.

• To fully distribute the computation, start several nodes (you need 2 more) and drag-and drop renderers in them.

Depending on the machines you have, the complexity of the image, look for the most efficient configuration.

5.2.7. Wrapping Active Objects in Components

You can also write components with the Fractive API, which is an implementation of Fractal in ProActive. You should check the
section on components for more information (Part V, “Composing”). There is a long explanation of the C3D component version
(Chapter 10, C3D - from Active Objects to Components). The visual aspect is very similar to the standard Active Object C3D ver-
sion. That's on purpose, to show how easy it is to transform code into components. If you want to run a components version of c3d,
try this:

scripts/unix/components$./c3d.sh
scripts/windows/components$ c3d.bat

The component binding is done through the Fractal ADL, which is a standard way of writing components through an xml file. You
can have a visual representation with IC2D (start IC2D, menu->Components->Start the components GUI). You should specify
how to read the file. You have to enter:

• File->Storage: ProActive/src.
• File->Open:ProActive/src/org/objectweb/proactive/examples/components/c3d/adl/userAndComposite.fractal.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

28

Figure 5.5. IC2D component explorer with the C3D example

5.2.8. Look at the source code for the main classes

The main classes of this application are:

• org.objectweb.proactive.examples.c3d.C3DUser.java

• org.objectweb.proactive.examples.c3d.C3DRenderingEngine.java

• org.objectweb.proactive.examples.c3d.C3DDispatcher.java

In the Dispatcher, look at the method public void rotateScene(int i_user, String i_user_name, Vec angle) that handles elec-
tion of the next action to undertake.

5.3. Synchronization with ProActive

ProActive provides an advanced synchronization mechanism that allows an easy and safe implementation of potentially complex
synchronization policies.

This is illustrated by two examples:

• The readers and the writers
• The dining philosophers

5.3.1. The readers-writers

The readers and the writers want to access the same data. In order to allow concurrency while ensuring the consistency of the read-
ings, accesses to the data have to be synchronized upon a specified policy. Thanks to ProActive, the accesses are guaranteed to be
allowed sequentially.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

29

The implementation with ProActive [http://www-sop.inria.fr/oasis/ProActive/apps/readers.html] uses 3 active objects: Reader,
Writer, and the controller class (ReaderWriter).

5.3.1.1. Start the application

Figure 5.6. Using the readers script

ProActive starts a node (i.e. a JVM) on the current machine, and creates 3 Writer, 3 Reader, a ReaderWriter (the controller of the
application) and a ReaderDisplay, that are active objects.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

30

http://www-sop.inria.fr/oasis/ProActive/apps/readers.html

Figure 5.7. A GUI is started that illustrates the activities of the Reader and Writer objects.

5.3.1.2. Check the effect of different policies: even, writer priority, reader priority

What happens when priority is set to 'reader priority'?

5.3.1.3. Look at the code for programming such policies

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

31

in org.objectweb.proactive.examples.readers.ReaderWriter.java. More specifically, look at the routines in:

public void evenPolicy(org.objectweb.proactive.Service service)

public void readerPolicy(org.objectweb.proactive.Service service)

public void writerPolicy(org.objectweb.proactive.Service service)

Look at the inner class MyRequestFilterm that implements org.objectweb.proactive.core.body.request.RequestFilter. How
does it work?

5.3.1.4. Introduce a bug in the Writer Priority policy

For instance, let several writers go through at the same time.

• Observe the Writer Policy policy before recompiling
• Recompile (using compile.sh readers or compile.bat readers)
• Observe that stub classes are regenerated and recompiled
• Observe the difference due to the new synchronization policy: what happens now?
• Correct the bug and recompile again ; check that everything is back to normal

5.3.2. The dining philosophers

The 'dining philosophers' problem is a classic exercise in concurrent programming. The goal is to avoid deadlocks.

We have provided an illustration of the solution [http://www-sop.inria.fr/oasis/ProActive/apps/phil.html] using ProActive, where
all the philosophers are active objects, as well as the table (controller) and the dinner frame (user interface).

5.3.2.1. Start the philosophers application

Figure 5.8. With philosophers.sh or philosophers.bat

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

32

http://www-sop.inria.fr/oasis/ProActive/apps/phil.html

ProActive creates a new node and instantiates the active objects of the application: DinnerLayout, Table, and Philosopher

Figure 5.9. The GUI is started.

5.3.2.2. Understand the color codes

The pictures represent the state of the philosophers. They can be:

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

33

• philosophing

• hungry, wants the fork!

• eating

The forks can have two states:

• taken

• free

5.3.2.3. Test the autopilot mode

The application runs by itself without encountering a deadlock.

5.3.2.4. Test the manual mode

Click on the philosophers' heads to switch their modes

Test that there are no deadlocks!

Test that you can starve one of the philosophers (i.e. the others alternate eating and thinking while one never eats!)

5.3.2.5. Start the IC2D application

IC2D [http://www-sop.inria.fr/oasis/ProActive/IC2D/index.html] is a graphical environment for monitoring and steering of distrib-
uted and Grid Computing applications.

• Being in the autopilot mode, start the IC2D visualization application (using ic2d.sh or ic2d.bat)

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

34

http://www-sop.inria.fr/oasis/ProActive/IC2D/index.html

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

35

The ic2d GUI is started. It is composed of 2 panels: the main panel and the request queue panel

• Acquire your current machine

Figure 5.10. Monitoring new RMI host with IC2D

It is possible to visualize the status of each active object (processing, waiting etc...), the communications between active objects,
and the topology of the system (here all active objects are in the same node):

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

36

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

37

5.4. Migration of active objects

ProActive allows the transparent migration of objects between virtual machines.

A nice visual example is the penguin's one.

This example shows a set of mobile agents [http://www-sop.inria.fr/oasis/ProActive/apps/penguin.html] moving around while still
communicating with their base and with each other. It also features the capability to move a swing window between screens while
moving an agent from one JVM to the other.

5.4.1. Start the penguin application

Using the migration/penguin script.

5.4.2. Start IC2D to see what is going on

Using the ic2d script

Acquire the machines you have started nodes on

5.4.3. Add an agent

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

38

http://www-sop.inria.fr/oasis/ProActive/apps/penguin.html

• On the Advanced Penguin Controller window: button 'add agent'

An agent is materialized by a picture in a java window.

• Select it, and press button 'start'
• Observe that the active object is moving between the machines, and that the penguin window disappears and reappears on

the screen associated with the new JVM.

5.4.4. Add several agents

After selecting them, use the buttons to:

• Communicate with them ('chained calls')
• Start, stop, resume them
• Trigger a communication between them ('call another agent')

5.4.5. Move the control window to another user

• Start the same script on a different computer, using another screen and keyboard
• Monitor the corresponding JVM with IC2D
• Drag-and-drop the active object 'AdvancedPenguinController' with IC2D into the newly created JVM: the control window

will appear on the other computer
• And its user can now control the penguins application.
• Still with IC2D, doing a drag-and-drop back to the original JVM, you will be able to get back the window, and control your-

self the application.

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

39

Part II: Guided Tour and Tutorial Chapter 5: Introduction to ProActive Fea-
tures

40

Chapter 6. Hands-on programming
You've already seen quite sophisticated examples in the section Chapter 5, Introduction to ProActive Features. Here is an intro-
duction to programming with ProActive.

The program that we will develop is a classic 'helloworld' example. We will increase the complexity of the example, so you get
more familiar with different features of ProActive.

• First, we will code a 'client-server' application, the server being an active object.
• Second, we will see how we can control the activity of an active object.
• Third, we will add mobility to this active object.
• Eventually, we will attach a graphical interface to the active object, and will show how to move the widget between virtual

machines (like in the penguin example).

6.1. The client - server example

This example implements a very simple client-server application. It has an in-depth explanation in Section 13.10, “The Hello
world example”; you might wish to skim through it. Summarized, it is a client object displaying a StringWrapper received from a
remote server.

The corresponding class diagram is the following:

6.2. Initialization of the activity

Active objects, as their name indicates, have an activity of their own (an internal thread).

It is possible to add pre and post processing to this activity, just by implementing the interfaces InitActive and EndActive, that
define the methods initActivity and endActivity.

The following example will help you to understand how and when you can initialize and clean the activity.

When instantiated, the activity of an object is automatically started, but it will first do what is written in the initActivity method.

Ending the activity can only be done from inside the active object (i.e. from a call to its own body). This is the reason why we have
written a terminate method in the following example.

6.2.1. Design of the application with Init activity

The InitializedHello class extends the Hello class, and implements the interfaces InitActive and EndActive.It acts a a server for the
InitializedHelloClient class.

The main method is overriden so that it can instantiate the InitializedHello class

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

41

6.2.2. Programming

6.2.2.1. InitializedHello

The source code of the InitializedHello class is in Example C.28, “InitializedHello.java”.

initActivity and endActivity here just log messages onto the console, so you can see when they are called.

initActivity is called at the creation of the active object, while endActive is called after the activity has terminated (thanks to the
method terminate).

Here is the initActivity method:

public void initActivity(Body body) {
System.out.println("I am about to start my activity");

}

Here is the endActivity method:

public void endActivity(Body body) {
System.out.println("I have finished my activity");

}

The following code shows how to terminate the activity of the active object:

public void terminate() throws IOException {
// the termination of the activity is done through a call on the
// terminate method of the body associated to the current active object
ProActive.getBodyOnThis().terminate();

}

The only differences from the the previous example is the classes instantiated, which are now InitializedHello (and not Hello) and
InitializedHelloClient, and you will add a call to hello.terminate().

The source code of InitializedHello is in Example C.28, “InitializedHello.java”, and the code for InitializedHelloClient is in Ex-
ample C.29, “InitializedHelloClient.java”.

So, create InitializedHelloClient.java and InitializedHello.java in src/org/objectweb/proactive/examples/hello

Now compile all proactive sources

cd compile
windows>build.bat examples
linux>build examples

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

42

cd ..

Add './classes' directory to CLASSPATH to use these two new source files

windows>set CLASSPATH=.;.\classes;.\ProActive_examples.jar;.\ProActive.jar;.\lib\bcel.jar;.\lib\asm.jar;.\lib\log4j.jar;\
.\lib\xercesImpl.jar;.\lib\fractal.jar;.\lib\bouncycastle.jar

linux>export CLASSPATH=.:./classes:./ProActive_examples.jar:./ProActive.jar:./lib/bcel.jar:./lib/asm.jar:./lib/log4j.jar:\
./lib/xercesImpl.jar:./lib/fractal.jar:./lib/bouncycastle.jar

6.2.3. Execution

Execution is similar to the previous example; just use the InitializedHelloClient client class and InitializedHello server class.

6.2.3.1. Starting the server

linux> java -Djava.security.policy=scripts/proactive.java.policy \
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.InitializedHello

windows> java -Djava.security.policy=scripts\proactive.java.policy \
-Dlog4j.configuration=file:scripts\proactive-log4j \
org.objectweb.proactive.examples.hello.InitializedHello &

6.2.3.2. Launching the client

linux> java -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j \
org.objectweb.proactive.examples.hello.InitializedHelloClient //localhost/Hello

windows> java -Djava.security.policy=scripts\proactive.java.policy \
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.InitializedHelloClient //localhost/Hello

6.3. A simple migration example

This program is a very simple one: it creates an active object that migrates between virtual machines. It is a extension of the previ-
ous client-server example, the server now being mobile.

6.3.1. Required conditions

The conditions for MigratableHello to be a migratable active object are:

- it must have a constructor without parameters: this is a result of a ProActive restriction : the active object having to implement a
no-arg constructor. </ p>

- implement the Serializable interface (as it will be transferred through the network).</>

Hello, the superclass, must be able to be serialized, in order to be transferred remotely. It does not have to implement directly
java.io.Serializable, but its attributes should be serializable - or transient. For more information on this topic, check Chapter 16,
Active Object Migration .

6.3.2. Design

We want to further enhance InitializedHello it by making migratable: we'd like to be able to move it across virtual machines.

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

43

Thus, we create a MigratableHello class, that derives from InitializedHello. This class will implement all the non-functionnal beha-
vior concerning the migration, for which this example is created. The Hello class (and InitializedHello) is left unmodified.

Note that the migration has to be initiated by the active object itself. This explains why we have to write the moveTo meth-
od in the code of MigratableHello - i.e. a method that contains an explicit call to the migration primitive. (cf Chapter 16,
Active Object Migration for migration documentation)

MigratableHello also implements a factory method for instanciating itself as an active object : static MigratableHello createMig-
ratableHello(String: name)

The class diagram for the application is the following:

6.3.3. Programming

6.3.3.1. a) the MigratableHello class

The code of the MigratableHello class is in Example C.30, “MigratableHello.java”.

MigratableHello derives from the Hello class from the previous example

MigratableHello being the active object itself, it has to:

- implement the Serializable interface

- provide a no-arg constructor

- provide an implementation for using ProActive's migration mechanism.

A new method getCurrentNodeLocation is added for the object to tell the node where it resides..

A factory static method is added for ease of creation.

The migration is initiated by the moveTo method:

/** method for migrating
* @param destination_node destination node
*/
public void moveTo(String destination_node) {

System.out.println("\n-----------------------------");
System.out.println("starting migration to node: " + destination_node);

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

44

System.out.println("...");
try {

// THIS MUST BE THE LAST CALL OF THE METHOD
ProActive.migrateTo(destination_node);

} catch (MigrationException me) {
System.out.println("migration failed: " + me.toString());

}
}

Note that the call to the ProActive primitive migrateTo is the last one of the method moveTo. See Chapter 16, Active Object Mi-
gration for more information.

6.3.3.2. c) the client class

The entry point of the program is written in a separate class: MigratableHelloClient (see Example C.31,
“MigratableHelloClient.java”).

It takes as arguments the locations of the nodes the object will be migrated to.

The program calls the factory method of MigratableHello to create an instance of an active object. It then moves it from node to
node, pausing for a while between the transfers.

6.3.4. Execution

- start several nodes using the startnode script.

windows>cd scripts/windows
startNode.bat //localhost/n1
startNode.bat //localhost/n2

linux>cd scripts/linux
./startNode.sh //localhost/n1
./startNode.sh //localhost/n2

- compile and run the program (run MigratableHelloClient), passing in parameter the urls of the nodes you'd like the agent to mi-
grate to.

cd compile
windows>build.bat examples
linux>build examples
cd ..

linux>java -Djava.security.policy=scripts/proactive.java.policy -Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.MigratableHelloClient //localhost/n1 //localhost/n2

windows>java -Djava.security.policy=scripts\proactive.java.policy -Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.MigratableHelloClient //localhost/n1 //localhost/n2

- observe the instance of MigratableHello migrating:

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

45

During the execution, a default node is first created. It then hosts the created active object. Then the active object is migrated from
node to node, each time returning 'hello' and telling the client program where it is located.

6.4. migration of graphical interfaces

Graphical interfaces are not serializable, yet it is possible to migrate them with ProActive.

The idea is to associate the graphical object to an active object. The active object will control the activation and desactivation of
this graphical entity during migrations.

Of course, this is a very basic example, but you can later build more sophisticated frames.

6.4.1. Design of the migratable application

We will write a new active object class, that extends MigratableHello. The sayHello method will create a window containing the
hello message. This window is defined in the class HelloFrame

6.4.2. Programming

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

46

6.4.2.1. HelloFrameController

The code of the HelloFrameController is in Example C.32, “HelloFrameController.java”.

This class extends MigratableHello, and adds an activity and a migration strategy manager to the object .

It creates a graphical frame upon call of the sayHello method.

Here we have a more complex migration process than with the previous example. We need to make the graphical window disap-
pear before and reappear in a new location after the migration (in this example though, we wait for a call to sayHello). The migra-
tion of the frame is actually controlled by a MigrationStrategyManager, that will be attached to the body of the active object.. An
ideal location for this operation is the initActivity method (from InitActive interface), that we override:

/**
* This method attaches a migration strategy manager to the current active object.
* The migration strategy manager will help to define which actions to take before
* and after migrating
*/
public void initActivity(Body body) {

// add a migration strategy manager on the current active object
migrationStrategyManager = new MigrationStrategyManagerImpl((Migratable)

ProActive.getBodyOnThis());
// specify what to do when the active object is about to migrate
// the specified method is then invoked by reflection
migrationStrategyManager.onDeparture('clean');

}

The MigrationStrategyManager defines methods such as 'onDeparture', that can be configured in the application. For example here,
the method 'clean' will be called before the migration, conveniently killing the frame:

public void clean() {
System.out.println("killing frame");
helloFrame.dispose();
helloFrame = null;
System.out.println("frame is killed");

}

6.4.2.2. HelloFrame

This is an example of a graphical class that could be associated with the active object (see code in Example C.33,
“HelloFrame.java”).

6.4.3. Execution

• Create a new class HelloFrameControllerClient: take the code of MigratableHelloClient used in the previous part, change the
class declaration to HelloFrameControllerClient and replace the line

MigratableHello migratable_hello = MigratableHello.createMigratableHello("agent1");

with

MigratableHello migratable_hello = HelloFrameController.createHelloFrameController("agent1");

• Similarly to the simple migration example (use the HelloFrameControllerClient class), you will start remote nodes and spe-
cify a migration path.

• you have 2 ways for handling the display of the graphical objects:

• look on the display screens of the machines

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

47

• export the displays: in startNode.sh, you should add the following lines before the java command:

DISPLAY=myhost:0 export DISPLAY

The displayed window: it just contains a text label with the location of the active object.

Part II: Guided Tour and Tutorial Chapter 6: Hands-on programming

48

Chapter 7. PI (3.14...) - Step By Step
In this document we show how to create a distributed application to compute the number PI using the ProActive Grid Middleware.
Distributed programming is achieved using the ProActive deployment framework combined with the active object model.

7.1. Software Installation

7.1.1. Installing the Java Virtual Machine

• Download and install the JDK 5.0 Update 9 from here [http://java.sun.com/javase/downloads/index_jdk5.jsp].
• Set the environment variable JAVA_HOME to the java installation location.

7.1.2. Download and install ProActive

Download and decompress ProActive from http://

7.2. Implementation

Go into the tutorial directory: ProActive/src/org/objectweb/proactive/examples/pi/. This directory contains:

config/ <-- Configuration directory
descriptors/ <-- Deployment descriptors directory
doc/ <-- Documentation directory
fractal/ <-- Component directory
scripts/ <-- Launch scripts directory
Interval.java <-- The parameter passed to remote objects
PiBPP.java <-- The main code
PiComputer.java <-- The remote object code (worker)
Results.java <-- The results returned by the workers
MyPi.java <-- Base class to test Pi with ProActive

In this step by step we will implement our own version of PiBPP.java.

7.2.1. MyPi.java

Create the file MyPi.java inside the tutorial directory with initially the following content:

package org.objectweb.proactive.examples.pi;

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;
import org.objectweb.proactive.core.group.ProActiveGroup;
import org.objectweb.proactive.core.node.Node;

class MyPi{

// global variables will go here

public static void main(String args[]) throws Exception{

Integer numberOfDecimals = new Integer(args[0]);
String descriptorPath = args[1];

// the main code will go here
}

Part II: Guided Tour and Tutorial Chapter 7: PI (3.14...) - Step By Step

49

http://java.sun.com/javase/downloads/index_jdk5.jsp

7.2.2. Add the Deployment Descriptor

Inside the main we add the code for acquiring the resources.

ProActiveDescriptor descriptor = ProActive.getProactiveDescriptor(descriptorPath); //Parse the xml descriptor
descriptor.activateMappings(); //Acquire the resources
VirtualNode virtualNode = descriptor.getVirtualNode("computers-vn"); //Get the virtual node named "computers-vn"
Node[] nodes = virtualNode.getNodes();

7.2.3. Instantiate The Remote Objects

PiComputer piComputer = (PiComputer) ProActiveGroup.newGroupInParallel(
PiComputer.class.getName(),
new Object[] { numberOfDecimals },
nodes);

int numberOfWorkers = ProActiveGroup.getGroup(piComputer).size();

7.2.4. Divide, Compute and Conquer

Interval intervals = PiUtil.dividePI(numberOfWorkers, numberOfDecimals.intValue());
ProActiveGroup.setScatterGroup(intervals);

Result results = piComputer.compute(intervals);

Result result= PiUtil.conquerPI(results);
System.out.println("Pi:"+result);

7.2.5. Clean up

descriptor.killall(true);
System.exit(0);

7.2.6. Executing the application

pi$ cd scripts
scripts$./build mypi -Ddecimals=100 -Ddescriptor=../descriptors/localhost.xml

7.3. Putting it all together

package org.objectweb.proactive.examples.pi;

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;
import org.objectweb.proactive.core.group.ProActiveGroup;
import org.objectweb.proactive.core.node.Node;

public class MyPi {

public static void main(String args[]) throws Exception{

Integer numberOfDecimals = new Integer(args[0]);
String descriptorPath = args[1];

ProActiveDescriptor descriptor = ProActive.getProactiveDescriptor(descriptorPath);
descriptor.activateMappings();

Part II: Guided Tour and Tutorial Chapter 7: PI (3.14...) - Step By Step

50

VirtualNode virtualNode = descriptor.getVirtualNode("computers-vn");
Node[] nodes = virtualNode.getNodes();

PiComputer piComputer = (PiComputer) ProActiveGroup.newGroupInParallel(
PiComputer.class.getName(),
new Object[] { numberOfDecimals },
nodes);

int numberOfWorkers = ProActiveGroup.getGroup(piComputer).size();

Interval intervals = PiUtil.dividePI(numberOfWorkers, numberOfDecimals.intValue());
ProActiveGroup.setScatterGroup(intervals);

Result results = piComputer.compute(intervals);

Result result= PiUtil.conquerPI(results);
System.out.println("Pi:"+result);

descriptor.killall(true);
System.exit(0);

}
}

Part II: Guided Tour and Tutorial Chapter 7: PI (3.14...) - Step By Step

51

Part II: Guided Tour and Tutorial Chapter 7: PI (3.14...) - Step By Step

52

Chapter 8. SPMD PROGRAMMING
8.1. OO SPMD on a Jacobi example

8.1.1. Execution and first glance at the Jacobi code

8.1.1.1. Source files: ProActive/src/org/objectweb/proactive/examples/jacobi

The Jacobi example is made of two Java classes:

• Jacobi.java: the main class
• SubMatrix.java: the class implementing the SPMD code

Have a first quick look at the code, especially the Jacobi class, looking for the strings "ProActive", "Nodes", "newSPMDGroup".
The last instruction of the class: matrix.compute(); is an asynchronous group call. It sends a request to all active objects in the SP-
MD group, triggering computations in all the SubMatrix. We will get to the class SubMatrix.java later on.

8.1.1.2. Execution

ProActive examples come with scripts to easily launch the execution under both Unix and Windows.For Jacobi, launch:

ProActive/scripts/unix/jacobi.sh

or

ProActive/scripts/windows/jacobi.bat

The computation stops after minimal difference is reached between two iterations (constant MINDIFF in class Jacobi.java), or
after a fixed number of iteration (constant ITERATIONS in class Jacobi.java).

The provided script, using an XML descriptor, creates 4 JVMs on the current machine. The Jacobi class creates an SPMD group of
9 Active Objects; 2 or 3 AOs per JVM.

Look at the traces on the console upon starting the script; in the current case, remember that all JVMs and AOs send output to the
same console. More specifically, understand the following:

• Created a new registry on port 1099"
• "Reading deployment descriptor ... Matrix.xml "
• "created VirtualNode"
• "**** Starting jvm on"
• "ClassFileServer is reading resources from classpath"
• "Detected an existing RMI Registry on port 1099""
• "Generating class: ... jacobi.Stub_SubMatrix "
• "ClassServer sent class ... jacobi.Stub_SubMatrix successfully"

You can start IC2D (script ic2d.sh or ic2d.bat) in order to visualize the JVMs and the Active Objects. Just activate the "Monitoring
a new host" in the "Monitoring" menu at the top left. To stop the Jacobi computation and all the associated AOs, and JVMs, just
^C in the window where you started the Jacobi script.

8.1.2. Modification and compilation

8.1.2.1. Source modification

Do a simple source modification, for instance changing the values of the constants MINDIFF (0.00000001 for ex) and ITERA-
TIONS in class Jacobi.java.

Caveat: Be careful, due to a shortcoming of the Java make system (ant), make sure to also touch the class SubMatrix.java that uses

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

53

the constants.

8.1.2.2. Compilation

ProActive distribution comes with scripts to easily recompile the provided examples:

linux>ProActive/compile/build

or

windows>ProActive/compile/build.bat

Several targets are provided (start build without arguments to obtain them). In order to recompile the Jacobi, just start the target
that recompile all the examples:

build examples

2 source files must appear as being recompiled.

Following the recompilation, rerun the examples as explained in section 1.2 above, and observe the differences.

8.1.3. Detailed understanding of the OO SPMD Jacobi

8.1.3.1. Structure of the code

Within the class SubMatrix.java the following methods correspond to a standard Jacobi implementation, and are not specific to
ProActive:

• internalCompute ()
• borderCompute ()
• exchange ()
• buildFakeBorder (int size)
• buildNorthBorder ()
• buildSouthBorder ()
• buildWestBorder ()
• buildEastBorder ()
• stop ()

The methods on which asynchronous remote method invocations take place are:

• sendBordersToNeighbors ()
• setNorthBorder (double[] border)
• setSouthBorder (double[] border)
• setWestBorder (double[] border)
• setEastBorder (double[] border)

The first one sends to the appropriate neighbors the appropriate values, calling set*Border() methods asynchronously. Upon execu-
tion by the AO, the methods set*Border() memorize locally the values being received.

Notice that all those communication methods are made of purely functional Java code, without any code to the ProActive API.

On the contrary, the followings are ProActive related aspects:

• buildNeighborhood ()
• compute ()
• loop ()

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

54

We will detail them in the next section.

Note: the classes managing topologies are still under development. In the next release, the repetitive and tedious topology related
instructions (e.g. methods buildNeighborhood) won't have to be written explicitly by the user, whatever the topology (2D, 3D).

8.1.3.2. OO SPMD behavior

Let us describe the OO SPMD techniques which are used and the related ProActive methods.

First of all, look for the definition and use of the attribute "asyncRefToMe". Using the primitive "getStubOnThis()", it provides a
reference to the current active object on which method calls are asynchronous. It permits the AO to send requests to itself.

For instance in

this.asyncRefToMe.loop();

Notice the absence of a classical loop. The method "loop()" is indeed asynchronously called from itself; it is not really recursive
since it does not have the drawback of the stack growing. It features an important advantage: the AO will remain reactive to other
calls being sent to it. Moreover, it eases reuse since it is not necessary to explicitly encode within the main SPMD loop all the mes-
sages that have to be taken into account. It also facilitates composition since services can be called by activities outside the SPMD
group, they will be automatically executed by the FIFO service of the Active Object.

The method "buildNeighborhood ()" is called only once for initialization. Using a 2D topology (Plan), it constructs references to
north, south, west, east neighbors -- attributes with respective names. It also construct dynamically the group of neighbors. Starting
from an empty group of type SubMatrix

this.neighbors = (SubMatrix) ProActiveGroup.newGroup

(SubMatrix.class.getName());

such typed view of the group is used to get the group view: Group neighborsGroup = ProActiveGroup.getGroup(this.neighbors);
Then, the appropriate neighbors are added dynamically in the group, e.g.:

neighborsGroup.add(this.north);

Again, the topology management classes in a future release of ProActive will simplify this process.

8.1.3.3. Adding a method barrier for a step by step execution

Let's say we would like to control step by step the execution of the SPMD code. We will add a barrier in the SubMatrix.java, and
control the barrier from input in the Jacobi.java class.

In class SubMatrix.java, add a method barrier() of the form:

String[] st= new String[1];
st[0]="keepOnGoing";
ProSPMD.barrier(st);

Do not forget to define the keepOnGoing() method that indeed can return void, and just be empty. Find the appropriate place to
call the barrier() method in the loop() method.

In class Jacobi.java, just after the compute() method, add an infinite loop that, upon a user's return key pressed, calls the method
keepOnGoing() on the SPMD group "matrix". Here are samples of the code:

while (true) {
printMessageAndWait();
matrix.keepOnGoing();

}
...

private static void printMessageAndWait() {

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

55

java.io.BufferedReader d = new java.io.BufferedReader(
new java.io.InputStreamReader(System.in));

System.out.println(" --> Press return key to continue");
System.out.println(" or Ctrl c to stop.");
try {

d.readLine();
} catch (Exception e) {

e.printStackTrace();
}

Recompile, and execute the code. Each iteration needs to be activated by hitting the return key in the shell window where Jacobi
was launched. Start IC2D (./ic2d.sh or ic2d.bat), and visualize the communications as you control them. Use the "Reset Topology"
button to clear communication arcs. The green and red dots indicate the pending requests.

You can try and test other modifications to the Jacobi code.

Figure 8.1. Running the Jacobi application, and viewing with IC2D

8.1.3.4. Undestanding various different kind of barriers

The group of neighbors built above is important wrt synchronization. Below in method "loop()", an efficient barrier is achieved
only using the direct neighbors:

ProSPMD.barrier("SynchronizationWithNeighbors"+ this.iterationsToStop, this.neighbors);

This barrier takes as a parameter the group to synchronize with: it will be passed only when the 4 neighbors in the current 2D ex-
ample have reached the same point. Adding the rank of the current iteration allows to have a unique identifier for each instance of
the barrier.

Try to change the barrier instruction to a total barrier:

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

56

ProSPMD.barrier("SynchronizationWithNeighbors"+ this.iterationsToStop);

Then recompile and execute again. Using IC2D observe that many more communications are necessary.

Figure 8.2. With all communications

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

57

Figure 8.3. With a barrier, there are many less comunications

In order to get details and documentation on Groups and OO SPMD, have a look at Chapter 14, Typed Group Communication and
Chapter 15, OOSPMD.

8.1.4. Virtual Nodes and Deployment descriptors

8.1.4.1. Virtual Nodes

Now, we will return to the source code of Jacobi.java to understand where and how the Virtual Nodes and Nodes are being used.

8.1.4.2. XML Descriptors

The XML descriptor being used is:

ProActive/descriptors/Matrix.xml

Look for and understand the following definitions:

• - Virtual Node Definition
• - Mapping of Virtual Nodes to JVM
• - JVM Definition
• - Process Definition

A detailed presentation of XML descriptors is available in Section 21.1, “Objectives”.

8.1.4.3. Changing the descriptor

Edit the file Matrix.xml in order to change the number of JVMs being used. For instance, if your machine is powerful enough, start
9 JVMs, in order to have a single SubMatrix per JVM.

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

58

Figure 8.4. IC2D viewing the Jacobi application with 9 JVMS on the same machine

You do not need to recompile, just restart the execution. Use IC2D to visualize the differences in the configuration.

8.1.5. Execution on several machines and Clusters

8.1.5.1. Execution on several machines in the room

Explicit machine names ProActive/examples/descriptors/Matrix.xml is the XML deployment file used in this tutorial to start 4
jvms on the local machine. This behavior is achieved by referencing in the creation tag of Jvm1, Jvm2, Jvm3, Jvm4 a jvmPro-
cess named with the id localProcess. To summarize briefly at least one jvmProcess must be defined in an xml deployment file.
When this process is referenced directly in the creation part of the jvm definition (like the example below), the jvm will be created
locally. On the other hand, if this process is referenced by another process(rshProcess for instance, this is the case in the next ex-
ample), the jvm will be created remotely using the related protocol (rsh in the next example).

Note that several jvmProcesses can be defined, for instance in order to specify different jvm configurations (e.g classpath, java
path,...).

<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="matrixNode"

property="multiple"/>
</virtualNodesDefinition>

</componentDefinition>
<deployment>
<mapping>
<map virtualNode="matrixNode">
<jvmSet>
<vmName value="Jvm1"/>
<vmName value="Jvm2"/>
<vmName value="Jvm3"/>
<vmName value="Jvm4"/>

</jvmSet>
</map>
</mapping>
<jvms>
<jvm name="Jvm1">
<creation>
<processReference refid="localProcess"/>

</creation>
</jvm>
<jvm name="Jvm2">
<creation>
<processReference refid="localProcess"/>

</creation>
</jvm>
<jvm name="Jvm3">
<creation>
<processReference refid="localProcess"/>

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

59

</creation>
</jvm>
<jvm name="Jvm4">
<creation>
<processReference refid="localProcess"/>
</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition id="localProcess">
<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess"/>

</processDefinition>
</processes>
</infrastructure>
</ProActiveDescriptor>

Modify your XML deployment file to use the current JVM (i.e the JVM reading the descriptor) and also to start 4 JVMs on remote
machines using rsh protocol.

Use IC2D to visualize the machines ("titi", "toto", "tata" and "tutu" in this example) and the JVMs being launched on them.

<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="matrixNode"

property="multiple"/>
</virtualNodesDefinition>
</componentDefinition>
<deployment>
<mapping>
</map>
<map virtualNode="matrixNode">
<jvmSet>
<currentJvm />
<vmName value="Jvm1"/>
<vmName value="Jvm2"/>
<vmName value="Jvm3"/>
<vmName value="Jvm4"/>
</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">
<creation>
<processReference refid="rsh_titi"/>
</creation>
</jvm>
<jvm name="Jvm2">
<creation>
<processReference refid="rsh_toto"/>
</creation>
</jvm>
<jvm name="Jvm3">
<creation>
<processReference

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

60

refid="rsh_tata"/>
</creation>
</jvm>
<jvm name="Jvm4">
<creation>
<processReference

refid="rsh_tutu"/>
</creation>
</jvm>
</jvms>

</deployment>
<infrastructure>
<processes>
<processDefinition id="localProcess">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
</processDefinition>
<processDefinition id="rsh_titi">
<rshProcess

class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="titi">

<processReference
refid="localProcess"/>

/rshProcess>
</processDefinition>
<processDefinition id="rsh_toto">
<rshProcess

class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="toto">

<processReference
refid="localProcess"/>

/rshProcess>
</processDefinition>
<processDefinition id="rsh_tata">
<rshProcess

class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="tata">

<processReference
refid="localProcess"/>

/rshProcess>
</processDefinition>
<processDefinition id="rsh_tutu">
<rshProcess

class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="tutu">

<processReference refid="localProcess"/>
/rshProcess>
</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Pay attention of what happened to your previous XML deployment file. First of all to use the current jvm the following line was
added just under the jvmSet tag

<jvmSet>
<currentJvm />
...
<jvmSet>

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

61

Then the jvms are not created directly using the localProcess, but instead using other processes named rsh_titi, rsh_toto, rsh_tata,
rsh_tutu

<jvms>
<jvm name="Jvm1">
<creation>
<processReference refid="rsh_titi"/>

</creation>
</jvm>
<jvm name="Jvm2">
<creation>
<processReference refid="rsh_toto"/>

</creation>
</jvm>
<jvm name="Jvm3">
<creation>
<processReference refid="rsh_tata"/>

</creation>
</jvm>
<jvm name="Jvm4">
<creation>
<processReference refid="rsh_tutu"/>

</creation>
</jvm>
</jvms>

Those processes as shown below are rsh processes. Note that it is mandatory for such processes to reference a jvmProcess, in this
case named with the id localProcess, to create, at deployment time, a jvm on machines titi, toto, tata, tutu, once connected to those
machines with rsh.

<processDefinition id="localProcess">
<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
</processDefinition>
<processDefinition id="rsh_titi">
<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="titi">
<processReference refid="localProcess"/>
/rshProcess>
</processDefinition>
<processDefinition id="rsh_toto">
<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="toto">
<processReference refid="localProcess"/>
/rshProcess>
</processDefinition>
<processDefinition id="rsh_tata">
<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="tata">
<processReference refid="localProcess"/>
/rshProcess>
</processDefinition>
<processDefinition id="rsh_tutu">
<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="tutu">
<processReference refid="localProcess"/>

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

62

/rshProcess>
</processDefinition>

Using Lists of Processes

You can also use the notion of Process List, which leads to the same result but often simplifies the xml. Two tags are provided, the
first is:

processListbyHost

This allows a single definition to list all hostnames on which the same JVM profile will be started.

<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="matrixNode"

property="multiple"/>
</virtualNodesDefinition>

</componentDefinition>
<deployment>
<mapping>
</map>
<map virtualNode="matrixNode">
<jvmSet>
<currentJvm/>
<vmName value="Jvm1"/>

</jvmSet>
</map>
</mapping>
<jvms>
<jvm name="Jvm1">
<creation>
<processReference

refid="rsh_list_titi_toto_tutu_tata"/>
</creation>
</jvm>
</jvms>

</deployment>
<infrastructure>
<processes>
<processDefinition

id="localProcess">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
</processDefinition>
<processDefinition

id="rsh_list_titi_toto_tutu_tata">
<processListbyHost

class="org.objectweb.proactive.core.process.rsh.RSHProcessList"
hostlist="titi toto tata tutu">

<processReference
refid="localProcess"/>

</processListbyHost>
</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

63

The second is a shorthand for a set of numbered hosts with a common prefix:

processList

This is used when the machine names follow a list format, for instance titi1 titi2 titi3 ... titi100

<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="matrixNode"

property="multiple"/>
</virtualNodesDefinition>
</componentDefinition>
<deployment>
<mapping>
</map>
<map virtualNode="matrixNode">
<jvmSet>
<currentJvm/>
<vmName value="Jvm1"/>
</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">
<creation>
<processReference

refid="rsh_list_titi1_to_100"/>
</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition

id="localProcess">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
</processDefinition>
<processDefinition

id="rsh_list_titi1_to_100">
<processList

class="org.objectweb.proactive.core.process.rsh.RSHProcessList"
fixedName="titi" list="[1-100]"
domain="titi_domain">

<processReference
refid="localProcess"/>

</processList>
</processDefinition>

</processes>
</infrastructure>
</ProActiveDescriptor>

8.1.5.2. Execution on Clusters

If you have access to your own cluster, configure the XML descriptor to launch the Jacobi example on them, using the appropriate
protocol:

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

64

ssh, LSF, PBS, Globus, etc.

Have a look at Section 21.1, “Objectives” to get the format of the XML descriptor for each of the supported protocols.

8.2. OO SPMD on a Integral Pi example MPI to ProActive adaptation

8.2.1. Introduction

In this chapter we are going to see a simple example of an MPI written program ported to ProActive.

First let's introduce what we are going to compute.

This simple program approximates pi [http://en.wikipedia.org/wiki/Pi] by computing :

pi = integral from 0 to 1 of 4/(1+x*x) dx

Which is approximated by :

sum from k=1 to N of 4 / ((1 +(k-1/2) **2)

The only input data required is N, the number of iterations.

Involved files :

• ProActive/doc-src/mpi_files/int_pi2.c : the original MPI implementation
• ProActive/trunk/src/org/objectweb/proactive/examples/integralpi/Launcher.java : the main class
• ProActive/trunk/src/org/objectweb/proactive/examples/integralpi/Worker.java : the class implementing the SPMD code

8.2.2. Initialization

8.2.2.1. MPI Initalization primitives

Some basic primitives are used, notice that MPI provides a rank to each process and the group size (the number of involved pro-
cesses).

// All instances call startup routine to get their instance number (mynum)
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mynum);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

// Get a value for N
solicit (&N, &nprocs, mynum);

8.2.2.2. ProActive Initialization primitives

First we need to create the group of workers (MPI processes represented by active objects). Notice that the creation of active ob-
jects is done in Launcher.java.

The group of active objects is created using specified parameters and the nodes specified in the deployement descriptor.

// Group creation
Worker workers = (Worker) ProSPMD.newSPMDGroup(

Worker.class.getName(), params, provideNodes(args[0]));

// Once the group is created and the value for N is entered we can start the workers job
// Workers starts their job and return a group of Futures
DoubleWrapper results = workers.start(numOfIterations);

The ProSPMD layer provides similar to MPI initialization primitives. In Worker.java you can identify this initialization. Note that
one-to-one communications will be done thanks to an array view on the created group.

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

65

http://en.wikipedia.org/wiki/Pi

// Worker initialization
rank = ProSPMD.getMyRank();
groupSize = ProSPMD.getMySPMDGroupSize();

// Get all workers references
workersArray = (Worker[]) ProActiveGroup.getGroup(ProSPMD.getSPMDGroup()).toArray(new Worker[0]);

8.2.3. Communication primitives

8.2.3.1. Communication pattern

The communication pattern is very simple, it's done in 2 steps. First the process 0 Broadcasts N then waits for the result from each
other process and sums the received values.

Figure 8.5. Communication pattern - Step 1

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

66

Figure 8.6. Communication pattern - Step 2

8.2.3.2. MPI Approach

The MPI implementation involves 3 communication primitives :

• MPI_Send (Sends data to one process)
• MPI_Recv (Receives data from a sending process)
• MPI_Bcast (Broadcast a data to all processes)

Please note that MPI_Bcast, MPI_Send and MPI_Recv primitives are blocking.

// Get a value of N from stdin for the next run and Broadcast it
MPI_Bcast(pN, 1, MPI_INT, source, MPI_COMM_WORLD);

// LOCAL COMPUTATION LOOP
// ...

if (mynum == 0) { // Check if i'm the leader process
for (i=1; i<nprocs; i++) {

source = i;
info = MPI_Recv(&x, 1, MPI_FLOAT, source, type, MPI_COMM_WORLD, &status); // waits

the value from source process
sum=sum+x; // sum up the receive value

}
} else {

info = MPI_Send(&sum, 1, MPI_FLOAT, dest, type, MPI_COMM_WORLD); // if i'm not the process
0 i send my sum
}

8.2.3.3. ProActive Approach

The ProActive implementation is quite similar to MPI one. The fact is that all communications in ProActive are asynchronous (
non-blocking) by default, therefore we need to specify explicitely to block until a specific request.

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

67

// The leader collects partial results.
// Others just send their computed data to the rank 0.

if (rank==0) { // Check if i'm the leader worker
for (i=1; i<groupSize; i++) {

body.serve(body.getRequestQueue().blockingRemoveOldest("updateX")); // block until an
updateX call

sum += x;
}

} else {
workersArray[0].updateX(sum);

}

The leader blocks his request queue until another worker will do a distant call on the leader's updateX method which is :

public void updateX(double value){
this.x = value;

}

8.2.3.4. MPI to ProActive Summary

MPI ProActive

MPI_Init and MPI_Finalize Activities creation

MPI_Comm_Size ProSPMD.getMyGroupSize

MPI_Comm_Rank ProSPMD.getMyRank

MPI_Send and MPI_Recv Method call

MPI_Barrier ProSPMD.barrier

MPI_Bcast Method call on a group

MPI_Scatter Method call with a scatter group as parameter

MPI_Gather Result of a group communication

MPI_Reduce Programmer's method

Table 8.1. MPI to ProActive

8.2.4. Running ProActive example

8.2.4.1. Compilation

ProActive distribution comes with scripts to easily recompile the provided examples:

linux>ProActive/compile/build

or

windows>ProActive/compile/build.bat

Use the build script to recompile the example

build examples

2 source files must appear as being recompiled.

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

68

8.2.4.2. Running ProActive example

In ProActive/scripts/unix or windows run integralpi.sh or .bat, you can specify the number of workers from the command line. Feel
free to edit scripts to specify another deployement descriptor.

bash-3.00$./integralpi.sh

--- IntegralPi --
The number of workers is 4
--> This ClassFileServer is reading resources from classpath 2011
Created a new registry on port 1099
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
************* Reading deployment descriptor: file:./../../descriptors/Matrix.xml ********************
created VirtualNode name=matrixNode
**** Starting jvm on amda.inria.fr
**** Starting jvm on amda.inria.fr
**** Starting jvm on amda.inria.fr
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
--> This ClassFileServer is reading resources from classpath 2012
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
--> This ClassFileServer is reading resources from classpath 2013
--> This ClassFileServer is reading resources from classpath 2014
**** Starting jvm on amda.inria.fr
Detected an existing RMI Registry on port 1099
Detected an existing RMI Registry on port 1099
Detected an existing RMI Registry on port 1099
ProActive Security Policy (proactive.runtime.security) not set. Runtime Security disabled
--> This ClassFileServer is reading resources from classpath 2015
//amda.inria.fr/matrixNode2048238867 successfully bound in registry at //amda.inria.fr/matrixNode2048238867
**** Mapping VirtualNode matrixNode with Node: //amda.inria.fr/matrixNode2048238867 done
//amda.inria.fr/matrixNode690267632 successfully bound in registry at //amda.inria.fr/matrixNode690267632
**** Mapping VirtualNode matrixNode with Node: //amda.inria.fr/matrixNode690267632 done
//amda.inria.fr/matrixNode1157915128 successfully bound in registry at //amda.inria.fr/matrixNode1157915128
**** Mapping VirtualNode matrixNode with Node: //amda.inria.fr/matrixNode1157915128 done
Detected an existing RMI Registry on port 1099
//amda.inria.fr/matrixNode-814241328 successfully bound in registry at //amda.inria.fr/matrixNode-814241328
**** Mapping VirtualNode matrixNode with Node: //amda.inria.fr/matrixNode-814241328 done
4 nodes found
Generating class : pa.stub.org.objectweb.proactive.examples.integralpi.Stub_Worker

Enter the number of iterations (0 to exit) : 100000
Generating class : pa.stub.org.objectweb.proactive.examples.integralpi.Stub_Worker
Generating class : pa.stub.org.objectweb.proactive.examples.integralpi.Stub_Worker
Generating class : pa.stub.org.objectweb.proactive.examples.integralpi.Stub_Worker
Generating class : pa.stub.org.objectweb.proactive.examples.integralpi.Stub_Worker

Worker 2 Calculated x = 0.7853956634245252 in 43 ms

Worker 3 Calculated x = 0.7853906633745299 in 30 ms

Worker 1 Calculated x = 0.7854006634245316 in 99 ms

Worker 0 Calculated x = 3.141592653598117 in 12 ms

Calculated PI is 3.141592653598117 error is 8.324008149429574E-12

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

69

Enter the number of iterations (0 to exit) :

Part II: Guided Tour and Tutorial Chapter 8: SPMD PROGRAMMING

70

Chapter 9. The nbody example
9.1. Using facilities provided by ProActive on a complete example

9.1.1. Rationale and overview

This section of the guided tour goes through the different steps that you would take in writing an application with ProActive, from
a simple design, to a more complicated structure. This is meant to help you get familiar with the Group facilities offered by Pro-
Active. Please take note that this page tries to take you through the progression, step by step. You may find some more information
[http://www-sop.inria.fr/oasis/proactive/apps/nbody.html], mainly on the design, on the web page of the applications/examples
[http://www-sop.inria.fr/oasis/proactive/apps/] of ProActive. This is a snapshot of the ProActive nbody example running on 3 hosts
with 8 bodies:

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

71

http://www-sop.inria.fr/oasis/proactive/apps/nbody.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody.html
http://www-sop.inria.fr/oasis/proactive/apps/
http://www-sop.inria.fr/oasis/proactive/apps/

Figure 9.1. NBody screenshot, with 3 hosts and 8 bodies

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

72

Figure 9.2. NBody screenshot, with the application GUI and Java3D installed

n-body is a classic problem. It consists in working out the position of bodies in space, which depend only on the gravitational
forces that apply to them. A good introduction to the problem is given here
[http://www.cs.berkeley.edu/%7Esouravc/cs267/nbody.htm]. You may find a detailled explanation of the underlying mathematics
here [http://members.fortunecity.com/kokhuitan/nbody.html]. Different ways of finding numerical solutions are given here
[http://www.amara.com/papers/nbody.html].

In short, one considers several bodies (sometimes called particles) in space, where the only force is due to gravity. When only two
bodies are at hand, this is expressed as

F
p->b

is the force that p applies on b, G is the gravitational con-
stant, m

p
m

b
describe the mass of the bodies, r is the distance

between p and b, andu is a unit vector in the direction going

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

73

http://www.cs.berkeley.edu/%7Esouravc/cs267/nbody.htm
http://www.cs.berkeley.edu/%7Esouravc/cs267/nbody.htm
http://members.fortunecity.com/kokhuitan/nbody.html
http://www.amara.com/papers/nbody.html
http://www.amara.com/papers/nbody.html

from p to b. When we consider all the forces that apply to one
given body, we have to sum up the contribution of all the other
bodies:

This should be read as: the total force on the body b is the sum
of all the forces applied to b, generated by all the other bodies in
the system.

This is the force that has to be computed for every body in the
system. With this force, using the usual physics formulae,
(Newton's second Law)

one may now compute the movement of a particle for a given
time step (a the acceleration, v the velocity, x the position, t the
time):

9.1.2. Usage

With script located in the folder ProActive/script/[unix|windows] do:

$ nbody.[bat|sh] [-nodisplay | -displayft | -3d | -3dft] totalNbBodies maxIter

• No parameter starting in default mode (2D).
• -nodisplay starting in console mode.
• -displayft starting with fault-tolerance configuration.
• -3d starting GUI in 3D, must have Java3d [https://java3d.dev.java.net/] (# 1.4) installed and also must have ProActive com-

piled with it installed.
• -3dft same as above with fault-tolerance configuration.

• totalNbBodies is the total number of bodies, default is 4 bodies.
• maxIter is the maximun number of iterations, default is 10,000 iterations.

Right after starting the application, users have to choose one algorithm for computing. The choice is between:

• Simplest version, one-to-one communication and master.

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

74

https://java3d.dev.java.net/

• Group communication and master.
• Group communication, odd-even-synchronization.
• Group communication, oospmd synchronization.
• Barnes-Hut.

Mouse controls with the 3D GUI:

• Left click: rotating.
• Right click: moving the scene.
• Scroll whell: zoom in/out

9.1.3. Source files: ProActive/src/org/objectweb/proactive/examples/nbody

This guided tour is based on the files you may find in the directory ProActive/src/org/objectweb/proactive/examples/nbody. You'll
find the following tree:

Figure 9.3. The nbody directory structure

The common directory contains files reused through the different versions. 'simple' is the simplest example, 'groupcom' is the first
example with Group communication, and 'groupdistrib' and 'groupoospmd' are two enhancements based on different synchroniza-
tion schemes. 'barneshut' is a bit special, in that it contains a different algorithm to solve the nbody problem.

9.1.4. Common files

The files contained in 'common' are those that are reused throughout the different versions. Let's see what they do:

• First of all there are the two files called Displayer.java and NBodyFrame.java. These handle the graphical output of the bod-
ies, as they move about in space. They are not particularly of interest, as the GUI is not the point of this tutorial. Nonethe-
less, please note that the important method here is:

public void drawBody(int x, int y, int vx, int vy, int weight, int d, int id) ;

Taking position, velocity, diameter and a unique identifier of the body, it updates the display window.
• Then, we have the files Force.java and Planet.java. They are used to compute the interaction between two distant bodies in

the universe. Since they are in the common directory, they can be modified to include other forces (for example, collision) in
a simple manner, which would be spread to all the examples. A Planet is no more than a point in space, with velocity and
mass - the diameter expresses the size to use for the display:

public class Planet implements Serializable{
public double mass;
public double x,y,vx,vy;

// position and velocity
public double diameter;

// diameter of the body, used by the Displayer
...

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

75

Please take note that it implements Serializable because it will be sent as parameter to method calls on Active Objects, but it
is good practice to have all your ProActive classes implement Serializable. For example, migration requires everything to
implement it, and the same with fault-tolerance....

The Force class is just the implementation of what a physical force really is. It is the implementation of a 3D vector, with the
method "add" following the physics rules.

Figure 9.4. The equation of the force between two bodies

• Point3D.java and Cube.java are helper files. They simply implement what a point in space looks like, and what a region of
space is. Of course, they were created as being Serializable.

• And finally, the Start.java acts as the wrapper for the main() method. There is a part which reads command line parameters,
counting bodies and iterations, and constructing the optional Displayer. Before choosing which example to run, it creates the
nodes required by the simulation:

// Construct deployment-related variables: pad & nodes
descriptorPad = null;
VirtualNode vnode;
try { descriptorPad = ProActive.getProactiveDescriptor(xmlFileName); }
catch (ProActiveException e) { abort(e); }
descriptorPad.activateMappings();
vnode = descriptorPad.getVirtualNode('Workers');
Node[] nodes = null;
try { nodes = vnode.getNodes(); }
catch (NodeException e) { abort(e);
}

The Node [] nodes are the different JVMs that were created on possibly different machines. They are used for Active Ob-
ject creation. They were specified in the descriptor used to deploy the application. You may find more information on these
in Chapter 21, XML Deployment Descriptors, while Active Object creation is explained in Chapter 13, Active Objects: cre-
ation and advanced concepts. Just as an example, in the simple package, the Maestro is created on the first of these JVMs,
and takes three parameters, a Domain [], an Integer, and a Start (it will be detailed later):

Object [] constructorParams ;
constructorParams = {domainArray, new Integer(maxIter), killsupport} ;
maestro = (Maestro) ProActive.newActive
(Maestro.class.getName(), constructorParams , nodes[0]) ;

The files contained in the other directories, 'simple', 'groupcom', 'groupdistrib' , 'groupoospmd' detail steps of increasing complex-
ity, making the application use different concepts. 'barneshut' contains the final implementation, featuring the Barnes-Hut al-
gorithm. But let's not go too fast. Let's have a look at the insides of the simplest implementation of the n-body problem.

9.1.5. Simple Active Objects

This is the implementation of the simplest example of nbody. We defined the Planet to be a passive object, and it does nothing. It
is a container for position, velocity and mass, as we've seen in the description given higher up. The real actors are the Domains,
they do all the work. Every Planet in the universe is associated with a Domain, which is an Active Object. This Domain contains
the code to manage the communication of the possitions of the Planets during the simulation. They are created in the Start.java
file:

Rectangle universe = new Rectangle (-100,-100,100,100);

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

76

Domain [] domainArray = new Domain [totalNbBodies];
for (int i = 0 ; i < totalNbBodies ; i++) {

Object [] constructorParams = new Object [] {
new Integer(i),
new Planet (universe)

};
try {

// Create all the Domains used in the simulation
domainArray[i] = (Domain) ProActive.newActive(

Domain.class.getName(),
constructorParams,
nodes[(i+1) % nodes.length]

);
}
catch (ActiveObjectCreationException e) { killsupport.abort(e); }
catch (NodeException e) { killsupport.abort(e); }

}

See how the call to ProActive.newActive creates one new Active Object, a Domain, at each iteration of the loop. The array
nodes contains all the nodes on which an Active Object may be deployed; at each iteration, one given node, ie one JVM, is selec-
ted. The constructorParams are the parameters that are to be passed to the constructor of Domain, and since it's an Object [] ,
the parameters may only be Objects (don't try to build constructors using ints in their constructor - this explains the use of the
class Integer).

The Domains, once created, are initialized, and then they synchronize themselves by all pinging the maestro, with the notifyFin-
ished call:

// init workers, from the Start class
for (int i=0 ; i < totalNbBodies ; i ++)

domainArray[i].init(domainArray, displayer, maestro);
// init method, defined within each worker

public void init(Domain [] domainArray, Displayer dp, Maestro master) {
this.neighbours = domainArray;
.....
maestro.notifyFinished(); // say we're ready to start
}

public void notifyFinished() {
this.nbFinished ++;
if (this.nbFinished == this.domainArray.length) {

this.iter ++;
if (this.iter==this.maxIter)

this.killsupport.quit();
this.nbFinished = 0 ;
for (int i= 0 ; i < domainArray.length ; i++)

this.domainArray[i].sendValueToNeighbours();
}
}

Notice how domainArray is passed to all the Domains, when calling init. This is the value assigned to the local field neighbours,
which later on serves to communicate with all the other Domains of the simulation.

The synchronization is done by the Maestro, which counts the number of Domains that have finished, and then asks them to go
on to the next iteration. While in their execution, the Domains gather information concerning the position of all the other bodies,
which need to be known to move the local Planet, at every time step. This is done using a push scheme. Instead of explicitly ask-
ing for information, this information is automatically issued:

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

77

public void sendValueToNeighbours() {
for (int i = 0 ; i < this.neighbours.length ; i ++)

if (i != this.identification) // don't notify self!
this.neighbours[i].setValue(this.info, this.identification);

.....
}

public void setValue(Planet inf, int id) {
this.values [id] = inf;
this.nbReceived ++ ;
if (this.nbReceived > this.nbvalues) // This is a bad sign!

System.err.println('Domain ' + identification + ' received too many answers');
if (this.nbReceived == this.nbvalues) {

this.maestro.notifyFinished();
moveBody();

}
}

This means that each Domain sends its information to all the other Domains, and then waits until it has received all the positions
it is waiting for. The other Domains are stored as an array, which is called neighbours. You may find another view of this ex-
ample on this web page [http://www-sop.inria.fr/oasis/proactive/apps/nbody-simple.html].

9.1.6. Groups of Active objects

This is a simple improvement, which results in faster communication. You may have noticed the Group capabilities of ProActive.
They give us the ability to call an operation on an object which is a Group, and have it sent to all the members of the Group. We
can use them in this framework: first, create a Group (instead of having independant Active Objects) :

// in the Start class
Object [][] params = ...
Domain domainGroup = null;
try {

// Create all the Domains as part of a Group
domainGroup = (Domain) ProActiveGroup.newGroup (Domain.class.getName(), params,

nodes);
}
catch>

The double array params stores the parameters passed to the constructors of the Domains we're creating. Domain 0 will have
params[0][] passed as arguments, Domain 1 params[1][], and so on. The nodes are the Nodes on which to create these Active
Objects. Do notice the try... catch construction which is needed around any creation of Active Objects because it may raise ex-
ceptions. In this previous bit of code, a Group containing new Active Objects has been created and all these Objects belong to the
group . You may have noticed that the type of the Group is Domain. It's a bit strange at first, and you may think this reference
points to only one Active Object at once, but that's not true. We're accesssing all the objects in the group, and to be able to continue
using the methods of the Domain class, the group is typed as Domain, and that's the reason why it's called a typed Group.

Then this group is passed as a parameter to all the members of the Group in just one call:

// Still in the Start class
domainGroup.init(domainGroup, displayer, maestro);

This method sets the local field as a copy of the passed parameter, and as such is unique. We can play around with it without af-
fecting the others. So let's remove the local Domain from the Group, to avoid having calls on self:

public void init(Domain domainGroup, Displayer dp, Maestro master) {
this.neighbours = domainGroup;
Group g = ProActiveGroup.getGroup(neighbours);
g.remove(ProActive.getStubOnThis()); // no need to send information to self

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

78

http://www-sop.inria.fr/oasis/proactive/apps/nbody-simple.html

.....

Remember that in the previous example, the neighbours where stored in an array, and each was accessed in turn:

for (int i = 0 ; i < this.neighbours.length ; i ++)
if (i != this.identification) // don't notify self!
this.neighbours[i].setValue(this.info, this.identification);

Well, that's BAAAAD, or at least inefficient! Replace this by the following code, because it works faster:

this.neighbours.setValue(this.info, this.identification);

This has the following meaning: call the method setValue, with the given parameters, on all the members of the Group neigh-
bours. In one line of code, the method setValue is called on all the Active Objects in the group.

You may find another view of this example on this web page [http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupcom.html].

9.1.7. groupdistrib

Now, do we like the idea that the synchronization is centralized on one entity, the Maestro? I don't and it's the bottleneck of the
application anyway: once a Domain has finished, it sends the notifyFinshed, and then sits idle. A way of making this better is to
remove this bottleneck completely! This is done by using an odd-even scheme: if a Domain receives information from a distant
Domain too early (ie in the wrong iteration), this information is stored, and will get used at the next iteration. In the meantime, the
local Domain does not change its iteration, because it is still waiting for more results, in the current iteration.

public void setValue(Planet inf, int receivedIter) {
if (this.iter == receivedIter) {

this.currentForce.add(info, inf);
this.nbReceived ++ ;
if (this.nbReceived == this.nbvalues)

moveBody();
}
else {

this.prematureValues.add(new Carrier (inf, receivedIter));
}
}

Also notice how the computation is done incrementally when the result is received (this.currentForce.add(info, inf);), instead of
when all the results have arrived. This allows for less time spent idle. Indeed, waiting for all the results before computing might
leave idle time between setValue requests. And then, just before computing the new position of the body, the sum of all the forces
has to be computed. It's better to have this sum ready when needed.

The prematureValues Vector is the place where we put the values that arrive out of sync. When a value is early, it is queued
there, and dequeued as soon as this Domain changes iteration.

public void sendValueToNeighbours() {
reset();
this.iter++;
if (this.iter < this.maxIter) {

neighbours.setValue(this.info, this.iter);
... // display related code
treatPremature();
}

... // JVM destruction related code
}

The treatPremature() method simply treats the values that were early as if they had just arrived, by calling the setValue method
with the parameters stored.

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

79

http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupcom.html

You may find another view of this example on this web page
[http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupdistrib.html].

9.1.8. Object Oriented SPMD Groups

This is another way to improve the groupcom example. It also removes the master, but this time by inserting oospmd barriers, that
can be thought as behaving like the maestro class, but faster. To create functional OOspmd Groups, there is a special instruction,
which takes the same parameters as a newGroup instruction:

Object [][] params = ...
Domain domainGroup = null;
try {

domainGroup = (Domain) ProSPMD.newSPMDGroup(Domain.class.getName(), params, nodes);
}
catch ...

Now, to use this OOspmd group properly, we want to use the barrier() methods. We put these in the Domains code, to do the syn-
chronization. What happens is that each Domain hits the barrier call, and then waits for all the others to have reached it, before
reading its request queue again.

public void sendValueToNeighbours() {
this.neighbours.setValue(this.info, this.identification);
ProSPMD.barrier('barrier' + this.iter);
this.iter++;
this.asyncRefToSelf.moveBody();

....

Beware, the stop-and-wait is not just after the barrier call, but instead blocks the request queue. So if there is code after that barrier,
it will get executed. In fact, the barrier should be seen as a prioritary request on the queue. This explains why we had to put the
code after the barrier as a method placed on an asynchronous refernce to self. If we hadn't done it that way, but just appended the
code of that method just after the barrier, the call to moveBody() would be executed before the barrier execution, which is exactly
what we don't want!

You may find another view of this example on this web page
[http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupoospmd.html].

9.1.9. Barnes-Hut

This way to construct the nbody simulation is based on a very different algorithm. This is inserted to show how one can express
this algorithm in ProActive, but breaks off from the previous track, having such a different approach to solving the problem. Here's
how it works:

To avoid broadcasting to every active object the new position of every particle, a tree implementation can simplify the problem by
agglomerating sets of particles as a single particle, with a mass equal to the sum of masses of the all the particles:. This is the core
of the Barnes-Hut algorithm. References on this can be found for example here
[http://physics.gmu.edu/%7Elarge/lr_forces/desc/bh/bhdesc.xml], and here
[http://www.cita.utoronto.ca/%7Edubinski/treecode/node2.html]. This method allows us to have a complexity brought down to
O(N log N).

In our parallel implementation, we have defined an Active Object called Domain, which represents a volume in space, and which
contains Planets. It is either subdivided into smaller Domains, or is a leaf of the total tree, and then only contains Planets. A
Planet is still an Object with mass, velocity and position, but is no longer on a one-to-one connection with a Domain. We have cut
down communications to the biggest Domains possible : when a Planet is distant enough, its interactions are not computed, but it
is grouped with its local neighbours to a bigger particle. Here is an example of the Domains which would be known by the Do-
main drawn in red:

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

80

http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupdistrib.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupdistrib.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupoospmd.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody-groupoospmd.html
http://physics.gmu.edu/%7Elarge/lr_forces/desc/bh/bhdesc.xml
http://physics.gmu.edu/%7Elarge/lr_forces/desc/bh/bhdesc.xml
http://www.cita.utoronto.ca/%7Edubinski/treecode/node2.html
http://www.cita.utoronto.ca/%7Edubinski/treecode/node2.html

The Domain in the lower left hand-corner, drawn in blue, is also divided into sub-Domains, but this needs not be known by the Do-
main in red: it assumes all the particles in the blue Domain are only one big one, centered at the center of mass of all the particles
within the blue.

In this version, the Domains communicate with a reduced set of other Domains, spanning on volumes of different sizes. Syn-
chronization is achieved by sending explicitely iteration numbers, and returning when needed older positions. You may notice that
some Domains seem desynchronized with other ones, having several iterations inbetween. That is no problem because if they then
need to be synchronized and send each other information, a mechanism saving the older positions permits to send them when
needed.

You may find another view of this example on this web page [http://www-sop.inria.fr/oasis/proactive/apps/nbody-simple.html].

9.1.10. Conclusion

In this guided tour, we tried to show different facilities provided by ProActive, based on a real problem (nbody). We first saw how
to deploy the application, then tuned it by adding Group communication, then removed a bottleneck (due to the hard synchroniza-
tion) . Finally, given is the code associated to a different algorithm, which cumbersomely shows how to get Active Objects de-
ployed along a tree structure to communicate. Remember that there is another explanation
[http://www-sop.inria.fr/oasis/proactive/apps/nbody.html] of all this on the web.

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

81

http://www-sop.inria.fr/oasis/proactive/apps/nbody-simple.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody.html
http://www-sop.inria.fr/oasis/proactive/apps/nbody.html

Part II: Guided Tour and Tutorial Chapter 9: The nbody example

82

Chapter 10. C3D - from Active Objects to
Components
10.1. Reason for this example

This is an example of an application that is refactored to fit the components dogma. The standard C3D example has been taken as a
basis, and component wrappers have been created. This way, one can see what is needed to transform an application into compon-
ent-oriented code.

You may find the code in the examples/components/c3d directory of the proactive source.

10.2. Using working C3D code with components

Figure 10.1. Informal description of the C3D Components hierarchy

We consider the working C3D application. It's nice, and has a sleak GUI, but we now want to add component power to it! What we
do is shown on the image: add wrappers around the original object classes (C3D*) and instead of linking the classes together by
setting fields through the initial methods, do that in the binding methods. In other words, we have to spot exactly where
C3DRenderingEngine, C3DUser and C3DDispatcher are used by a class other than itself, and turn these references into component
bindings. Of course, we also have to expose the interfaces that we are going to use, hence the Dispatcher, Engine and User inter-
face that have to be implemented.

10.3. How the application is written

First of all, have a look at the doc on C3D to remember how this application is written, in Section 5.2, “C3D: a parallel, distributed
and collaborative 3D renderer”. Most important is the class diagram, showing C3DUser, C3DDispatcher and C3DRederingEngine.
We decided that the only objects worth wrapping in components were those three. The rest is too small to be worth the hassle.

10.3.1. Creating the interfaces

What we need to do is to extract the interfaces of the Objects, ie find which methods are going to be called on the components.
This means find out what methods are called from outside the Active Object. You can do that by searching in the classes where the
calls are made on active objects. For this, you have to know in detail which classes are going to be turned into component. If
you have a code base which closely follows Object Oriented Programming rules, the interfaces are already there. Indeed, when a
class is written, it should always go with one or more interfaces, which present to the world what the class abilities are. In C3D
(Active Object version), these interfaces already exist: they are called User, Engine and Dispatcher.

Note

Tricky part: whatever way you look at components, you'll have to modify the initial code if these interfaces were
not created at first go. You have to replace all the class references by their interface, when you use them in other files.

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

83

For example, if we had not already used interfaces in the C3D Object code, we would have had to replace all occur-
rences of C3DDispatcher by occurrences of Dispatcher.

Why do we have to do that, replacing classes by interfaces? That's due to the way components work. When the components are go-
ing to be bound, you're not binding the classes themselves (ie the container which performs operations), but [proxies to] the inter-
faces presenting the behaviour available. And these proxies implement the interfaces, and do not extend the classes. What is high-
lighted here is that components enforce good code design by separating behaviours.

10.3.2. Creating the Component Wrappers

You now have to create a class that englobes the previous Active Objects, and which is a component representing the same func-
tionality. How do you do that? Pretty simple. All you need to do is extend the Active Object class, and add to it the non-functional
interfaces which go with the component. You have the binding interfaces to create, which basically say how to put together two
Components, tell who is already attached, and how to separate them. These are the lookupFc, listFc, bindFc and unbindFc meth-
ods.

This has been done in the *Impl files. Let's consider, for example, the UserImpl class (it is shown below).What you have here are
those component methods. Be even more careful with this bindFc method. In fact, it really binds the protected Dispatcher vari-
able c3ddispatcher. This way, the C3DUser code can now use this variable as if it was addressing the real Active Object. Just to
be precise, we have to point out that you're going through proxies before reaching the Component, then the Active Object. This is
hidden by the ProActive layer, all you should know is you're addressing a Dispatcher, and you're fine! The findDispatcher meth-
od has been overridden because component lookup doesn't work like standard Active Object lookup.

public class UserImpl extends C3DUser implements BindingController, User {
/** Mandatory ProActive empty no-arg constructor */
public UserImpl() {
}

/** Tells what are the operations to perform before starting the activity of the AO.
* Registering the component and some empty fields filling in is done here.
* We also state that if migration asked, procedure is : saveData, migrate, rebuild */
public void initActivity(Body body) {

// Maybe 'binding to dispatcher' has been done before
if (this.c3ddispatcher == null) {

logger.error(
"User component could not find a dispatcher. Performing lookup");

// ask user through Dialog for userName & host
NameAndHostDialog userAndHostNameDialog = new NameAndHostDialogForComponent();
this.c3ddispatcher = userAndHostNameDialog.getValidatedDispatcher();
setUserName(userAndHostNameDialog.getValidatedUserName());

if (this.c3ddispatcher == null) {
logger.error("Could not find a dispatcher. Closing.");
System.exit(-1);

}
}

if (getUserName() == null) { // just in case it was not yet set.
setUserName("Bob");

}

// Register the User in the Registry.
try {

Fractive.register(Fractive.getComponentRepresentativeOnThis(),
UrlBuilder.buildUrlFromProperties("localhost", "User"));

} catch (IOException e) {
logger.error("Registering 'User' for future lookup failed");
e.printStackTrace();

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

84

}

super.initActivity(body);
}

/** returns all the possible bindings, here just user2dispatcher .
* @return the only posible binding "user2dispatcher" */
public String[] listFc() {

return new String[] { "user2dispatcher" };
}

/** Returns the dispatcher currently bound to the client interface of this component
* @return null if no component bound, otherwise returns the bound component */
public Object lookupFc(final String interfaceName) {

if (interfaceName.equals("user2dispatcher")) {
return c3ddispatcher;

}

return null;
}

/** Binds to this UserImpl component the dispatcher which should be used. */
public void bindFc(final String interfaceName, final Object serverInterface) {

if (interfaceName.equals("user2dispatcher")) {
c3ddispatcher = (org.objectweb.proactive.examples.c3d.Dispatcher) serverInterface;

// Registering back to the dispatcher is done in the go() method
}

}

/** Detaches the user from its dispatcher.
* Notice how it has not been called in terminate() ?
* This is due to the fact that unbinding only sets a reference to null,
* and does no cleaning up. */
public void unbindFc(final String interfaceName) {

if (interfaceName.equals("user2dispatcher")) {
c3ddispatcher = null;

}
}

}

Example 10.1. The UserImpl class, a component wrapper

10.3.3. Discarding direct reference acknowledgment

If you're out of luck, the code contains instructions to retain references to objects that call methods on the current Object. These
methods have a signature ressembling method(..., ActiveObject ao, ...). This is called, in ProActive, with a ProAct-
ive.getStubOnThis() (if you don't, and instead use 'this', the code won't work correctly on remote hosts!). If the local object uses
this ProActive.getStubOnThis(), you're going to have trouble with components. The problem is that this design does not fit the
component paradigm: you should be using declared interfaces bound with the bind methods, not be passing along references to
self. So you have to remove these from the code, and make it component-oriented. But remember, you should be using bind
methods to attach other components.

Note

If you really have to keep these ProActive.getStubOnThis() references, you may, because components, (or at least

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

85

their internals) really are Active Objects. But you should be extra careful. This "Active Object reference passing"
should not happen between components, as they are meant to interact through their component interfaces only.

10.4. The C3D ADL

You may be wanting to see how we have bound the components together, now. Since the design is pretty simple, there is not much
to it. We have used the fractal ADL, to avoid hard-coding bindings. So all of the information here is in the examples/compon-
ents/c3d/adl/ directory. There are the components, called '...Impl' (you can see there which interfaces they propose), and a
'userAndComposite.fractal' file, which is where the bindings are made. It includes the use of a Composite component, just for
the fun. Specifically, it links one user to a composite made of a dispatcher and two renderers. You may want to explore these files
with the Fractal GUI provided with IC2D, it's easier to understand graphically. Here's the code, nevertheless, for you curiosity:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<!-- This is an example of binding a complete application. In the code below, a user component
is attached to a composite, which englobes a dispatcher and 2 renderers. -->

<definition name="org.objectweb.proactive.examples.components.c3d.adl.userAndComposite">

<!-- Creating one user component -->
<component definition="org.objectweb.proactive.examples.components.c3d.adl.UserImpl" name=

"user"/>
<component

definition="org.objectweb.proactive.examples.components.c3d.adl.compositeOfDispRend"
name="composite"/>

<!-- binding together the user and the composite -->
<binding client="user.user2dispatcher" server="composite.dispatch"/>
<controller desc="composite"/>

<!-- coordinates added by the fractal GUI of IC2D. -->
<coordinates color="-73" y0="0.11" x1="0.30" y1="0.33" name="user" x0="0.03"/>
<coordinates color="-73" y0="0.18" x1="0.99" y1="0.98" name="composite" x0="0.32">

<coordinates color="-73" y0="0.53" x1="1.00" y1="0.82" name="engine2" x0="0.57"/>
<coordinates color="-73" y0="0.10" x1="0.90" y1="0.48" name="engine1" x0="0.63"/>
<coordinates color="-73" y0="0.10" x1="0.50" y1="0.90" name="dispatcher" x0="0.1"/>

</coordinates>

</definition>

Example 10.2. userAndComposite.fractal, a component ADL file

Here's what it looks like when you explore it through the IC2D Component explorer

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

86

Figure 10.2. IC2D component explorer with the C3D example

10.5. Advanced component highlights

10.5.1. Renaming Virtual Nodes

One feature given by the component architecture is the possiblity to rename Virtual Nodes. Let's see how this can be used:

Suppose you are only dealing with packaged software. That means you may not modify the source code of some part of your ap-
plication, for instance because it is kindly given to you by some other company, which wants to keep parts of its codebase secret.
Let's say that the deployment descriptor you're using does not reference the proper VirtualNodes. How can you still deploy your
application in this case? Well, you have to rename those Nodes into the names that are fitting to your application. You should do
that after the definition of the interfaces that are defined inside the component. Here's an example of how to do that, renaming the
externally provided name 'UserVirtualNode' to the name internally used by UserImpl 'User':

In the main ADL file (userAndComposite.fractal)

<component ... />

<!-- mapping the node names in the descriptor file to others referenced in the component's
adl files. -->

<exportedVirtualNodes>
<exportedVirtualNode name="UserVirtualNode">
<composedFrom>

<composingVirtualNode component="user" name="User"/>
</composedFrom>

</exportedVirtualNode>
</exportedVirtualNodes>

<!-- Creating one user component -->

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

87

In the User ADL file (UserImpl.fractal)

<content class="org.objectweb.proactive.examples.components.c3d.UserImpl"/>

<!-- Recalling a renamed Virtual Node -->
<exportedVirtualNodes>
<exportedVirtualNode name="User">

<composedFrom>
<composingVirtualNode component="this" name="User"/>

</composedFrom>
</exportedVirtualNode>

</exportedVirtualNodes>

<controller desc="primitive"/>

Example 10.3. How to rename Virtual Nodes in ADL files

If you add this code into the adl, you are saying that the VirtualNode called UserVirtualNode (found in the deployment descriptor
file the application is using) should be recognized by the application as if it was called User.

Note

Above has been described the way to rename a VirtualNode; this can be used on packaged software, when the Virtu-
alNodes provided do not fit the VirtualNodes needed by your application.

10.5.2. Component lookup and registration

When running the User Component alone, you are prompted for an address on which to lookup a Dispatcher Component. Then the
two components are bound through a lookup mechanism. This is very simple to use. Here's the code to do that:

The component Registration

Fractive.register(Fractive.getComponentRepresentativeOnThis(),
UrlBuilder.buildUrlFromProperties("localhost", "Dispatcher"));

The Component lookup

ProActiveComponentRepresentative a = Fractive.lookup(
UrlBuilder.buildUrl(this.hostName, "Dispatcher", protocol, this.portNumber));
this.c3dDispatcher = (Dispatcher) a.getFcInterface("user2dispatcher");

Example 10.4. Component Lookup and Register

For the registeration, you only need a reference on the component you want to register, and build a url containing the name of the
host, containing an alias for the Component.

The Fractive.lookup method uses a Url to find the host which holds the component. This Url contains the machine name of the
host, communication protocl and portNumber, but also the lookup name under which the desired Component has been registered
under , here "Dispatcher". The last operation consists only in retreiving the correct interface to which to connect to. If the interface
is not known at compile-time, it can be discovered at run-time with the getFcInterfaces() method, which lists all the interfaces
available.

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

88

10.6. How to run this example

There is only one access point for this example in the scripts directory:

scripts/unix/components$./c3d.sh
--- Fractal C3D example ---
Parameters : descriptor_file [fractal_ADL_file]

The first file describes your deployment of computing nodes.
You may want to try ../../../descriptors/components/C3D_all.xml

The second file describes your components layout.
Default is org.objectweb.proactive.examples.components.c3d.adl.userAndComposite

You have there the way to start this example. If you only want to start the Composite (Dispatcher + Renderer), try this (don't insert
the new lines):

scripts/unix/components$./c3d.sh ../../../descriptors/components/C3D_all.xml \
org.objectweb.proactive.examples.components.c3d.adl.compositeOfDispRend

If you want to start only a User, you will be asked for the address of a Dispatcher to which to connect to:

scripts/unix/components$./c3d.sh ../../../descriptors/components/C3D_all.xml \
org.objectweb.proactive.examples.components.c3d.adl.UserImpl

10.7. Source Code

You may find the code of this application in the following packages:

• org.objectweb.proactive.examples.c3d, the Active Object version
• org.objectweb.proactive.examples.components.c3d, the Component version

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

89

Part II: Guided Tour and Tutorial Chapter 10: C3D - from Active Objects to
Components

90

Chapter 11. Guided Tour Conclusion
This tour was intented to guide you through an overview of ProActive.

You should now be able to start programming with ProActive, and you should also have an idea of the capabilities of the library.

We hope that you liked it and we thank you for your interest in ProActive.

Further information can be found on the website. All suggestions are welcome, please send them to proactive@objectweb.org.

Part II: Guided Tour and Tutorial Chapter 11: Guided Tour Conclusion

91

mailto:proactive@objectweb.org

Part II: Guided Tour and Tutorial Chapter 11: Guided Tour Conclusion

92

Part III. Programming

Table of Contents

Chapter 12. ProActive Basis, Active Object Definition ... 95
12.1. Active objects basis ..95
12.2. What is an active object ..96

Chapter 13. Active Objects: creation and advanced concepts .. 97
13.1. Instantiation-Based Creation ..97

13.1.1. Possible ambiguities on the constructor ...97
13.1.2. Using a Node ...98

13.2. Object-Based Creation ..98
13.3. Specifying the activity of an active object ...99

13.3.1. Algorithms deciding which activity to invoke ...99
13.3.2. Implementing the interfaces directly in the class .. 100
13.3.3. Passing an object implementing the interfaces at creation-time ... 101

13.4. Restrictions on reifiable objects .. 102
13.5. Using the Factory Method Design Pattern ... 102
13.6. Advanced: Customizing the Body of an Active Object .. 103

13.6.1. Motivations .. 103
13.6.2. How to do it ... 103

13.7. Advanced: Role of the elements of an active object .. 104
13.7.1. Role of the stub .. 105
13.7.2. Role of the proxy .. 106
13.7.3. Role of the body ... 106
13.7.4. Role of the instance of class B ... 106

13.8. Asynchronous calls and futures .. 106
13.8.1. Creation of a Future Object ... 106
13.8.2. Asynchronous calls in details ... 107
13.8.3. Important Notes: Errors to avoid .. 112

13.9. Automatic Continuation in ProActive .. 113
13.9.1. Objectives ... 113
13.9.2. Principles .. 113
13.9.3. Example .. 114
13.9.4. Illustration of an Automatic Continuation .. 114

13.10. The Hello world example .. 118
13.10.1. The two classes ... 118
13.10.2. Hello World within the same VM ... 120
13.10.3. Hello World from another VM on the same host .. 121
13.10.4. Hello World from abroad: another VM on a different host ... 121

Chapter 14. Typed Group Communication ... 123
14.1. Overview ... 123
14.2. Creation of a Group ... 123
14.3. Group representation and manipulation .. 124
14.4. Group as result of group communications ... 125
14.5. Broadcast vs Dispatching .. 125

Chapter 15. OOSPMD .. 127
15.1. OOSPMD: Introduction .. 127
15.2. SPMD Groups .. 127
15.3. Barrier: Introduction .. 127
15.4. Total Barrier ... 128
15.5. Neighbor barrier .. 128
15.6. Method Barrier .. 129

Part III: Programming

15.7. When does a barrier get triggered? .. 129

Chapter 16. Active Object Migration .. 131
16.1. Migration Primitive .. 131
16.2. Using migration .. 131
16.3. Complete example ... 131
16.4. Dealing with non-serializable attributes ... 132
16.5. Mixed Location Migration ... 132

16.5.1. Principles .. 132
16.5.2. How to configure .. 134

Chapter 17. Exception Handling ... 135
17.1. Exceptions and Asynchrony ... 135

17.1.1. Barriers around try blocks .. 135
17.1.2. TryWithCatch Annotator .. 135
17.1.3. Additional API ... 136

17.2. Non-Functional Exceptions ... 136
17.2.1. Overview ... 136
17.2.2. Exception types .. 136
17.2.3. Exception handlers .. 136

Chapter 18. Branch and Bound API ... 139
18.1. Overview ... 139
18.2. The Model Architecture .. 139
18.3. The API Details ... 141

18.3.1. The Task Description ... 141
18.3.2. The Task Queue Description ... 141
18.3.3. The ProActiveBranchNBound Description ... 142

18.4. An Example: FlowShop .. 142
18.5. Future Work ... 144

Chapter 19. High Level Patterns -- The Calcium Skeleton Framework 145
19.1. Introduction .. 145

19.1.1. About Calcium ... 145
19.1.2. The Big Picture ... 145

19.2. Quick Example ... 146
19.2.1. Define the skeleton structure ... 146
19.2.2. Implementing the Muscle ... 146
19.2.3. Create a new Calcium Instance .. 147
19.2.4. Provide an input of problems to be solved by the framework ... 147
19.2.5. Collect the results .. 148
19.2.6. View the performance statistics .. 148

19.3. Supported Patterns ... 148
19.4. Choosing a Resource Manager ... 148
19.5. Performance Statistics .. 148

19.5.1. Global Statistics .. 149
19.5.2. Result Statistics .. 149

19.6. Future Work ... 149

Part III: Programming

Chapter 12. ProActive Basis, Active Object
Definition
12.1. Active objects basis

Active objects are the basic units of activity and distribution used for building concurrent applications using ProActive. An active
object runs with its own thread. This thread only executes the methods invoked on this active object by other active objects and
those of the passive objects of the subsystem that belongs to this active object. With ProActive, the programmer does not have to
explicitly manipulate Thread objects, unlike in standard Java.

Active objects can be created on any of the hosts involved in the computation. Once an active object is created, its activity (the fact
that it runs with its own thread) and its location (local or remote) are perfectly transparent. As a matter of fact, any active object
can be manipulated just like if it were a passive instance of the same class.

ProActive is a library designed for developing applications in a model introduced by the Eiffel// language. Its main features are:

• The application is structured in subsystems. There is one active object (and therefore one thread) for each subsystem and one
subsystem for each active object (or thread). Each subsystem is thus composed of one active object and any number of pass-
ive objects (possibly zero). The thread of one subsystem only executes methods in the objects of this subsystem.

• There are no shared passive objects between subsystems.

Figure 12.1. The Model: Sequential, Multithreaded, Distributed

These two main features have a lot of important consequences on the topology of the application:

• Of all the objects that make up a subsystem (the active object and the passive objects), only the active object is known to ob-
jects outside of the subsystem.

• All objects (both active and passive) may have references onto active objects.
• If an object o1 has a reference onto a passive object o2, then o1 and o2 are part of the same subsystem.

This has also consequences on the semantics of message-passing between subsystems.

• When an object in a subsystem calls a method on an active object, the parameters of the call may be references on passive
objects of the subsystem, which would lead to shared passive objects. This is why passive objects passed as parameters of
calls on active objects are always passed by deep-copy. Active objects, on the other hand, are always passed by reference.
Symmetrically, this also applies to objects returned from methods called on active objects.

• When a method is called on an active object, it returns immediately (as the thread cannot execute methods in the other sub-
system). A future object, which is a placeholder for the result of the methods invocation, is returned. From the point of view
of the caller subsystem, no difference can be made between the future object and the object that would have been returned if

Part III: Programming Chapter 12: ProActive Basis, Active Object
Definition

95

the same call had been issued onto a passive object. Then, the calling thread can continue executing its code just like if the
call had been effectively performed. The role of the future object is to block this thread if it invokes a method on the future
object and the result has not yet been set (i.e. the thread of the subsystem on which the call was received has not yet per-
formed the call and placed the result into the future object): this inter-object synchronization policy is known as wait-
by-necessity.

Figure 12.2. A call onto an active object as opposed to a call onto passive one

12.2. What is an active object

The active object is actually the composition of two objects: a body and a standard Java object. The body is not visible from the
outside of the active object, then everything looks like if the standard object was active.

The body is responsible for receiving calls on the active object, storing these calls in a queue of pending calls (we also call re-
quests. It also executes these calls in an order specified by a specific synchronization policy. If no specific synchronization policy
is provided, calls are managed in a FIFO manner (first come, first served)).

Then, the thread of an active object alternatively chooses a method in the queue of pending requests and executes it. It is important
to note that no parallelism is provided inside an active object. This is an important decision in the design of ProActive which en-
ables the use of pre-post conditions and class invariants.

On the side of the subsystem which sends a call to an active object, this active object is represented by a proxy, whose main re-
sponsibility is to generate future objects for representing future values, transform calls into Request objects (in terms of metaob-
ject, this is a reification) and perform deep-copy of passive objects passed as parameters.

Part III: Programming Chapter 12: ProActive Basis, Active Object
Definition

96

Chapter 13. Active Objects: creation and
advanced concepts
Active objects are created on a per-object basis: an application can contain active as well as passive instances of a given class. In
the remaining part of this section, we will consider that we want to create an active instance of class example.A. Although almost
any object can be turned into an Active Object, there are some restrictions that will be detailed below.

Any method call m done on a given instance a of A would result in the invocation of the method m on a by the caller thread. By
contrast, the same call done on the active object aa created from A would result into placing a request embedding the method call
for m in the request queue of the active object aa. Then, later on, the active thread of aa would eventually pick-up and serve the re-
quest for the method m. That would result in the invocation of m on the reified object a by the active thread.

The code for creating a passive instance of A could be:

A a = new A(26, "astring");

In ProActive there are two ways to create active objects. One way is to use ProActive.newActive and is based on the instantiation
of a new object, the other is to use ProActive.turnActive and is based on the use of an existing object.

13.1. Instantiation-Based Creation

When using instantiation-based creation, any argument passed to the constructor of the reified object through ProAct-
ive.newActive is serialized and passed by copy to the object. That's because the model behind ProActive is uniform whether the
active object is instantiated locally or remotely. The parameters are therefore guaranteed to be passed by copy to the constructor.
When using ProActive.newActive, one needs to make sure that the constructor arguments are Serializable. On the other hand,
the class used to create the active object does not need to be Serializable even in the case of remotely-created Active Objects.
Bear in mind also that a reified object must have a declared empty no-args constructor in order to be properly created.

A a;
Object[] params = new Object[] { new Integer (26), "astring" };
try {

a = (A) ProActive.newActive("example.A", params);
} catch (ActiveObjectCreationException e) {

// creation of ActiveObject failed
e.printStackTrace();

}
catch(NodeException ex){

ex.printStackTrace();
}

This code creates an active object of class A in the local JVM. If the invocation of the constructor of class A throws an exception, it
is placed inside an exception of type ActiveObjectCreationException. When the call to newActive returns, the active object has
been created and its active thread is started.

13.1.1. Possible ambiguities on the constructor

The first parameter of newActive is a string containing the fully-qualified name of the class we want to make active. Parameters to
the constructor have to be passed as an array of Object. Then, according to the type of the elements of this array, the ProActive
runtime determines which constructor of class A to call. Nevertheless, there is still room for some ambiguity in resolving the con-
structor because:

• As the arguments of the constructor are stored in an array of type Object[], primitive types have to be represented by their
wrappers object type. In the example above, we use an Integer object to wrap the int value 26. An ambiguity then arises if
two constructor of the same class only differ by converting a primitive type to its corresponding wrapper class. In the ex-
ample below, an ambiguity exists between the first and the second constructors.

• If one argument is null, the runtime can obviously not determine its type. This is the second source of ambiguity. In the ex-

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

97

ample below, an ambiguity exists between the third and the fourth constructors if the second element of the array is null.

public A (int i) {
//

}
public A (Integer i) {

//
}
public A (int i, String s) {

//
}
public A (int i, Vector v) {

//
}

13.1.2. Using a Node

It is possible to pass a third parameter to the call to newActive in order to create the new active object on a specific JVM, possibly
remote. The JVM is identified using a Node object that offers the minimum services ProActive needs on a given JVM to commu-
nicate with this JVM. If that parameter is not given, the active object is created in the current JVM and is attached to a default
Node.

A node is identified by a node URL which is formed using the protocol, the hostname hosting the JVM where is the node located
and the name of the node. The NodeFactory allows to create or lookup nodes. The method newActive can take in parameter a
nodeURL as a String or a Node object that points to an existing node. Here an example:

a = (A) ProActive.newActive("example.A", params, "rmi://pluto.inria.fr/aNode");
or

Node node = NodeFactory.getNode("rmi://pluto.inria.fr/aNode");
a = (A) ProActive.newActive("example.A", params, node);

13.2. Object-Based Creation

Object-based creation is used for turning an existing passive object instance into an active one. It has been introduced in ProActive
as an answer to the following problem. Consider, for example, that an instance of class A is created inside a library and returned as
the result of a method call. As a consequence, we do not have access to the source code where the object is created, which prevents
us for modifying it for creating an active instance of A. Even if it were possible, it may not be likely since we do not want to get an
active instance of A for every call on this method.

When using object based creation, you create the object that is going to be reified as an active object before hand. Therefore there
is no serialization involved when you create the object. When you invoke ProActive.turnActive on the object two cases are pos-
sible. If you create the active object locally (on a local node), it will not be serialized. If you create the active object remotely (on a
remote node), the reified object will be serialized. Therefore, if the turnActive is done on a remote node, the class used to create
the active object this way has to beSerializable. In addition, when using turnActive, care must be taken that no other references
to the originating object are kept by other objects after the call to turnActive. A direct call to a method of the originating object
without passing by a ProActive stub on this object will break the model.

Code for object-based creation looks like this:

A a = new A (26, "astring");
a = (A) ProActive.turnActive(a);

As for newActive, the second parameter of turnActive if given is the location of the active object to be created. No parameter or
null means that the active object is created locally in the current node.

When using this method, the programmer has to make sure that no other reference on the passive object a exist after the call to
turnActive. If such references were used for calling methods directly on the passive A (without going through its body), the model
would no more be consistent and specialization of synchronization could no more be guaranteed.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

98

13.3. Specifying the activity of an active object

Customizing the activity of the active object is at the core of ProActive because it allows to specify fully the behavior of an active
object. By default, an object turned into an active object serves its incoming requests in a FIFO manner. In order to specify another
policy for serving the requests or to specify any other behaviors one can implement interfaces defining methods that will be auto-
matically called by ProActive.

It is possible to specify what to do before the activity starts, what the activity is and what to do after it ends. The three steps are:

• the initialization of the activity (done only once)
• the activity itself
• the end of the activity (done only once)

Three interfaces are used to define and implement each step:

• InitActive (see code in Example C.16, “ InitActive.java ”)
• RunActive (see code in Example C.17, “ RunActive.java ”)
• EndActive (see code in Example C.18, “ EndActive.java ”)

In case of a migration, an active object stops and restarts its activity automatically without invoking the init or ending phases. Only
the activity itself is restarted.

Two ways are possible to define each of the three phases of an active object.

• Implementing one or more of the three interfaces directly in the class used to create the active object
• Passing an object implementing one or more of the three interfaces in parameter to the method newActive or turnActive

(parameter active in those methods)

Note that the methods defined by those 3 interfaces are guaranted to be called by the active thread of the active object.

13.3.1. Algorithms deciding which activity to invoke

The algorithms that decide for each phase what to do are the following (activity is the eventual object passed as a parameter to ne-
wActive or turnActive):

InitActive

if activity is non null and implements InitActive
we invoke the method initActivity defined in the object activity

else if the class of the reified object implements InitActive
we invoke the method initActivity of the reified object

else
we don't do any initialization

RunActive

if activity is non null and implements RunActive
we invoke the method runActivity defined in the object activity

else if the class of the reified object implements RunActive
we invoke the method runActivity of the reified object

else
we run the standard FIFO activity

EndActive

if activity is non null and implements EndActive
we invoke the method endActivity defined in the object activity

else if the class of the reified object implements EndActive
we invoke the method endActivity of the reified object

else

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

99

we don't do any cleanup

13.3.2. Implementing the interfaces directly in the class

Implementing the interfaces directly in the class used to create the active object is the easiest solution when you control the class
that you make active. Depending on which phase in the life of the active object you want to customize, you implement the corres-
ponding interface (one or more) amongst InitActive, RunActive and EndActive. Here is an example that has a custom initializa-
tion and activity.

import org.objectweb.proactive.*;
public class A implements InitActive, RunActive {

private String myName;
public String getName() {
return myName;

}
// -- implements InitActive
public void initActivity(Body body) {
myName = body.getName();
}
// -- implements RunActive for serving request in a LIFO fashion
public void runActivity(Body body) {

Service service = new Service(Body);
while (body.isActive()) {
service.blockingServeYoungest();

}
}
public static void main(String[] args) throws Exception {
A a = (A) ProActive.newActive("A",null);
System.out.println("Name = "+a.getName());
}

}

Example 13.1. Custom Init and Run

import org.objectweb.proactive.*;
public class Simulation implements RunActive {

private boolean stoppedSimulation=false;
private boolean startedSimulation=false
private boolean suspendedSimulation=false;
private boolean notStarted = true;
public void startSimulation(){
//Simulation starts
notStarted = false;
startedSimulation=true;
}
public void restartSimulation(){
//Simulation is restarted
startedSimulation=true;
suspendedSimulation=false;
}
public void suspendSimulation(){
//Simulation is suspended
suspendedSimulation=true;

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

100

startedSimulation = false;
}
public void stoppedSimulation(){
//Simulation is stopped
stoppedSimulation=true;
}
public void runActivity(Body body) {
Service service = new Service(Body);

while (body.isActive()) {
//If the simulation is not yet started wait until startSimulation method
if(notStarted) service.blockingServeOldest(startSimulation());
// If the simulation is started serve request with FIFO
if(startedSimulation) service.blockingServeOldest();
// If simulation is suspended wait until restartSimulation method
if(suspendedSimulation) service.blockingServeOldest(restartSimulation());
// If simulation is stopped, exit
if(stoppedSimulation) exit();
}

}

Example 13.2. Start, stop, suspend, restart a simulation algorithm in runActivity method

Even when an AO is busy doing its own work, it can remain reactive to external events (method calls). One just has to program
non-blocking services to take into account external inputs.

public class BusyButReactive implements RunActive {
public void runActivity(Body body) {
Service service = new Service(body);
while (! hasToTerminate) {

... // Do some activity on its own

...

... // Non blocking service

...
service.serveOldest("changeParameters", "terminate"); ...

}
}

public void changeParameters () {... // change computation parameters}
public void terminate (){ hasToTerminate=true;}
}

Example 13.3. Reactive Active Object

It also allows one to specify explicit termination of AOs (there is currently no Distributed Garbage Collector). Of course, the react-
ivity is up to the length of going around the loop.

13.3.3. Passing an object implementing the interfaces at creation-time

Passing an object implementing the interfaces when creating the active object is the solution to use when you do not control the
class that you make active or when you want to write generic activities policy and reused them with several active objects. De-
pending on which phase in the life of the active object you want to customize, you implement the corresponding interface (one or
more) amongst InitActive, RunActive and EndActive. Following is an example that has a custom activity.

Comparing to the solution above where interfaces are directly implemented in the reified class, there is one restriction here: you

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

101

cannot access the internal state of the reified object. Using an external object should therefore be used when the implementation of
the activity is generic enough not to have to access the member variables of the reified object.

import org.objectweb.proactive.*;
public class LIFOActivity implements RunActive {

// -- implements RunActive for serving request in a LIFO fashion
public void runActivity(Body body) {
Service service = new Service(Body);
while (body.isActive()) {

service.blockingServeYoungest();
}

}
}
import org.objectweb.proactive.*;
public class A implements InitActive {

private String myName;
public String getName() {
return myName;

}
// -- implements InitActive
public void initActivity(Body body) {
myName = body.getName();

}
public static void main(String[] args) throws Exception {
// newActive(classname, constructor parameter (null = none),
// node (null = local), active, MetaObjectFactory (null = default)
A a = (A) ProActive.newActive("A", null, null, new LIFOActivity(), null);
System.out.println("Name = "+a.getName());

}
}

13.4. Restrictions on reifiable objects

Not all classes can give birth to active objects. There exist some restrictions, most of them caused by the 100% Java compliance,
which forbids modifying the Java Virtual Machine or the compiler.

Some of these restrictions work at class-level:

• Final classes cannot give birth to active object
• Same thing for non-public classes
• Classes without a no-argument constructor cannot be reified. This restriction will be softened in a later release of ProActive

Some other happen at the level of a method in a specific class:

• Final methods cannot be used at all. Calling a final method on an active object leads to inconsistent behavior.
• Calling a non-public method on an active object raises an exception. This restriction disappeared with JDK 1.2.

13.5. Using the Factory Method Design Pattern

Creating an active object using ProActive might be a little bit cumbersome and requires more lines of code that for creating a regu-
lar object. A nice solution to this problem is through the use of the factory pattern. This mainly applies to class-based creation. It
consists in adding a static method to class pA that takes care of instantiating the active object and returns it. The code is:

public class AA extends A {
public static A createActiveA (int i, String s, Node node) {
Object[] params = new Object[] {new Integer (i), s};
try {

return (A) ProActive.newActive("A", params, node);
} catch (Exception e) {

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

102

System.err.println ("The creation of an active instance of A raised an exception: "+e);
return null;

}
}

}

It is up to the programmer to decide whether this method has to throw exceptions or not. We recommend that this method only
throws exceptions that appear in the signature of the reified constructor (none here as the constructor of A that we call doesn't
throw any exception). But the non functional exceptions induced by the creation of the active object have to be dealt with some-
where in the code.

13.6. Advanced: Customizing the Body of an Active Object

13.6.1. Motivations

There are many cases where you may want to customize the body used when creating an active object. For instance, one may want
to add some debug messages or some timing behavior when sending or receiving requests. The body is a non changeable object
that delegates most of its tasks to helper objects called MetaObjects. Standard MetaObjects are already used by default in ProAct-
ive but one can easily replace any of those MetaObjects by a custom one.

We have defined the MetaObjectFactory interface (see code in Example C.19, “ core/body/MetaObjectFactory.java ”) able to
create factories for each of those MetaObjects. This interface is implemented by ProActiveMetaObjectFactory (see code in Ex-
ample C.20, “ core/body/ProActiveMetaObjectFactory.java ”) which provides all the default factories used in ProActive.

When creating an active object, as we saw above, it is possible to specify which MetaObjectFactory to use for that particular in-
stance of active object being created. The class ProActive (see code in Example C.21, “ ProActive.java ”) provides extra newAct-
ive and turnActive methods for that:

ProActive.newActive(
java.lang.String,
java.lang.Object[],
org.objectweb.proactive.core.node.Node,
org.objectweb.proactive.Active,
org.objectweb.proactive.core.body.MetaObjectFactory)

ProActive.turnActive(
java.lang.Object,
org.objectweb.proactive.core.node.Node,
org.objectweb.proactive.Active,
org.objectweb.proactive.core.body.MetaObjectFactory)

13.6.2. How to do it

First you have to write a new MetaObject factory that inherits from ProActiveMetaObjectFactory (see code in Example C.20, “
core/body/ProActiveMetaObjectFactory.java ”) or directly implements the MetaObjectFactory interface (see code in Ex-
ample C.19, “ core/body/MetaObjectFactory.java ”), in order to redefine everything. Inheriting from ProActiveMetaObjectFact-
ory is a great time saver as you only redefine what you really need to. Here is an example:

public class MyMetaObjectFactory extends ProActiveMetaObjectFactory {
private static final MetaObjectFactory instance = new MyMetaObjectFactory();
protected MyMetaObjectFactory() {

super();
}
public static MetaObjectFactory newInstance() {

return instance;
}

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

103

//
// -- PROTECTED METHODS ---
//
protected RequestFactory newRequestFactorySingleton() {

return new MyRequestFactory();
}
//
// -- INNER CLASSES ---
//
protected class MyRequestFactory implements RequestFactory, java.io.Serializable {

public Request newRequest(MethodCall methodCall,
UniversalBody sourceBody, boolean isOneWay, long sequenceID) {

return new MyRequest(methodCall, sourceBody, isOneWay, sequenceID, server);
}

} // end inner class MyRequestFactory
}

The factory above simply redefines the RequestFactory in order to make the body use a new type of request. The method protec-
ted RequestFactory newRequestFactorySingleton() is one convenience method that ProActiveMetaObjectFactory (see code
in Example C.20, “ core/body/ProActiveMetaObjectFactory.java ”) provides to simplify the creation of factories as singleton.
More explanations can be found in the org.objectweb.proactive.core.body.ProActiveMetaObjectFactory javadoc. The use of
that factory is fairly simple. All you have to do is to pass an instance of the factory when creating a new active object. If we take
the same example as before we have:

Object[] params = new Object[] {new Integer (26), "astring"};
try {

A a = (A) ProActive.newActive("example.AA", params, null, null,
MyMetaObjectFactory.newInstance());

} catch (Exception e) {
e.printStackTrace() ;

}

In the case of a turnActive we would have:

A a = new A(26, "astring");
a = (A) ProActive.turnActive(a, null, null, MyMetaObjectFactory.newInstance());

13.7. Advanced: Role of the elements of an active object

In this section, we'll have a very close look at what happens when an active object is created. This section aims at providing a bet-
ter understanding of how the library works and where the restrictions of Proactive come from.

Consider that some code in an instance of class A creates an active object of class B using a piece of code like this:

B b;
Object[] params = {<some parameters for the constructor>};
try {
// We create an active instance of B on the current node
b = (B) ProActive.newActive("B", params);

} catch (Exception e) {
e.printStackTrace () ;

}

If the creation of the active instance of B is successful, the graph of objects is as described in figure below (with arrows denoting
references).

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

104

Figure 13.1. The components of an active object

The active instance of B is actually composed of 4 objects:

• a stub (Stub_B)
• a proxy (BodyProxy)
• a body (Body)
• an instance of B

13.7.1. Role of the stub

The role of the class Stub_B is to reify all method calls that can be performed through a reference of type B, and only these as
calling a method declared in a subclass of B through downcasting would result in a runtime error). Reifying a call simply means
constructing an object (in our case, all reified calls are instance of class MethodCall) that represents the call, so that it can be ma-
nipulated as any other object. This reified call is then processed by the other components of the active object in order to achieve the
behavior we expect from an active object.

The idea of using a standard object for representing elements of the language that are not normally objects (such as method calls,
constructor calls, references, types,...) is what metaobject programming is all about. The metaobject protocol (MOP) ProActive
is built on is described in Chapter 52, MOP: Metaobject Protocol but it is not a prerequisite for understanding and using ProAct-
ive.

As one of our objectives is to provide transparent active objects, references to active objects of class B need to be of the same type
as references to passive instances of B (this feature is called polymorphism between passive and active instances of the same
class). This is why, by construction, Stub_B is a subclass of class B, therefore allowing instances of class Stub_B to be assigned
to variables of type B.

Class Stub_B redefines each of the methods inherited from its superclasses. The code of each method of class Stub_B actually
builds an instance of class MethodCall in order to represent the call to this method. This object is then passed to the BodyProxy,
which returns an object that is returned as the result of the method call. From the caller's point of view, everything looks like if the
call had been performed on an instance of B.

Now that we know how stubs work, we can understand some of the limitations of ProActive:

• Obviously, Stub_B cannot redefine final methods inherited from class B. Therefore, calls to these methods are not reified
but are executed on the stub, which may lead to unexplainable behavior if the programmer does not carefully avoid calling
final methods on active objects.

As there are 6 final methods in the base class Object, one may wonder how to live without them. In fact, 5 out of this 6
methods deal with thread synchronization (notify(), notifyAll() and the 3 versions of wait()). Those method should not be
used since an active object provides thread synchronization. Indeed, using the standard thread synchronization mechanism
and ProActive thread synchronization mechanism at the same time might conflict and result in an absolute debugger's night-
mare.

The last final method in the class Object is getClass(). When invoked on an active object, getClass() is not reified and
therefore performed on the stub object, which returns an object of class Class that represents the class of the stub (Stub_B

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

105

in our example) and not the class of the active object itself (B in our example). However, this method is seldom used in
standard applications and it doesn't prevent the operator instanceof to work thanks to its polymorphic behavior. Therefore
the expression (foo instanceof B) has the same value whether B is active or not.

• Getting or setting instance variables directly (not through a getter or a setter) must be avoided in the case of active objects
because it results in getting or setting the value on the stub object and not on the instance of the class B. This problem is usu-
ally worked around by using get/set methods for setting or reading attributes. This rule of strict encapsulation may also be
found in JavaBeans or in most distributed object systems like RMI or CORBA.

13.7.2. Role of the proxy

The role of the proxy is to handle asynchronism in calls to active object. More specifically, it creates future objects if possible and
needed, forwards calls to bodies and returns future objects to the stubs. As this class operates on MethodCall objects, it is abso-
lutely generic and does not depend at all on the type of the stub that feeds calls in through its reify method.

13.7.3. Role of the body

The body is responsible for storing calls (actually, Request objects) in a queue of pending requests and processing these request
according to a given synchronization policy, whose default behavior is FIFO. The Body has its own thread, which alternatively
chooses a request in the queue of pending ones and executes the associated call.

13.7.4. Role of the instance of class B

This is a standard instance of class B. It may contain some synchronized information in its live method, if any. As the body ex-
ecutes calls one by one, there cannot be any concurrent execution of two portions of code of this object by two different threads.
This enables the use of pre- and post-conditions and class invariants. As a consequence, the use of the keyword synchronized in
class B should not be necessary. Any synchronization scheme that can be expressed through monitors and synchronized state-
ments can be expressed using ProActive's high-level synchronization mechanism in a much more natural and user-friendly way.

13.8. Asynchronous calls and futures

13.8.1. Creation of a Future Object

Whenever possible a method call on an active object is reified as an asynchronous request. If not possible the call is synchronous
and blocks until the reply is received. In case the request is asynchronous, it immediately returns a future object.

This object acts as a placeholder for the result of the not-yet-performed method invocation. As a consequence, the calling thread
can go on with executing its code, as long as it doesn't need to invoke methods on the returned object, in which case the calling
thread is automatically blocked if the result of the method invocation is not yet available. Below are shown the different cases that
can lead to an asynchronous call.

Return type Can throw checked exception Creation of a future Asynchronous

void - No Yes

Non Reifiable Object - No No

Reifiable Object Yes No No

Reifiable Object No Yes Yes

Table 13.1. Future creation, and asynchronous calls depending on return type

As we can see, the creation of a future depends not only on the caller type, but also on the return object type. Creating a future is
only possible if the object is reifiable. Note although having a quite similar structure as an active object, a future object is not act-
ive. It only has a Stub and a Proxy as shown in figure below:

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

106

Figure 13.2. A future object

During its lifetime, an active object can create many future objects. There are all automatically kept in a FuturePool.

Each time a future is created, it is inserted in the future pool of the corresponding active object. When the result becomes available,
the future object is removed from the pool. Although most of the methods of the FuturePool are for internal use only and are dir-
ectly called by the proactive library we provide a method to wait until a result becomes available. Instead of blocking until a spe-
cific future is available, the call to waitForReply() blocks until any of the current futures become available. An application can be
found in the FutureList class.

13.8.1.1. HashCode and equals

Any call to a future object is reified in order to be blocked if the future is not yet available and later executed on the result object.
However, two methods don't follow this scheme: equals and hashCode. They are often called by other methods from the Java lib-
rary, like HashTable.add() and so are most of the time out of control from the user. This can lead very easily to deadlocks if they
are called on a not yet available object.

13.8.1.2. hashCode()

Instead of returning the hashcode of the object, it returns the hashcode of its proxy. Since there is only one proxy per future object,
there is a unique equivalence between them.

13.8.1.3. equals()

The default implementation of equals() in the Object class is to compare the references of two objects. In ProActive it is redefined
to compare the hashcode of two proxies. As a consequence it is only possible to compare two future object, and not a future object
with a normal object.

There are some drawbacks with this technique, the main one being the impossibility to have a user override the default HashTable
and equals() methods.

13.8.1.4. toString()

The toString() method is most of the time called with System.out.println() to turn an object into a printable string. In the current
implementation, a call to this method will block on a future object like any other call, thus, one has to be careful when using it. As
an example, trying to print a future object for debugging purpose will most of the time lead to a deadlock. Instead of displaying the
corresponding string of a future object, you might consider displaying its hashCode.

13.8.2. Asynchronous calls in details

13.8.2.1. The setup

First, let's introduce the example we'll use throughout this section. Let us say that some piece of code in an instance of class A calls
method foo on an active instance of class B. This call is asynchronous and returns a future object of class V. Then, possibly after
having executed some other code, the same thread that issued the call calls method bar on the future object returned by the call to
foo.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

107

13.8.2.2. What would have happened in a sequential world

In a sequential, single-threaded version of the same application, the thread would have executed the code of the calling method in
class A up to the call of foo, then the code of foo in class B, then back to the code of the calling method in class A up to the call to
bar, then the code of bar in class V, and finally back to the code of the calling method in class A until its end. The sequence dia-
gram below summarizes this execution. You can notice how the single thread successively executes code of different methods in
different classes.

Figure 13.3. Sequence Diagram - single-threaded version of the program

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

108

13.8.2.3. Visualizing the graph of objects

Let us first get an idea of what the graph of objects at execution (the objects with their references to each other) looks like at three
different moments of the execution:

• Before calling foo, we have exactly the same setup as after the creation of the active instance of B and summarized in the
figure below: an instance of class A and an active instance of class B. As all active objects, the instance of class B is com-
posed of a stub (an instance of class Stub_B, which actually inherits directly from B), a BodyProxy, a Body and the actual
instance of B.

Figure 13.4. The components of an active object

• After the asynchronous call to foo has returned, A now holds a reference onto a future object representing the not-
yet-available result of the call. It is actually composed of a Stub_V and a FutureProxy as shown on the figure below.

Figure 13.5. The components of a future object before the result is set

• Right after having executed foo on the instance of B, the thread of the Body sets the result in the future, which results in the
FutureProxy having a reference onto a V (see figure below).

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

109

Figure 13.6. All components of a future object

13.8.2.4. Sequence Diagram

Let us now concentrate on how and when and by which thread the different methods are called. We have two threads: the thread
that belongs to the subsystem A is part of (let's call it the first thread), and the thread that belongs to the subsystem B is part of
(the second thread).

The first thread invokes foo on an instance of Stub_B, which builds a MethodCall object and passes it to the BodyProxy as a
parameter of the call to reify. The proxy then checks the return type of the call (in this case V) and generates a future object of type
V for representing the result of the method invocation. The future object is actually composed of a Stub_V and a FutureProxy. A
reference onto this future object is set in the MethodCall object, which will prove useful once the call is executed. Now that the
MethodCall object is ready, it is passed as a Request to the Body of the Active Object as a parameter. The body simply appends
this request to the queue of pending requests and returns immediately. The call to foo that an A issued now returns a future object
of type Stub_V, that is a subclass of V.

At some point, possibly after having served some other requests, the second thread (the active thread) picks up the request issued
by the first thread some time ago. It then executes the embedded call by calling foo on the instance of B with the actual paramet-
ers stored in the MethodCall object. As specified in its signature, this call returns an object of type V. The second thread is then
responsible for setting this object in the future object (which is the reason why MethodCall objects hold a reference on the future
object created by the FutureProxy). The execution of the call is now over, and the second thread can select another request to
serve in the queue and execute it.

In the meantime, the first thread has continued executing the code of the calling method in class A. At some point, it calls bar on
the object of type Stub_V that was returned by the call to foo. This call is reified thanks to the Stub_V and processed by the Fu-
tureProxy. If the object the future represents is available (the second thread has already set it in the future object, which is de-
scribed in figure below, the call is executed on it and returns a value to the calling code in A.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

110

Figure 13.7. Sequence Diagram

If it is not yet available, the first thread is suspended in FutureProxy until the second thread sets the result in the future object (see
figure below).

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

111

Figure 13.8. Sequence Diagram

13.8.3. Important Notes: Errors to avoid

There are few things to remember with asynchronous method calls and futures, in order to avoid annoying debugging sessions:

• Constructor with no-args: this constructor will be used either for the Active Objects creation(if not present, an exception
might be thrown) or Future creation for a method call (if not present, the method call is synchronous). Avoid to put initializ-
ation stuff in this constructor, as it might lead to unexpected behavior. Indeed this constructor is called for the stub creation.

• Make your classes implement Serializable interface since ProActive deals with objects that cross the network
•

Think to use wrappers instead of primitive types or final classes for methods result type otherwise you will loose the asyn-
chronism capabilities. For instance if one of your object has a method

int giveSolution(parameter)

calling this method with ProActive is sychronous. So to keep the asynchronism it is advised to use

IntWrapper giveSolution(parameter)

In that case call to this method is asynchronous.

All wrappers are in the package: org.objectweb.proactive.core.util.wrapper

ProActive provides more used primitive type wrappers, there are 2 versions of each, one mutable, and the other which is
immutable.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

112

Only the methods return type are concerned not the parameters.
• Avoid to return null in Active Object methods: on the caller side the test if(result_from_method == null) has no sense. In-

deed result_from_method is a couple Stub-FutureProxy as explained above, so even if the method returns null, res-
ult_from_method cannot be null:

public class MyObject{
public MyObject(){
//empty constructor with no-args
}

public Object getObject{
if(.....) {
return new Object();
}
else {
return null; --> to avoid in ProActive
}
}

}

On the caller side:

MyObject o = new MyObject();
Object result_from_method = o.getObject();
if(result_from_method == null){
......
}

This test is never true, indeed, result_from_method is Stub-->Proxy-->null if the future is not yet available or the method
returns null or Stub-->Proxy-->Object if the future is available, but result_from_method is never null.

13.9. Automatic Continuation in ProActive

13.9.1. Objectives

An Automatic Continuation is due to the propagation of a future outside the activity that has sent the corresponding request.

Automatic Continuations allow to pass in parameter or return as a result future objects(or objects containing a future) without
blocking to wait the result object of the future. When the result is available on the object that originated the creation of the future,
this object must update the result in all objects to which it passed the future.

13.9.2. Principles

• Message sending
• Automatic Continuations can occur when sending a request (parameter of the request is a future or contains a future) or

when sending a reply (the result is a future or contains a future).

Outgoing futures are registered in the FuturePool of the Active Object sending this future(request or reply). Registration for
couple(Future,BodyDestination) as an Automatic Continuation occurs when the future is serialized(indeed every request or
reply are serialized before being sent, and the future is part of the request or the reply). More precisely, a thread T sending
the message(request or reply)---therefore the thread doing the serialization---, keeps in a static table (Future-
Pool.bodyDestination) a reference of the destination body. Hence when a future F is serialized by the same thread T(since
futures are part of request or reply, it is the same thread serializing the request --or reply-- and the future), it looks up in the
static table, if there is a destination D registered for the thread T. If true, the future notifies its FuturePool (that it is going to
leave), which in turn registers couple (F,D) as an Automatic Continuation

When value V is available for the future F, V is propagated to all objects that received the fututre F. This Update is realized
by a particular thread located in the FuturePool.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

113

• Message reception
• When a message is received(request or reply) by an Active Object, this message can contain a future. So the Active Object

registers this future in the FuturePool to be able to update it when the value will be available. This registration takes place
in two steps:
• When the future is deserialized, it registers in a static table (FuturePool.incomingFutures
• In Receive[Request-Reply] method, it is checked if one or many futures are registerd in that table, then, if true these fu-

tures are registerd in the FuturePool in a standart way.

13.9.3. Example

The following piece of code shows both cases: passing a future as parameter or as a result.

class C {
....

public static void main(String[] args){
......
A a = newActive(A);
A b = newActive(B);
Result r1 = a.foo(); //r1 is a future
Result r2 = b.bar(r1); //r1 is passed as parameter
Result r3 = b.bar2(); // see **
........
} //end of main

...
} //end of class C

where

class A {
...

public Result foo(){
...
}

...
} //end of class A

and

class B {
...

public Result bar (Result r) {
...
}

public Result bar2 () {
A a = newActive(A);

return a.foo(); // ** future is sent as a result
}

} //end of class B

13.9.4. Illustration of an Automatic Continuation

We will illustrate here how a future is first created, then passed as parameter to a method later on.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

114

Let us say that some piece of code in main method of an object C calls method foo() on an instance of class A.

This call is asynhronous and returns a future object Future_r1 of class Result.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

115

Then method bar() is called on an instance of class B passing future Future_r1 as a parameter to the method

This call is asynhronous and returns a future object Future_r2 of class Result. B needs the value of Future_r1 which is not yet
available in order to return the result of method bar(), so it gets the future too.

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

116

The value of the result for the call to method foo is now available, so A updates the value of Future_r1

C updates the value of Future_r1 for B

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

117

B returns the value for the call to method bar() and updates the value of Future_r2 for C

13.10. The Hello world example

This example implements a very simple client-server application. A client object display a String received from a remote server.
We will see how to write classes from which active and remote objects can be created, how to find a remote object and how to in-
voke methods on remote objects.

13.10.1. The two classes

Only two classes are needed: one for the server object Hello and one for the client that accesses it HelloClient.

13.10.1.1. The Hello class

This class implements server-side functionalities. Its creation involves the following steps:

• Provide an implementation for the required server-side functionalities
• Provide an empty, no-arg constructor
• Write a main method in order to instantiate one server object and register it with an URL.

public class Hello {
private String name;
private String hi = "Hello world";
private java.text.DateFormat dateFormat = new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss");
public Hello() {
}
public Hello(String name) {

this.name = name;
}
public String sayHello() {

return hi + " at " + dateFormat.format(new java.util.Date())+
" from node: " + org.objectweb.proactive.ProActive.getBodyOnThis().getNodeURL();

}
public static void main(String[] args) {

// Registers it with an URL
try {
// Creates an active instance of class HelloServer on the local node
Hello hello = (Hello)org.objectweb.proactive.ProActive.newActive(Hello.class.getName(),

new Object[]{"remote"});
java.net.InetAddress localhost = java.net.InetAddress.getLocalHost();

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

118

org.objectweb.proactive.ProActive.register(hello, "//" + localhost.getHostName() + "/Hello");
} catch (Exception e) {

System.err.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

Example 13.4. A possible implementation for the Hello class:

13.10.1.1.1. Implement the required functionalities

Implementing any remotely-accessible functionality is simply done through normal Java methods in a normal Java class, in exactly
the same manner it would have been done in a non-distributed version of the same class. This has to be contrasted with the RMI
approach, where several more steps are needed:

• Define a remote interface for declaring the remotely-accessible methods.
• Rewrite the class so that it inherits from java.rmi.server.UnicastRemoteObject, which is the root class of all remote ob-

jects.
• Add remote exceptions handling to the code.

13.10.1.1.2. Why an empty no-arg constructor?

You may have noticed that class Hello has a constructor with no parameters and an empty implementation. The presence of this
empty no-arg constructor is imposed by ProActive and is actually a side-effect of ProActive's transparent implementation of active
remote objects (as a matter of fact, this side-effect is caused by ProActive being implemented on top of a 100% Java metaobject
protocol). If no such constructor is provided, active objects cannot be created.

If no constructor at all is provided, active objects can still be created because, in this specific case, all Java compilers provide a de-
fault no-arg empty constructor. If a no-arg constructor is provided but its implementation is not empty, unwanted behavior may ap-
pear because the no-arg constructor is always called when an active object is created, whatever code the user can write.

13.10.1.1.3. Creating the remote Hello object

Now that we know how to write the class that implements the required server-side functionalities, let us see how to create the serv-
er object. In ProActive, there is actually no difference between a server and a client object as both are remote objects.Creating the
active object is done through instantiation-based creation. We want this active object to be created on the current node, which is
why we use newActive with only two parameters. In order for the client to obtain an initial reference onto this remote object, we
need to register it in the registry (which is actually the well-known rmiregistry) with a valid RMI URL.

13.10.1.2. The HelloClient Class

The responsibility of this class is first to locate the remote server object, then to invoke a method on it in order to retrieve a mes-
sage, and finally display that message.

public class HelloClient {
public static void main(String[] args) {

Hello myServer;
String message;
try {

// checks for the server's URL
if (args.length == 0) {
// There is no url to the server, so create an active server within this VM
myServer = (Hello)org.objectweb.proactive.ProActive.newActive(Hello.class.getName(),

new Object[]{"local"});
} else {
// Lookups the server object

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

119

System.out.println("Using server located on " + args[0]);
myServer = (Hello)org.objectweb.proactive.ProActive.lookupActive(Hello.class.getName(),

args[0]);
}
// Invokes a remote method on this object to get the message
message = myServer.sayHello();
// Prints out the message
System.out.println("The message is: " + message);

} catch (Exception e) {
System.err.println("Could not reach/create server object");
e.printStackTrace();
System.exit(1);

}
}

}

Example 13.5. HelloClient.java

13.10.1.2.1. Looking up a remote object

The operation of lookup simply means obtaining a reference onto an object from the URL it is bound to. The return type of meth-
od Proactive.lookupActive() is Object, then we need to cast it down into the type of the variable that holds the reference (Hello
here). If no object is found at this URL, the call to Proactive.lookupActive() returns null.

13.10.1.2.2. Invoking a method on a remote object

This is exactly like invoking a method on a local object of the same type. The user does not have to deal with catching distribution
related exceptions like, for example, when using RMI or CORBA. Future versions of ProActive will provide an exception handler
mechanism in order to process these exceptions in a separate place than the functional code. As class String is final, there cannot
be any asynchronism here since the object returned from the call cannot be replaced by a future object (this restriction on final
classes is imposed by ProActive's implementation).

13.10.1.2.3. Printing out the message

As already stated, the only modification brought to the code by ProActive is located at the place where active objects are created.
All the rest of the code remains the same, which fosters software reuse.

13.10.2. Hello World within the same VM

In order to run both the client and server in the same VM, the client creates an active object in the same VM if it doesn't find the
server's URL. The code snippet which instantiates the Server in the same VM is the following:

if (args.length == 0) {
// There is no url to the server, so create an active server within this VM
myServer = (Hello)org.objectweb.proactive.ProActive.newActive(

Hello.class.getName(), new Object[]{"local"});
}

To launch the Client and the Server, just type:

linux> java -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient

windows> java -Djava.security.policy=scripts\unix\proactive.java.policy
-Dlog4j.configuration=file:scripts\unix\proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient &

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

120

13.10.3. Hello World from another VM on the same host

13.10.3.1. Starting the server

Just start the main method in the Hello class.

linux> java -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.Hello &

windows> java -Djava.security.policy=scripts\proactive.java.policy
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.Hello

13.10.3.2. Launching the client

linux> java -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient //localhost/Hello &

windows> java -Djava.security.policy=scripts\proactive.java.policy
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient //localhost/Hello

13.10.4. Hello World from abroad: another VM on a different host

13.10.4.1. Starting the server

Log on to the server's host, and launch the Hello class.

linux remoteHost> java -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.Hello &

windows remoteHost> java -Djava.security.policy=scripts\proactive.java.policy
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.Hello

13.10.4.2. Launching the client

Log on to the client Host, and launch the client

linux clientHost> java -cp $CLASSPATH -Djava.security.policy=scripts/proactive.java.policy
-Dlog4j.configuration=file:scripts/proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient //remoteHost/Hello &

windows clientHost> java -cp $CLASSPATH -Djava.security.policy=scripts\proactive.java.policy
-Dlog4j.configuration=file:scripts\proactive-log4j
org.objectweb.proactive.examples.hello.HelloClient //remoteHost/Hello

Note

There is also a Guided Tour section on the Hello world example: Chapter 6, Hands-on programming

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

121

Part III: Programming Chapter 13: Active Objects: creation and ad-
vanced concepts

122

Chapter 14. Typed Group Communication
14.1. Overview

Group communication is a crucial feature for high-performance and Grid computing. While previous works and libraries proposed
such a characteristic (e.g. MPI, or object-oriented frameworks), the use of groups imposed specific constraints on programmers, for
instance the use of dedicated interfaces to trigger group communications.

We aim at a more flexible mechanism. We propose a scheme where, given a Java class, one can initiate group communications us-
ing the standard public methods of the class together with the classical dot notation; in that way, group communications remains
typed.

In order to ease the use of the group communication, we provide a set of static methods on the ProActiveGroup class and a set of
methods on the Group interface.

Here, a short compilation about the syntax and some method used in the Group Communication API is presented. More informa-
tions follow.

// created at once,
// with parameters specified in params,
// and on the nodes specified in nodes

A ag1 = (A) ProActiveGroup.newGroup('A', params, [nodes]);
// A general group communication without result
// A request to foo is sent in parallel to all active objects
// in the target group (ag1)

ag1.foo(...);
// A general group communication with a result

V vg = ag1.bar(...);
// vg is a typed group of 'V': operation
// below is also a collective operation
// triggered on results

vg.f1();

14.2. Creation of a Group

Any object that is reifiable has the ability to be included in a group. Groups are created using the static method ProActive-
Group.newGroup. The common superclass for all the group members has to be specified, thus giving the group a minimal type.

Let us take a standard Java class:

class A {
public A() {}
public void foo (...) {...}
public V bar (...) {...}
...

}

Here are examples of some group creation operations:

// Pre-construction of some parameters:
// For constructors:

Object[][] params = {{...} , {...} , ... };
// Nodes to identify JVMs to map objects

Node[] nodes = { ... , ..., ... };
// Solution 1:

Part III: Programming Chapter 14: Typed Group Communication

123

// create an empty group of type 'A'
A ag1 = (A) ProActiveGroup.newGroup('A');

// Solution 2:
// a group of type 'A' and its members are
// created at once,
// with parameters specified in params,
// and on the nodes specified in nodes

A ag2 = (A) ProActiveGroup.newGroup('A', params, nodes);
// Solution 3:
// a group of type 'A' and its members are
// created at once,
// with parameters specified in params,
// and on the nodes directly specified

A ag3 = (A) ProActiveGroup.newGroup('A', params[],
{rmi://globus1.inria.fr/Node1,
rmi://globus2.inria.fr/Node2});

Elements can be included into a typed group only if their class equals or extends the class specified at the group creation. For ex-
ample, an object of class B (B extending A) can be included to a group of type A. However based on Java typing, only the methods
defined in the class A can be invoked on the group.

14.3. Group representation and manipulation

The typed group representation we have presented corresponds to the functional view of groups of objects. In order to provide a
dynamic management of groups, a second and complementary representation of a group has been designed. In order to manage a
group, this second representation must be used instead. This second representation, the management representation, follows a
more standard pattern for grouping objects: the Group interface.

We are careful to have a strong coherence between both representations of the same group, which implies that modifications ex-
ecuted through one representation are immediately reported on the other one. In order to switch from one representation to the oth-
er, two methods have been defined : the static method named ProActiveGroup.getGroup, returns the Group form associated to
the given group object; the method getGroupBytype defined in the Group interface does the opposite.

Below is an example of when and how to use each representation of a group:

// definition of one standard Java object
// and two active objects

A a1 = new A();
A a2 = (A) ProActive.newActive('A', paramsA[], node);
B b = (B) ProActive.newActive('B', paramsB[], node);

// Note that B extends A
// For management purposes, get the representation
// as a group given a typed group, created with
// code on the left column:

Group gA = ProActiveGroup.getGroup(ag1);
// Now, add objects to the group:
// Note that active and non-active objects
// may be mixed in groups

gA.add(a1);
gA.add(a2);
gA.add(b);

// The addition of members to a group immediately
// reflects on the typed group form, so a method
// can be invoked on the typed group and will
// reach all its current members

ag1.foo(); // the caller of ag1.foo() may not belong to ag1
// A new reference to the typed group
// can also be built as follows

A ag1new = (A) gA.getGroupByType();

Part III: Programming Chapter 14: Typed Group Communication

124

14.4. Group as result of group communications

The particularity of our group communication mechanism is that the result of a typed group communication is also a group. The
result group is transparently built at invocation time, with a future for each elementary reply. It will be dynamically updated with
the incoming results, thus gathering results. Nevertheless, the result group can be immediately used to execute another method call,
even if all the results are not available. In that case the wait-by-necessity mechanism implemented by ProActive is used.

// A method call on a group, returning a result
V vg = ag1.bar();

// vg is a typed group of 'V': operation
// below is also a collective operation
// triggered on results

vg.f1();

As said in the Group creation section, groups whose type is based on final classes or primitive types cannot be built. So, the con-
struction of a dynamic group as a result of a group method call is also limited. Consequently, only methods whose return type is
either void or is a 'reifiable type', in the sense of the Meta Object Protocol of ProActive, may be called on a group of objects; other-
wise, they will raise an exception at run-time, because the transparent construction of a group of futures of non-reifiable types fails.

To take advantage with the asynchronous remote method call model of ProActive, some new synchronization mechanisms have
been added. Static methods defined in the ProActiveGroup class enable to execute various forms of synchronisation. For instance:
waitOne, waitN, waitAll, waitTheNth, waitAndGet. Here is an exemple:

// A method call on a typed group
V vg = ag1.bar();

// To wait and capture the first returned
// member of vg

V v = (V) ProActiveGroup.waitAndGetOne(vg);
// To wait all the members of vg are arrived

ProActiveGroup.waitAll(vg);

14.5. Broadcast vs Dispatching

Regarding the parameters of a method call towards a group of objects, the default behaviour is to broadcast them to all members.
But sometimes, only a specific portion of the parameters, usually dependent of the rank of the member in the group, may be really
useful for the method execution, and so, parts of the parameter transmissions are useless. In other words, in some cases, there is a
need to transmit different parameters to the various members.

A common way to achieve the scattering of a global parameter is to use the rank of each member of the group, in order to select
the appropriate part that it should get in order to execute the method. There is a natural traduction of this idea inside our group
communication mechanism:the use of a group of objects in order to represent a parameter of a group method call that must
be scattered to its members.

The default behaviour regarding parameters passing for method call on a group, is to pass a deep copy of the group of type P to all
members. Thus, in order to scatter this group of elements of type P instead, the programmer must apply the static method setScat-
terGroup of the ProActiveGroup class to the group. In order to switch back to the default behaviour, the static method unsetS-
catterGroup is available.

// Broadcast the group gb to all the members
// of the group ag1:

ag1.foo(gb);
// Change the distribution mode of the
// parameter group:

ProActiveGroup.setScatterGroup(gb);
// Scatter the members of gb onto the

Part III: Programming Chapter 14: Typed Group Communication

125

// members of ag1:
ag1.foo(gb);

To learn more, see the javadoc of org.objectweb.proactive.core.group and the paper [BBC02].

Part III: Programming Chapter 14: Typed Group Communication

126

Chapter 15. OOSPMD
15.1. OOSPMD: Introduction

SPMD stands for Single Program Multiple Data. Merged into an object-oriented framework, an SPMD programming model be-
comes an OOSPMD programming model.

The typed group communication system can be used to simulate MPI-style collective communication. Contrary to MPI that re-
quires all members of a group to collectively call the same communication primitive, our group communication scheme let the pos-
sibility to one activity to call a method on the group.

The purpose of the our group communication is to free the programmer from having to implement the complex communication
code required for setting identical group in each SPMD activity, group communication, thereby allowing the focus to be on the ap-
plication itself.

This page presents the mechanism of typed group communication as an new alternative to the old SPMD programming model.
While being placed in an object-oriented context, this mechanism helps the definition and the coordination of distributed activities.
The approach offers, through modest size API, a better structuring flexibility and implementation. The automation of key commu-
nication mechanisms and synchronization simplifies the writing of the code.

The main principle is rather simple: an spmd group is a group of active objects where each one has a group referencing all the act-
ive objects.

15.2. SPMD Groups

An spmd group is a ProActive typed group built with the ProSPMD.newSPMDGroup() method. This method looks like the Pro-
ActiveGroup.newGroup(); they have similar behavior (and overloads). The difference is that each members of an spmd group
have a reference to a group containing all the others members and itself (i.e. a reference to the spmd group itself).

Given a standard Java class:

class A {
public A() {}
public void foo (...) {...}
public void bar (...) {...}
...

}

The spmd group is built as follow:

Object[][] params = {{...} , {...} , ... };
Node[] nodes = { ... , ..., ... };
A agroup = (A) ProSPMD.newSPMDGroup('A', params[], nodes);

Object members of an spmd group are aware about the whole group. They can obtain some informations about the spmd group
they belong to such as the size of the group, their rank in the group, and a reference to the group in order to get more informations
or to communicate with method invocations. Those informations are respectively obtained using the static methods getMySPMD-
GroupSize(), getMyRank(), and getSPMDGroup() of the ProSPMD class.

15.3. Barrier: Introduction

ProActive provides three kinds of barrier to synchronize activities. The feature is specially useful in a SPMD programming style.
A barrier stops the activity of the active object that invokes it until a special condition is satisfied. Notice that, as the opposite of
MPI or such libraries, the ProActive barriers do not stop the current activity immediately (when the barrier method is en-
countered). The current method actually keeps on executing until the end. The barrier will be activated at the end of the service: no
other service will be started until all the AOs involved in the barrier are at that same point.

Part III: Programming Chapter 15: OOSPMD

127

The three barriers are named:

• the Total Barrier
• the Neighbor Barrier
• the Method-based Barrier

Here is a presentation about how to use those barriers.

15.4. Total Barrier

Total barrier directly involves the spmd group. A call to barrier(String) will block until all the members in the spmd group have
themselves reach and called the identical ProSPMD.barrier() primitive. A call communicates with all the members of the spmd
group. The barrier is released when the Active Object has received a barrier message from all other members of the spmd group
(including itself).

The string parameter is used as unique identity name for the barrier. It is the programmer responsibility to ensure that two (or
more) different barriers with the same id name are not invoked simultaneously.

Let us take a Java class that contains a method calling a total barrier, here the method foo:

class A {
public A() {}
public void foo (...) {

...
ProSPMD.barrier('MyBarrier');

}
public void bar (...) {...}
...

}

Note that usually, strings used as unique ID are more complex; they can be based on the full name of the class or the package
(org.objectweb.proactive.ClassName), for example. The spmd group is built as follow:

Object[][] params = {{...} , {...} , ... };
Node[] nodes = { ... , ..., ... };
A agroup = (A) ProSPMD.newSPMDGroup('A', params[], nodes);

Here the main method of our application:

agroup.foo();
agroup.bar();

The call to barrier launched by all members (in the invocation of foo) ensures that no one will initiate the bar method before all
the foo methods end.

The programmer have to ensure that all the members of an spmd group call the barrier method otherwise the members of the
group may indefinitely wait.

15.5. Neighbor barrier

The Neighbor barrier is a kind of light weighted barrier, involving not all the member of an spmd group, but only the Active Ob-
jects specified in a given group.

barrier(String,group) initiates a barrier only with the objects of the specified group. Those objects, that contribute to the end of
the barrier state, are called neighbors as they are usually local to a given topology, An object that invoke the Neighbor barrier
HAVE TO BE IN THE GROUP given as parameter. The barrier message is only sent to the group of neighbors.

Part III: Programming Chapter 15: OOSPMD

128

The programmer has to explicitly build this group of neighbors. The topology API can help him or her to build such group. Topo-
logies are groups. They just give special access to their members or (sub)groups members. For instance, a matrix fits well with the
topology Plan that provides methods to get the reference of neighbor members (left, right, up, down). See the javadoc of the to-
pology package for more information:

org.objectweb.proactive.core.group.topology

Like for the Total barrier, the string parameter represents a unique identity name for the barrier. The second parameter is the group
of neighbors built by the programmer. Here is an example:

ProSPMD.barrier('MyString', neighborGroup);

Refer to the Jacobi example to see a use of the Neighbor barrier. Each submatrix needs only to be synchronized with the submat-
rixes which it is in contact.

This barrier increases the asynchronism and reduce the amount of exchanged messages.

15.6. Method Barrier

The Method barrier does no more involve extra messages to communicate (i.e. the barrier messages). Communications between
objects to release a barrier are achieved by the standard method call and request reception of ProActive.

The method barrier(String[]) stops the active object that calls it, and wait for a request on the specified methods to resume. The
array of string contains the name of the awaited methods. The order of the methods does not matter. For example:

ProSPMD.barrier({'foo', 'bar', 'gee'});

The caller will stop and wait for the three methods. bar or gee can came first, then foo. If one wants wait for foo, then wait for bar,
then wait for gee, three calls can be successively done:

ProSPMD.barrier({'foo'});
ProSPMD.barrier({'bar'});
ProSPMD.barrier({'gee'});

A method barrier is used without any group (spmd or not). To learn more on Groups, please refer to Chapter 14, Typed Group
Communication.

15.7. When does a barrier get triggered?

Barriers are not triggered at the place they are declared in the code. Instead, they are run at the end of the method. Look at this
code:

public void MyMethodWithBarrier () {
foo();
ProSPMD.barrier("barrier");
bar();
}

In this case, the call to bar() will be made BEFORE the barrier is really triggered. In fact, the barriers only start blocking at the
END of the method. If you use something like this.asyncRefToSelf.bar(), it's ok, because then this call is put on the request
queue, and will be effectively run AFTER the end of the current method. But if, like in the previous case (with the bar() method),
a call is declared before the end of the method, then the barrier will be run after this call is made.

To enforce the barrier, you should make the barrier the last action of your method, or you can use this trick:

Part III: Programming Chapter 15: OOSPMD

129

foo();
ProSPMD.barrier("barrier");
this.asyncRefToSelf.bar();

Note

The behavior of barrier is peculiar in this sense. You should keep in mind this particularity when writing code with
barriers.

Part III: Programming Chapter 15: OOSPMD

130

Chapter 16. Active Object Migration
16.1. Migration Primitive

The migration of an active object can be triggered by the active object itself, or by an external agent. In both cases a single primit-
ive will eventually get called to perform the migration. It is the method migrateTo accessible from a migratable body (a body that
inherits from MigratableBody).

In order to ease the use of the migration, we provide 2 sets of static methods on the ProActive class. The first set is aimed at the
migration triggered from the active object that wants to migrate. The methods rely on the fact that the calling thread is the active
thread of the active object:

• migrateTo(Object o): migrate to the same location as an existing active object
• migrateTo(String nodeURL): migrate to the location given by the URL of the node
• migrateTo(Node node): migrate to the location of the given node

The second set is aimed at the migration triggered from another agent than the target active object. In this case the external agent
must have a reference to the Body of the active object it wants to migrate.

• migrateTo(Body body, Object o, boolean priority): migrate to the same location as an existing active object
• migrateTo(Body body, String nodeURL, boolean priority): migrate to the location given by the URL of the node
• migrateTo(Body body, Node node, boolean priority): migrate to the location of the given node

16.2. Using migration

Any active object has the ability to migrate. If it references some passive objects, they will also migrate to the new location. Since
we rely on the serialization to send the object on the network, the active object must implement the serializable interface. To
migrate, an active object must have a method which contains a call to the migration primitive. This call must be the last one in the
method, i.e the method must return immediately after. Here is an example of a method in an active object:

public void moveTo(String t) {
try {

ProActive.migrateTo(t);
} catch (Exception e) {

e.printStackTrace();
}

}

We don't provide any test to check if the call to migrateTo is the last one in the method, hence if this rule is not enforced, it can
lead to unexpected behavior. Now to make this object move, you just have to call its moveTo() method.

16.3. Complete example

import org.objectweb.proactive.ProActive;
public class SimpleAgent implements Serializable {

public SimpleAgent() {
}
public void moveTo(String t) {

try {
ProActive.migrateTo(t);

} catch (Exception e) {
e.printStackTrace();

}
}
public String whereAreYou() {

try {

Part III: Programming Chapter 16: Active Object Migration

131

return InetAddress.getLocalHost().getHostName();
} catch (Exception e) {

return 'Localhost lookup failed';
}

}
public static void main (String[] args) {
if (!(args.length>0)) {

System.out.println('Usage: java migration.test.TestSimple hostname/NodeName ');
System.exit(-1);

}
SimpleAgent t = null;
try {

// create the SimpleAgent in this JVM
t = (SimpleAgent) ProActive.newActive('migration.test.SimpleAgent',null);

} catch (Exception e) {
e.printStackTrace();

}
// migrate the SimpleAgent to the location identified by the given node URL
// we assume here that the node does already exist
t.moveTo(args[0]);
System.out.println('The Active Object is now on host ' + t.whereAreYou());

}
}

The class SimpleAgent implements Serializable so the objects created will be able to migrate. We need to provide an empty con-
structor to avoid side effects during the creation of active objects. This object has two methods, moveTo() which makes it migrate
to the specified location, and whereAreYou() which returns the hostname of the new location of the agent.

In the main method, we first need to create an active object, which is done through the call to newActive(). Once this is done, we
can call methods on it as on any object. We call its moveTo method which will make it migrate to the node specified as parameter
and then we ask it what is its current location.

16.4. Dealing with non-serializable attributes

The migration of an active object uses the serialization. Unfortunately, not all the objects in the Java language are serializable. We
are going to see a simple method to deal with such attributes in the case their value does not need to be saved. For more complex
cases, the reader can have a look to the Java RMI specifications.

When a NotSerializable exception is thrown, the first step to solve the problem is to identify the variable responsible, i.e the one
which is not serializable... In front of the declaration of this variable, put the keyword transient. This indicates that the value of
this variable should not be serialized. After the first migration, this field will be set to null since it has not been saved. So we have
to rebuild it upon arrival of the active object on its new location. This can easily be done by providing in the active object the
standard method

private void readObject(java.io.ObjectInputStream in) throws java.io.IOException,
ClassNotFoundException;

See the Serializable interface in the standard JavaDoc to learn more.

16.5. Mixed Location Migration

16.5.1. Principles

There are two way to communicate with an active object which has migrated :

• Forwarders

An active object upon leaving a site leaves behind a special object, a forwarder, which is in charge of forwarding incoming

Part III: Programming Chapter 16: Active Object Migration

132

messages to the next destination. As time goes, a chain of forwarders builds between a caller and the mobile object. Any
message sent to the latter will go through the chain to reach the agent. There is a virtual path between a caller and a mobile
object.

• Location Server

Communicating with a mobile object can be done with an explicit reference towards the mobile entity, which requires a
mean to get its current location is necessary.

In that case there is a two steps communication: first there should be a search to obtain an up-to-date reference (localization),
and then the actual communication. The simplest solution is to have a unique location server which maintains a database of
the known position of the agents. When an object wants to communicate with an object which has migrated, it queries the
serv er which sends back a new reference. If this is the correct one then the communication takes place, otherwise a new
query is issued.

Both techniques have their drawbacks. Two problems arise when using a forwarding scheme, especially if the ambition is scalable
mobile agents over WAN. First, the forwarders use resources on a site as long as they have not been garbage collected. Thus if a
chain exists between to objects, it will remains even if there is no new communications going by. Second, the longer the chain is,
the more likely it will be cut because of a hardware or software failure. As a consequence, while forwarders are more efficient un-
der some conditions, they do not appear to be scalable, nor reliable.

The server on the other hand is a single point of failure and a potential bottleneck. If a server is to help communicating with a high-
er number of mobile agents, then it might not be able to serve requests quickly enough. Furthermore, in case of a crash, it is not
possible to communicate with mobile objects until the server is back. It si possible to avoid most of these issues by having redund-
ant servers with load balancing at the cost of increaing complexity.

Based on these observations and taking into account the variability of the environment, we propose a configurable communication
protocol which offers the main benefits from both the forwarder and the server while avoiding their drawbacks. Configurable with
discrete and continuous parameters, it can be tailored to the environment to offer both performance and reliability.

16.5.1.1. Time To Live Forwarder

We introduce time limited forwarders which remain alive only for a limited period. When their lifetime is over, they can just be re-
moved. First of all, this brings an important advantage: scalability due to absence of the DGC and the systematic reclaim of for-
warding resources. But of course, this first principle increases the risks of having the forwarding chain cut since this can now hap-
pen during the normal execution of the application without any failure. In such a situation, we will rely on a server which will be
considered as an alternative solution. This increases the overall reliability.

16.5.1.2. Updating forwarder

It is possible to rely on the forwarder to maintain the location of the agent by having them update the server. When they reach the
end of their lifetime, they can send to the server their outgoing reference which could be the adress of the agent or another forward-
er. The Updating forwarder parameter can be true or false. If true, the main advantage is that it releases the agent from most of the
updates. In order to increase reliability, it is possible to have the agent also update the server on a regular basis. This leads us to the
third principle.

16.5.1.3. Time To Update Agent

Each mobile agent has a nominal Time To Update (TTU) after which it will inform the localization server of its new location.
Clearly, there are two differents events that influence when a localization server of its current position :

• the number of migrations it has performed since its last update,
• the time it has spent on the current node without having updated the server.

This observation leads us to the fourth principle :

16.5.1.4. Dual TTU

The TTu is defined as the first occurence of two potential events since the last update:

• maxMigrationNb : the number of migrations,

Part III: Programming Chapter 16: Active Object Migration

133

• maxTimeOnSite : the time already spent on the current site.

16.5.1.5. Conclusion

If we consider that both the agent and the forwarders can send updates to the server, the server must be able to make the difference
between messages from the forwarders and from the agent; those are always the most up to date. Also, since we don't have any
constraint on the Time To Live (TTL) of the forwarders, it could be that a forwarder at the beginning of a chain dies after on at the
end. If this happens and we are not careful when dealing with the requests, the server could erase a more up to date reference with
an old one.

To summarize, the adaptable mechanism we propose to localize mobile objects, is parameterized by the following values :

• TTL forwarder :

- ttl : time (in milliseconds),

- updatingForwarder : boolean,
• TTU agents :

- maxMigrationNb : integer,

- maxTimeOnSite : time (in milliseconds).

16.5.2. How to configure

As a default, ProActive uses a strategy "Forwarders based". It means that the forwarders have a unlimited lifetime and the agent
never updates the location server.

16.5.2.1. Properties

To configure your own strategy, you have to edit the file src/org/objectweb/proactive/core/config/ProActiveConfiguration.xml.
The four properties are the following :

• proactive.mixedlocation.ttl

the TTL value in milliseconds. Use -1 to indicate that the forwarders have a unlimited lifetime.

• proactive.mixedlocation.updatingForwarder

true or false.

• proactive.mixedlocation.maxMigrationNb

indicates the number of migrations without updating the server. Use -1 to indicate that the agent never updates the server.

• proactive.mixedlocation.maxTimeOnSite

the max time spent on a site before updating the server. You can use -1 to indicate that there is no limited time to spend on a
site.

16.5.2.2. Location Server

A location server is available in the package org.objectweb.proactive.core.body.migration.MixedLocationServer. It can be
launched using scripts/unix/migration/LocationServer. You can indicate on which node it have to be running.

Limitation : there can be only one LocationServer for the migration.

Part III: Programming Chapter 16: Active Object Migration

134

Chapter 17. Exception Handling
17.1. Exceptions and Asynchrony

In the asynchronous environment provided by ProActive, exceptions cannot be handled the same as in a sequential environment.
Let's see the problem with exceptions and asynchrony in a piece of code:

try {
Result r = someAO.someMethodCall(); // Asynchronous method call that can throw an exception
// ...
doSomethingWith(r);

} catch (SomeException se) {
doSomethingWithMyException(se);

}

In this piece of code, as the method call in line 2 is asynchronous, we don't wait for its completion and continue the execution. So,
it's possible the control flow exits the try. In this case, if the method call ends up with an exception, we cannot throw it anymore
back in the code because we are no more in the try block. That's why, by default, ProActive method calls with potential exceptions
are handled synchronously.

17.1.1. Barriers around try blocks

The ProActive solution to this problem is to put barriers around try/catch blocks. This way, the control flow cannot exit the block,
the exception can be handled in the appropriate catch block, and the call is asynchronous within the block.

With this configuration, the potential exception can be throw for several points:

• When accessing a future
• In the barrier
• Using the provided API (see after)

Let's reuse the previous example to see how to use these barriers

ProActive.tryWithCatch(SomeException.class);
try {

Result r = someAO.someMethodCall(); // Asynchronous method call that can throw an exception
// ...
doSomethingWith(r);

ProActive.endTryWithCatch();
} catch (SomeException se) {

doSomethingWithMyException(se);
} finally {

ProActive.removeTryWithCatch();
}

With this code, the call in line 3 will be asynchronous, and the exception will be handled in the correct catch block. Even if this
implies waiting at the end of the try block for the completion of the call.

Let's see in detail the needed modifications to the code:

• ProActive.tryWithCatch() call right before the try block. The parameter is either the caught exception class or an array of
these classes if there are many

• ProActive.endWithTry() at the end of the try block
• ProActive.removeTryWithCatch() at the beginning of the finally block, so the block becomes mandatory

17.1.2. TryWithCatch Annotator

Part III: Programming Chapter 17: Exception Handling

135

These needed annotations can be seen as cumbersome, so we provide a tool to add them automatically to a given source file. It
transforms the first example code in the second. Here is a sample session with the tool:

$ ProActive/scripts/unix/trywithcatch.sh MyClass.java
--- ProActive TryWithCatch annotator -----------------------
$ diff -u MyClass.java~ MyClass.java
--- MyClass.java~
+++ MyClass.java
@@ -1,9 +1,13 @@
public class MyClass {

public MyClass someMethod(AnotherClass a) {
+ ProActive.tryWithCatch(AnException.class);

try {
return a.aMethod();

+ ProActive.endTryWithCatch();
} catch (AnException ae) {

return null;
+ } finally {
+ ProActive.removeTryWithCatch();

}
}

}

As we can see, ProActive method calls are added to make sure all calls within try/catch blocks are handled asynchronously.

17.1.3. Additional API

We have seen the 3 methods mandatory to perform asynchronous calls with exceptions, but the complete API includes two more
calls. So far, the blocks boundaries define the barries. But, some control over the barrier is provided thanks to two additional meth-
ods.

The first method is ProActive.throwArrivedException(). During a computation an exception may be raised but there is no point
from where the exception can be thrown (a future or a barrier). The solution is to call the ProActive.throwArrivedException()
method which simply queries ProActive to see if an exception has arrived with no opportunity of being thrown back in the user
code. In this case, the exception is thrown by this method.

The method behaviour is thus dependant on the timing. That is, calling this method may or may not result in an exception being
thrown, depending on the time for an exception to come back. That's why another method is provided, this is ProAct-
ive.waitForPotentialException(). Unlike the previous one, this method is blocking. After calling this method, either an exception is
thrown, or it is assured that all previous calls in the block completed successfully, so no exception can be thrown from the previous
calls.

17.2. Non-Functional Exceptions

17.2.1. Overview

In the first part, we were concerned with functional exception. That is, exceptions originating from 'business' code. The middle-
ware adds its set of exceptions that we call Non-Functional Exceptions (NFE): network errors, ... ProActive has a mechanism for
dealing with these exceptions.

17.2.2. Exception types

We have classified the non functional exceptions in two categories: those on the proxy, and those on the body. So, exceptions con-
cerning the proxy are in the org.objectweb.proactive.core.exceptions.proxy package and inherits from the ProxyNonFunctionalEx-
ception package.

17.2.3. Exception handlers

The NFE mechanism in ProActive calls user defined handlers when a NFE is thrown. A handler implements the following inter-
face:

Part III: Programming Chapter 17: Exception Handling

136

public interface NFEListener {
public boolean handleNFE(NonFunctionalException e);

}

The handleNFE method is called with the exception to handle as parameter. The boolean return code indicates if the handler could
do something with the exception. This way, if no handler could do anything with a given exception, the default behavior is used.

If the exception is on the proxy side, the default behaviour is to throw the exception which is a RuntimeException. But on the
proxy side, the default behaviour is to log the exception with its stack trace to avoid killing an active object.

17.2.3.1. Association

These handlers are associated to entities generating exceptions. These are: an active object proxy, a body, a JVM. Given a NFE,
the handlers on the local JVM will be executed, then either those associated to the proxy or the body depending on the exception.

Here is an example about how to add a handler to an active object on its side (body):

ProActive.addNFEListenerOnAO(myAO, new NFEListener() {
public boolean handleNFE(NonFunctionalException nfe) {

// Do something with the exception...

// Return true if we were able to handle it

return true;
}

});

Handlers can also be added to the client side (proxy) of an active object with

ProActive.addNFEListenerOnProxy(ao, handler)

or to a JVM with

ProActive.addNFEListenerOnJVM(handler)

and even to a group with

ProActive.addNFEListenerOnGroup(group, handler)

These handlers can also be removed with

ProActive.removeNFEListenerOnAO(ao, handler),
ProActive.removeNFEListenerOnProxy(ao, handler),
ProActive.removeNFEListenerOnJVM(handler)
ProActive.removeNFEListenerOnGroup(group, handler)

It's also possible to define an handler only for some exception types, for example:

ProActive.addNFEListenerOnJVM(
new TypedNFEListener(

SendRequestCommunicationException.class,
new NFEListener() {

public boolean handleNFE(NonFunctionalException e) {
// Do something with the SendRequestCommunicationException...
// Return true if we were able to handle it
return true;

Part III: Programming Chapter 17: Exception Handling

137

}
}));

You can use NFE for example, to automatically remove dead elements from a ProActive group when trying to contact them. This
can be achieved using the following construction:

ProActive.addNFEListenerOnGroup(group, FailedGroupRendezVousException.AUTO_GROUP_PURGE);

Note that this currently works only for one-way calls.

Part III: Programming Chapter 17: Exception Handling

138

Chapter 18. Branch and Bound API
The outline of this short handbook:

1. Overview
2. The API Architecture
3. The API Description
4. An Example: FlowShop
5. Future Work

18.1. Overview

The Branch and Bound (BnB) consists to an algorithmic technique for exploring a solution tree from which returns the optimal
solution.

The main goal of this BnB API is to provide a set of tools for helping the developpers to parallelize his BnB problem implementa-
tion.

The main features are:

• Hidding computation distribution.
• Dynamic task splitting.
• Automatic solution gathering.
• Task communications for broadcasting best current solution.
• Different behaviors for task allocation, provided by the API or yourself.
• Open API for extensions.

Further research information is available here [http://www-sop.inria.fr/oasis/personnel/Alexandre.Di_Costanzo/publications.html].

18.2. The Model Architecture

The next figure show the architecture of the API:

Part III: Programming Chapter 18: Branch and Bound API

139

http://www-sop.inria.fr/oasis/personnel/Alexandre.Di_Costanzo/publications.html

Figure 18.1. The API architecture.

The API active objects are:

• Manager: the main point of the API. It is the master for deploying and managing Workers. Also, it attributes Tasks to free
workers. The Tasks are provided the Task Queue.

•
Task Queue: provides Task in a specific order to the Manager.

• Worker: broadcasts solution to all Task, and provides the API environment to the Tasks.
• Task: the user code to compute.

All Workers have a group reference on all the others. The next figure show step by step how a Task can share a new better solution
with all:

Figure 18.2. Broadcasting a new solution.

Finally, the methods order execution:

1. rootTask.initLowerBound(); // compute a first lower bound
2. rootTask.initUpperBound(); // compute a first upper bound
3. Vector splitted = rootTask.split(); // generate a set of tasks
4. for i in splitted do in parallel

splitted[i].initLowerBound();

splitted[i].initUpperBound();

Result ri = splitted.execute()
5. Result final = rootTask.gather(Result[] ri); // gathering all result

Keep in mind that is only 'initLower/UpperBound' and 'split' methods are called on the root task. The 'execute' method is called on
the root task's splitted task.

Part III: Programming Chapter 18: Branch and Bound API

140

18.3. The API Details

18.3.1. The Task Description

The Task object is located in this followed package:

org.objectweb.proactive.branchnbound.core

All abstract methods are described bellow:

18.3.1.1. public Result execute()

It is the place where the user has to put his code for solving a part and/or the totality of his BnB problem. There are 2 main usages
of it. The first one consists to divide the task and returning no result. The second is to try to improve the best solution.

18.3.1.2. public Vector split()

This is for helping the user when he wants to divide a task. In a future work we have planned to use this method in an automatic
way.

18.3.1.3. public void initLowerBound()

Initialize a lower bound local to the task.

18.3.1.4. public void initUpperBound()

Initialize a upper bound local to the task.

18.3.1.5. public Result gather(Result[] results)

This one is not abstract but it is strongly recommended to override it. The default behavior is to return the smallest Result gave by
the compareTo method. That's why it is also recommended to override the compareTo(Object) method.

Some class variables are provided by the API to help the user for keeping a code clear. See next their descriptions:

protected Result initLowerBound; // to store the lower bound
protected Result initUpperBound; // to store the upper bound
protected Object bestKnownSolution; // setted automaticaly by the API

// with the best current solution
protected Worker worker; // to interact with the API (see after)

From the Task, specialy within the execute() method, the user has to interact with the API for sending sub-tasks, which result from
a split call, to the task queue, or broadcasting to other tasks a new better solution, etc.

The way to do that is to use the class variable: worker.

• Broadcasting a new better solution to all the other class:

this.worker.setBestCurrentResult(newBetterSolution);

• Sending a set of sub-tasks for computing:

this.worker.sendSubTasksToTheManager(subTaskList);

• For a smarter split, checking that the task queue needs more tasks:

BooleanWrapper workersAvailable = this.worker.isHungry();

18.3.2. The Task Queue Description

Part III: Programming Chapter 18: Branch and Bound API

141

This manages the task allocation. The main functions are: providing tasks in a sepcial order, and keeping results back.

For the moment, there are 2 different queue types provided by the API:

• BasicQueueImpl: provides tasks in FIFO order.
• LargerQueueImpl: provides tasks in a larger order, as Breadth First Search algorithm.

By extending the TaskQueue you can use a specialized task allocator for your need.

18.3.3. The ProActiveBranchNBound Description

Finally, it is the main entry point for starting, and controlling your computation.

Task task = new YourTask(someArguments);
Manager manager = ProActiveBranchNBound.newBnB(task,

nodes,
LargerQueueImpl.class.getName());

Result futureResult = manager.start(); // this call is asynchronous

Tip: use the constructor ProActiveBranchNBound.newBnB(Task, VirtualNode[], String) and do not activate virtual nodes.
This method provides a faster deployment and active objects creation way. Communications between workers are also optimized
by a hierarchic group based on the array of virtual nodes. That means when it is possible define a virtual node by clusters.

18.4. An Example: FlowShop

This example solves the permutation flowshop scheduling problem, with the monoobjective case. The main objective is to minim-
ized the overall completion time for all the jobs, i.e. makespan. A flowshop problem can be represented as a set of n jobs; this jobs
have to scheduled on a set of m machines. Each jobs is defined by a set of m distinct operations. The goal consists to determine the
sequence used for all machines to execute operations.

The algorithm used to find the best solution, tests all permutations and try to cut bad branches.

Firstly, the Flowshop Task:

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.branchnbound.core.Result;
import org.objectweb.proactive.branchnbound.core.Task;
import org.objectweb.proactive.branchnbound.core.exception.NoResultsExcepti\
on;
public class FlowShopTask extends Task {
public FlowShopTask() {
// the empty no args constructor for ProActive

}
/**
* Contruct a Task which search solution for all permutations to the
* Flowshop problem. Use it to create the root Task.
*/
public FlowShopTask(FlowShop fs) {
this.flowshopProblem = fs;

}
}

Now, implement all Task abstract methods.

Computation bound methods:

// Compute the lower bound
public void initLowerBound() {

this.lowerBound = this.computeLowerBound(this.fs);
}

Part III: Programming Chapter 18: Branch and Bound API

142

// Compute the upper bound
public void initUpperBound() {
this.upperBound = this.computeUpperBound(this.fs);

}

The split method:

public Vector split() {
// Divide the set of permutations in 10 sub-tasks
int nbTasks = 10;
Vector tasks = new Vector(nbTasks);
for (int i = 0 ; i < nbTasks ; i++){

tasks.add(new FlowShopTask(this, i, nbTasks));
}

return tasks;
}

Then, the execute method:

public Result execute() {

if (! this.iHaveToSplit()) {
// Test all permutation

while((FlowShopTask.nextPerm(currentPerm)) != null) {
int currentMakespan;
fsr.makespan = ((FlowShopResult)this.bestKnownSolution).makespan;
fsr.permutation = ((FlowShopResult)this.bestKnownSolution).permutat\

ion;
if ((currentMakespan = FlowShopTask.computeConditionalMakespan(

fs, currentPerm,
((FlowShopResult) this.bestKnownSolution).makespan,
timeMachine)) < 0) {

//bad branch
int n = currentPerm.length + currentMakespan;
FlowShopTask.jumpPerm(currentPerm, n, tmpPerm[n]);
// ...

} else {
// better branch than previous best
fsr.makespan = currentMakespan;
System.arraycopy(currentPerm, 0, fsr.permutation, 0,

currentPerm.length);
r.setSolution(fsr);
this.worker.setBestCurrentResult(r);

}
}

} else {
// Using the Stub for an asynchronous call

this.worker.sendSubTasksToTheManager(
((FlowShopTask) ProActive.getStubOnThis()).split());

}

// ...

r.setSolution(bestKnownSolution);
return r;

}

This example is available in a complete version here [http://www-sop.inria.fr/oasis/ProActive/apps/flowshop.html].

Part III: Programming Chapter 18: Branch and Bound API

143

http://www-sop.inria.fr/oasis/ProActive/apps/flowshop.html

18.5. Future Work
• An auto-dynamic task splitting mechanism.
• Providing more queues for task allocation.
• A new task interface for wrapping native code.

Part III: Programming Chapter 18: Branch and Bound API

144

Chapter 19. High Level Patterns -- The
Calcium Skeleton Framework
19.1. Introduction

19.1.1. About Calcium

Calcium is part of the ProActive Grid Middleware for programming structured parallel and distributed applications. The frame-
work provides a basic set of structured patterns (skeletons) that can be nested to represents more complex patterns. Skeletons are
considered a high level programming model because all the parallelisms details are hidden from the programmer. In Calcium, dis-
tributed programming is achieved by using ProActive deployment framework and active object model.

19.1.2. The Big Picture

The following steps must be performed for programming with the framework.

1. Define the skeleton structure.
2. Implement the classes of the structure (the muscle codes).
3. Create a new Calcium instance.
4. Provide an input of problems to be solved by the framework.
5. Collect the results.
6. View the performance statistics.

Problems inputed into the framework are treated as tasks. The tasks are interpreted by the remote skeleton interpreters as shown in
the following Figure:

Figure 19.1. Task Flow in Calcium

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

145

19.2. Quick Example

In this example we will implement skeleton that finds prime numbers for an interval of numbers using a naive approach.

19.2.1. Define the skeleton structure

The approach we will use corresponds to dividing the original search space into several smaller search spaces. Therefore, the most
suitable pattern corresponds to Divide and Conquer.

// Dac(<Divide>,<Condition>,<Skeleton>,<Conquer>)
Skeleton<Challenge> root = new DaC<Challenge>(new ChallengeDivide(1),

new ChallengeDivideCondition(2),
new Seq<Challenge>(new SolveChallenge(3)),
new ConquerChallenge(4));

19.2.2. Implementing the Muscle

We will call the problem as Challenge and we will represent it using the following class.

class Challenge implements Serializable{

public int max, min, solvableSize;

public Vector<Integer> primes;

/**
* Creates a new challenge for finding primes.
* @param min The minimum of the interval.
* @param max The maximum of the interval.
* @param solvableSize The size of the problems to be solved.
*/
public Challenge(int min, int max, int solvableSize){

this.min=min;
this.max=max;
this.solvableSize=solvableSize;
primes=new Vector<Integer>();

}
}

Note that the skeleton structure is parametrized using the Challenge class.

19.2.2.1. Divide

public class ChallengeDivide implements Divide<Challenge>{

public Vector<Challenge> divide(Challenge param) {

Challenge ttUp = new Challenge(1+param.min+(param.max-param.min)/2,param.max,param.solvableSize);

Challenge ttDown = new Challenge(param.min,param.min+(param.max-param.min)/2, param.solvableSize);

Vector<Challenge> v = new Vector<Challenge>();
v.add(ttUp);
v.add(ttDown);

return v;
}

}

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

146

19.2.2.2. Condition

public class ChallengeDivideCondition implements Condition<Challenge>{

public boolean evalCondition(Challenge params) {

return params.max-params.min > params.solvableSize;
}

}

19.2.2.3. Skeleton

public class SolveChallenge implements Execute<Challenge>{

public Challenge execute(Challenge param) {
for(int i=param.min;i<=param.max;i++){

if(isPrime(i)){
param.primes.add(new Integer(i));

}
}

return param;
}
//...

}

19.2.2.4. Conquer

public class ConquerChallenge implements Conquer<Challenge>{

public Challenge conquer(Challenge parent, Vector<Challenge> p) {

for(Challenge param:p){
parent.max=Math.max(parent.max, param.max);
parent.min=Math.min(parent.min, param.min);
parent.primes.addAll(param.primes);

}

Collections.sort(parent.primes);
return parent;

}
}

19.2.3. Create a new Calcium Instance

Skeleton<Challenge> root = ...; //Step 1
ResourceManager manager= new ProActiveManager(descriptor, "local");
Calcium<Challenge> calcium = new Calcium<Challenge>(manager);

19.2.4. Provide an input of problems to be solved by the framework

Stream<Board> stream = calcium.newStream(root);

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

147

stream.input(new Challenge(1,6400,300));
stream.input(new Challenge(1,100,20));
stream.input(new Challenge(1,640,64));

calcium.boot(); //begin the evaluation

19.2.5. Collect the results

for(Challenge res = stream.getResult(); res != null; res = stream.getResult())
System.out.println(res); //print results

calcium.shutdown(); //release the resources

19.2.6. View the performance statistics

Stats stats=stream.getStats(res);
System.out.println(stats);

19.3. Supported Patterns

Skeletons can be composed in the following way:

S := farm(S)|pipe(S1,S2)|if(cond,S1,S2)|while(cond,S)|for(i,S)|D&C(cond,div,S,conq)|map(div, S, conq)|Seq(f)

Each skeleton represents a different parallelism described as follows:

• Farm , also known as Master-Slave, corresponds to the task replication pattern where a specific function must be executed
over a set of slaves.

• Pipe corresponds to computation divided in stages were the stage n+1 is always executed after the n-th stage.
• If corresponds to a decision pattern, were a choice must be made between executing two functions.
• While corresponds to a pattern were a function is executed while a condition is met.
• For corresponds to a pattern were a function is executed a specific number of times.
• Divide and Conquer corresponds to a pattern were a problem is divided into several smaller problems while a condition is

met. The tasks are solved and then solutions are then conquered into a single final solution for the original problem.
• Map corresponds to a pattern were the same function is applied to several parts of a problem.

19.4. Choosing a Resource Manager

In Calcium, remote resources are acquired using ProActive's deployment framework in the following way:

ResourceManager manager = new ProActiveManager("descriptor/path/to/file.xml", "virtualNodeName");

Additionally, for debugging purposes, two other resource managers are available: MonoThreaded and MultiThreaded:

ResourceManager manager = new MonoThreadedManager();

//or

ResourceManager manager = new MultiThreadedManager(2); //Two threads

19.5. Performance Statistics

There are two ways to obtain performance statistics.

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

148

19.5.1. Global Statistics

These statistics refer to the global state of the framework by providing state information. The tasks can be in three different states:
ready for execution, processing, waiting for other tasks to finish, and finished (ready to be collected by the user). The statistics
corresponding to these states are:

• Number of tasks on each state.
• Average time spent by the tasks on each state.

Statistics for a specific moment can be directly retrieved from the Calcium instance:

StatsGlobal statsGlobal = calcium.getStatsGlobal()

An alternative is to create a monitor that can be performe functions based on the statistics. In the following example we activate a
simple logger monitor that prints the statistics every 5 seconds.

Monitor monitor= new SimpleLogMonitor(calcium, 5);

monitor.start();
...
monitor.stop();

19.5.2. Result Statistics

This statistics are specific for each result obtained from the framework. They provide information on how the result was obtained:

• Execution time for each muscle of the skeleton.

• Time spent by this task in the ready, processing, waiting and executing state. Also, the wallclock and computation time are
provided.

• Data parallelism achieved: tree size, tree depth, number of elements in the tree.

19.6. Future Work

• Handle fault tolerance
• Allow scalability on the number of resources used

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

149

Part III: Programming Chapter 19: High Level Patterns -- The Cal-
cium Skeleton Framework

150

Part IV. Deploying

Table of Contents

Chapter 20. ProActive Basic Configuration ... 153
20.1. Overview ... 153
20.2. How does it work? ... 153
20.3. Where to access this file? .. 153
20.4. ProActive properties .. 154

20.4.1. Required ... 154
20.4.2. Fault-tolerance properties ... 154
20.4.3. Peer-to-Peer properties ... 154
20.4.4. rmi ssh properties .. 155
20.4.5. Other properties .. 155

20.5. Configuration file example .. 155

Chapter 21. XML Deployment Descriptors .. 157
21.1. Objectives .. 157
21.2. Principles ... 157
21.3. Different types of VirtualNodes .. 159

21.3.1. VirtualNodes Definition ... 159
21.3.2. VirtualNodes Acquisition ... 161

21.4. Different types of JVMs .. 162
21.4.1. Creation .. 162
21.4.2. Acquisition .. 163

21.5. Validation against XML Schema .. 163
21.6. Complete description and examples .. 163
21.7. Infrastructure and processes ... 165

21.7.1. Local JVMs ... 165
21.7.2. Remote JVMs ... 167
21.7.3. DependentListProcessDecorator ... 178

21.8. Infrastructure and services ... 179
21.9. Killing the application .. 180
21.10. Processes .. 180

Chapter 22. Variable Contracts for Descriptors .. 181
22.1. Variable Contracts for Descriptors .. 181

22.1.1. Principle .. 181
22.1.2. Variable Types ... 181
22.1.3. Variable Types User Guide ... 181
22.1.4. Variables Example .. 182
22.1.5. External Variable Definitions Files ... 183
22.1.6. Program Variable API .. 183

Chapter 23. ProActive File Transfer Model ... 185
23.1. Introduction and Concepts ... 185
23.2. File Transfer API ... 185

23.2.1. API Definition .. 185
23.2.2. How to use the API ... 185

23.3. Descriptor File Transfer .. 186
23.3.1. XML Descriptor File Transfer Tags .. 186

23.4. Advanced: FileTransfer Design .. 188
23.4.1. Abstract Definition (High level) ... 188
23.4.2. Concrete Definition (Low level) ... 188
23.4.3. How Deployment File Transfer Works .. 188
23.4.4. How File Transfer API Works ... 189

Part IV: Deploying

23.4.5. How Retrieve File Transfer Works ... 189

Chapter 24. Using SSH tunneling for RMI or HTTP communications ... 191
24.1. Overview ... 191
24.2. Configuration of the network ... 191
24.3. ProActive runtime communication patterns .. 191
24.4. ProActive application communication patterns. ... 191
24.5. ProActive communication protocols .. 192
24.6. The rmissh communication protocol. ... 192

Chapter 25. Fault-Tolerance .. 195
25.1. Overview ... 195

25.1.1. Communication Induced Checkpointing (CIC) .. 195
25.1.2. Pessimistic message logging (PML) .. 195

25.2. Making a ProActive application fault-tolerant ... 195
25.2.1. Resource Server .. 195
25.2.2. Fault-Tolerance servers .. 195
25.2.3. Configure fault-tolerance for a ProActive application ... 196
25.2.4. A deployment descriptor example .. 196

25.3. Programming rules ... 198
25.3.1. Serializable .. 198
25.3.2. Standard Java main method ... 198
25.3.3. Checkpointing occurrence ... 198
25.3.4. Activity Determinism ... 199
25.3.5. Limitations .. 199

25.4. A complete example ... 199
25.4.1. Description .. 199
25.4.2. Running NBody example .. 200

Chapter 26. Technical Service ... 203
26.1. Context .. 203
26.2. Overview ... 203
26.3. Progamming Guide .. 203

26.3.1. A full XML Descriptor File ... 203
26.3.2. Nodes Properties ... 204

26.4. Further Information .. 204

Chapter 27. ProActive Grid Scheduler ... 205
27.1. The scheduler design: ... 205
27.2. The scheduler manual: .. 206

27.2.1. Job creation ... 207
27.2.2. Interaction with the scheduler .. 209

27.3. The Scheduler API ... 210
27.3.1. Classes .. 211
27.3.2. How to extend the scheduler .. 218

Part IV: Deploying

Chapter 20. ProActive Basic Configuration
20.1. Overview

In order to get easier and more flexible configuration in ProActive, we introduced an xml file where all ProActive related configur-
ation is located. It represents properties that will be added to the System when an application using ProActive is launched. Some
well-known properties(explained after) will determine the behaviour of ProActive services inside a global application. That file
can also contain user-defined properties to be used in their application.

20.2. How does it work?

Using this file is very straightforward, since all lines must follow the model: <prop key='somekey' value='somevalue'/>

Those properties will be set in the System using System.setProperty(key,value) if and only if this property is not already set in the
System.

If an application is using ProActive, that file is loaded once when a method is called through a ProActive 'entry point'. By 'entry
point' we mean ProActive class, NodeFactory class, RuntimeFactory class (static block in all that classes).

For instance calling ProActive.newActive or NodeFactory.getNode loads that file. This only occurs once inside a jvm.

As said before this file can contain user-defined properties. It means that people used to run their application with:

java -Dprop1=value1 -Dprop2=value2 -Dpropn=valuen can define all their properties in the ProActive configuration file
with:

<prop key='prop1' value='value1'/>

<prop key='prop2' value='value2'/>

...

<prop key='propn' value='valuen'/>

20.3. Where to access this file?

There is a default file with default ProActive options located under ProActive/
src/org/objectweb/proactive/core/config/ProActiveConfiguration.xml. This file is automatically copied with the same package
structure under the classes directory when compiling source files with the ProActive/compile/build facility. Hence it is included in
the jar file of the distribution under org/objectweb/proactive/core/config/ProActiveConfiguration.xml (See below for default op-
tions).

People can specify their own configuration file by running their application with proactive.configuration option, i.e

java ... -Dproactive.configuration=pathToTheConfigFile. In that case, the given xml file is loaded. Some ProActive proper-
ties(defined below) are required for applications using ProActive to work, so even if not defined in user config file, they will be
loaded programatically with default values. So people can just ignore the config file if they are happy with the default configura-
tion or create their own file if they want to change ProActive properties values or add their own properties

A specific tag: <ProActiveUserPropertiesFile> is provided in Deployment Descriptors (see Chapter 21, XML Deployment
Descriptors) to notify remote jvms which configuration file to load once created:

<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcesss'>
...
<ProActiveUserPropertiesFile>
<absolutePath value='/net/home/rquilici/config.xml'/>
</ProActiveUserPropertiesFile>
...
</jvmProcess>

Part IV: Deploying Chapter 20: ProActive Basic Configuration

153

20.4. ProActive properties

20.4.1. Required

• proactive.communication.protocol represents the communication protocol i.e the protocol, objects on remote JVMS are
exported with. At this stage several protocols are supported: RMI(rmi), HTTP(http), IBIS/RMI(ibis), SSH tunneling for
RMI/HTTP(rmissh), JINI(jini). It means that once the JVM starts, Nodes, Active Objects that will be created on this JVM,
will export themselves using the protocol specified in proactive.communication.protocol property. They will be reachable
transparently through the given protocol.

• schema.validation . Two values are possible:enable, disable. If enable, all xml files will be validated against provided
schema. Default is disable

• proactive.future.ac . Two values are possible:enable, disable If 'enable' is chosen, Automatic Continuations are activated
(see Section 13.9, “Automatic Continuation in ProActive”). Default is enable

Note that if not specified those properties are set programmatically with the default value.

20.4.2. Fault-tolerance properties

Note that those properties should not be altered if the programmer uses deployment descriptor files. See Chapter 25, Fault-
Tolerance and more specifically Section 25.2.3, “Configure fault-tolerance for a ProActive application” for more details.

• proactive.ft . Two values are possible: enable, disable. If enable, the fault-tolerance is enable and a set of servers must be
defined with the following properties. Default value is disable.

• proactive.ft.server.checkpoint is the URL of the checkpoint server.
• proactive.ft.server.location is the URL of the location server.
• proactive.ft.server.recovery is the URL of the recovery process .
• proactive.ft.server.resource is the URL of the resource server.
• proactive.ft.server.global is the URL of the global server. If this property is set, all others proactive.fr.server.* are ig-

nored.
• proactive.ft.ttc is the value of the Time To Checkpoint counter, in seconds. The default value is 30 sec.

20.4.3. Peer-to-Peer properties

• proactive.p2p.acq is the communication protocol that's used to communicate with this P2P Service. All ProActive commu-
nication protocols are supported: rmi, http, etc. Default is rmi.

• proactive.p2p.port represents the port number on which to start the P2P Service. Default is 2410. The port is used by the
communication protocol.

• proactive.p2p.noa: Number Of Acquaintances (NOA) is the minimal number of peers one peer needs to know to keep up
the infrastructure. By default, its value is 10 peers.

• proactive.p2p.ttu: Time To Update (TTU) each peer sends an heart beat to its acquaintances. By default, its value is 1
minutes.

• proactive.p2p.ttl: Time To Live (TTL) represents messages live time in hops of JVMs (node). By default, its value is 5
hops.

• proactive.p2p.msg_capacity is the maximum memory size to stock message UUID. Default value is 1000 messages UUID.
• proactive.p2p.expl_msg is the percentage of agree response when peer is looking for acquaintances. By default, its value is

66%.
• proactive.p2p.booking_max uses during booking a shared node. It's the maximum time in millisecond to create at less an

active object in the shared node. After this time and if no active objects are created the shared node will leave and the peer
which gets this shared node will be not enable to use it more. Default is 3 minutes.

• proactive.p2p.nodes_acq_to uses with descriptor file. It is the timeout in milliseconds for nodes acquisition. The default
value is 3 minutes.

• proactive.p2p.lookup_freq also uses with descriptor file. It is the lookup frequency in milliseconds for re-asking nodes. By
default, it's value is 30 seconds.

• proactive.p2p.multi_proc_nodes if true deploying one shared nodes by CPU that means the p2p service which is running
on a bi-pro will share 2 nodes, else only one node is shared independently of the number of CPU. By default, it's value is
true, i.e. 1 shared node for 1 CPU.

Part IV: Deploying Chapter 20: ProActive Basic Configuration

154

• proactive.p2p.xml_path is the XML deployment descriptor file path for sharing nodes more than a single node.

20.4.4. rmi ssh properties

The following properties are specific to the rmissh protocol (see Chapter 24, Using SSH tunneling for RMI or HTTP communica-
tions).

• proactive.ssh.port: the port number on which all the ssh daemons to which this JVM must connect to are expected to listen.
If this property is not set, the default is 22.

• proactive.ssh.username: the username which will be used during authentication with all the ssh daemons to which this
JVM will need to connect to. If this property is not set, the default is the user.name java property.

• proactive.ssh.known_hosts: a filename which identifies the file which contains the traditional ssh known_hosts list. This
list of hosts is used during authentication with each ssh daemon to which this JVM will need to connect to. If the host key
does not match the one stored in this file, the authentication will fail. If this property is not set, the default is Sys-
tem.getProperty ('user.home') + '/.ssh/known_hosts'

• proactive.ssh.key_directory: a directory which is expected to contain the pairs of public/private keys used during authentic-
ation. the private keys must not be encrypted. The public keys filenames must match '*.pub'. Private keys are ignored if their
associated public key is not present. If this property is not set, the default is System.getProperty ('user.home') + '/.ssh/'

• proactive.tunneling.try_normal_first: if this property is set to 'yes', the tunneling code always attempts to make a direct
rmi connection to the remote object before tunneling. If this property is not set, the default is not to make these direct-
connection attempts. This property is especially useful if you want to deploy a number of objects on a LAN where only one
of the hosts needs to run with the rmissh protocol to allow hosts outside the LAN to connect to this frontend host. The other
hosts located on the LAN can use the try_normal_first property to avoid using tunneling to make requests to the LAN fron-
tend.

• proactive.tunneling.connect_timeout: this property specifies how long the tunneling code will wait while trying to estab-
lish a connection to a remote host before declaring that the connection failed. If this property is not set, the default value is
2000ms.

• proactive.tunneling.use_gc: if this property is set to 'yes', the client JVM does not destroy the ssh tunnels are soon as they
are not used anymore. They are queued into a list of unused tunnels which can be reused. If this property is not set or is set to
another value, the tunnels are destroyed as soon as they are not needed anymore by the JVM.

• proactive.tunneling.gc_period: this property specifies how long the tunnel garbage collector will wait before destroying a
unused tunnel. If a tunnel is older than this value, it is automatically destroyed. If this property is not set, the default value is
10000ms.

20.4.5. Other properties

• proactive.rmi.port represents the port number on which to start the RMIRegistry. Default is 1099. If an RMIRegistry is
already running on the given port, jms use the existing registry

•
proactive.http.port represents the port number on which to start the HTTP server. Default is 2010. If this port is occupied
by another application, the http server starts on the first free port(given port is incremented transparently)

• proactive.useIPaddress if set to true, IP adresses will be used instead of machines names. This property is particularly use-
full to deal with sites that do not host a DNS

• proactive.hostname when this property is set, the host name on which the jvm is started is given by the value of the prop-
erty. This property is particularly usefull to deal with machines with two network interfaces

• proactive.locationserver represents the location server class to instantiate when using Active Objects with Location Server
• proactive.locationserver.rmi represents the url under which the Location Server is registered in the RMIRegistry
• fractal.provider This property defines the bootstrap component for the Fractal component model
• proactive.classloader runtimes created with this property enabled fetch missing classes using a special mechanism (see the

org.objectweb.proactive.core.classloader javadoc). This is an alternative to RMI dynamic class downloading, useful for in-
stance when performing hierarchical deployment.

• Note that as mentionned above, user-defined properties can be added.

20.5. Configuration file example

Part IV: Deploying Chapter 20: ProActive Basic Configuration

155

A configuration file could have following structure:

<ProActiveUserProperties>
<properties>
<prop key='schema.validation' value='disable'/>
<prop key='proactive.future.ac' value='enable'/>
<prop key='proactive.communication.protocol' value='rmi'/>
<prop key='proactive.rmi.port' value='2001-2005'/>
....
<prop key='myprop' value='myvalue'/>

....
</properties>

</ProActiveUserProperties>

Example 20.1. A configuration file example

Note

In order to have ProActive parse correctly the document, the following are mandatory:

• the ProActiveUserProperties tag,
• the properties tag,
• and the model: <prop key='somekey' value='somevalue'/>

Part IV: Deploying Chapter 20: ProActive Basic Configuration

156

Chapter 21. XML Deployment Descriptors
21.1. Objectives

Parameters tied to the deployment of an application should be totally described in a xml deployment descriptor. Hence within the
source code, there are no longer any references to:

• Machine names

• Creation Protocols

• local
• ssh, gsissh, rsh, rlogin
• lsf, pbs, sun grid engine, oar, prun
•

globus(GT2, GT3 and GT4), unicore, glite, arc (nordugrid)
• Registry/Lookup and Communications Protocols

• rmi
• http
• rmissh
• ibis
• soap

• Files Transfers

• scp, rcp
• unicore, arc (nordugrid)
• other protocols like globus, glite will be supported soon

A ProActive application can be deployed on different hosts, with different protocols without changing the source code

21.2. Principles
• Within a ProActive program, active objects are still created on Nodes

newActive(String, Object[], Node);

• Nodes can be obtained from VirtualNodes (VN) declared and defined in a ProActiveDescriptor

• Nodes are actual entities:

• running into a JVM, on a host
• they are the result of mapping VN --> JVMs
But VirtualNodes are names in program source, to which corresponds one or a set of Nodes after activation

• After activation the names of Nodes mapped with a VirtualNode are VirtualNode name + random number

• VNs have the following characteristics:

• a VN is uniquely identified as a String ID
• a VN is defined in a ProActiveDescriptor
• a VN has an object representation in a program after activation

• Additional methods are provided to create groups of active objects on VirtualNodes. In that case an Active Ob-

Part IV: Deploying Chapter 21: XML Deployment Descriptors

157

ject(member of the group) is created on each nodes mapped to the VirtualNode given as parameter

newActiveAsGroup(String, Object[], VirtualNode);
turnActiveAsGroup(Object, String, VirtualNode);

• Within a ProActiveDescriptor file, it is specified:

• the mapping of VN to JVMs
• the way to create, acquire JVMs using processes defined in the lower infrastructure part
• local, remote processes or combination of both to create remote jvms.

For instance defining an sshProcess that itself references a local jvmProcess. At execution, the ssh process will launch a
jvm on the remote machine specified in hostname attribute of sshProcess definition.

• files transfers
• fault tolerance, P2P, security

• Example:

<ProActiveDescriptor
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name='Dispatcher'/>
</virtualNodesDefinition>
</componentDefinition>
<deployment>
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<vmName value='Jvm1'/>
</jvmSet>
</map>
</mapping>
<jvms>
<jvm name='Jvm1'>
<creation>
<processReference refid='jvmProcess'/>
</creation>
</jvm>
</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
</processes>
</infrastructure>

</ProActiveDescriptor>

This example shows a VirtualNode called Dispatcher, that is mapped to a jvm called Jvm.

This Jvm1will be created using the process called jvmProcess which is defined in the infrastructure part(This part will be
discussed later, just notice that there are two parts in the descriptor, an abstract one containing VirtualNode definition and
deployment informations and a more concrete one containing concrete infrastructure informations, that is where all pro-
cesses are defined).

Part IV: Deploying Chapter 21: XML Deployment Descriptors

158

• Typical example of a program code:

ProActiveDescriptor pad = ProActive.getProactiveDescriptor(String xmlFile);
//--------- Returns a ProActiveDescriptor object from the xml file
VirtualNode dispatcher = pad.getVirtualNode('Dispatcher');
//-------- Returns the VirtualNode Dispatcher described in the xml file as a java object
dispatcher.activate();
// -------- Activates the VirtualNode
Node node = dispatcher.getNode();
// -------- Returns the first node available among nodes mapped to the VirtualNode

C3DDispatcher c3dDispatcher = newActive(
'org.objectweb.proactive.core.examples.c3d.C3DDispatcher',param, node);

..........................

Set of methods are provided in org.objectweb.proactive.descriptor.ProActiveDescriptor to manipulate VirtualNodes, to activate
several VirtualNodes at the same time and in org.objectweb.proactive.core.descriptors.VirtualNode to manipulate and get nodes
associated to VirtualNodes.

21.3. Different types of VirtualNodes

21.3.1. VirtualNodes Definition

• Mapping one to one: 1 VN --> 1 JVM

<virtualNodesDefinition>
<virtualNode name='Dispatcher'/>
</virtualNodesDefinition>
<deployment>
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<vmName value='Jvm0'/>

</jvmSet>
</map>
</mapping>

Another possibility for the one to one mapping is to map 1 VN to the jvm running the program. In that case the lookup pro-
tocol can be specified but is optionnal(default value is the property proactive.communication.protocol) as it is shown in
the following:

<virtualNodesDefinition>
<virtualNode name='Dispatcher'/>
</virtualNodesDefinition>
<deployment>
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<currentJvm protocol='rmi'/> or
<currentJvm/>

</jvmSet>
</map>
</mapping>

Since it is the current jvm, it has not to be redifined later in the descriptor. This will be shown in a complete example
• Mapping one to n: 1 VN --> N JVMs

Part IV: Deploying Chapter 21: XML Deployment Descriptors

159

<virtualNodesDefinition>
<virtualNode name='Renderer' property='multiple'/>

</virtualNodesDefinition>
<deployment>
<mapping>
<map virtualNode='Renderer'>
<jvmSet>
<currentJvm/>
<vmName value='Jvm1'/>
<vmName value='Jvm2'/>
<vmName value='Jvm3'/>
<vmName value='Jvm4'/>
</jvmSet>
</map>
</mapping>

Note that the property attribute is set to multiple if you want to map 1 VN to multiple JVMs, and then a set of JVMs is
defined for the VirtualNode Renderer. Four values are possible for the property attribute: unique which means one to one
mapping, unique_singleAO: one to one mapping and only one AO deployed on the corresponding node, multiple: one to N
mapping, multiple_cyclic: one to N mapping in a cyclic manner. This property is not mandatory but an exception can be
thrown in case of incompatibility. For instance property set to unique, and more than one jvm defined in the jvmSet tag. In
case of property set to unique_singleAO method getUniqueAO() in class
org.objectweb.proactive.core.descriptor.data.VirtualNode called on such VirtualNode returns the unique AO created

Three other attributes timeout, waitForTimeout, minNodeNumber can be set when defining a virtualNode

<virtualNodesDefinition>
<virtualNode name='Dispatcher' timeout='200' waitForTimeout='true'/>
<virtualNode name='Renderer' timeout='200' minNodeNumber='3'/>

</virtualNodesDefinition>

The timeout attribute represents an amount of time(in milliseconds) to wait before accessing Nodes mapped on the Virtual-
Node. The waitForTimeout attribute is a boolean. If set to true, you will have to wait exaclty timeout seconds before ac-
cessing Nodes. If set to false, timeout represents the maximum amount of time to wait, it means that if all nodes are created
before the timeout expires, you get access to the Nodes. Defaut value for waitForTimeout attribute is false. The min-
NodeNumber attribute defines the minimum number of nodes to be created before accessing the nodes. If not defined, ac-
cess to the nodes will occur once the timeout expires, or the number of nodes expected are effectively created. Setting this
attribute allows to redefine the number of nodes expected, we define it as the number of nodes needed for the VirtualNode to
be suitable for the application. In the exammple above, once 3 nodes are created and mapped to the VirtualNode Renderer,
this VirtualNode starts to give access to its nodes. Those options are very usefull when there is no idea about how many
nodes will be mapped on the VirtualNode(which is often unususal). Those attributes are optional.

• Mapping n to one: N VN --> 1 JVMs

<virtualNodesDefinition>
<virtualNode name='Dispatcher' property='unique_singleAO'/>
<virtualNode name='Renderer' property='multiple'/>

</virtualNodesDefinition>
<deployment>
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<vmName value='Jvm1'/>
</jvmSet>
</map>
<map virtualNode='Renderer'>
<jvmSet>
<vmName value='Jvm1'/>
<vmName value='Jvm2'/>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

160

<vmName value='Jvm3'/>
<vmName value='Jvm4'/>
</jvmSet>

</map>
</mapping>

In this example both VirtualNodes Dispatcher and Renderer have a mapping with Jvm1, it means that at deployment time,
both VirtualNodes will get nodes created in the same JVM. Here is the notion of co-allocation in a JVM.

• VirtualNode registration

Descriptors provide the ability to register a VirtualNode in a registry such RMIRegistry, JINI Lookup, HTTP registry, IBIS/
RMI Registry Service. Hence this VirtualNode will be accessible by another application as it is described in the Virtual-
Nodes Acquisition section. The protocol(registry) to use can be specified in the descriptor, if not specified, the VirtualNode
will register using the protocol specified in proactive.communication.protocol property.

<virtualNodesDefinition>
<virtualNode name='Dispatcher' property='unique_singleAO'/>
<virtualNodesDefinition/>
<deployment>
<register virtualNode='Dispatcher' protocol='rmi'/>

or
<register virtualNode='Dispatcher'/>
<!--using this syntax, registers the VirtualNode with the protocol
specified in proactive.communication.protocol property -->
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<vmName value='Jvm0'/>
</jvmSet>

</map>
</mapping>

The register tag allows to register the VirtualNode Dispatcher when activated, on the local machine in the RMIRegistry. As
said before this VirtualNode will be accessible by another application using the lookup tag(see below) or using method: Pro-
Active.lookupVirtualNode(String).

21.3.2. VirtualNodes Acquisition

Descriptors provide the ability to acquire a VirtualNode already deployed by another application. Such VirtualNodes are defined in
VirtualNodes Acquisition tag as it is done for VirtualNodesDefinition except that no property and no mapping with jvms are
defined since such VNs are already deployed. In the deployment part, the lookup tag gives information on where and how to ac-
quire the VirtualNode. Lookup will be performed when activating the VirtualNode.

<virtualNodesAcquisition>
<virtualNode name='Dispatcher'/>
</virtualNodesAcquisition>
..........
<deployment>
..........
<lookup virtualNode='Dispatcher' host='machine_name' protocol='rmi' port='2020'/>
</deployment>

As mentioned in the previous section, in order to acquire VirtualNode Dispatcher, it must have been previously registered on the
specified host by another application. Sometimes, the host where to perform the lookup will only be known at runtime, it that case
it is specified in the descriptor with '*' for the host attribute

<lookup virtualNode='Dispatcher'
host='*' protocol='rmi'/>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

161

Then when the host name is available, ProActive provides method setRuntimeInformations in class
org.objectweb.proactive.core.descriptor.data.VirtualNode to update the value and to perform the lookup. Typical example of code:

ProActiveDescriptor pad = ProActive.getProactiveDescriptor(String xmlFileLocation);

//----------- Returns a ProActiveDescriptor object from the xml file

pad.activateMappings;

// -------------------activate all VirtualNodes(definition and acquisition)

vnDispatcher = pad.getVirtualNode('Dispatcher');

..........................

vnDispatcher.setRuntimeInformations('LOOKUP_HOST','machine_name);

//--------------set the property 'LOOKUP_HOST at runtime

To summarize all VirtualNodes are activated by calling activate methods except if '*' is set for a VirtualNode to be acquired. In
that case the lookup will be performed when giving host informations.

Registration and lookup can be performed automatically when using tags in the descriptor as well as programmatically using static
methods provided in org.objectweb.Proactive class:

ProActive.registerVirtualNode(
VirtualNode virtualNode,
String registrationProtocol,
boolean replacePreviousBinding);

ProActive.lookupVirtualNode(String url, String protocol);

ProActive.unregisterVirtualNode(VirtualNode virtualNode);

21.4. Different types of JVMs

21.4.1. Creation

• 1 JVM --> 1 Node

...........................
<jvm name='jvm1'>
<creation>
<processReference refid='jvmProcess'/>
</creation>

</jvm>
.................................

In this example, jvm1 will be created using the process called jvmProcess (discussed later, this process represents a java
process and can be seen as java ProActiveClassname command)

• 1 JVM --> N Nodes on a single JVM

...........................
<jvm name='jvm1'
askedNodes='3'>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

162

<creation>
<processReference refid='jvmProcess'/>
</creation>
</jvm>
.................................

• 1 JVM --> N Nodes on N JVMs
• This is the case when the process referenced is a cluster process(LSF, PBS, GLOBUS,) or a process list (see Process list)

21.4.2. Acquisition

Descriptors give the ability to acquire JVMs instead of creating them. To do so, it must be specified in the acquisition tag which
service to use in oder to acquire the JVMs. Services will be described below, in the infrastructure part. At this point 2 services are
provided: RMIRegistryLookup and P2PService service.

...........................
<jvm name='jvm1'>
<acquisition>
<serviceReference refid='lookup'/>

</acquisition>
</jvm>
.................................

In this example, Jvm1 will be acquired using the service called lookup (discussed later, this service represents a way to acquire a
JVM). Note that the name lookup is totally abstract, with the condition that a service with the id lookup is defined in the infra-
structure part

21.5. Validation against XML Schema

To avoid mistake when building XML descriptors, ProActive provides an XML Schema called DescriptorSchema.xsd. Then to
validate your file against this schema, the following line must be put at the top of the xml document as it is done for all ProActive
examples.

<ProActiveDescriptor xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='Location_of_DescriptorSchema.xsd'>

Note that this schema is available in the ProActive distribution package under ProActive\descriptor directory. Using descriptors re-
lated methods (Proactive.getProactiveDescriptor(file)) triggers automatic and transparent validation of the file using Xerces2_4_0
[http://xml.apache.org/xerces2-j/index.html] if the ProActive property schema.validation is set to enable (see Chapter 20, ProAct-
ive Basic Configuration for more details). If a problem occurs during the validation, an error message is displayed. Otherwise, if
the validation is successful, no message appear. An XML validation tool such as XMLSPY5.0(windows) can also be used to valid-
ate XML descriptors.

21.6. Complete description and examples

Following XML files examples are used for the C3D application. The first file is read when launching the C3DDispatcher. The
second one is read every time a C3DUser is added. Both files contain many features described earlier in this document.

<ProActiveDescriptor
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name='Dispatcher' property='unique_singleAO'/>
<virtualNode name='Renderer' property='multiple'/>
</virtualNodesDefinition>

</componentDefinition>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

163

http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xerces2-j/index.html

<deployment>
<register virtualNode='Dispatcher'/>
<mapping>
<map virtualNode='Dispatcher'>
<jvmSet>
<currentJvm/>
</jvmSet>
</map>
<map virtualNode='Renderer'>
<jvmSet>
<vmName value='Jvm1'/>
<vmName value='Jvm2'/>
<vmName value='Jvm3'/>
<vmName value='Jvm4'/>
</jvmSet>
</map>

</mapping>
<jvms>
<jvm name='Jvm1'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>
<jvm name='Jvm2'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>
<jvm name='Jvm3'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>
<jvm name='Jvm4'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition

id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>

</processes>
</infrastructure>
</ProActiveDescriptor>

Example 21.1. C3D_Dispatcher_Render.xml

Part IV: Deploying Chapter 21: XML Deployment Descriptors

164

This example represents xml deployment descriptor for the C3D application. The abstract part containing VirtualNodes definition
and deployment informations has already been explained. To summarize, two VirtualNodes are defined Dispatcher and Renderer.
Dispatcher is mapped to the jvm running the main(), and will be exported using the protocol specified in proact-
ive.communication.protocol property. This VirtualNode will be registered in a Registry(still using the protocol specified in pro-
active.communication.protocol property) when activated. Renderer is mapped to a set of JVMs called Jvm1, ..., Jvm4.

<ProActiveDescriptor
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name='User'/>
</virtualNodesDefinition>
<virtualNodesAcquisition>
<virtualNode name='Dispatcher'/>
</virtualNodesAcquisition>

</componentDefinition>
<deployment>
<mapping>
<map virtualNode='User'>
<jvmSet>
<currentJvm/>

</jvmSet>
</map>
</mapping>
<lookup virtualNode='Dispatcher'

host='*' protocol='rmi'/>
</deployment>
<infrastructure>
<processes>
<processDefinition

id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example 21.2. C3D_User.xml

This file is read when addind a C3DUser. Two VirtualNodes are defined User which is mapped to the jvm running the main(),
whose acquisition method is performed by looking up the RMIRegistry and Dispatcher in the virtualNodesAcquisition part
which will be the result of a lookup in the RMIRegistry of a host to be specified at runtime.

21.7. Infrastructure and processes

In the previous example, all defined JVMs will be created using jvmProcess process. This name is abstract like the other ones, it
means that it can be changed. This process is totally defined in the infrastructure part. Of course the process name in the creation
part must point at an existing defined process in the infrastructure part. For instance if the name in the creation tag is localJVM,
there must be a process defined in the infrastructure with the id localJVM

21.7.1. Local JVMs

As said before, all processes are defined in the infrastructure part, under the processes tag. In the previous example, the defined
process jvmProcess will create local JVMs. The class attribute defines the class to instantiate in order to create the process. Pro-
Active library provides one class to instantiate in order to create processes that will launch local JVMs:

Part IV: Deploying Chapter 21: XML Deployment Descriptors

165

org.objectweb.proactive.core.process.JVMNodeProcess

<infrastructure>
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcesss'>
<classpath>
<absolutePath

value='/home/ProActive/classes'/>
<absolutePath

value='/home/ProActive/lib/bcel.jar'/>
<absolutePath

value='/home/ProActive/lib/asm.jar'/>
<absolutePath

value='/home/ProActive/lib/jini-core.jar'/>
<absolutePath

value='/home/ProActive/lib/jini-ext.jar'/>
<absolutePath

value='/home/ProActive/lib/reggie.jar'/>
</classpath>
<javaPath>
<absolutePath

value='/usr/local/jdk1.4.0/bin/java'/>
</javaPath>
<policyFile>
<absolutePath

value='/home/ProActive/scripts/proactive.java.policy'/>
</policyFile>
<log4jpropertiesFile>
<relativePath origin='user.home'

value='ProActive/scripts/proactive-log4j'/>
</log4jpropertiesFile>
<ProActiveUserPropertiesFile>
<absolutePath

value='/home/config.xml'/>
</ProActiveUserPropertiesFile>
<jvmParameters>
<parameter

value='-Djava.library.path=/home1/fabrice/workProActive/ProActive/lib'/>
<parameter

value='-Dsun.boot.library.path=/home1/fabrice/workProActive/ProActive/lib'/>
<parameter value=-Xms512

-Xmx512'/>
</jvmParameters>
</jvmProcess>

</processDefinition>
</processes>
</infrastructure>

As shown in the example above, ProActive provides the ability to define or change the classpath environment variable, the java
path, the policy file path, the log4j properties file path, the ProActive properties file path (see Chapter 20, ProActive Basic
Configuration for more details) and also to pass parameters to the JVM to be created. Note that parameters to be passed here
are related to the jvm in opposition to properties given in the configuration file (see Chapter 20, ProActive Basic Configura-
tion), which is more focused on ProActive or application behaviour. In fact parameters given here will be part of the java
command to create other jvms, whereas properties given in the config file will be loaded once the jvm is created.

If not specified, there is a default value (except for the jvmParameters element) for each of these variables. In the first example of
this section, just the Id of the process, and the class to instantiate are defined. You might want to define the classpath or java path
or policyfile path, etc, when creating remote JVMs(discussed later) if the home directory is not the same on your machine and on
the machine where you want to create the JVM or for instance if you want to interact with Windows OS if you work on Linux and
vice versa. As shown in the example paths to files can be either absolute or relative. If relative, an origin must be provided, it can

Part IV: Deploying Chapter 21: XML Deployment Descriptors

166

be user.home or user.dir or user.classpath and it is resolved locally, i.e on the jvm reading the descriptor and not on the remote
jvm that is going to be created.

As mentionned in the configuration file (see Chapter 20, ProActive Basic Configuration), if the <ProActiveUserPropertiesFile> is
not defined for remote jvms, they will load a default one once created.

Even if not shown in this example, a specific tag is provided for XbootClasspath option under the form

<bootclasspath>
<relativePath origin='user.home'
value='/IOFAb/Ibis/'/>
<relativePath origin='user.home'
value='/IOFAb/classlibs/jdk'/>
</bootclasspath>

21.7.2. Remote JVMs

With XML Deployment Descriptor, ProActive provides the ability to create remote Nodes (remote JVMs). You can specify in the
descriptor if you want to access the remote host with rsh, ssh, rlogin, lsf, pbs, oar, prun, globus, unicore, arc (nordugrid), glite.
How to use these protocols is explained in the following examples. Just remind that you can also combine these protocols.The
principle of combination is fairly simple, you can imagine for instance that you will log on a remote cluster frontend with ssh, then
use pbs to book nodes and to create jvms on each. You will also notice that there is at least one combination for each remote pro-
tocol. Indeed each remote protocol must have a pointer either on another remote protocol or on a jvmProcess to create a
jvm(discussed previoulsy).

You can find in Section C.1, “XML descriptors cited in the manual” several examples of supported protocols and useful combina-
tions.

Note that it is mandatory for using all these features, that ProActive is installed on each host, of course on the local host as
well as on each host where you want to create Nodes

• RSH

...........................
<jvm name='jvm1'>
<creation>
<processReference

refid='rshProcess'/>
</creation>
</jvm>
.................................
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='rshProcess'>
<rshProcess

class='org.objectweb.proactive.core.process.rsh.RSHProcess'
hostname='sea.inria.fr'>

<processReference
refid='jvmProcess'/>
</rshProcess>
</processDefinition>
</processes>

For the Jvm2 the creation process is rshProcess(still an abstract name), which is defined in the infrastructure section. To
define this process you have to give the class to instantiate to create the rsh process. ProActive provides
org.objectweb.proactive.core.process.rsh.RSHProcess to create rsh process. You must give the remote host name to
log on with rsh. You can define as well username='toto' if you plan to use rsh with -l option. As said before this rsh pro-
cess must reference a local process, and in the example, it references the process defined with the id jvmProcess. It means

Part IV: Deploying Chapter 21: XML Deployment Descriptors

167

that once logged on sea.inria.fr with rsh, a local JVM will be launched, ie a ProActive node will be created on sea.inria.fr
thanks to the process defined by jvmProcess.

Check Example C.1, “ examples/RSH_Example.xml ” for a complete rsh deployment example.
• RLOGIN

...........................
<jvm name='jvm1'>
<creation>
<processReference

refid='rloginProcess'/>
</creation>

</jvm>
.................................
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='rloginProcess'>
<rloginProcess

class='org.objectweb.proactive.core.process.rlogin.RLoginProcess'
hostname='sea.inria.fr'>

<processReference
refid='jvmProcess'/>

</rloginProcess>
</processDefinition>

</processes>

You can use rlogin in the same way that you would use rsh
• SSH

...........................
<jvm name='jvm1'>
<creation>
<processReference

refid='sshProcess'/>
</creation>

</jvm>
.................................
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess

class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='sea.inria.fr'>

<processReference
refid='jvmProcess'/>

</sshProcess>
</processDefinition>

</processes>

ProActive provides org.objectweb.proactive.core.process.ssh.SSHProcess to create ssh process.

In order to use ssh to log on a remote host, you must perform some actions. First you need to copy your public key (located
in identity.pub under ~/.ssh on your local machine) in the authorized_keys(located under ~/.ssh) file of the remote host. Then
to avoid interactivity, you will have to launch on the local host the ssh-agent command: ssh-agent $SHELL, this command

Part IV: Deploying Chapter 21: XML Deployment Descriptors

168

can be put in your .xsession file, in order to run it automatically when logging on your station. Then launching ssh-add com-
mand to add your identity. Running this command will ask you to enter your passphrase, it is the one you provided when
asking for an ssh key pair.

Note also that if the generated key pair is not encrypted (no passphrase), you do not need to run neither the ssh-agent, nor the
ssh-add command. Indeed it is sufficient when using non encrypted private key, to only copy the public key on the remote
host (as mentionned above) in order to get logged automatically on the remote host.

These steps must be performed before running any ProActive application using ssh protocol. If you are not familiar with
ssh, see openSSH [http://www.openssh.org]

Check Example C.2, “ examples/SSH_Example.xml ” for a complete ssh deployment example.
• Process list

ProActive provides a way to define a list of processes for RSH, SSH, RLOGIN protocols. Using processList or process-
ListbyHost elements avoids having a long deployment file when many machines with similar names are going to be connec-
ted with protocols mentionned before. The first example below shows how to use processList tag, the second how to use
processListbyHost.

...........................
<jvm name='jvm1'>
<creation>
<processReference

refid='processlist'/>
</creation>
</jvm>
.................................
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='processlist'>
<processList

class='org.objectweb.proactive.core.process.ssh.SSHProcessList'
fixedName='node-' list='[0-100;2]^[10,20]'
padding='3' domain='sophia.grid5000.fr'>

<processReference
refid='jvmProcess'/>
</processList>
</processDefinition>
</processes>

When using processList tag, the class attribute can take 3 values:
• org.objectweb.proactive.core.process.ssh.SSHProcessList (see Example C.22, “ core/process/ssh/SSHProcessList.java ”),
• org.objectweb.proactive.core.process.rsh.RSHProcessList (see Example C.23, “ core/process/rsh/RSHProcessList.java

”),
• org.objectweb.proactive.core.process.rlogin.RLoginProcessList (see Example C.24, “ core/pro-

cess/rlogin/RLoginProcessList.java ”),
according to the protocol being used is ssh, rsh or rlogin. The fixedName attribute is mandatory and represents the fixed part
shared by all machine's names. The list attribute is also mandatory and can take several forms: [m-n] means from m to n
with a step 1, [m-n;k] means from m to n with a step k (m, m+k, m+2k,), [m-n]^[x,y] means from m to n exluding x and
y, [m-n]^[x,y-z] means from m to n exluding x and values from y to z, [m-n;k]^[x,y] same as before except that the step is
k. The padding attribute is optional (default is 1) and represents the number of digits. Finally the domain attribute is man-
datory and represents the last part shared by all machine's names. So in the exemple above, a jvm is going to be created us-
ing ssh on machines: node000.sophia.grid5000.fr, node002.sophia.grid5000.fr,..., node098.sophia.grid5000.fr,
node100.sophia.grid5000.fr (note that step is 2) excluding machines: node010.sophia.grid5000.fr and
node020.sophia.grid5000.fr.

...........................
<jvm name='jvm1'>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

169

http://www.openssh.org

<creation>
<processReference

refid='processlist'/>
</creation>

</jvm>
.................................
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='processlist'>
<processListbyHost

class='org.objectweb.proactive.core.process.ssh.SSHProcessList'
hostlist='crusoe waha nahuel' domain='inria.fr'>

<processReference
refid='jvmProcess'/>

</processListbyHost>
</processDefinition>

</processes>

Using processListbyHost element allows to give a hostlist separated with a whitespace. The class attribute is defined as de-
scribed in the processList tag. The domain attribute is optional since the complete hostname can also be provided in the
hostlist attribute. In the example, a jvm is going to be created using ssh on crusoe.inria.fr, waha.inria.fr, nahuel.inria.fr.

Check Example C.3, “ examples/SSHList_example.xml ” or Example C.4, “ examples/SSHListbyHost_Example.xml ” for
list examples.

• LSF

This protocol is used to create Nodes(JVMs) on a cluster. ProActive provides
org.objectweb.proactive.core.process.lsf.LSFBSubProcess to create bsub process.

In this part we assume that you want to submit a job from a machine which is not the cluster frontend. As described before,
you can combine protocols. In this case , you will have to define a process to log on the front-end of the cluster(rlogin if
your machine is on the same LAN than the cluster front-end, else ssh (Remember that to use ssh you will have to run some
commands as explained above).

<jvm name='Jvm2'>
<creation>
<processReference refid='sshProcess'/>
</creation>

</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='bsubInriaCluster'>
<bsubProcess

class='org.objectweb.proactive.core.process.lsf.LSFBSubProcess'>
<processReference

refid='jvmProcess'/>
<bsubOption>
<hostlist>cluster_machine1

cluster_machine2<hostlist/>
<processor>6</processor>
<scriptPath>
<absolutePath

value='/home/ProActive/scripts/cluster/startRuntime.sh'/>
</scriptPath>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

170

</bsubOption>
</bsubProcess>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess

class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='sea.inria.fr'>

<processReference
refid='bsubInriaCluster'/>
</sshProcess>
</processDefinition>
</processes>

In this example, the JVM called Jvm2 will be created using ssh to log on the cluster front end. Then a bsub command will
be generated thanks to the process defined by bsubInriaCluster. This bsub command will create Nodes on several cluster
machines, since bsubInriaCluster references the jvmProcess defined process. All tags defined under <bsubOption> are
not mandatory, but they can be very usefull. The <hostlist> tag defines possible candidates in the job attribution, if not set
the job will be allocated among all cluster's machines. The <processor> tag defines the number of processor requested, if not
set, one processor is requested. The <resourceRequirement> tag defines the expected number of processors per machine. For
instance <resourceRequirement value='span[ptile=2]'/> ensures that 2 processors per machines will be used, whereas
value='span[ptile=1]' forces that LSF allocates only only one processor per machine. It represents the -R option of LSF. At
last <scriptPath> defines the path on the cluster front end of the script startRuntime.sh which is necessary to run ProActive
on a cluster. This script is located under Proactive/scripts/unix/cluster. If not set the default location is set as
~/Proactive/scripts/unix/cluster.

It is exactly the same with rlogin instead of ssh.

If you want to submit the job directly from the cluster entry point, define only the bsubProcess, like in the above example
and skip the ssh definition.

<jvm name='Jvm2'>
<creation>
<processReference refid='bsubInriaCluster'/>
</creation>
</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='bsubInriaCluster'>
<bsubProcess

class='org.objectweb.proactive.core.process.lsf.LSFBSubProcess'
interactive='true' queue='short'>

<processReference refid='jvmProcess'/>
<bsubOption>
<hostlist>cluster_machine1

cluster_machine2<hostlist/>
<processor>6</processor>
<scriptPath>
<absolutePath value='/home/ProActive/scripts/unix/cluster/startRuntime.sh'/>
</scriptPath>
</bsubOption>

</bsubProcess>
</processDefinition>
</processes>

Note that in the example above two attributes: interactive and queue appear. They are optional, and have a default value: re-
spectively false and normal. They represent option in the bsub command: interactive mode, and the name of the queue.

Part IV: Deploying Chapter 21: XML Deployment Descriptors

171

Check also Example C.5, “ examples/SSH_LSF_Example.xml ” .
• PBS

This protocol is used to create jobs on cluster managed by PBS, PBSPro or Torque. ProActive provides
org.objectweb.proactive.core.process.pbs.PBSBSubProcess to create pbs processes. As explained for LSF you can
combine protocols in order for instance to log on the cluster's frontal with ssh, then to create nodes using PBS, or you can
also use only PBS without ssh if you are already logged on the frontend. Example below shows how to combine an ssh pro-
cess to log on the cluster, then a PBS process that references a jvmProcess in order to create nodes on processors requested
by PBS.

<jvm name='Jvm2'>
<creation>
<processReference refid='sshProcess'/>
</creation>

</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='pbsCluster'>
<pbsProcess

class='org.objectweb.proactive.core.process.pbs.PBSSubProcess'>
<processReference refid='jvmProcess'/>
<pbsOption>
<hostsNumber>4</hostsNumber>
<processorPerNode>1</processorPerNode>
<bookingDuration>00:15:00</bookingDuration>
<outputFile>/home1/rquilici/out.log</outputFile>
<scriptPath>
<absolutePath value='/home/ProActive/scripts/unix/cluster/pbsStartRuntime.sh'/>
</scriptPath>
</pbsOption>
</pbsProcess>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess

class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='frontend'>

<processReference refid='pbsCluster'/>
</sshProcess>
</processDefinition>

</processes>

Note that not all options are listed here, and some options mentionned in the example are optionnal: hostsNumber repres-
ents the number of host requested using pbs(default is 1), processorPerNode represents the number of processor per hosts
requested(1 or 2, default is 1), bookingDuration represents the duration of the job(default is 1 minute), outputFile repres-
ents the file where to put the ouput of the job(default is specified by pbs), scriptPath represents the location on the fron-
tend_host of the script pbsStartRuntime.sh(default is /user.home/ProActive/scripts/unix/cluster/pbsStartRuntime.sh).

Check also Example C.6, “ examples/SSH_PBS_Example.xml ”.
• Sun Grid Engine

This protocol is used to create jobs on cluster managed by Sun Grid Engine. ProActive provides
org.objectweb.proactive.core.process.gridengine.GridEngineSubProcess to create grid engine processes. As ex-
plained above you can combine protocols in order for instance to log on the cluster's frontal with ssh, then to create nodes
using SGE, or you can also use only SGE without ssh if you are already logged on the frontend. Example below shows how
to combine an ssh process to log on the cluster, then a SGE process that references a jvmProcess in order to create nodes on
processors requested by SGE.

Part IV: Deploying Chapter 21: XML Deployment Descriptors

172

<jvm name='Jvm2'>
<creation>
<processReference refid='sshProcess'/>
</creation>
</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='sgeCluster'>
<gridengineProcess

class='org.objectweb.proactive.core.process.gridengine.GridEngineSubProcess'>
<processReference refid='jvmProcess'/>
<gridEngineOption>
<hostsNumber>4</hostsNumber>
<bookingDuration>00:15:00</bookingDuration>
<scriptPath>
<absolutePath value='/home/ProActive/scripts/unix/cluster/gridEngineStartRuntime.sh'/>
</scriptPath>
<parallelEnvironment>mpi</parallelEnvironment>
</gridEngineOption>

</gridengineProcess>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess

class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='frontend'>

<processReference
refid='sgeCluster'/>
</sshProcess>
</processDefinition>
</processes>

As mentionned previously, many options exist, and correspond to the main options specified in an SGE system. ScriptPath
represents the location on the frontend_host of the script gridEngineStartRuntime.sh (default is /
user.home/ProActive/scripts/unix/cluster/gridEngineStartRuntime.sh).

Check also Example C.7, “ examples/SSH_SGE_Example.xml ”.
• OAR:

OAR is a cluster protocol developed at INRIA Alpes and used on Grid5000 [http://www.grid5000.fr]. ProActive provides
org.objectweb.proactive.core.process.oar.OARSubProcess to use such protocol.As explained above you can combine
protocols in order for instance to log on the cluster's frontal with ssh, then to create nodes using OAR, or you can also use
only OAR without ssh if you are already logged on the frontend. Example below shows how to combine an ssh process to
log on the cluster, then an OAR process that references a jvmProcess in order to create nodes on processors requested by
OAR.

<jvm name='Jvm2'>
<creation>
<processReference refid='sshProcess'/>
</creation>
</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

173

http://www.grid5000.fr

<processDefinition id='oarCluster'>
<oarProcess

class='org.objectweb.proactive.core.process.oar.OARSubProcess'>
<processReference

refid='jvmProcess'/>
<oarOption>
<resources>node=2,weight=2</resources>
<scriptPath>
<absolutePath value='/home/ProActive/scripts/unix/cluster/oarStartRuntime.sh'/>
</scriptPath>
</oarOption>
</oarProcess>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess

class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='frontend'>

<processReference
refid='oarCluster'/>

</sshProcess>
</processDefinition>

</processes>

As mentionned previously, many options exist, and correspond to the main options specified in an OAR system. ScriptPath
represents the location on the frontend_host of the script oarStartRuntime.sh (default is /
user.home/ProActive/scripts/unix/cluster/oarStartRuntime.sh).

Check also Example C.8, “ examples/SSH_OAR_Example.xml ” and Example C.9, “ examples/
SSH_OARGRID_Example.xml ”.

• PRUN:

PRUN is a cluster protocol developed at Amsterdam to manage their cluster [http://www.cs.vu.nl/das/prun/prun.1.html].
ProActive provides org.objectweb.proactive.core.process.prun.PrunSubProcess to use such protocol.

Check also Example C.10, “ examples/SSH_PRUN_Example.xml ”.
•

GLOBUS

Like ssh, using globus requires some steps to be performed. In particular the java COG Kit (no need for the whole GT)
must be installed on the machine that will originates the RSL request. See COG Kit Installation [http://www.cogkit.org/] for
how to install the client kit. Then you have to initialize your proxy by running COG_INSTALLATION/bin /
grid-proxy-init, you will be asked for a passphrase, it is the one you provided when requesting a user certificate at glo-
bus.org. Once these steps are performed you can run ProActive application using GRAM protocol.

ProActive provides org.objectweb.proactive.core.process.globus.GlobusProcess to create globus process.

<jvm name='Jvm2'>
<creation>
<processReference refid='globusProcess'/>
</creation>

</jvm>
...
<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='globusProcess'>
<globusProcess

class='org.objectweb.proactive.core.process.globus.GlobusProcess'
hostname='globus1.inria.fr'>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

174

http://www.cs.vu.nl/das/prun/prun.1.html
http://www.cogkit.org/

<processReference
refid='jvmProcess'/>

<environment>
<variable name='DISPLAY'

value='machine_name0.0'/>
</environment>
<globusOption>
<count>10</count>
</globusOption>

</globusProcess>
</processDefinition>
</processes>

In this example, Jvm2 will be created using GRAM. An RSL request will be generated with informations provided in the
descriptor. For instance, the <environment> tag is not mandatory, but for the globus host to export the DISPLAY on your
machine, you can define the value in the descriptor as well as other environment variable, except the classpath(or java
path,...) which must be defined in the jvmProcess referenced by globusProcess as explained before. <globusOption> is
neither manatory. Default value for <count> element is 1. It represents the number of processor requested.

Check also Example C.11, “ examples/Globus_Example.xml ”.
• UNICORE:

ProActive provides org.objectweb.proactive.core.process.unicore.UnicoreProcess to use such protocol.

Check also Example C.12, “ examples/Unicore_Example.xml ”.
• ARC (NorduGrid):

ProActive provides org.objectweb.proactive.core.process.nordugrid.NGProcess to use such protocol.

To use ARC you will need to download the ARC Client [http://ftp.nordugrid.org/download/index.php]

Check also Example C.13, “ examples/NorduGrid_Example.xml ”.
• GLITE

ProActive provides org.objectweb.proactive.core.process.glite.GLiteProcess to use such protocol.

Check also Example C.14, “ examples/SSH_GLite_Example.xml ”.
• MPI

ProActive provides org.objectweb.proactive.core.process.mpi.MPIDependentProcess to use such protocol. You have
to couple this process with the DependentListProcessDecorator explained below.

Check also Example C.15, “ examples/SSH_MPI_Example.xml ”.

<processDefinition id='mpiProcess'>
<mpiProcess class='org.objectweb.proactive.core.process.mpi.MPIDependentProcess' mpiFileName='my_mpi_program'>
<commandPath value='/usr/bin/mpirun' />
<mpiOptions>

<hostsNumber>16</hostsNumber>
<localRelativePath>
<relativePath origin="user.home" value='/ProActive/scripts/unix' />
</localRelativePath>
<remoteAbsolutePath>
<absolutePath value='/home/user' />
</remoteAbsolutePath>
</mpiOptions>
</mpiProcess>

</processDefinition>
<processDefinition id='dependentProcessSequence'>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

175

http://ftp.nordugrid.org/download/index.php

<dependentProcessSequence class='org.objectweb.proactive.core.process.DependentListProcessDecorator'>
<processReference refid='pbsProcess' />
<processReference refid='mpiProcess' />
</dependentProcessSequence>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess class='org.objectweb.proactive.core.process.ssh.SSHProcess' hostname='frontend' >
<processReference refid='dependentProcessSequence' />
</sshProcess>
</processDefinition>

<?xml version='1.0'
encoding='UTF-8'?>
<ProActiveDescriptor
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
<virtualNodesDefinition>
<virtualNode name='PenguinNode'

property='multiple'/>
<virtualNodesDefinition/>
<deployment>
<mapping>
<map virtualNode='PenguinNode'>
<jvmSet>
<vmName value='Jvm1'/>
<vmName value='Jvm2'/>
<vmName value='Jvm3'/>
<vmName value='Jvm4'/>
</jvmSet>
</map>
</mapping>
<jvms>
<jvm name='Jvm1'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>
<jvm name='Jvm2'>
<creation>
<processReference

refid='jvmProcess'/>
</creation>
</jvm>
<jvm name='Jvm3'>
<creation>
<processReference

refid='sshInriaCluster'/>
</creation>
</jvm>
<jvm name='Jvm4'>
<creation>
<processReference

refid='globusProcess'/>
</creation>
</jvm>
</jvms>

</deployment>
<infrastructure>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

176

<processes>
<processDefinition id='jvmProcess'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>
<processDefinition id='jvmProcess1'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'>
<classpath>
<relativePath origin='userHome'

value='/ProActive/classes'/>
<relativePath origin='userHome'

value='/ProActive/lib/bcel.jar'/>
<relativePath origin='userHome'

value='/ProActive/lib/asm.jar'/>
<relativePath origin='userHome'

value='/ProActive/lib/jini-core.jar'/>
<relativePath origin='userHome'

value='/ProActive/lib/jini-ext.jar'/>
<relativePath origin='userHome'

value='/ProActive/lib/reggie.jar'/>
.............

</classpath>
<javaPath>
<absolutePath

value='/usr/local/jdk1.4.0/bin/java'/>
</javaPath>
<policyFile>
<absolutePath

value='/home/ProActive/scripts/proactive.java.policy'/>
</policyFile>
<log4jpropertiesFile>
<absolutePath

value='/home/ProActive/scripts/proactive-log4j'/>
</log4jpropertiesFile>
<ProActiveUserPropertiesFile>
<absolutePath

value='/home/config.xml'/>
</ProActiveUserPropertiesFile>
</jvmProcess>

</processDefinition>
<processDefinition

id='bsubInriaCluster'>
<bsubProcess

class='org.objectweb.proactive.core.process.lsf.LSFBSubProcess'>
<processReference

refid='jvmProcess1'/>
<bsubOption>
<hostlist>cluster_group1

cluster_group2<hostlist/>
<processor>4</processor>
<resourceRequirement

value='span[ptile=2]'/>
<scriptPath>
<absolutePath

value='/home/ProActive/scripts/unix/cluster/startRuntime.sh'/>
</scriptPath>
</bsubOption>
</bsubProcess>

</processDefinition>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

177

<processDefinition
id='sshInriaCluster'>

<sshProcess
class='org.objectweb.proactive.core.process.ssh.SSHProcess'
hostname='sea.inria.fr'>

<processReference
refid='bsubInriaCluster'/>

</sshProcess>
</processDefinition>
<processDefinition

id='globusProcess'>
<globusProcess

class='org.objectweb.proactive.core.process.globus.GlobusProcess'
hostname='cluster.inria.fr'>

<processReference
refid='jvmProcess1'/>

<environment>
<variable name='DISPLAY'

value='machine_name0.0'/>
</environment>
<globusOption>
<count>10</count>
</globusOption>
</globusProcess>
</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

This xml deployment descriptor shows how to deploy the Penguin application on several places. Two Nodes will be created loc-
ally. We can see that with the definition of Jvm1 and Jvm2. These JVMs will be created locally since they reference directly the
process defined by jvmProcess. Jvm3 will be created on the cluster using ssh to log on sea.inria.fr (cluster entry point)and then
bsub to request processors and to create jvms on each. Here, two nodes will be created on machines that belong to cluster_group1
or cluster_group2 since processor tag is set to 2, and the hoslist tag gives cluster_group1 cluster_group2 as candidates. At Last
Jvm4 will be created using globus It will access cluster.inria.fr and request 10 processors. We can notice that two local processes
were defined, the reason is that the first one jvmProcess will use default value for the classpath, java path and policyfile path,
whereas for the second one jvmProcess1 , we need to define these value, since the home directory is different between the local
machine, and globus and the cluster(home dir is the same on globus machines and on the cluster, that is why both processes refer-
ence the same local process: jvmProcess1).

Even if quite a lot of things can be configured in the xml files, sometimes you will have to perform additional steps to get
everything working properly, it is the case when using ssh, or globus as seen before. In this example, DISPLAY variable is defined
for the globus process, that means that we want the penguin icon to appears on the local machine, be carefull to authorize your X
server to display such icons by running the following command before launching the application: xhost +cluster.inria.fr. On the
cluster side you need to create under ~/.ssh a file called environment where you define the DISPLAY variable. If you are not fa-
miliar with ssh, see openSSH [http://www.openssh.org]

21.7.3. DependentListProcessDecorator

This process is used when a process is dependent on an another process. The first process of the list can be any process but the
second one must be a DependentProcess thus has to implement the org.objectweb.proactive.core.process.DependentProcess inter-
face.

Check also Example C.15, “ examples/SSH_MPI_Example.xml ”.

<processDefinition id='dependentProcessSequence'>
<dependentProcessSequence class='org.objectweb.proactive.core.process.DependentListProcessDecorator'>
<processReference refid='pbsProcess' />
<processReference refid='mpiProcess' />

Part IV: Deploying Chapter 21: XML Deployment Descriptors

178

http://www.openssh.org

</dependentProcessSequence>
</processDefinition>
<processDefinition id='sshProcess'>
<sshProcess class='org.objectweb.proactive.core.process.ssh.SSHProcess' hostname='frontend' >
<processReference refid='dependentProcessSequence' />
</sshProcess>
</processDefinition>

21.8. Infrastructure and services

As mentionned previously, instead of creating jvms, ProActive gives the possibility to acquire existing jvms. To do so, as shown in
the example below, a service must be referenced in the acquisition tag. At this point two services are implemented: RMIRe-
gistryLookup: this service performs a lookup in an RMIRegistry at the url specified in the service definition to find a ProAct-
iveRuntime(a jvm) with the given name. P2PService service allows when using ProActive's P2P infrastructure to get as many
jvms as desired.

<?xml version='1.0' encoding='UTF-8'?>
<ProActiveDescriptor
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name='VnTest'

property='multiple'/>
</virtualNodesDefinition>

</componentDefinition>
<deployment>
<mapping>
<map virtualNode='VnTest'>
<jvmSet>
<vmName value='Jvm1'/>
<vmName value='Jvm2'/>

</jvmSet>
</map>
</mapping>
<jvms>
<jvm name='Jvm1'>
<acquisition>
<serviceReference refid='lookupRMI'/>

</acquisition>
</jvm>
<jvm name='Jvm2'>
<acquisition>
<serviceReference refid='lookupP2P'/>

</acquisition>
</jvm>
</jvms>

</deployment>
<infrastructure>
<services>
<serviceDefinition id='lookupRMI'>
<RMIRegistryLookup url='//localhost:2020/PA_JVM1'/>
</serviceDefinition>
<serviceDefinition id='lookupP2P'>
<P2PService nodesAsked='2'acq='rmi' port='2410' NOA='10' TTU='60000' TTL='10'>
<peerSet>
<peer>rmi://localhost:3000</peer>
</peerSet>

</P2PService>
</serviceDefinition>

Part IV: Deploying Chapter 21: XML Deployment Descriptors

179

</services>
</infrastructure>
</ProActiveDescriptor>

The RMIRegistryLookup service needs only an url to perform the lookup. Many options exist for the P2PService service: node-
sAsked represents the number of JVMs to acquire, the peer element represents an entry point in the P2P system, many peers can
be specified. Elements acq and port represent the communication protocol and the listening port for the P2P Service, if a P2P Ser-
vice is already running with this configuration the descriptor will use this one else a new one is started. Chapter 35, ProActive
Peer-to-Peer Infrastructure provides more information.

The example above shows a VirtualNode VnTest, that is mapped with two jvms, Jvm1 and Jvm2. Jvm1 represents one jvm that
will be acquired using an RMI Lookup, Jvm2 represents two jvms that will be found in the P2P infrastructure, so at the end 3 ac-
quired jvms are expected.

Fault Tolerance can also be defined at the service level. See Chapter 25, Fault-Tolerance for more information.

21.9. Killing the application

ProActive gives the ability to kill all JVMs and Nodes deployed with an XML descriptor with the method: killall(boolean softly) in
class ProActiveDescriptor (this class's code is in Example C.25, “ core/descriptor/data/ProActiveDescriptor.java ”)

ProActiveDescriptor pad = ProActive.getProactiveDescriptor(String xmlFileLocation);
//----------- Returns a ProActiveDescriptor object from the xml file
pad.activateMappings();

...

pad.killall(false);
//----------- Kills every jvms deployed with the descriptor

If softly is set to false, all jvms created when activating the descriptor are killed abruptely. If true a jvm that originates the creation
of a rmi registry waits until registry is empty before dying. To be more precise a thread is created to ask periodically the registry if
objects are still registered.

21.10. Processes

There is the possiblity to use only the infrastructure part in order to create processes. A Schema called ProcessSchema located in
the examples directory allows to validate XML files for processes. ProActive provides also the ability to use all processes defined
above without using XML Deployment Descriptor. You can programmatically create such processes.

In order to get familiar on how to create processes programmatically, see the Process package

org.objectweb.proactive.core.process [../api/org/objectweb/proactive/core/process/package-summary.html]

Part IV: Deploying Chapter 21: XML Deployment Descriptors

180

../api/org/objectweb/proactive/core/process/package-summary.html

Chapter 22. Variable Contracts for
Descriptors
22.1. Variable Contracts for Descriptors

22.1.1. Principle

The objective of this feature is to allow the use of variables with XML descriptors. Variables can be defined: directly in the
descriptor, using independent files, or inside the deploying application's code (with an API).

The variable tags are usefull inside a descriptor because they can factorize frequent parameters. (For example, a variable like
${PROACTIVE_HOME} can be defined, set and used in an XML Descriptor.) But also, because they can be used to establish a
contract between the Program and the Descriptor.

22.1.2. Variable Types

Type Ability to set value Ability to set empty value Priority

DescriptorVariable Descriptor Program Descriptor

ProgramVariable Program Descriptor Program

DescriptorDefaultVariable Descriptor, Program - Program

ProgramDefaultVariable Program, Descriptor - Descriptor

JavaPropertyVariable Descriptor, Program - JavaProperty

JavaPropertyDescriptorDe-
fault

JavaProperty, Descriptor, Pro-
gram

Program JavaProperty, Descriptor, Pro-
gram

JavaPropertyProgramDe-
fault

JavaProperty, Descriptor, Pro-
gram

Descriptor JavaProperty, Program,
Descriptor

Table 22.1. Variable Types

Variables can be set in more than one place. When the value is set on multiple places, then the definition specified in the priority
column will take precedence. In the priority column, items towards the left have more priority.

22.1.3. Variable Types User Guide

To help identify the user cases where the variable types might be useful, we have defined the concept of programmer and deployer.
The programmer is the person writing the application code. The deployer corresponds to the responsible of writing the deployment
descriptor. The variables represent rights and responsabilities between the two parties (contract) as specified in the following table:

Type Behavior When to use this type

descriptorVariable The value has to be set in the descriptor,
and cannot be specified in the program.

If the deployer wants to use a value,
without giving the possibility to the pro-
grammer to modify it. The programmer
can define this variable to empty, to force
the descriptor to set a value.

programVariable The value must be set in the program, and
cannot be specified in the descriptor.

If the programmer wants to use a value,
without giving the possibility to the
descriptor to modify it. The descriptor can
define this variable to empty, to force the
programmer to set a value.

Part IV: Deploying Chapter 22: Variable Contracts for
Descriptors

181

descriptorDefaultVariable A default value must be specified in the
descriptor. The programmer has the ability
not to change the value in the program.
Nevertheless, if the value is changed in
the program, then this new value will have
precedence over the one defined in the
descriptor.

If the programmer may override the de-
fault value, but the responsability of set-
ting a default belongs to the deployer.

programDefaultVariable A default value must be specified in the
program. The descriptor has the ability not
to change the value. Nevertheless, if the
value is changed in the descriptor, then
this new value will have precedence over
the one defined in the program.

If the deployer may override the default
value, but the responsability of setting a
default belongs to the programmer.

javaPropertyVariable Takes the value from the corresponding
Java property.

When a variable will only be known at
runtime through the Java properties, and
no default has to be provided by the
descriptor or the application.

javaPropertyDescriptorDefault Takes the value from the corresponding
java property. A default value can also be
set from the descriptor or the program. If
no property is found, the descriptor de-
fault value will override the program de-
fault value.

When the descriptor sets a default value,
that can be overrided at deployment using
a java property.

javaPropertyProgramDefault Takes the value from the corresponding
java property. A defualt value can also be
set from the program or the descriptor. If
no property is found, the program default
value will override the program default
value

When the program sets a default value,
than can be overrided at deployment using
a java property.

22.1.4. Variables Example

22.1.4.1. Descriptor Variables

All variables must be set in a variable section at the beginning of the descriptor file in the following way:

<variables>
<descriptorVariable name="PROACTIVE_HOME" value="ProActive/dist/ProActive"/>
<descriptorDefaultVariable name="NUMBER_OF_VIRTUAL_NODES" value="20"/>
<programVariable name="VIRTUAL_NODE_NAME"/>
<javaPropertyVariable name="java.home"/>
<javaPropertyDescriptorDefault name="host.name" value="localhost"/>
<javaPropertyProgramDefault name="priority.queue"/>

<!-- Include external variables from files-->
<includeXMLFile location="file.xml"/>
<includePropertyFile location="file.properties"/>
</variables>
...
<!-- Usage example-->
<classpath>
<absolutePath value="${USER_HOME}/${PROACTIVE_HOME}/ProActive.jar"/>
...
</classpath>
...

Part IV: Deploying Chapter 22: Variable Contracts for
Descriptors

182

22.1.4.2. Program Variables

XML_LOCATION="/home/user/descriptor.xml";
VariableContract variableContract= new VariableContract();
variableContract.setVariableFromProgram("VIRTUAL_NODE_NAME", "testnode", VariableContractType.ProgramVariable);
variableContract.setVariableFromProgram("NUMBER_OF_VIRTUAL_NODES", "10", VariableContractType.DescriptorDefaultVariable);
variableContract.setVariableFromProgram("priority.queue", "vip", VariableContractType.JavaPropertyProgramDefault);
ProActiveDescriptor pad = ProActive.getProactiveDescriptor(XML_LOCATION, variableContract);

//Usage example
VariableContract vc=pad.getVariableContract;
String proActiveHome=vc.getValue("PROACTIVE_HOME");

22.1.5. External Variable Definitions Files

22.1.5.1. XML Files

Is built using XML property tags.

File: file.xml

<!-- Definition of the specific context -->
<variables>
<descriptorVariable name="USER_HOME" value="/usr/home/team"/>
<descriptorVariable name="PROACTIVE_HOME" value="ProActive/dist/ProActive"/>
<descriptorVariable name="NUM_NODES" value="45"/>

</variables>

22.1.5.2. Properties Files

This approach uses Sun microsystems properties file format
[http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)]. The format is plain text with one
definition per line in the format variable = value, as shown in the following example:

File: file.properties

Definition of the specific context
USER_HOME = /usr/home/team
PROACTIVE_HOME = ProActive/dist/ProActive
NUM_NODES: 45

Variables defined in this format will be declared as DescriptorVariable type. Note that colon (:) can be used instead of equal (=).

22.1.6. Program Variable API

22.1.6.1. Relevant import packages

import org.objectweb.proactive.core.xml.VariableContract;
import org.objectweb.proactive.core.xml.VariableContractType;

22.1.6.2. Available Variable Types

• VariableContractType.DefaultVariable
• VariableContractType.DescriptorDefaultVariable
• VariableContractType.ProgramVariable
• VariableContractType.ProgramDefaultVariable
• VariableContractType.JavaPropertyVariable

Part IV: Deploying Chapter 22: Variable Contracts for
Descriptors

183

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)

• VariableContractType.JavaPropertyDescriptorDefault
• VariableContractType.JavaPropertyProgramDefault

22.1.6.3. API

The API for setting variables from the Program is shown below. The name corresponds to the variable name, and the value to the
variable content. The type corresponds to a VariableContractType.

public void VariableContract.setVariableFromProgram(String name, String value, VariableContractType type);
public void VariableContract.setVariableFromProgram(HashMap map, VariableContractType type);

The API for adding a multiple variables is shown above. The variable name/value pair is specified as the key/content of the
HashMap.

Part IV: Deploying Chapter 22: Variable Contracts for
Descriptors

184

Chapter 23. ProActive File Transfer Model
23.1. Introduction and Concepts

Currently we provide support for the following type of transfers:

• To a remote node (Push)
• From a remote node (Pull)

The transfer can take place at any of the following moments:

• Deployment Time: At the beggining of the application to input the data.
• Retrieval Time: At the end of the application to collect results.
• During the user application: To transfer information between nodes.

To achieve this, we have implemented File Transfer support in two ways:

• File Transfer API
• Descriptor File Transfer support.

23.2. File Transfer API

23.2.1. API Definition

import org.objectweb.proactive.filetransfer.*;

static public FileVector FileTransfer.pushFile(Node n, File source, File destination);
static public FileVector FileTransfer.pushFile(Node n, File[] source, File[] destination);
static public FileVector FileTransfer.pullFile(Node n, File source, File destination);
static public FileVector FileTransfer.pullFile(Node n, File[] source, File[] destination);

These methods can be used to put and get files on a remote Node while the user's application is running. Note that these methods
behave asynchronously, and in the case of the pullFile method, the returned File is a future. For further information on asyn-
chronism and futures, please refer to the Asynchronous calls and futures section of this manual.

23.2.2. How to use the API

In the following example, a Node is deployed using a descriptor file. A file is then pushed from localhost@localSource to node-
host@remoteDest, using the paths specified in a java.io.File type object. Afterwards, a file is pulled from nodehost@remote-
Source and saved at localhost@localDest, in the same fashion.

import org.objectweb.proactive.filetransfer.*;

pad = ProActive.getProactiveDescriptor(XML_LOCATION);

VirtualNode testVNode = pad.getVirtualNode("example");
testVNode.activate();
Node[] examplenode = testVNode.getNodes();

File localSource = new File("/local/source/path/file");
File remoteDest = new File("/remote/destination/path/file");
FileVector filePushed =FileTransfer.pushFile(examplenode[0],localSource, remoteDest);
filePushed.waitForAll(); //wait for push to finish

File remoteSource = new File("/remote/source/path/file");
File localDest = new File("/local/destination/path/file");
FileVector filePulled = FileTransfer.pullFile(examplenode[0], remoteSource, localDest);

Part IV: Deploying Chapter 23: ProActive File Transfer Model

185

File file = filePulled.getFile(0); //wait for pull to finish

23.3. Descriptor File Transfer

File Transfers can also be specified using ProActive Descriptors. The main advantage of this scheme is that it allows deployment
and retrieval of input and output (files). In this section we will concentrate on mainly three topics:

• XML Descriptor File Transfer Tags
• Deployment File Transfer
• Retrieval File Transfer

23.3.1. XML Descriptor File Transfer Tags

The File Transfer related tags, are placed inside the descriptor at three different parts (or levels).

The first one corresponds to the fileTransferDefinitions tag, which contains a list of FileTransfer definitions. A FileTransfer
definition is a high level representation of the File Transfer, containing mainly the file names. It is created in such a way, that no
low level information such as: hosts, protocols, prefix is present (this is the role of the low level representation). The following ex-
ample shows a FileTranfer definition named example:

....
</deployment>
<fileTransferDefinitions>

<fileTransfer id="example">
<file src="hello.dat" dest="world.dat"/>
<file src="hello.jar" dest="world.jar"/>
<file src="hello.class" dest="world.class"/>
<dir src="exampledir" dest="exampledir"/>

</fileTransfer>
<fileTransfer id="anotherExample">

...
</fileTransfer>
...

</fileTransferDefinitions>
<infrastructure>
....

The FileTransfer definitions can be referenced through their names, from the VirtualNode tags using two attributes:fileTransfer-
Deploy and fileTransferRetrieve. The first one, corresponds to the file transfer that will take place at deployment time, and the
second one corresponds to the file transfer that the user will trigger once the user application is done.

<virtualNode name="exampleVNode" fileTransferDeploy="example" fileTransferRetrieve="example"/>

All the low level information such as: hosts, username, protocols, prefix, etc... is declared inside each process. Both fileTransfer-
Deploy and fileTransferRetrieve are specified separetly using a refid attribute. The refid can be a direct reference to a FileTrans-
fer definition, or set using the keyword implicit. If implicit is used, then the reference will be inherited from the corresponding
VirtualNode. In the following example both mechanisms (Deploy and Retrieve) reference indirectly and directly the example
definition:

<processDefinition id="xyz">
<sshProcess>
...

<!-- Inside the process, the FileTransfer tag becomes an element instead of
an attribute. This happens because FileTransfer information is process specific.
Note that the destination hostname and username can be omitted,

Part IV: Deploying Chapter 23: ProActive File Transfer Model

186

and implicitly inferred from the process information. -->

<fileTransferDeploy refid="implicit"> <!-- referenceID or keyword "implicit" (inherit)-->
<copyProtocol>processDefault, rcp, scp, pft</copyProtocol>
<sourceInfo prefix="/home/user"/>
<destinationInfo prefix="/tmp" hostname="foo.org" username="smith" />

</fileTransferDeploy>

<fileTransferRetrieve refid="example">
<sourceInfo prefix="/tmp"/>
<destinationInfo prefix="/home/user"/>

</fileTransferRetrieve>
</sshProcess>

</processDefinition>

In the example above, fileTransferDeploy has an implicit refid. This means that the File Transfer definitions used will be inher-
ited from the VirtualNode. The first element shown inside this tag corresponds to copyProtocol. The copyProtocol tag specified
the sequence of protocols that will be executed to achieve the FileTransfer at deployment time. Notice the processDefault
keyword, which specifies the usage of the default copy protocol associated with this process. In the case of the example, this cor-
responds to an sshProcess and therefore the Secure Copy Protocol (scp) will be tried first. To complement the higher level File
Transfer definition, other information can be specified as attributes in the sourceInfo and destinationInfo elements. For the case
of FileTransferDeploy, these tags currently correspond to: prefix, hostname and username.

For fileTransferRetrieve, no copyProtocol needs to be specified. ProActive will use it's internal mechanism to transfer the files.
This implies that no hostname or username are required.

23.3.1.1. Currently supported protocols for file transfer deployment

• pftp (ProActive File Transfer Protocol)
• scp (ssh processDefault)
• rcp (rsh processDefault)
• unicore (Unicore processDefault)
• nordugrid (Nordugrid processDefault)

23.3.1.2. Triggering File Transfer Deploy

The trigger (start) of the File Transfer will take place when the deployment of the descriptor file is executed. In the case of extern-
al protocols (scp, rcp), this will take place before the process deployment. In the case of internal protocols (unicore,
nordugrid), this will take place with the process deployment. In any case, it should be noted that intersting things can be achieved,
such as transfering the ProActive libraries into the deploying machine using an on-the-fly style. This means that it is possible to
deploy on remote machines without having ProActive pre-installed. Even further, when the network allows, it is also possible to
transfer other required libraries like the JRE (Java Runtime Envirorment).

There is one protocol that behaves differently from the rest, the ProActive FileTransfer Protocol (pftp). The pftp uses the ProAct-
ive FileTranfer API (described earier), to transfer files between nodes. The main advantage of using the pftp is that no external
copy protocols are required to transfer files at deployment time. Therefore, if the grid infrastructure does not provide a way to
transfer files, a FileTransfer Deploy can still take place using the pftp. On the other hand, the main drawback of using pftp is that
ProActive must already be install on the remote machines, and thus on-the-fly deployment is not possible.

23.3.1.3. Triggering File Transfer Retrieve

Since distributed application's termination is difficult to detect. The responsability of triggering the deployment corresponds to the
user. To achieve this, we have provided a specific mehod that will trigger the retrieval of all files associated with a VirtualNode.

import org.objectweb.proactive.core.descriptor.data;

public FileWrapper VirtualNode.fileTransferRetrieve();

Part IV: Deploying Chapter 23: ProActive File Transfer Model

187

This will trigger the retrieval of all the files specified in the descriptor, from all the nodes that were deployed using this virtual
node using the pftp. The following shows an example:

import org.objectweb.proactive.core.descriptor.data;

pad = ProActive.getProactiveDescriptor(XML_LOCATION);

VirtualNode testVNode = pad.getVirtualNode("example");
testVNode.activate();
Node[] examplenode = testVNode.getNodes();

...

FileWrapper fw = testVNode.fileTransferRetrieve();
...
File f[]=fw.getFiles() //wait-for-files to arrive

As a result of calling this method an array of type File[] will be created, representing all the retrieved files.

23.4. Advanced: FileTransfer Design

This section provides internal details and information on how the File Transfer is implemented. Reading the following section to
use the File Transfer mechanisms provided by ProActive is not necessary.

23.4.1. Abstract Definition (High level)

This definitions can be referenced from a VirtualNode. They contain the most basic information of a FileTransfer:

• A unique definition identification name.
• Files: source and optionally the destination name.
• Directories: source and optionally the destination name. Also the exclude and include patterns (not yet available feature).

References from the VirtualNode are made using the unique definition name.

23.4.2. Concrete Definition (Low level)

These definitions contain more architecture specific information, and are therefore contained within the Process:

• A reference to an abstract definition, or the "implicit" key word indicating the reference will be inherited from the Virtual-
Node.

• A sequence of Copy Protocols that will be used.
• Source and Destination information: prefix, username, hostname, file separator, etc...

If some of this information (like username or hostname) can be inferred from the process, it is not necessary to declare it in the
definition. Optionally, the information contained in the protocol can be overridden if specified.

23.4.3. How Deployment File Transfer Works

Part IV: Deploying Chapter 23: ProActive File Transfer Model

188

Figure 23.1. File Transfer Design

When a FileTransfer starts, both abstract and concrete information are merged using the FileTransfer Workshop. The result of this
process correspons to a sequence of CopyProtocols, as specified in the Concrete Definition.

Each CopyProtocol will be tried before the deployment takes place, until one succeeds. After one succeed are all fail, the process
deployment will take place.

23.4.4. How File Transfer API Works

The File Transfer API is built on top of ProActive's active object and future file asynchronism model. When pulling or pushing a
file from a Node, two service Active Objects (AO) are created. One is placed on the local machine and the otherone on the remote
site. The file is then split into blocks, and transfered over the network using remote invocations between these two AO.

23.4.5. How Retrieve File Transfer Works

For a given virtualnode, a File Transfer pull will take place with all the nodes deployed from this virtualnode. The detailes of the
specified file transfer will correspond to the ones present in the descriptor file.

Part IV: Deploying Chapter 23: ProActive File Transfer Model

189

Part IV: Deploying Chapter 23: ProActive File Transfer Model

190

Chapter 24. Using SSH tunneling for RMI or
HTTP communications
24.1. Overview

ProActive allows users to tunnel all of their RMI or HTTP communications over SSH: it is possible to specify in ProActive de-
ployment descriptors which JVMs should export their RMI objects through a SSH tunnel.

This kind of feature is useful for two reasons:

• it might be necessary to encrypt the RMI communications to improve the RMI security model.
• the configuration of the network in which a given ProActive application is deployed might contain firewalls which reject or

drop direct TCP connections to the machines which host RMI objects. If these machines are allowed to receive ssh conec-
tions over their port 22 (or another port number), it is possible to multiplex and demultiplex all RMI connections to that host
through its ssh port.

To successfully use this feature with reasonable performance, it is mandatory to understand:

• the configuration of the underlying network: location and configuration of the firewalls.
• the communication patterns of the underlying ProActive runtime: which JVM makes requests to which JVMs.
• the communication patterns of your ProActive objects: which object makes requests to which object. For example: A ->

B, B -> C, A ->C

24.2. Configuration of the network

No two networks are alike. The only thing they share is the fact that they are all different. Usually, what you must look for is:

• is A allowed to open a connection to B?
• is B allowed to open a connection to A? (networks are rarely symetric)

If you use a TCP or a UDP-based communication protocol (ie: RMI is based on TCP), these questions can be translated into 'what
ports on B is A allowed to open a connection to?'. Once you have answered this question for all the hosts used by your applica-
tion, write down a small diagram which outlines what kind of connection is possible. For example:

Firewall Firewall
| * * |
| ----> Internet <---- |

A | <---- ----> | B
| 22 22 |

This diagram summarizes the fact that host A is protected by a firewall which allows outgoing connections without control but al-
lows only incoming connections on port 22. Host B is also protected by a similar firewall.

24.3. ProActive runtime communication patterns

To execute a ProActive application, you need to 'deploy' it. Deployment is performed by the ProActive runtime and is configured
by the ProActive deployment descriptor of the initial host. During deployment, each newly- created ProActive runtime performs a
request to the initial ProActive runtime. The initial runtime also performs at least one request on each of these distant runtime.

This 2-way communication handshake makes it necessary to correctly configure the network to make sure that the filtering de-
scribed above does not interfere with the normal operation of the ProActive runtimes.

24.4. ProActive application communication patterns.

Once an application is properly deployed, the application objects deployed by the ProActive runtime start making requests to each
other. It is important to properly identify what object connects to what object to identify the influence of the network configuration

Part IV: Deploying Chapter 24: Using SSH tunneling for RMI
or HTTP communications

191

on these communication patterms.

24.5. ProActive communication protocols

Whenever a request is made to a non-local ProActive object, this request is performed with the communication protocol specified
by the destination JVM. Namely, each JVM is characterized by a a unique property named proactive.communication.protocol
which is set to one of:

• rmi
• http
• rmissh
• ibis
• jini

This property uniquely identifies the protocol which is used by each client of the JVM to send data to this JVM. To use different
protocols for different JVMs, two solutions exist:

• one is to edit the ProActive deployment descriptors and to pass the property as a command-line option to the JVM:
•

<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
....
<jvmParameters>

<parameter value='-Dproactive.communication.protocol=rmissh'/>
</jvmParameters>
...
</jvmProcess>

• the other one is to set in the ProActive Configuration file(introduced in a previous chapter) on the remote host the property
proactive.communication.protocol to the desired protocol

<prop key='proactive.communication.protocol' value='rmissh'/>

Finally, if you want to set this property on the initial deployment JVM (the JVM that starts the application), you will need to spe-
cify the -Dproactive.communication.protocol=rmissh argument yourself on the JVM command line.

24.6. The rmissh communication protocol.

This protocol is a bit special because it keeps a lot of compatibility with the rmi protocol and a lot of options are available to 'op-
timize' it.

This protocol can be used to automatically tunnel all RMI communications through SSH tunnels. Whenever a client wishes to ac-
cess a distant rmissh server, rather than connecting directly to the distant server, it first creates a SSH tunnel (so-called port-
forwarding) from a random port locally to the distant server on the distant host/port. Then, all it has to do to connect to this server
is to pretend this server is listening on the local random port choosen by the ssh tunnel. The ssh daemon running on the server host
receives the data for this tunnel, decapsulates it and forwards it to the real server.

Thus, whenever you request that a JVM be accessed only through rmissh (namely, whenever you set its proact-
ive.communication.protocol to rmissh), you need to make sure that an ssh daemon is running on its host. ProActive uses the jsch
client ssh library to connect to this daemon.

The properties you can set to configure the behavior of the ssh tunneling code are listed below. All these properties are client-side
properties:

• proactive.ssh.port: the port number on which all the ssh daemons to which this JVM must connect to are expected to listen.
If this property is not set, the default is 22.

• proactive.ssh.username: Two possible syntaxes: username alone .e.g. proactive.ssh.username=jsmith, it represents the
username which will be used during authentication with all the ssh daemons to which this JVM will need to connect to.

Or you can use the form proact-
ive.ssh.username=username1@machine1;username2@machine2;...;usernameN@machineN. Note that several user-

Part IV: Deploying Chapter 24: Using SSH tunneling for RMI
or HTTP communications

192

names without machine's names is not allowed and won't be parsed properly.

If this property is not set, the default is the user.name java property.
• proactive.ssh.known_hosts: a filename which identifies the file which contains the traditional ssh known_hosts list. This

list of hosts is used during authentication with each ssh daemon to which this JVM will need to connect to. If the host key
does not match the one stored in this file, the authentication will fail. If this property is not set, the default is Sys-
tem.getProperty ('user.home') + '/.ssh/known_hosts'

• proactive.ssh.key_directory: a directory which is expected to contain the pairs of public/private keys used during authentic-
ation. the private keys must not be encrypted. The public keys filenames must match '*.pub'. Private keys are ignored if their
associated public key is not present. If this property is not set, the default is System.getProperty ('user.home') + '/.ssh/'

• proactive.tunneling.try_normal_first: if this property is set to 'yes', the tunneling code always attempts to make a direct
rmi connection to the remote object before tunneling. If this property is not set, the default is not to make these direct-
connection attempts. This property is especially useful if you want to deploy a number of objects on a LAN where only one
of the hosts needs to run with the rmissh protocol to allow hosts outside the LAN to connect to this frontend host. The other
hosts located on the LAN can use the try_normal_first property to avoid using tunneling to make requests to the LAN fron-
tend.

• proactive.tunneling.connect_timeout: this property specifies how long the tunneling code will wait while trying to estab-
lish a connection to a remote host before declaring that the connection failed. If this property is not set, the default value is
2000ms.

• proactive.tunneling.use_gc: if this property is set to 'yes', the client JVM does not destroy the ssh tunnels as soon as they
are not used anymore. They are queued into a list of unused tunnels which can be reused. If this property is not set or is set to
another value, the tunnels are destroyed as soon as they are not needed anymore by the JVM.

• proactive.tunneling.gc_period: this property specifies how long the tunnel garbage collector will wait before destroying a
unused tunnel. If a tunnel is older than this value, it is automatically destroyed. If this property is not set, the default value is
10000ms.

Note that the use of SSH tunneling over RMI still allows dynamic classloading through HTTP. For the dynamic classloading our
protocol creates an SSH tunnel over HTTP, in order to get missing classes. It is also important to notice that all you have to do in
order to use SSH tunneling is to set the proactive.communication.protocol property to rmissh and to use the related properties if
needed(in major cases default behavior is sufficient), ProActive takes care of everything else.

Part IV: Deploying Chapter 24: Using SSH tunneling for RMI
or HTTP communications

193

Part IV: Deploying Chapter 24: Using SSH tunneling for RMI
or HTTP communications

194

Chapter 25. Fault-Tolerance
25.1. Overview

ProActive can provide fault-tolerance capabilities through two differents protocols: a Communication-Induced Checkpointing pro-
tocol (CIC) or a pessimistic message logging protocol (PML). Making a ProActive application fault-tolerant is fully transparent;
active objects are turned fault-tolerant using Java properties that can be set in the deployment descriptor (see Chapter 21, XML De-
ployment Descriptors). The programmer can select at deployment time the most adapted protocol regarding the application and
the execution environment.

Persistence of active objects is obtained through standard Java serialization; a checkpoint thus consists in an object containing a
serialized copy of an active object and few informations related to the protocol. As a consequence, a fault-tolerant active object
must be serializable.

25.1.1. Communication Induced Checkpointing (CIC)

Each active object in a CIC fault-tolerant application have to checkpoint at least every TTC (Time To Checkpoint) seconds. When
all the active objects have taken a checkpoint, a global state is formed. If a failure occurs, the entire application must restarts from
such a global state. The TTC value depends mainly on the assessed frequency of failures. A little TTC value leads to very frequent
global state creation and thus to a little rollback in the execution in case of failure. But a little TTC value leads also to a bigger
overhead between a non-fault-tolerant and a fault-tolerant execution. The TTC value can be set by the programmer in the deploy-
ment descriptor.

The failure-free overhead induced by the CIC protocol is usually low, and this overhead is quasi-independent from the message
communication rate. The counterpart is that the recovery time could be long since all the application must restart after the failure of
one or more active object.

25.1.2. Pessimistic message logging (PML)

Each active object in a PML fault-tolerant application have to checkpoint at least every TTC seconds and all the messages de-
livered to an active object are logged on a stable storage. There is no need for global synchronization as with CIC protocol, each
checkpoint is independent: if a failure occurs, only the faulty process have to recover from its latest checkpoint. As for CIC pro-
tocol, the TTC value impact the global failure-free overhead, but the overhead is more linked to the communication rate of the ap-
plication.

Regarding the CIC protocol, the PML protocol induces a higher overhead on failure-free execution, but the recovery time is lower
as a single failure does not involve all the system.

Warning: For the version 3.0, those two protocols are not compatible: a fault-tolerance application can use only one of the two
protocols. This compatibility will be provide in the next version.

25.2. Making a ProActive application fault-tolerant

25.2.1. Resource Server

To be able to recover a failed active object, the fault-tolerance system must have access to a resource server. A resource server is
able to return a free node that can host the recovered active object.

A resource server is implemented in ProActive in ft.servers.resource.ResourceServer. This server can store free nodes by two
differents way:

• at deployment time: the user can specify in the deployment descriptor a resource virtual node. Each node mapped on this vir-
tual node will automaticaly register itself as free node at the specified resource server.

• at execution time: the resource server can use an underlying p2p network (see Chapter 35, ProActive Peer-to-Peer Infra-
structure) to reclaim free nodes when a hosting node is needed.

Note that those two mechanisms can be combined. In that case, the resource server first provides node registered at deployment
time, and when no more such nodes are available, the p2p network is used.

25.2.2. Fault-Tolerance servers

Part IV: Deploying Chapter 25: Fault-Tolerance

195

Fault-tolerance mechanism needs servers for the checkpoints storage, the localization of the active objects, and the failure detec-
tion. Those servers are implemented in the current version as a unique server (ft.servers.FTServer), that implements the inter-
faces of each server (ft.servers.*.*). This global server also includes a resource server.

This server is a classfile server for recovered active objects. It must thus have access to all classes of the application, i.e. it must be
started with all classes of the application in its classpath.

The global fault-tolerance server can be launched using the ProActive/scripts/[unix|windows]/FT/startGlobalFTServer.[sh|bat]
script, with 5 optional parameters:

• the protocol: -proto [cic|pml]. Default value is cic.
• the server name: -name <serverName>. The default name is FTServer.
• the port number: -port <portNumber>. The default port number is 1100.
• the fault detection period: -fdperiod <periodInSec>. This value defines the time between two consecutive fault detection

scanning. The default value is 10 sec. Note that an active object is considered as faulty when it becomes unreachable, i.e.
when it becomes unable to receive a message from another active object.

• the URL of a p2p service (see Chapter 35, ProActive Peer-to-Peer Infrastructure) that can be used by the resource server: -
p2p <serviceURL>. There is no default value for this option.

The server can also be directly launched in the java source code, using
org.objectweb.proactive.core.process.JVMProcessImpl class:

GlobalFTServer server = new JVMProcessImpl(
new org.objectweb.proactive.core.process.AbstractExternalProcess.StandardOutputMessageLogger());

this.server.setClassname('org.objectweb.proactive.core.body.ft.servers.StartFTServer');
this.server.startProcess();

Note that if one of the servers is unreachable when a fault-tolerant application is deploying, fault-tolerance is automatically and
transparently disabled for all the application.

25.2.3. Configure fault-tolerance for a ProActive application

Fault-tolerance capabilities of a ProActive application are set in the deployment descriptor, using the faultTolerance service. This
service is attached to a virtual node: active objects that are deployed on this virtual node are turned fault-tolerant. This service
must first defines the protocol that have to be used for this application. The user can select the appropriate protocol with the entry
<protocol type='[cic|pml]'/> in the definition of the service.

The service also defines servers URLs:

• <globalServer url='...'/> set the URL of a global server, i.e. a server that implements all needed methods for fault-tolerance
mechanism (stable storage, fault detection, localization). If this value is set, all others URLs will be ignored.

• <checkpointServer url='...'/> set the URL of the checkpoint server, i.e. the server where checkpoints are stored.
• <locationServer url='...'/> set the URL of the location server, i.e. the server responsible for giving references on failed and

recovered active objects.
• <recoveryProcess url='...'/> set the URL of the recovery process, i.e. the process responsible for launching the recovery of

the application after a failure.
• <resourceServer url='...'/> set the URL of the resource server, i.e. the server responsible for providing free nodes that can

host a recovered active object.

Finally, the TTC value is set in fault-tolerance service, using <ttc value='x'/>, where x is expressed in seconds. If not, the default
value (30 sec) is used.

25.2.4. A deployment descriptor example

Here is an example of deployment descriptor that deploys 3 virtual nodes: one for deploying fault-tolerant active objects, one for
deploying non-fault-tolerant active object (if needed), and one as resource for recovery. The two fault-tolerance behaviors corres-
pond to two fault-tolerance services, appli and resource. Note that non-fault-tolerant active objects can communicate with fault-
tolerant active objects as usual. Chosen protocol is CIC and TTC is set to 5 sec for all the application.

Part IV: Deploying Chapter 25: Fault-Tolerance

196

<ProActiveDescriptor>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name='NonFT-Workers' property='multiple'/>
<virtualNode name='FT-Workers' property='multiple' ftServiceId='appli'/>
<virtualNode name='Failed' property='multiple' ftServiceId='resource'/>
</virtualNodesDefinition>

</componentDefinition>
<deployment>
<mapping>
<map virtualNode='NonFT-Workers'>
<jvmSet>
<vmName value='Jvm1'/>

</jvmSet>
</map>
<map virtualNode='FT-Workers'>
<jvmSet>
<vmName value='Jvm2'/>

</jvmSet>
</map>
<map virtualNode='Failed'>
<jvmSet>
<vmName value='JvmS1'/>
<vmName value='JvmS2'/>

</jvmSet>
</map>
</mapping>
<jvms>
<jvm name='Jvm1'>
<creation>
<processReference refid='linuxJVM'/>

</creation>
</jvm>
<jvm name='Jvm2'>
<creation>
<processReference refid='linuxJVM'/>
</creation>
</jvm>
<jvm name='JvmS1'>
<creation>
<processReference refid='linuxJVM'/>
</creation>
</jvm>
<jvm name='JvmS2'>
<creation>
<processReference refid='linuxJVM'/>
</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition id='linuxJVM'>
<jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
</processDefinition>

</processes>
<services>
<serviceDefinition id='appli'>
<faultTolerance>
<protocol type='cic'></protocol>

Part IV: Deploying Chapter 25: Fault-Tolerance

197

<globalServer url='rmi://localhost:1100/FTServer'></globalServer>
<ttc value='5'></ttc>
</faultTolerance>

</serviceDefinition>
<serviceDefinition id='resource'>
<faultTolerance>

<protocol type='cic'></protocol>
<globalServer url='rmi://localhost:1100/FTServer'></globalServer>
<resourceServer url='rmi://localhost:1100/FTServer'></resourceServer>

<ttc value='5'></ttc>
</faultTolerance>

</serviceDefinition>
</services>
</infrastructure>

</ProActiveDescriptor>

25.3. Programming rules

25.3.1. Serializable

Persistence of active objects is obtained through standard Java serialization; a checkpoint thus consists in an object containing a
serialized copy of an active object and a few informations related to the protocol. As a consequence, a fault-tolerant active object
must be serializable. If a non serializable object is activated on a fault-tolerant virtual node, fault-tolerance is automatically and
transparently disabled for this active object.

25.3.2. Standard Java main method

Standard Java thread, typically main method, cannot be turned fault-tolerant. As a consequence, if a standard main method inter-
acts with active objects during the execution, consistency after a failure can no more be ensured: after a failure, all the active ob-
jects will roll back to the most recent global state but the main will not.

So as to avoid such inconsistency on recovery, the programmer must minimizes the use of standard main by, for example, delegat-
ing the initialization and launching procedure to an active object.

...
public static void main(String[] args){

Initializer init = (Initializer)(ProActive.newActive('Initializer.getClas\
s.getName()', args);

init.launchApplication();
System.out.println('End of main thread');

}
...

The object init is an active object, and as such will be rolled back if a failure occurs: the application is kept consistent.

25.3.3. Checkpointing occurrence

To keep fault-tolerance fully transparent (see the technical report
[http://www-sop.inria.fr/oasis/personnel/Christian.Delbe/publis/rr5246.pdf] for more details), active objects can take a checkpoint
before the service of a request. As a first consequence, if the service of a request is infinite, or at least much greater than TTC,
the active object that serves such a request can no more take checkpoints. If a failure occurs during the execution, this object will
force the entire application to rolls back to the beginning of the execution. The programmer must thus avoid infinite method such
as

...
public void infiniteMethod(){

while (true){
this.doStuff();

Part IV: Deploying Chapter 25: Fault-Tolerance

198

}
}
...

The second consequence concerns the definition of the runActivity() method (see runActive
[http://www-sop.inria.fr/oasis/ProActive/doc/api/org/objectweb/proactive/RunActive.html]). Let us consider the following ex-
ample:

...
public void runActivity(Body body) {

org.objectweb.proactive.Service service = new org.objectweb.proactive.Se\
rvice(body);

while (body.isActive()) {
Request r = service.blockingRemoveOldest();
...
/* CODE A */
...
/* CHECKPOINT OCCURRENCE */
service.serve(r);

}
}
...

If a checkpoint is triggered before the service of r, it characterizes the state of the active object at the point /* CHECKPOINT OC-
CURRENCE */. If a failure occurs, this active object is restarted by calling the runActivity() method, from a state in which the
code /* CODE A */ has been already executed. As a consequence, the execution looks like if /* CODE A */ was executed two
times.

The programmer should then avoid to alter the state of an active object in the code preceding the call to service.serve(r) when he
redefines the runActivity() method.

25.3.4. Activity Determinism

All the activities of a fault-tolerant application must be deterministic (see [BCDH04] for more details). The programmer must then
avoid the use of non-deterministic methods such as Math.random().

25.3.5. Limitations

Fault-tolerance in ProActive is still not compliant with the following features:

• active objects exposed as Web services (see Chapter 38, Exporting Active Objects and components as Web Services), or
reachable using http protocol,

• and security (see Chapter 37, ProActive Security Mechanism), as fault-tolerance servers are implemented using standard
RMI.

25.4. A complete example

25.4.1. Description

You can find in ProActive/scripts/[unix|windows]/ft/nbodyft.[sh|bat] a script that starts a fault-tolerant version of the ProActive
NBody [http://www-sop.inria.fr/oasis/ProActive/apps/nbody.html] example. This script actually call the ProActive/
scripts/[unix|windows]/nbody.[sh|bat] script with the option -displayft. The java source code is the same as the standard version.
The only difference is the 'Execution Control' panel added in the graphical interface, which allows the user to remotely kill Java
Virtual Machine so as to trigger a failure by sending a killall java signal. Note that this panel will not work with Windows operat-
ing system, since the killall does not exist. But a failure can be triggered for example by killing the JVM process on one of the
hosts.

Part IV: Deploying Chapter 25: Fault-Tolerance

199

http://www-sop.inria.fr/oasis/ProActive/doc/api/org/objectweb/proactive/RunActive.html
http://www-sop.inria.fr/oasis/ProActive/doc/api/org/objectweb/proactive/RunActive.html
http://www-sop.inria.fr/oasis/ProActive/apps/nbody.html
http://www-sop.inria.fr/oasis/ProActive/apps/nbody.html

Figure 25.1. The nbody application, with Fault-Tolerance enabled

This snapshot shows a fault-tolerant execution with 8 bodies on 3 different hosts. Clicking on the 'Execute' button will trigger the
failure of the host called Nahuel and the recovery of the 8 bodies. The checkbox Show trace is checked: the 100 latest positions of
each body are drawn with darker points. These traces allow to verify that, after a failure, each body finally reach the position it had
just before the failure.

25.4.2. Running NBody example

Before starting the fault-tolerant body example, you have to edit the ProActive/descriptors/FaultTolerantWorkers.xml deploy-
ment descriptor so as to deploy on your own hosts (HOSTNAME), as follow:

...
<processDefinition id='jvmAppli1'>

<rshProcess

Part IV: Deploying Chapter 25: Fault-Tolerance

200

class='org.objectweb.proactive.core.process.rsh.RSHJVMProcess'
hostname='HOSTNAME'>

<processReference refid='jvmProcess'/>
</rshProcess>

</processDefinition>
...

Of course, more than one host is needed to run this example, as failure are triggered by killing all Java processes on the selected
host.

The deployment descriptor must also specify the GlobalFTServer location as follow, assuming that the script startGlobalFTServ-
er.sh has been started on the host SERVER_HOSTAME:

...
<services>
<serviceDefinition id='appli'>
<faultTolerance>
<protocol type='cic'></protocol>
<globalServer

url='rmi://SERVER_HOSTAME:1100/FTServer'></globalServer>
<ttc value='5'></ttc>
</faultTolerance>
</serviceDefinition>
<serviceDefinition id='ressource'>
<faultTolerance>
<protocol type='cic'></protocol>
<globalServer

url='rmi://SERVER_HOSTAME:1100/FTServer'></globalServer>
<resourceServer

url='rmi://SERVER_HOSTAME:1100/FTServer'></resourceServer>
<ttc value='5'></ttc>
</faultTolerance>
</serviceDefinition>

</services>
...

Finally, you can start the fault-tolerant ProActive NBody and choose the version you want to run:

~/ProActive/scripts/unix/FT> ./nbodyFT.sh
Starting Fault-Tolerant version of ProActive NBody...
--- N-body with ProActive ---------------------------------
WARNING: $PROACTIVE/descriptors/FaultTolerantWorkers.xml MUST BE SET \
WITH EXISTING HOSTNAMES !

Running with options set to 4 bodies, 3000 iterations, display true
1: Simplest version, one-to-one communication and master
2: group communication and master
3: group communication, odd-even-synchronization
4: group communication, oospmd synchronization
5: Barnes-Hut, and oospmd
Choose which version you want to run [12345]:
4
Thank you!
--> This ClassFileServer is reading resources from classpath
Jini enabled
Ibis enabled
Created a new registry on port 1099
//tranquility.inria.fr/Node-157559959 successfully bound in registry at //t\
ranquility.inria.fr/Node-157559959
Generating class: pa.stub.org.objectweb.proactive.examples.nbody.common.St\

Part IV: Deploying Chapter 25: Fault-Tolerance

201

ub_Displayer
************* Reading deployment descriptor: file:./../../.././descriptors/\
FaultTolerantWorkers.xml ********************

Part IV: Deploying Chapter 25: Fault-Tolerance

202

Chapter 26. Technical Service
26.1. Context

For effective components, non-functional aspects must be added to the application functional code. Likewise enterprise middle-
ware and component platforms, in the context of Grids, services must be deployed at execution in the component containers in or-
der to implement those aspects. This work proposes an architecture for defining, configuring, and deploying such Technical Ser-
vices in a Grid platform.

26.2. Overview

A technical service is a non-functional requirement that may be dynamically fulfilled at runtime by adapting the configuration of
selected resources.

From the programmer point of view, a technical service is a class that implements the TechnicalService interface. This class
defines how to configure a node.

package org.objectweb.proactive.core.descriptor.services;

public interface TechnicalService {
public void init(HashMap argValues);
public void apply(Node node);

}

From the deployer point of view, a technical service is a set of ”variable-value” tuples, each of them configuring a given aspect of
the application environment.

<technical-service id="myService" class="services.Service1">
<arg name="name1" value="value1" />
<arg name="name2" value="value2" />

</technical-service>

The class attribute defines the implementation of the service, a class which must implement the TechnicalService interface.

The configuration parameters of the service are specified by arg tags in the deployment descriptor. Those parameters are passed to
the init method as a map associating the name of a parameter as a key and its value. The apply method takes as parameter the node
on which the service must be applied. This method is called after the creation or acquisition of a node, and before the node is used
by the application.

Note

Two or several technical services could be combined if they touch separate aspects. Indeed, two different technical
services, which are conceptually orthogonal, could be incompatible at source code level .

That is why a virtual node can be configured by only one technical service. However, combining two technical ser-
vices can be done at source code level, by providing a class extending TechnicalService that defines the correct
merging of two concurrent technical services.

26.3. Progamming Guide

26.3.1. A full XML Descriptor File

<ProActiveDescriptor>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="master" property="multiple" serviceRefid="ft-master" />
<virtualNode name="slaves" property="multiple" serviceRefid="ft-slaves" />

Part IV: Deploying Chapter 26: Technical Service

203

</virtualNodesDefinition>
</componentDefinition>
...
<infrastructure>

<processes>
<processDefinition id="localJVM">

<jvmProcess class="JVMNodeProcess" />
</processDefinition>

</processes>
<aquisition>
<aquisitionDefinition id="p2pservice">

<P2PService nodesAsked="100000">
<peerSet>
<peer>rmi://registry1:3000</peer>

</peerSet>
</P2PService>

</acquisitionDefinition>
</services>

</infrastructure>
<technicalServiceDefinitions>

<service id="ft-master" class="services.FaultTolerance">
<arg name="proto" value="pml" />
<arg name="server" value="rmi://host/FTServer1" />
<arg name="TTC" value="60" />

</service>
<service id="ft-slaves" class="services.FaultTolerance">
<arg name="proto" value="cic" />
<arg name="server" value="rmi://host/FTServer2" />
<arg name="TTC" value="600" />

</service>
</technicalServiceDefinitions>

</ProActiveDescriptor>

26.3.2. Nodes Properties

In order to help programmers for implementing their owns technical services, we have added a property system to the nodes. This
is usefull for configuring technical services.

Get the current node:

Node localNode = ProActive.getNode();

Using properties:

String myProperty = localNode.getProperty(myKeyAsString);
localNode.setProperty(myKeyAsString, itsValueAsString);

26.4. Further Information

The seminal paper [CDD06c] .

The first presentation of this work is available here
[http://www-sop.inria.fr/oasis/personnel/Alexandre.Di_Costanzo/AdC/Publications_files/wp4_v1.pdf] .

The work of this paper [CCDMCompFrame06] is based on Technical Services.

Part IV: Deploying Chapter 26: Technical Service

204

Chapter 27. ProActive Grid Scheduler
The Scheduler is a service used to enhance the user's experience to the proActive environment. A scheduler is created to administer
the deployment and the maintenance of a list of jobs over various platforms and infrastructure (Grid or P2P infrastructure) follow-
ing one of many set of rules regarding the job management. In addition to this, the scheduler offers a shell based command submit-
ter and is integrated in IC2D to enable an ease of interactions. In this chapter, we will expose how the scheduler works, what
policies govern the job manipulation, how to create a job and how to get the jobs and the nodes state using either a shell based
command submitter or the IC2D GUI.

27.1. The scheduler design:

The scheduler service is the result of a collaboration between 3 active objects (Scheduler, Job Manager, and Ressource Manager)
each of wich has its own functionality. The Scheduler object is the main object and is a non GUI daemon that is connected to a job
and a ressource management objects. The job management class (class that extends from AbstractPolicy) contains a set of
guidelines, a policy, upon which the jobs will be served. You can choose from one of the following policies: a time policy serving
the fastest jobs first, a space policy serving the smallest jobs or the ones that need the least number of ressources, a FIFO policy
and a composite policy of the previously mentioned policies. The job management object also maintains a description of all the
jobs and monitors the deployment of all the jobs. It communicates with the ressource management object (RessourceManager) for
the node allocation and disallocation and receives queing orders and job status notification requests from the main scheduler ob-
ject.

Figure 27.1. Representation of the scheduler and of its main objects

When a job is submitted (see below for the definition of a scheduler job Section 27.2.1, “Job creation”), it is first parsed to extract
its information and then balanced to the job manager which adds it to the waiting queue. As precised before, the job manager refers

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

205

to a policy and to the availability of the needed ressources (ressource manager) to choose the job to be served and to deploy the job
on one of the reserved nodes. Once deployed, the job gets the nodes reserved from the scheduler by calling the ProActive-
Descriptor activate() method and then the getVirtualNode("VNName") method. The job manager also deploys an agent on the
main node to keep track of the deployed job and to set the system properties of the VM. It will also keep pinging this AO to ensure
that the job is still alive.

Figure 27.2. A short description of the mechanism of job deployment and submission

There are, for the moment, 4 policies that are used by the job manager of which we distinguish:

• FIFO Policy: is the traditional policy that serves the submitted jobs in the same order of their submittal.

• Time Policy: serves the fastest jobs first, the ones that are estimated to occupy the ressources with the less amount of pos-
sible time.

• Space Policy: serves the smallest jobs, the ones that need the smallest number of ressources. If, by any chance, we find more
than one job with the same amount of needed ressources, the oldest job in the queue is served first.

• Mixed Policy: any combination of the precited policies.

27.2. The scheduler manual:

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

206

27.2.1. Job creation

The job creation doesn't differ much from the normal code written with ProActive. The main difference is that all the jobs must im-
plement an interface containing the definition of the main constants. We'll see, shortly, a brief example of a job but first we need to
know about the definition of a job in ProActive. A job is a combination of a main class (or a jar package) and a descriptor deploy-
ment file. The descriptor file contains all the needed information for the deployment. The most important part for the submission of
a job is the main definition part that shouldn't be forgotten.

<mainDefinition id="main" class="org.objectweb.proactive.scheduler.jobTemplate.Hello">
<arg value="param1"/>
<arg value="param2"/>
<mapToVirtualNode value="schedulervn"/>
<classpath>

<absolutePath value="test/classes/" />
<absolutePath value="test/src/" />

</classpath>
</mainDefinition>

Here is the main class definition: we mention the name of the class and enumerate all the main parameters as well as the mapping
to the main Virtual Node and an optional new tag that can help you launch a job if its not resident in the actual class path of the
scheduler. The definition of the Virtual node is done in the same manner as for any job description with the difference of an ac-
quisition method instead of a creation one:

<jvm name="Jvm1">
<acquisition>

<serviceReference refid="ProactiveScheduler"/>
</acquisition>

</jvm>
...
<serviceDefinition id="ProactiveScheduler">
<ProActiveScheduler numberOfNodes="2" minNumberOfNodes="1"
schedulerUrl="rmi://localhost:1234" jvmParameters="-Dname=value"/>

</serviceDefinition>

In the service definition part we see that we want to contact the ProActiveScheduler service with the following attribute tags:

• numberOfNodes: the number of nodes gives an estimate of the maximum number of nodes needed

• minNumberOfNodes: the minimum number of node is an optional attribut that is used to refer that the application may be-
gin if the minimum amount of needed ressources is satisfied.

• schedulerUrl: is the scheduler url to make sure that we can effectively contact the scheduler and get the reserved nodes in
the activation part of the program

• jvmParameters: are the system properties of the main JVM.

• To follow: startDate, priority, estimatedTime

This is a complete example of the xml prototype of the job_template.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<mainDefinition id="main" class="org.objectweb.proactive.scheduler.jobTemplate.Hello">

<arg value="param1"/>
<arg value="param2"/>
<mapToVirtualNode value="schedulervn"/>
<classpath>

<absolutePath value="test/classes/" />

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

207

<absolutePath value="test/src/" />
</classpath>

</mainDefinition>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="schedulervn" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="schedulervn">

<jvmSet>
<vmName value="Jvm1"/>

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<acquisition>
<serviceReference refid="ProactiveScheduler"/>

</acquisition>
</jvm>

</jvms>
</deployment>
<infrastructure>

<services>
<serviceDefinition id="ProactiveScheduler">

<ProActiveScheduler numberOfNodes="2" minNumberOfNodes="1"
schedulerUrl="rmi://localhost:1234" jvmParameters="-Dname=value"/>

</serviceDefinition>
</services>

</infrastructure>
</ProActiveDescriptor>

Attention: It's banned the use of currentJVM tag.

Next we need to create the program that we need to execute on the remote nodes:

public class Hello implements java.io.Serializable,
org.objectweb.proactive.scheduler.JobConstants {
public static void main(String[] args) throws Exception {
// get the complete path of the xml descriptor file on the remote node
String xmlFile = System.getProperty(XML_DESC);

// Access the nodes of the descriptor file
ProActiveDescriptor descriptorPad = ProActive.getProactiveDescriptor(xmlFile);
descriptorPad.activateMappings();

// get the reserved nodes
VirtualNode vnode = descriptorPad.getVirtualNode("schedulervn");
Node[] nodes = vnode.getNodes();

...

...

// wait for the job to finish and do the cleaning of the active objects if not
// the scheduler ensures the cleaning implicitly ...

...

// exit the program

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

208

System.exit();
}

}

This is a short sample of the job that shall run on the scheduler. As you may have noticed, there is nothing new except for the first
line. The thing is that we do not need to set the complete XML path. The scheduler takes care of the file transfert of the XML De-
ployment descriptor to the remote node and sets automatically the system property of the complete XML path on the remote node
prior to the activation.

As you may have noticed, there is no difference with the current example except for the System.getProperty() call.

There are lots of scripts in the schduler directory in the unix directory of the scripts directory of the ProActive library.

ProActive/scripts/unix/scheduler/

If you want you can call from the terminal after launching the scheduler one of the following scripts that shall launch either the:

• Simple hello world program that creates one Virtual Node containing 2 nodes:

$./LaunchHello.sh

• Simple hello world program that creates 2 VIrtual Nodes containing 1 node:

$./LaunchHello2.sh

• The C3D application by submitting the renderer to the scheduler and then by adding a new user by the use of the old script in
the scripts directory.

$./LaunchC3DRenderer.sh
$../c3d_add_user.sh

27.2.2. Interaction with the scheduler

There is a shell based program that helps you interact with the scheduler by first connecting to the scheduler daemon. This program
offers the basic commands mainly the job submission and deletion, and a view of the status of the jobs (waiting, deployed) and that
of the nodes (free, reserved, busy).

You can launch this program using a shell script:

$ProActive/scripts/unix/communicator.sh [schedulerURL]

Or a BAT script under windows:

$ProActive/scripts/windows/communicator.bat [schedulerURL]

You can use this program to start the connection and the interation with the scheduler. You can submit the scheduler URL or else
the program connects by default to the following url: "rmi://localhost:1234/SchedulerNode/"

bash-3.00$./communicator.sh

--- Communicator --
[Scheduler] Starting Scheduler command listener
--> This ClassFileServer is reading resources from classpath
Generating class : pa.stub.org.objectweb.proactive.scheduler.Stub_Scheduler
> ?

The commands available are: sub, stat, del, nodes, kill, exit

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

209

>

Once connected you will see a console where you can choose one of the following commands:

• stat: this command will give a complete report of all the jobs queued, deployed and finished. We can mention the jobId of
the specified job we need to fetch it's proper description ..

> stat [jobId]

• nodes: this command will give a complete report of all the nodes freed, reserved and busy. We can mention the nodeURL of
the specified node we need to fetch it's proper description and state ..

> nodes [nodeURL]

• sub: this command will enable you to post a job by posting the xml description of the job

> sub file_name.xml

• del: this command will enable you to delete a job posted by the same user with the given jobId

> del jobId

• exit: this command is used to exit the communicator program

> exit

If you are unsure of the command you are using or about how to use it you can always consult the help menu in our program by us-
ing the "?" command as follows:

> ? [command name]

This will give you all the available commands that can be used if no command is specified or else it will give you a full descriptor
of the command submitted.

All daemon logs are written in a file. All logs are available in:

SchedulerDIR/logs

27.3. The Scheduler API

It is nevertheless possible to use the scheduler API for the allocation and disallocation of the ressources in real time programming.
The Scheduler class offers you the possibility to connect to the scheduler daemon using the connectTo(SchedulerURL) method
and then allocate the needed ressources using the getNodes(ressourceNb, estimatedTime) which adds the job to the waiting queue
like any job that contacts the Scheduler for ressources and then returns a Vector of the reserved nodes. In the end we need to free
the reserved nodes by calling the method del(jobId) that frees and cleans all the reserved nodes. We should note here that when the
job submits its demand to get some nodes from the scheduler, it is automatically associated with a jobId that we can get by consult-
ing the jobId of one of the reserved nodes like follow: node.getNodeInformation().getJobID(). Below is a complete example of
how we can use the API.

public class HelloNoDescriptor implements java.io.Serializable {
public static void main(String[] args) throws Exception {

// Get the scheduler URL from the main argument and connect to the scheduler
String schedulerURL = args[0];
Scheduler scheduler = Scheduler.connectTo(schedulerURL);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

210

// demand from the scheduler 1 node and tell it that the estimated time
// for the task to finish is about 3 seconds
Vector nodes = scheduler.getNodes(1, 3);

Node node = (Node) nodes.get(0);

...

...

// we should think of freeing the nodes here
scheduler.del(mainNode.getNodeInformation().getJobID());

}
}

There's a script in the scheduler directory of the scripts directory that shall run this prog:

$./HelloNoDescriptor.sh

These are the main methods used to ask for nodes from the scheduler. Next, you will find here a detailed description of all the
classes and all their methods and how you could enhance or add certain features to the scheduler.

27.3.1. Classes

Here you shall find a detailed explanation about the classes that form the scheduler API. You'll also find out an explanation of the
role and methods of each one.

27.3.1.1. The jobs

This is the most important part that you should learn first. You can find out here how the jobs are represented in the queue and
where the descriptions are saved while queing or deploying the application. In general there are 2 ways of submitting a job to the
scheduler service: it's either by submitting a descriptor or by using the API while programming. So there are 2 objects for each
kind of submission, the first (GenericJob) offers a mean to store the job's description before adding it to the waiting queue and the
second (JobNoDescriptor) will contain a reference to the first object but will also contain a method that will detect the nodes reser-
vation and will return the reserved nodes to the job that's using the API rather than the deployment descriptor. Either way, after the
job deployment, the job's description will be part of a new object (DeployedTask) along with an agent object responsible of keep-
ing track, in the case of a deployment, and changing the system properties of the main node. And we created an interface called
JobConstants in which we keep the constants to help the programmer and to ensure the simplicity of the creation of the programs
that shall be submitted to the scheduler.

27.3.1.1.1. GenericJob

This class includes the definition and description of the tasks and mainly contains some setters and getters. You'll find these attrib-
utes

• "classname" of the class to be run

• "priority" of the job

• "userId" is the id of the user who posted the job.

• "submitDate" gives the date when the task was submitted.

• "mainParameters" contains the parameters that should be submitted to the job when starting it.

• "ressourceNb" indicates the number of processors needed to execute this job.

• "estimatedTime" gives an estimate of the time to finish the task.

• "xmlName" gives a mean to store the path to the deployment descriptor if present.

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

211

• "startDate" is the date when the job should start execution

• "jobId" is the id of the job

• "jvmParameters" is the JVM system properties of the main node

• "jobStatus" is the status of the job. It can take one of the following values: queued, deployed, finished

• "classPath" offers the class paths of the main node

• "minRessourceNb" is an optional field that, if set, indicates the minimum required ressource to enable the job to run

27.3.1.1.2. JobNoDescriptor

This is the class that supports the jobs that have no XML descriptor API. They use directly the Scheduler API to get nodes. In short
when a job with no decriptor submits its demand to reserve a certain amount of ressources, this causes the generation of a Generic-
Job object that will be added to the queue like any normal job and of an active object of this class that shall throw the allocated
nodes as soon as he detects their reservation before we dispose of his services.

• getNodes(): This method is used to detect the node reservation event and to help fetch those reserved nodes. Returns a vec-
tor of all the reserved nodes.

public Vector getNodes();

• runActivity(): The runActivity is reimplemented to stop the service and to destroy the active object after the getNodes meth-
od is called.

public void runActivity(Body body);

27.3.1.1.3. DeployedTask

Class that contains the description of the task and the reference to an agent that keeps track of the job evolution. This agent helps
setting the main JVM system properties as well a simple method to make sure that this node stays alive (the ping() method, an
empty method to ensure that the main node is still alive).

• getTaskDescription(): returns the GenericJob associated to this deployed job.

public GenericJob getTaskDescription();

• isAlive(): this method is a sort of pinging method. It gives the status of the main node (alive or dead). Returns true if the
main node is alive, false otherwise.

public BooleanWrapper isAlive();

27.3.1.2. The queue

The queue class offers a mean of queueing the jobs. It contains a HashMap in which every GenericJob object created will be stored
after associating it with a jobId. In short this class keeps the main methods used for the HashMap namely:

• size(): Returns the number of the waiting jobs.

public int size();

• containsId(jobId): tests the existence of the job with the specified jobId.

public boolean containsId(String jobIds);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

212

• put(job): Inserts the job to the queue and gives it an Id. If the queue is full then this method throws a QueueFullException.

public void put(GenericJob task) throws QueueFullException;

• keySet(): Gives a list of the IDs of the waiting jobs.

public Set keySet();

• get(jobId): Returns the job associated with the job Id.

public GenericJob get(String jobId);

• remove(jobId): Removes and returns the job associated with the job Id from the queue.If there is no job associated to this jo-
bId then this method returns null.

public GenericJob remove(String jobId);

• isEmpty(): true if the queue is empty, false otherwise.

public boolean isEmpty();

• values(): returns a collection of the genericJob description

public Collection values();

27.3.1.3. The Job Manager

The job manager is an object that acts upon a policy to serve the waiting jobs. In general we dispose of an abstract class
(AbstractPolicy) that contains all the essential tools for the job managers to run. Mainly, the insertion and deployement of tasks,
and an abstract comparer that should be redefined in the specific policies.

• sub(job): Insert the job's description object in the queue.

public BooleanWrapper sub(GenericJob task);

• del(jobId): Deletes the job from the queue and stops it if it has already been launched.

public BooleanWrapper del(String jobId);

• stat(jobId): Gives description of all the jobs that are curently running in forms of a Vector if no specific id is specified, else,
it gives the description of the specified job if it exists.

public Vector stat(String jobId);

• isToBeServed(job1, job2): This is an abstract comparer method to be redefined by the specifique policy... Returns true if
task1 is to be served before task2 according to the policy.

abstract public boolean isToBeServed(GenericJob job1, GenericJob job2);

• nextTask():Returns the job that should run next (according to the implemented policy).

public String nextTask();

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

213

• execute(): This method is used to execute a task if the required ressources are available.

public void execute();

• checkRunningTasks(): Check the list of the running tasks to find out if there is one that's finished so that we can free the al-
located ressources.

public void checkRunningTasks();

27.3.1.4. The Ressource Manager

The ressource manager is an object that has the main purpose of managing the ressources. It is, in fact, responsible for the alloca-
tion, disallocation and creation or retrieval of the "ressources" (processing power). This class contains 3 main hashmaps one for
each kind of node (unused, reserved, busy) and implements the node event listener to enable the detection of the newly created
and/or acquired ressources.

• getAvailableNodesNb(): This method returns the number of ressources available.

public int getAvailableNodesNb();

• freeNodes(jobId, mainIsDead): frees the allocated nodes of the job associated to the specified jobId. The parameter mainIs-
Dead is there to specify if the main node is dead to know if it is useless or not so we can know if we have to dispose of it.

public void freeNodes(String jobId, boolean mainIsDead);

• nodeFreer(nodes, jobId, mainIsDead): frees the nodes and does the cleaning. This method is used because we are unsure of
the place of the nodes wether they are in the usedNodes queue or in the reservedNodes queue. This method is never used ex-
ternally, the freeNodes method usually tests the stat of the job before submitting the command to this method.

private void nodeFreer(Vector nodes, String jobId, boolean mainIsDead);

• reserveNodes(jobId, ressourceNumber): Reserve "ressourceNumber" of ressources and returns the first reserved node. This
method usually puts those reserved nodes in the reservedNodes queue for later retrieval while activating.

public Node reserveNodes(String jobId, int ressourceNumber);

• getNodes(jobId, askedNodes): Returns all the nodes that were reserved to the job and moves them from the waiting queue to
the used queue.

public Node[] getNodes(String jobId, int askedNodes);

• sec(ressourceNumber): Tests the availlability of "ressourceNumber" of ressources.

public BooleanWrapper isAvailable(int ressourceNumber);

• nodes(nodeURL): Provides the information about the nodes (state, job running, properties ...) Returns a vector of the nodes
description.

public Vector nodes(String nodeURL);

• checkReservation(jobId): checks to find out wether the job with the specified jobId has had its needed ressources reserved.

public BooleanWrapper checkReservation(String jobId);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

214

27.3.1.5. The Scheduler

This is the class of the scheduler daemon. This class offers many methods to ensure flexibility and to offer methods for all kind of
services. For instance, it is possible to interact with the scheduler via 4 basic methods sub for job submission, del for job deletion,
stat for job statistics and nodes for nodes information. It is also possible to create a new Scheduler daemon via the call of the
start(policy) method and to connect to a previously created scheduler via connectTo(schedulerURL). Once a job is submitted via
a descriptor it will need to be parsed to extract its information and when it comes to deployment time it will need to get its nodes
this is why we will need the following methods fetchJobDescription for xml parsing that will create a temporary GenericJob ob-
ject that can only be accessed during parsing time via getTmpJob so that we can set its atributes and finally to commit the object
to the queue we will need the commit object method, then, when deploying the task, we will need to connect to the scheduler to
fetch the reserved nodes by the use of the getNodes method.

• Scheduler(policyName): Scheduler constructor that instanciate an active object used to manage jobs knowing the policy
class name and creates an active object ressource manager.

public Scheduler (String policyName);

• sub(job): Insert a job in the queue of the scheduler.

public BooleanWrapper sub(GenericJob job);

• del(jobId): Deletes the job from the queue and stops it if it has already been launched.

public BooleanWraper del(String jobId);

• stat(jobId): Gives description of all the jobs that are curently running in forms of a Vector if no specific id is specified, else,
it gives the description of the specified job if it exists.

public Vector stat(String jobId);

• nodes(jobId, askedNodesnodeURL): Provides the information about the nodes (state, job running, ...)

public Vector nodes(String nodeURL);

• createScheduler(policyName): This method is used to create a unique scheduler object on the machine. If the scheduler isn't
already created, it creates a new instance a new scheduler with a job manager following the specified policyName.

static public void createScheduler(String policyName);

• start(policyName): Starts the scheduler. Calls the createScheduler method and creates a new scheduler.

public static void start(String policyName);

• fetchJobDescription(xmlDescriptorURL): This method launches the parsing of the XML file to extract the description of
the job submitted prior to its submission to the queue. Returns the jobId of the newly created object

public StringMutableWrapper fetchJobDescription(String xmlDescriptorURL);

• connectTo(schedulerURL): connects to the scheduler node and fetchs the scheduler daemon using the submitted url. Returns
a reference to the Scheduler object else it doesn't try to create a scheduler service and returns null.

public static Scheduler connectTo(String schedulerURL);

• getNodes(ressourceNb, estimatedTime): This method is used while programming .. You can use it to reserve submit your
demand for ressources... This method will create an active object containing the job's description in a genericJob object and
submit it to the queue like any usual job but the trick is that to make sure that the reserved nodes can get to the demanding

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

215

job this active object will stay waiting for the ressource allocation and when finished it will submit those reserved nodes to
the job.

public Vector getNodes (int ressourceNb, int estimatedTime);

• getReservedNodes(jobID, askedNodes): Returns an array of the reserved nodes of the object with the specified jobId. This
method is used while parsing the XML deployment descriptor when activating the deployment descriptor.

public Node [] getReservedNodes(String jobID, int askedNodes);

• commit(jobID): commits the job's description after parsing and submits it to the waiting queue.

public void commit(String jobID);

• getTmpJob(jobID): Gets the temporary created generic job object to change it's attribute's content. It is important to note
that this method is only used while parsing..

public GenericJob getTmpJob(String jobID);

27.3.1.6. The Scheduler Lookup Service

This class represents a service to acquire the nodes of a given Job from the scheduler service. This service can be defined and used
transparently when using XML Deployment descriptor. This object is a service that will automatically connect to the scheduler ob-
ject when instanciated via the procured url. Here also we have an interface, called SchedulerConstants, containing the necessary
constants needed by the scheduler and the scheduler lookup service.

• getNodes(): This is the method to get nodes form the scheduler ressource manager.

public Node [] getNodes();

• getServiceName(): Gives the service name or the scheduler node name of the scheduler daemon.

public String getServiceName();

• getSchedulerService(): Returns the scheduler service object.

public Scheduler getSchedulerService();

• getNodeNumber(): Returns the askedNodes.

public int getNodeNumber();

• setNodeNumber(nodeNumber): Sets the number of nodes to be acquired with this Scheduler service.

public void setNodeNumber(int nodeNumber);

• getMinNodeNumber(): Returns the min askedNodes number.

public int getMinNodeNumber();

• setMinNodeNumber(nodeNumber): Sets the min number of nodes to be acquired with this Scheduler service. By minimum
we mark that if the right policy is selected this number would be judged as suffisant to start the application.

public void setMinNodeNumber(int nodeNumber);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

216

27.3.1.7. The ProActiveJobHandler

This is the main class used for parsing the jobs submitted with the xml deployment descriptor file. This class will launch the pars-
ing of the file and the extraction of the descriptions of the job.

• notifyEndActiveHandler(): we redefine this method so that we can collect in the end the total amount of information from
the created Virtual nodes. Like for instance the total amount of needed ressources.

protected void notifyEndActiveHandler(String name,
UnmarshallerHandler activeHandler) throws org.xml.sax.SAXException;

27.3.1.8. Communicator

This is the main class used to communicate with the scheduler daemon to submit the commands to the scheduler like the submis-
sion, deletion and statistics of any job and the nodes status command. The communicator offer a console interaction program with
the scheduler daemon. For more information about the communicator please refer to Section 27.2.2, “Interaction with the sched-
uler”. Here you will only find the technical explanation and the method names.

• communicator(schedulerURKL): This is the constructor that's used to create a communicator. It tries to establish a connec-
tion with the scheduler daemon and to get the scheduler object before we begin with the submission of commands.

public Communicator (String schedulerURL);

• pad(string, pad_len): This function is used to make the String right-justified. If the String is bigger then pad_len then this
function will add blanks in the beginning to make sure that the String is right-justified over the pad_len space else it will re-
turn the String unchanged.

private String pad(String s, int pad_len);

• center(string, pad_len): This function is u sed to make the String center-justified. If the String is smaller then pad_len then
this function will add blanks in the beginning and in the end to make sure that the String is right-justified over the pad_len
space else it will return the String unchanged.

private String center(String s, int pad_len);

• log(message, isError): Logs the message either as a normal message or as an error depending on the isError type. If the isEr-
ror is true then the submitted message is an error else it's a normal one.

private static void log(String msg, boolean isError);

• flush(message): sets an immediate flush of the normal message.

private static void flush(String message);

• helpScreen(command): Is the help console. Here we can either set specific help for a specific command or we can add the
command name of the newly created command

public void helpScreen(String command);

• handleCommand(command): Here we shall handle the submitted command, check the validity of the command then call
the related method or subroutine to launch the command. Returns true if the execution occured normaly, false otherwise.

private boolean handleCommand(String command);

• startCommandListener(): Starts the command listener object and begins with to take the commands.

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

217

private void startCommandListener();

• viewNodes(nodes, specific): This method is used to display the descriptions of all the nodes or of a specific node on the shell
prompt. Nodes contains the nodes to be displayed and specific is set to true if the command demands the view of a specific
node.

public void viewNodes(Vector nodes, boolean specific);

• viewJobs(jobs, specific): This method is used to display the descriptions of all the jobs or of a specific job on the shell
prompt. Jobs contains the job status of either all the jobs or of a specific one and specific indicates wether the command
needs the description of a specific job or that of all the jobs.

public void viewJobs(Vector jobs, boolean specific);

27.3.2. How to extend the scheduler

We can always change the ressource acquisition method, the job description or create a new policy to serve the jobs and even cre-
ate a new command that can be used for the scheduler. In this section you'll find out what are the steps that should be taken in this
regard.

27.3.2.1. How to change the ressource acquisition mode

To ensure the independance between the acquisition of the nodes and the ressource reservation and manipulation, we created an
object named RessourceListener which main purpose is to wait for the creation of the nodes and add it to the unusedNodes list.
So in order to change the ressource acquisition mode you'd have to change only the RessourceListener class. One important thing
that you don't have to forget is that the ressourceListener object has to take the reference to the unusedNodes queue of the res-
sourceManager, while instanciating, to be able to submit the nodes to the ressourceManager. So we can either think of changing
directly the code of the RessourceListener class or think of only changing the xmlURL and the Virtual Node names in the Res-
sourceManager constructor when instanciating the ressourceListener:

public RessourceManager(BooleanWrapper b) {
unusedNodes = new Vector();
reservedNodes = new Vector();
usedNodes = new Vector();

// launches the specific ressourceListener that shall listen for the nodes
// created and add the newly created node to the queue.
String xmlURL = "/user/cjarjouh/home/ProActive/src/org/objectweb/proactive/scheduler/test.xml"

;
Vector vnNames = new Vector();
vnNames.add("SchedulerVN");
new RessourceListener(this.unusedNodes, xmlURL, vnNames);

}

27.3.2.2. How to change or add a new description for the job

To add a new description for the job we shall have to modify the schema, the GenericJob class and add a code to fetch the content
of this new attribute in the parsers. And we shall have to add those stuff in no particular order:

• Modify the schema:

So in order for the parser to be able to detect this new addition we must modify the schema and put the definition of the new
attribute in the ProActiveSchedulerType description tag.

<xs:complexType name="ProActiveSchedulerType">
<xs:attribute name="numberOfNodes" type="xs:positiveInteger" use="required" />
<xs:attribute name="minNumberOfNodes" type="xs:positiveInteger" use="optional" />
<xs:attribute name="schedulerUrl" type="xs:string" use="optional" />
<xs:attribute name="jvmParameters" type="xs:string" use="optional" />

</xs:complexType>

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

218

• Modify the genericJob:

This code contain the description of the job as pre-cited before in the Section 27.3.1.1.1, “GenericJob” paragraphe. In this
object we shall add this new attribute and add also some setters and some getters to manipulate this new addition.

• Modify the parser:

When trying to modify the parser we shall see wether the newly created description is specific or if the attribut must be col-
lected in general from all the Virtual Nodes. For instance, the numberOfNodes attribute is a non local attribute because in
general for the scheduler to know wether to deploy or not the job it needs to have the total number of ressources needed. On
the other hand, the schedulerURL attribute is local and is only used within the service for the acquisition of the nodes. Now
that we know the difference, how can we tell the parser to extract the information following the 2 methods.
• If the attribute is local we must add the attribute in the ProActiveSchedulerHandler of the ServiceDefinitionHandler

class. We can add it to the startContextElement() method like this:

if (scheduler != null) {
// fetch an attribute
String jvmParam = attributes.getValue("jvmParameters");
// get the job's object description
GenericJob job = scheduler.getTmpJob(jobId);
// set the description because it's local
if (checkNonEmpty(nbOfNodes)) {

job.setJVMParameters(jvmParam);
}

// fetch another attribute but this one is non local
String minNumberOfNodes = attributes.getValue("minNumberOfNodes");
// set the attribute of the service associated to the node for later retrieval
if (checkNonEmpty(minNumberOfNodes)) {

schedulerLookupService.setMinNodeNumber(Integer.parseInt(minNumberOfNodes));
}

}

• On the other hand if the thing is global, we shall think of setting the value inside the schedulerService like in the example
above and then head back to the ProActiveJobHandler in the notifyEndActiveHandler() method and add it to the loop
which can help fetch all the values associated to every virtual node and regroup them in one single attribute. Like for ex-
ample, for the numberOfNodes demanded we add a counter to count the needed ressources and set the value to the job
description like follow:

for (int i=0; i<vns.length; ++i) {
VirtualNode vn = vns[i];
ArrayList vms = ((VirtualNodeImpl)vn).getVirtualMachines();
for (int j=0; j<vms.size(); ++j) {

VirtualMachine vm = (VirtualMachine) vms.get(j);

UniversalService service = vm.getService();
if (service.getServiceName().equals(SchedulerConstants.SCHEDULER_NODE_NAME)) {

SchedulerLookupService schedulerLookupService = ((SchedulerLookupService) service);
// here we shall calculate the sum of the non local attribute
nodeNb += schedulerLookupService.getNodeNumber();
minNodeNb += schedulerLookupService.getMinNodeNumber();

}
}

}
// and here we shall set the job description ...
GenericJob job = scheduler.getTmpJob(jobId);
job.setRessourceNb(nodeNb);
job.setMinNbOfNodes(minNodeNb);
scheduler.commit(jobId);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

219

27.3.2.3. How to add a new policy

A job manager is, like mentioned before, an object for managing the ressources based on a specific policy. If you like to add a
policy then you have to follow the following steps based on what kind of policy you want to add. In general, there is 2 kinds of
policies that can be created: a simple policy and a mixed policy.

27.3.2.3.1. Adding a simple policy

The first and the most basic kind of policy is the simple policy. It must be based on an existing quality of the job. If the attribute of
the job doesn't exist you shoulld think of adding it first like directed in the previous paragraphe Section 27.3.2.2, “How to change
or add a new description for the job”. For instance, if you want to create a new policy that serves the jobs with the highest priority
first you have to create your own class, for example PriorityPolicy, and extend it from the AbstractPolicy class and implement the
isToBeServed comparor method that compars 2 tasks in order to find the job with the highest priority. This is the complete ex-
ample that can really explain how to create this simple code:

public class PriorityPolicy extends AbstractPolicy {
public PriorityPolicy() {

// TODO Auto-generated constructor stub
}

public PriorityPolicy(RessourceManager ressourceManager) {
super(ressourceManager);

}

/**
* Returns true if job1 is to be served before job2 according to the policy.
* @param job1
* @param job2
* @return true if job1 is to be served before job2.
*/
public boolean isToBeServed(GenericJob job1, GenericJob job2) {

return (job1.getPriority() >= job2.getPriority());
}

}

27.3.2.3.2. Adding a mixed policy

The second is a more advanced kind of policy but, nevertheless, is simple to add. There's the MixedPolicy class that's already cre-
ated to take an undetermined number of policies, given their policyNames, to serve jobs according to more than one policy. So we
can use this policy to form a specific policy according to the user's demands. But first the constituting pollicies must be created like
directed in the previous paragraphe Section 27.3.2.3.1, “Adding a simple policy”. For instance, if you want to create a new policy
that serves the shortest jobs with the highest priority first we need to combine the PriorityPolicy with the TimePolicy class and
extend the newly created class, for example TimePriorityPolicy, from the MixedPolicy class instead of the basic AbstractPolicy
class. This is the complete example that can really explain how to create this simple code:

public class TimePriorityPolicy extends MixedPolicy {
private static Vector classes;
static {

classes = new Vector();
classes.add("org.objectweb.proactive.scheduler.policy.PriorityPolicy");
classes.add("org.objectweb.proactive.scheduler.policy.TimePolicy");

}

public TimePriorityPolicy() {
// TODO Auto-generated constructor stub

}

public TimePriorityPolicy(RessourceManager ressourceManager) {
super(ressourceManager, classes);

}
}

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

220

27.3.2.4. How to add a new command.

To be able to add a new command we must first create the command in the specific object, for example if the command is relative
to nodes we must think of creating it in the RessourceManager class and if it is relative to jobs we must think of creating it in the
AbstractPolicy class. Either way all the demands must go through the scheduler daemon then we also need to put the method in the
scheduler class and call the specific command from there.

Once the command is created we can add it to the communicator program in the HandleCommand method after creating its relative
constant for the command name and for the command prototype. Then after adding a link to the method we should think of adding
the help to the helpScreen method. For example if we need to create a command like the submission of a job we must create the
method in the jobManager then make a method that calls this method from within the scheduler object. After this we must jump to
the command class and create the constants, the help and the command like follows.

1. As we said before we must begin by creating the constants and insert the name of the newly created command in the con-
stants area. The newly created command will have the name "sub" and stored in the constant with the tag SUB_CMD. On
the other hand the prototype of the SUB_CMD is is "sub xmlFile" and is also stored in another constant with the
SUB_PROTO tag. These constants will be used shortly after.

/* These are the constants namely the commands that are used */
private static final String SUB_CMD = "sub";
private static final String SUB_PROTO = SUB_CMD + " XMLDescriptorOfTheJob";

2. Then we shall need to add certain functionalities for the command to work properly. We must head to the handleCom-
mand method and add it to first to the list of known commands and then we will be more technical and make sure of the
validity of the command before executing it.

// we add the command here along with old commands to make sure that the
// command is a valid one or is part of the commands that figure in the
// communicator glossary of recognized terms.
if (!command.startsWith(SUB_CMD) && ...) {

System.out.println("UNKNOWN COMMAND!!...");
log("unknown command submitted: " + command, true);

return false;
}

String error = null;

// then we add what the command should do in here ...
// if the command is a sub command then ...
if (command.startsWith(SUB_CMD)) {

flush(command);

// Here we make sure that the command is being used correctly before we
// continue withe execution of the sub command ...
if (command.equals(SUB_CMD)) {

error = SUB_PROTO + "\n";
} else {

String XMLDescriptorFile = command.substring(command.indexOf(' ')+1);
this.scheduler.fetchJobDescription(XMLDescriptorFile);

}
}

3. Last but not least we'll add the documentation to the command in the helpMenu method:

// Here we test the validity of the command and check if the comman dis known
// in the communicator database ...
if (!command.endsWith(SUB_CMD) && !command.endsWith(STAT_CMD) &&

....) {
System.out.println("No such command: " + command.substring(1));
log("No help available for " + command, true);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

221

return;
}

result = "\n";

if (!command.equals("?")){
String keyword = command.substring(2);

result += "This command's prototype is: ";

// Here we shall add the specific help of the newly created command
// along with the previously created commands ...
if (keyword.equals(SUB_CMD)) {

result += SUB_PROTO;
result += "\n\n";
result += "This command is used to submit a job to the scheduler.\n\n";
result += "XMLDescriptorOfTheJob is the absolute path to the " +

"XML Deployment Descriptor of the job to be submitted\n";
} else if (keyword.equals(STAT_CMD)) {

....
}

result += "\n";
} else {

// and in the end we must add it to the list of known commands that will appear
// when executing the "?" command
result += "The commands available are: " + SUB_CMD + ", " + STAT_CMD + ", " +

DEL_CMD + ", " + NODES_CMD + ", " + KILL_CMD + ", " + EXIT_CMD;
}

result += "\n";
System.out.println(result);

Part IV: Deploying Chapter 27: ProActive Grid Scheduler

222

Part V. Composing

Table of Contents

Chapter 28. Components introduction ... 225

Chapter 29. An implementation of the Fractal component model geared at Grid Computing .. 227
29.1. Specific features .. 227

29.1.1. Distribution .. 228
29.1.2. Deployment framework .. 229
29.1.3. Activities ... 229
29.1.4. Asynchronous method calls with futures .. 229
29.1.5. Collective interactions .. 229
29.1.6. Conformance .. 229

29.2. Implementation specific API .. 229
29.2.1. fractal.provider ... 229
29.2.2. Content and controller descriptions ... 229
29.2.3. Collective interactions .. 229
29.2.4. Requirements ... 230

29.3. Architecture and design .. 230
29.3.1. Meta-object protocol .. 230
29.3.2. Components vs active objects .. 231
29.3.3. Method invocations on components interfaces .. 231

Chapter 30. Configuration ... 233
30.1. Controllers and interceptors ... 233

30.1.1. Configuration of controllers .. 233
30.1.2. Writing a custom controller ... 233
30.1.3. Configuration of interceptors ... 234
30.1.4. Writing a custom interceptor ... 235

30.2. Lifecycle: encapsulation of functional activity in component lifecycle ... 236
30.3. Short cuts ... 236

30.3.1. Principles .. 236
30.3.2. Configuration ... 239

Chapter 31. Collective interfaces ... 241
31.1. Motivations .. 241
31.2. Multicast interfaces .. 241

31.2.1. Definition .. 241
31.2.2. Data distribution ... 242
31.2.3. Configuration through annotations .. 243
31.2.4. Binding compatibility .. 244

31.3. Gathercast interfaces .. 245
31.3.1. Definition .. 245
31.3.2. Data distribution ... 246
31.3.3. Process synchronization ... 247
31.3.4. Binding compatibility .. 247

Chapter 32. Architecture Description Language ... 249
32.1. Overview ... 249
32.2. Example .. 250
32.3. Exportation and composition of virtual nodes .. 250
32.4. Usage .. 251

Chapter 33. Component examples ... 253
33.1. From objects to active objects to distributed components ... 253

Part V: Composing

33.1.1. Type ... 253
33.1.2. Description of the content ... 254
33.1.3. Description of the controller .. 254
33.1.4. From attributes to client interfaces .. 254

33.2. The HelloWorld example .. 255
33.2.1. Set-up ... 255
33.2.2. Architecture ... 256
33.2.3. Distributed deployment .. 256
33.2.4. Execution .. 257
33.2.5. The HelloWorld ADL files ... 259

33.3. The Comanche example .. 262
33.4. The C3D component example .. 262

Chapter 34. Component perspectives: a support for our research work 263
34.1. Dynamic reconfiguration ... 263
34.2. Model-checking .. 263
34.3. Pattern-based deployment ... 263
34.4. Graphical user interface .. 263

34.4.1. Howto use it ... 264
34.5. Other ... 264
34.6. Limitations ... 264

Part V: Composing

Chapter 28. Components introduction
Computing Grids and Peer-to-Peer networks are inherently heterogeneous and distributed, and for this reason they present new
technological challenges: complexity in the design of applications, complexity of deployment, reusability, and performance issues.

The objective of this work is to provide an answer to these problems through the implementation for ProActive of an extensible,
dynamical and hierarchical component model, Fractal [http://fractal.objectweb.org].

This document is an overview of the implementation of Fractal with ProActive.

It presents:

• the goals and the reasons for a new implementation of the Fractal model,
• extensions to Fractal and conformance to the Fractal specification,
• architectural concepts of the implementation,
• the current Architecture Description Language,
• some examples to illustrate the use of the API and the distribution of components,
• ongoing research work and future directions.

This work contributes to the CoreGRID [http://www.coregrid.net] european project on Grid computing, by participating to the
definition of a programming model for Grid components (the Grid Component Model), and by providing a prototype reference
implementation of this model.

Note

For a general overview of this work, one can also refer to the paper [BCM03].

For more detailed information, one should refer to the PhD thesis "Components for Grid Computing" [PhD-Morel],
manuscript available here [http://www-sop.inria.fr/oasis/personnel/Matthieu.Morel/publications.html] (.pdf).

Part V: Composing Chapter 28: Components introduction

225

http://fractal.objectweb.org
http://www.coregrid.net
http://www-sop.inria.fr/oasis/personnel/Matthieu.Morel/publications.html

Part V: Composing Chapter 28: Components introduction

226

Chapter 29. An implementation of the Fractal
component model geared at Grid Computing
Fractal defines a general conceptual model, along with a programming application interface (API) in Java. According to the offi-
cial documentation, the Fractal component model is 'a modular and extensible component model that can be used with various
programming languages to design, implement, deploy and reconfigure various systems and applications, from operating
systems to middleware platforms and to graphical user interfaces'.

There is a reference implementation, called Julia.

We first tried to use Julia to manipulate active objects (the fundamental entities in ProActive), but we wouldn't have been able to
reuse the features of the Proactive library, because of the architectures of the libraries.

Julia manipulates a base class by modifying the bytecode or adding interception objects to it. On the other hand, ProActive is based
on a meta-object protocol and provides a reference to an active object through a typed stub. If we wanted to use active objects with
Julia, the Julia runtime would try to manipulate the stub, and not the active object itself. And if trying to force Julia to work on the
same base object than ProActive, the control flow could not traverse both ProActive and Julia.

Eventually, re-implementing ProActive using Julia could be a solution (a starting point could be the 'protoactive' example of Julia),
but this would imply a full refactoring of the library, and therefore quite a few resources...

More generally speaking, Julia is designed to work with standard objects, but not with the active objects of ProActive. Some fea-
tures (see next section) would not be reusable using Julia with ProActive active objects.

Therefore, we decided to provide our own implementation of Fractal, geared at Grid Computing and based on the ProActive lib-
rary.

This implementation is different from Julia both in its objectives and in the programming technniques. As previously stated, we
target Grid and P2P environments. The programming techniques and the architecture of the implementation is described in a fol-
lowing section.

29.1. Specific features

Consider a standard system of Fractal components:

Figure 29.1. A system of Fractal components

Part V: Composing Chapter 29: An implementation of the
Fractal component model geared at Grid

227

ProActive/Fractal features distributed components:

Figure 29.2. A system of distributed ProActive/Fractal components (blue, yellow and white represent
distinct locations)

Each component is implemented as one (at least) active object:

Figure 29.3. Match between components and active objects

The combination of the Fractal model with the ProActive library leverages the Fractal component model and provides an imple-
mentation for Grid computing.

29.1.1. Distribution

Distribution is achieved in a transparent manner over the Java RMI protocol thanks to the use of a stub/proxy pattern. Components
are manipulated indifferently of their location (local or on a remote JVM).

Part V: Composing Chapter 29: An implementation of the
Fractal component model geared at Grid

228

29.1.2. Deployment framework

ProActive provides a deployment framework for creating a distributed component system. Using a configuration file and the
concept of virtual nodes, this framework:

1. connects to remote hosts using supported protocols, such as rsh, rlogin, ssh, globus, lsf etc...
2. creates JVMs on these hosts
3. instantiates components on these newly created JVMs

29.1.3. Activities

A fundamental concept of the ProActive library is this of Active Objects (see Chapter 12, ProActive Basis, Active Object Defini-
tion), where activities can actually be redefined (see also Chapter 13, Active Objects: creation and advanced concepts) to custom-
ize their behavior.

29.1.4. Asynchronous method calls with futures

Asynchronous method calls with transparent futures is a core feature of ProActive (Section 13.8, “Asynchronous calls and
futures”), and it allows concurrent processing. Indeed, suppose a caller invokes a method on a callee. This method returns a result
on a component. With synchronous method calls, the flow of execution of the caller is blocked until the result of the method called
is received. In the case of intensive computations, this can be relatively long. With asynchronous method calls, the caller gets a fu-
ture object and will continue its tasks until it really uses the result of the method call. The process is then blocked (it is called wait-
by-necessity) until the result has effectively been calculated.

29.1.5. Collective interactions

We address collective interactions (1-to-n and n-to-1 interactions between components) through Chapter 31, Collective interfaces,
namely gathercast and multicast interfaces.

29.1.6. Conformance

The Fractal specification defines conformance levels for implementations of the API (section 7.1. of the Fractal 2 specification).
The implementation for ProActive is conformant up to level 3.3. In other words, it is fully compliant with the API. Generic factor-
ies (template components) are provided as ADL templates.

We are currently implementing a set of predefined standard conformance tests for the Fractal specification.

29.2. Implementation specific API

29.2.1. fractal.provider

The API is the same for any Fractal implementation, though some classes are implementation-specific:

The fractal provider class, that corresponds to the fractal.provider parameters of the JVM, is
org.objectweb.proactive.core.component.Fractive. The Fractive class acts as:

• a bootstrap component
• a GenericFactory for instantiating new components
• a utility class providing static methods to create collective interfaces and retreive references to ComponentParametersCon-

troller

29.2.2. Content and controller descriptions

The controller description and the content description of the components, as specified in the method public Component newF-
cInstance(Type type, Object controllerDesc, Object contentDesc) throws InstantiationException of the
org.objectweb.fractal.api.factory.Factory class, correspond in this implementation to the classes
org.objectweb.proactive.core.component.ControllerDescription and org.proactive.core.component.ContentDescription.

29.2.3. Collective interactions

Collective interactions are an extension to the Fractal model, described in section Chapter 31, Collective interfaces, that relies on

Part V: Composing Chapter 29: An implementation of the
Fractal component model geared at Grid

229

collective interfaces.

Collective interfaces are bound using the standard Fractal binding mechanism.

29.2.4. Requirements

As this implementation is based on ProActive, several conditions are required (more in Chapter 13, Active Objects: creation and
advanced concepts):

• the base class for the implementation of a primitive component has to provide an empty, no-args constructor.
• for asynchronous invocations, return types of the methods provided by the interfaces of the components have to be reifiable

and methods must not throw exceptions.

29.3. Architecture and design

The implementation of the Fractal model is achieved by reusing the extensible architecture of ProActive, notably the meta-object
protocol and the management of the queue of requests. As a consequence, components are fully compatible with standard active
objects and as such, inherit from the features active objects exhibit: mobility, security, deployment etc.

A fundamental idea is to manage the non-functional properties at the meta-level: each component is actually an active object
with dedicated meta-objects in charge of the component aspects.

29.3.1. Meta-object protocol

ProActive is based on a meta-object protocol (MOP), that allows the addition of many aspects on top of standard Java objects, such
as asynchronism and mobility. Active objects are referenced indirectly through stubs: this allows transparent communications,
would the active objects be local or remote.

The following diagram explains this mechanism:

Java objects 'b' and 'a' can be in different virtual machines (the network being represented here between the proxy and the body,
though the invocation might be local). Object 'b' has a reference on active object 'a' (of type A) through a stub (of type A because it
is generated as a subclass of A) and a proxy. When 'b' invokes a method on 'stub_A', the invocation is forwarded through the com-
munication layer (possibly through a network) to the body of the active object. At this point, the call can be intercepted by meta-
objects, possibly resulting in induced actions, and then the call is forwarded to the base object 'a'.

Computing

230

Figure 29.4. ProActive's Meta-Objects Protocol.

The same idea is used to manage components: we just add a set of meta-objects in charge of the component aspects.

The following diagram shows what is changed:

A new set of meta-objects, managing the component aspect (constituting the controller of the component, in the Fractal termino-
logy), is added to the active object 'a'. The standard ProActive stub (that gives a representation of type A on the figure) is not used
here, as we manipulate components. In Fractal, a reference on a component is of type Component, and references to interfaces are
of type Interface. 'b' can now manipulate the component based on 'a' through a specific stub, called a component representative.
This component representative is of type Component, and also offers references to control and functional interfaces, of type In-
terface. Note that classes representing functional interfaces of components are generated on the fly: they are specific to each com-
ponent and can be unknown at compile-time.

Method invocations on Fractal interfaces are reified and transmitted (possibly through a network) to the body of the active object
corresponding to the component involved. All standard operations of the Fractal API are now accessible.

Figure 29.5. The ProActive MOP with component meta-objects and component representative

29.3.2. Components vs active objects

In our implementation, because we make use of the MOP's facilities, all components are constituted of one active object (at least),
are they composite or primitive components. If the component is a composite, and if it contains other components, then we can say
it is constituted of several active objects. Also, if the component is primitive, but the programmer of this component has put some
code within it for creating new active objects, the component is again constituted of several active objects.

As a result, a composite component is an active object built on top of the CompositeComponent class, and a parallel component
is built on top of the ParallelComponent class. These classes are empty classes, because for composite and parallel components,
all the action takes place in the meta-level. But they are used as a base to build active objects, and their names help to identify them
with the IC2D visual monitoring tool.

29.3.3. Method invocations on components interfaces

Invoking a method on an active object means invoking a method on the stub of this active object. What usually happens then is that
the method call is reified as a Request object and transferred (possibly through a network) to the body of the active object. It is
then redirected towards the queue of requests, and delegated to the base object according to a customizable serving policy
(standard is FIFO).

Component requests, on the other hand, are tagged so as to distinguish between functional requests and controller requests. A func-
tional request targets a functional interface of the component, while a controller request targets a controller of the component.

Like in the standard case (without components), requests are served from the request queue. The serving policy has to be FIFO to

Computing

231

ensure coherency. This is where the life cycle of the components is controlled: the dispatching of the request is dependent upon
the nature of the request, and corresponds to the following algorithm:

loop
if componentLifeCycle.isStarted()

get next request
// all requests are served

else if componentLifeCycle.isStopped()
get next controller request
// only controller requests are served

;
if gotten request is a component life cycle request

if request is start --> set component state to started ;
if request is stop --> set component state to stopped ;

;
;

Part V: Composing Chapter 29: An implementation of the
Fractal component model geared at Grid

232

Chapter 30. Configuration
30.1. Controllers and interceptors

This section explains how to customize the membranes of component through the configuration, composition and creation of con-
trollers and interceptors.

30.1.1. Configuration of controllers

It is possible to customize controllers, by specifying a control interface and an implementation.

Controllers are configured in a simple XML configuration file, which has the following structure:

<componentConfiguration>
<controllers>

<controller>
<interface>ControllerInterface</interface>

<implementation>ControllerImplementation</implementation>
</controller>

...

Unless they some controllers are also interceptors (see later on), the controllers do not have to be ordered.

A default configuration file is provided, it defines the default controllers available for every ProActive component (super, binding,
content, naming, lifecycle and component parameters controllers).

A custom configuration file can be specified (in this example with "thePathToMyConfigFile") for any component in the controller
description parameter of the newFcInstance method from the Fractal API:

componentInstance = componentFactory.newFcInstance(
myComponentType,
new ControllerDescription(
"name",
myHierarchicalType,
thePathToMyControllerConfigFile),

myContentDescription);

30.1.2. Writing a custom controller

The controller interface is a standard interface which defines which methods are available.

When a new implementation is defined for a given controller interface, it has to conform to the following rules:

1. The controller implementation must extend the AbstractProActiveController class, which is the base class for component
controllers in ProActive, and which defines the constructor AbstractProActiveController(Component owner).

2. The controller implementation must override this constructor:

public ControllerImplementation(Component owner) {
super(owner);

}

1. The controller implementation must also override the abstract method setControllerItfType(), which sets the type of the
controller interface:

Part V: Composing Chapter 30: Configuration

233

protected void setControllerItfType() {
try {
setItfType(ProActiveTypeFactory.instance().createFcItfType(

"Name of the controller",
TypeFactory.SINGLE));

} catch (InstantiationException e) {
throw new ProActiveRuntimeException("cannot create controller type: " +

this.getClass().getName());
}

}

1. The controller interface and its implementation have to be declared in the component configuration file.

30.1.3. Configuration of interceptors

Controllers can also act as interceptors: they can intercept incoming invocations and outgoing invocations. For each invocation, pre
and post processings are defined in the methods beforeInputMethodInvocation, afterInputMethodInvocation, beforeOutputMethod-
Invocation, and afterOutputMethodInvocation. These methods are defined in the interfaces InputInterceptor and OutputInterceptor,
and take a MethodCall object as an argument. MethodCall objects are reified representations of method invocations, and they con-
tain Method objects, along with the parameters of the invocation.

Interceptors are configured in the controllers XML configuration file, by simply adding input-interceptor="true" or/and output-
interceptor="true" as attributes of the controller element in the definition of a controller (provided of course the specified intercept-
or is an input or/and output interceptor). For example a controller that would be an input interceptor and an output interceptor
would be defined as follows:

<componentConfiguration>
<controllers>
....
<controller

input-interceptor="true" output-interceptor="true"
>

<interface>InterceptorControllerInterface</interface>
<implementation>ControllerImplementation</implementation>

</controller>
...

Interceptors can be composed in a basic manner: sequentially.

For input interceptors, the beforeInputMethodInvocation method is called sequentially for each controller in the order they are
defined in the controllers configuration file. The afterInputMethodInvocation method is called sequentially for each controller in
the reverse order they are defined in the controllers configuration file.

If in the controller config file, the list of input interceptors is in this order (the order in the controller config file is from top to bot-
tom):

InputInterceptor1
InputInterceptor2

This means that an invocation on a server interface will follow this path:

--> caller
--> InputInterceptor1.beforeInputMethodInvocation
--> InputInterceptor2.beforeInputMethodInvocation
--> callee.invocation

Part V: Composing Chapter 30: Configuration

234

--> InputInterceptor2.afterInputMethodInvocation
--> InputInterceptor1.afterInputMethodInvocation

For output interceptors, the beforeOutputMethodInvocation method is called sequentially for each controller in the order they are
defined in the controllers configuration file. The afterOutputMethodInvocationmethod is called sequentially for each controller in
the reverse order they are defined in the

controllers configuration file.

If in the controller config file, the list of input interceptors is in this order (the order in the controller config file is from top to bot-
tom):

OutputInterceptor1
OutputInterceptor2

This means that an invocation on a server interface will follow this path

--> currentComponent
--> OutputInterceptor1.beforeOutputMethodInvocation
--> OutputInterceptor2.beforeOutputMethodInvocation
--> callee.invocation
--> OutputInterceptor2.afterOutputMethodInvocation
--> OutputInterceptor1.afterOutputMethodInvocation

30.1.4. Writing a custom interceptor

An interceptor being a controller, it must follow the rules explained above for the creation of a custom controller.

Input interceptors and output interceptors must implement respectively the interfaces InputInterceptor and OutputInterceptor,
which declare interception methods (pre/post interception) that have to be implemented.

Here is a simple example of an input interceptor:

public class MyInputInterceptor extends AbstractProActiveController
implements InputInterceptor, MyController {
public MyInputInterceptor(Component owner) {

super(owner);
}

protected void setControllerItfType() {
try {

setItfType(ProActiveTypeFactory.instance().createFcItfType("my control\
ler",

MyController.class.getName(), TypeFactory.SERVER,
TypeFactory.MANDATORY, TypeFactory.SINGLE));

} catch (InstantiationException e) {
throw new ProActiveRuntimeException("cannot create controller " +
this.getClass().getName());

}
}
// foo is defined in the MyController interface
public void foo() {

// foo implementation
}
public void afterInputMethodInvocation(MethodCall methodCall) {

System.out.println("post processing an intercepted an incoming functiona\

Part V: Composing Chapter 30: Configuration

235

l invocation");
// interception code

}
public void beforeInputMethodInvocation(MethodCall methodCall) {

System.out.println("pre processing an intercepted an incoming functional\
invocation");

// interception code
}

}

The configuration file would state:

<componentConfiguration>
<controllers>
....
<controller

input-interceptor="true">
<interface>

MyController
</interface>
<implementation>

MyInputInterceptor
</implementation>

</controller>
...

30.2. Lifecycle: encapsulation of functional activity in component lifecycle

In this implementation of the Fractal component model, Fractal components are active objects. Therefore it is possible to redefine
their activity. In this context of component based programming, we call an activity redefined by a user a functional activity.

When a component is instantiated, its lifecycle is in the STOPPED state, and the functional activity that a user may have redefined
is not started yet. Internally, there is a default activity which handles controller requests in a FIFO order.

When the component is started, its lifecycle goes to the STARTED state, and then the functional activity is started: this activity is
initialized (as defined in InitActive), and run (as defined in RunActive).

2 conditions are required for a smooth integration between custom management of functional activities and lifecycle of the com-
ponent:

1. the control of the request queue must use the org.objectweb.proactive.Service class
2. the functional activity must loop on the body.isActive() condition (this is not compulsory, but it allows to automatically end

the functional activity when the lifecycle of the component is stopped. It may also be managed with a custom filter).

Control invocations to stop the component will automatically set the isActive() return value to false, which implies that when the
functional activity loops on the body.isActive() condition, it will end when the lifecycle of the component is set to STOPPED.

30.3. Short cuts

30.3.1. Principles

Communications between components in a hierarchical model may involve the crossing of several membranes, and therefore pay-
ing the cost of several indirections. If the invocations are not intercepted in the membranes, then it is possible to optimize the com-
munication path by shortcutting: communicating directly from a caller component to a callee component by avoiding indirections
in the membranes.

In the Julia implementation, a shortcut mechanism is provided for components in the same JVM, and the implementation of this
mechanism relies on code generation techniques.

Part V: Composing Chapter 30: Configuration

236

We provide a shortcut mechanism for distributed components, and the implementation of this mechanism relies on a "tensioning"
technique: the first invocation determines the shortcut path, then the following invocations will use this shortcut path.

For example, in the following figure, a simple component system, which consists of a composite containing two wrapped primitive
components, is represented with different distributions of the components. In a, all components are located in the same JVM, there-
fore all communications are local communications. If the wrapping composites are distributed on different remote jvms, all com-
munications are remote because they have to cross composite enclosing components. The short cut optimization is a simple by-
passing of the wrapper components, which results in 2 local communications for the sole functional interface.

Part V: Composing Chapter 30: Configuration

237

Part V: Composing Chapter 30: Configuration

238

Figure 30.1. Using short cuts for minimizing remote communications.

30.3.2. Configuration

Shortcuts are available when composite components are synchronous components (this does not break the ProActive model, as
composite components are structural components). Components can be specified as synchronous in the ControllerDescription ob-
ject that is passed to the component factory:

ControllerDescription controllerDescription =
new ControllerDescription("name", Constants.COMPOSITE, Constants.SYNCHRONOUS);

When the system property proactive.components.use_shortcuts is set to true, the component system will automatically establish
short cuts between components whenever possible.

Part V: Composing Chapter 30: Configuration

239

Part V: Composing Chapter 30: Configuration

240

Chapter 31. Collective interfaces
In this chapter, we consider multiway communications - communications to or from several interfaces - and notably parallel com-
munications, which are common in Grid computing.

Our objective is to simplify the design of distributed Grid applications with multiway interactions.

The driving idea is to manage the semantics and behavior of collective communications at the level of the interfaces.

31.1. Motivations

Grid computing uses the resources of many separate computers connected by a network (usually the Internet) to solve large-scale
computation problems. Because of the number of available computers, it is fundamental to provide tools for facilitating communic-
ations to and from these computers. Moreover, Grids may contain clusters of computers, where local parallel computations can be
very efficiently performed - this is part of the solution for solving large-scale computation problems - , which means that program-
ming models for Grid computing should include parallel programming facilities. We address this issue, in the context of a compon-
ent model for Grid computing, by introducing collective interfaces.

The component model that we use, Fractal, proposes two kinds of cardinalities for interfaces, singleton or collection, which result
in one-to-one bindings between client and server interfaces. It is possible though to introduce binding components, which act as
brokers and may handle different communication paradigms. Using these intermediate binding components, it is therefore possible
to achieve one-to-n, n-to-one or n-to-n communications between components. It is not possible however for an interface to express
a collective behavior: explicit binding components are needed in this case.

We propose the addition of new cardinalities in the specification of Fractal interfaces, namely multicast and gathercast. Multicast
and gathercast interfaces give the possibility to manage a group of interfaces as a single entity (which is not the case with a col-
lection interface, where the user can only manipulate individual members of the collection), and they expose the collective nature
of a given interface. Moreover, specific semantics for multiway invocations can be configured, providing users with flexible com-
munications to or from gathercast and multicast interfaces. Lastly, avoiding the use of explicit intermediate binding components
simplifies the programming model and type compatibility is automatically verified.

The role and use of multicast and gathercast interfaces are complementary. Multicast interfaces are used for parallel invocations,
whereas gathercast interfaces are used for synchronization and gathering purposes.

Note that in our implementation of collective interfaces, new features of the Java language introduced in Java 5 are extensively
used, notably annotations and generics.

31.2. Multicast interfaces

31.2.1. Definition

A multicast interface transforms a single invocation into a list of invocations

A multicast interface is an abstraction for 1-to-n communications. When a single invocation is transformed into a set of invoca-
tions, these invocations are forwarded to a set of connected server interfaces. A multicast interface is unique and it exists at
runtime (it is not lazily created). The semantics of the propagation of the invocation and of the distribution of the invocation para-
meters are customizable (through annotations), and the result of an invocation on a multicast interface - if there is a result - is al-
ways a list of results.

Invocations forwarded to the connected server interfaces occur in parallel, which is one of the main reasons for defining this kind
of interface: it enables parallel invocations, with automatic distribution of invocation parameters.

Part V: Composing Chapter 31: Collective interfaces

241

Figure 31.1. Multicast interfaces for primitive and composite component

31.2.2. Data distribution

A multicast invocation leads to the invocation services offered by one or several connected server interfaces, with possibly distinct
parameters for each server interface.

If some of the parameters of a given method of a multicast interface are lists of values, these values can be distributed in various
ways through method invocations to the server interfaces connected to the multicast interface. The default behavior - namely
broadcast - is to send the same parameters to each of the connected server interfaces. In the case some parameters are lists of val-
ues, copies of the lists are sent to each receiver. However, similar to what SPMD programming offers, it may be adequate to strip
some of the parameters so that the bound components will work on different data. In MPI for instance, this can be explicitly spe-
cified by stripping a data buffer and using the scatter primitive.

The following figure illustrates such distribution mechanisms: broadcast (a.) and scatter (b.)

Figure 31.2. Broadcast and scatter of invocation parameters

Part V: Composing Chapter 31: Collective interfaces

242

Invocations occur in parallel and the distribution of parameters is automatic.

31.2.2.1. Invocation parameters distribution modes

3 modes of distribution of parameters are provided by default, and define distribution policies for lists of parameters:

• BROADCAST, which copies a list of parameters and sends a copy to each connected server interface.

ParamDispatchMode.BROADCAST

• ONE-TO-ONE, which sends the ith parameter to the connected server interface of index i. This implies that the number of
elements in the annotated list is equal to the number of connected server interfaces.

ParamDispatchMode.ONE_TO_ONE

• ROUND-ROBIN, which distributes each element of the list parameter in a round-robin fashion to the connected server inter-
faces.

ParamDispatchMode.ROUND_ROBIN

It is also possible to define a custom distribution by specifying the distribution algorithm in a class which implements the
org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatch interface.

@ParamDispatchMetadata(mode =ParamDispatchMode.CUSTOM, customMode = CustomParametersDispatch.class
))

31.2.2.2. Results

If the invoked method returns a value, then the invocation on the multicast interface returns an ordered collection of result values: a
parameterized list, or List<T>. This implies that, for the multicast interface, the signature of the invoked method has to explicitly
specify List<T> as a return type. This also implies that each method of the interface returns either nothing, or a list. Valid return
types for methods of multicast interfaces are illustrated as follows:

public List<Something> foo();

public void bar();

31.2.3. Configuration through annotations

Note that our implementation of collective interfaces extensively uses new features of the Java language introduced in Java 5, such
as generics and annotations.

The distribution of parameters in our framework is specified in the definition of the multicast interface, using annotations.

Elements of a multicast interface which can be annotated are: interface, methods and parameters. The different distribution modes
are explained in the next section. The examples in this section all specify broadcast as the distribution mode.

31.2.3.1. Interface annotations

A distribution mode declared at the level of the interface defines the distribution mode for all parameters of all methods of this in-
terface, but may be overriden by a distribution mode declared at the level of a method or of a parameter.

The annotation for declaring distribution policies at level of an interface is
@org.objectweb.proactive.core.component.type.annotations.multicast.ClassDispatchMetadata

and is used as follows:

@ClassDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST))
interface MyMulticastItf {

Part V: Composing Chapter 31: Collective interfaces

243

public void foo(List<T> parameters);

}

31.2.3.2. Method annotations

A distribution mode declared at the level of a method defines the distribution mode for all parameters of this method, but may be
overriden at the level of each individual parameter.

The annotation for declaring distribution policies at level of a method is
@org.objectweb.proactive.core.component.type.annotations.multicast.MethodDispatchMetadata

and is used as follows:

@MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.BROADCAST))
public void foo(List<T> parameters);

31.2.3.3. Parameter annotations

The annotation for declaring distribution policies at level of a parameter is
@org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatchMetadata

and is used as follows:

public void foo(@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST) List<T> parameters);

31.2.3.4. Automatic type conversion

For each method invoked and returning a result of type T, a multicast invocation returns an aggregation of the results: a List<T>.

There is a type conversion, from return type T in a method of the server interface, to return type List<T> in the corresponding
method of the multicast interface. The framework transparently handles the type conversion between return types, which is just an
aggregation of elements of type T into a structure of type list<T>.

31.2.4. Binding compatibility

Multicast interfaces manipulate lists of parameters (say, List<ParamType>), and expect lists of results (say, List<ResultType>).
With respect to a multicast interface, connected server interfaces, on the contrary, may work with lists of parameters
(List<ParamType), but also with individual parameters (ParamType) and return individual results (ResultType).

Therefore, the signatures of methods differ from a multicast client interface to its connected server interfaces. This is illus-
trated in the following figure: in a. the foo method of the multicast interface returns a list of elements of type T collected from the
invocations to the server interfaces, and in b. the bar method distributes elements of type A to the connected server interfaces.

Part V: Composing Chapter 31: Collective interfaces

244

Figure 31.3. Comparison of signatures of methods between client multicast interfaces and server
interfaces.

For a given multicast interface, the type of server interfaces which may be connected to it can be infered by applying the following
rules: for a given multicast interface,

• the server interface must have the same number of methods
• for a given method method foo of the multicast interface, there must be a matching method in the server interface:

• named foo
• which returns:

• void if the method in the multicast method returns void
• T if the multicast method returns list<T>

• for a given parameter List<T> in the multicast method, there must be a corresponding parameter, either List<T> or T, in
the server interface, which matches the distribution mode for this parameter.

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented IllegalBindingExcep-
tion if signatures are incompatible.

31.3. Gathercast interfaces

31.3.1. Definition

A gathercast interface transforms a list of invocations into a single invocation

A gathercast interface is an abstraction for n-to-1 communications. It handles data aggregation for invocation parameters, as well
as process coordination. It gathers incoming data, and can also coordinate incoming invocations before continuing the invocation
flow, by defining synchronization barriers.

Gathering operations require knowledge of the participants of the collective communication (i.e. the clients of the gathercast inter-
face). Therefore, the binding mechanism, when performing a binding to a gathercast interface, provides references on client inter-
faces bound to the gathercast interface. This is handled transparently by the framework. As a consequence, bindings to gathercast
interfaces are bidirectional links.

Part V: Composing Chapter 31: Collective interfaces

245

Figure 31.4. Gathercast interfaces for primitive and composite components

31.3.2. Data distribution

Gathercast interfaces aggregate parameters from method invocations from client interfaces into lists of invocations parameters, and
they redistribute results to each client interface.

31.3.2.1. Gathering of invocation parameters

Invocation parameters are simply gathered into lists of parameters. The indexes of the parameters in the list correspond the index
of the parameters in the list of connected client interfaces, managed internally by the gathercast interface.

Part V: Composing Chapter 31: Collective interfaces

246

Figure 31.5. Aggregation of parameters with a gathercast interface

31.3.2.2. Redistribution of results

The result of the invocation transformed by the gathercast interface is a list of values. Each result value is therefore indexed and re-
distributed to the client interface with the same index in the list of client interfaces managed internally by the gathercast interface.

Similarly to the distribution of invocation parameters in multicast interfaces, a redistribution function could be applied to the res-
ults of a gathercast invocation, however this feature is not implemented yet.

31.3.3. Process synchronization

An invocation from a client interface to a gathercast interface is asynchronous, provided it matches the usual conditions for asyn-
chronous invocations in ProActive, however the gathercast interface only creates and executes a new invocation with gathered
parameters when all connected client interfaces have performed an invocation on it.

It is possible to specify a timeout, which corresponds to the maximum amount of time between the moment the first invocation of a
client interface is processed by the gathercast interface, and the moment the invocation of the last client interface is processed. In-
deed, the gathercast interface will not forward a transformed invocation until all invocations of all client interfaces are processed
by this gathercast interface.

Timeouts for gathercast invocations are specified by an annotation on the method subject to the timeout, the value of the timeout is
specified in milliseconds:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(timeout=20)

If a timeout is reached before a gathercast interface could gather and process all incoming requests, a
org.objectweb.proactive.core.component.exceptions.GathercastTimeoutException is returned to each client participating
in the invocation. This exception is a runtime exception.

31.3.4. Binding compatibility

Gathercast interfaces manipulate lists of parameters (say, List<ParamType>), and return lists of results (say, List<ResultType>).
With respect to a gathercast interface, connected client interface work with parameters which can be contained in the lists of para-
meters of the methods of the bound gathercast interface (ParamType), and they return results which can be contained in the lists of
results of the methods of the bound gathercast interface (ResultType).

Therefore, by analogy to the case of multicast interfaces, the signatures of methods differ from a gathercast server interface to
its connected client interfaces. This is illustrated in the following figure: the foo method of interfaces which are client of the gath-
ercast interface exhibit a parameter of type V, the foo method of the gathercast interface exhibits a parameter of type List<V>.
Similarly, the foo method of client interfaces return a parameter of type T, and the foo method of the gathercast interface returns a
parameter of type List<T>.

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented IllegalBindingExcep-
tion if signatures are incompatible

Part V: Composing Chapter 31: Collective interfaces

247

Figure 31.6. Comparison of signature of methods for bindings to a gathercast interface

Part V: Composing Chapter 31: Collective interfaces

248

Chapter 32. Architecture Description
Language
The Architecture Description Language (ADL) is used to configure and deploy component systems. The architecture of the system
is described in a normalized XML file.

The ADL has been updated and is now an extension of the standard Fractal ADL, allowing to reuse ProActive-specific features
such as distributed deployment using deployment descriptors.

The distributed deployment facilities offered by ProActive are reused, and the notion of virtual node is integrated in the component
ADL. For this reason, the components ADL has to be associated with a deployment descriptor (this is done at parsing time: both
files are given to the parser).

One should refer to the Fractal ADL tutorial [http://fractal.objectweb.org/tutorials/adl/index.html] for more detailed information
about the ADL. Here is a short overview, and a presentation of some added features.

Note that because this ADL is based on the Fractal ADL, it requires the following libraries (included in the /lib directory of the
ProActive distribution): fractal-adl.jar, dtdparser.jar, ow_deployment_scheduling.jar

32.1. Overview

Components are defined in definition files, which are .fractal files. The syntax of the document is validated against a DTD re-
treived from the classpath

classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd

The definition element has a name (which must be the same name that the file's) and inheritance is supported through the attribute
'extends':

definition name='org.objectweb.proactive.examples.components.helloworld.hell oworld-distributed-wrappers'

The exportedVirtualNodes elements is described later in this section

Components can be specified and created in this definition, and these components can themselves be defined in other definition
files:

component name='client-wrapper' definition='org.objectweb.proactive.examples.c omponents.helloworld.ClientType'

Nesting is allowed for composite components and is done by adding other 'component' elements.

The binding element specifies bindings between interfaces of components ', and specifying 'this' as the name of the component
refers to the current enclosing component.

binding client='this.r' server='client.r'

The controller elements can have the following 'desc' values: 'composite', 'parallel' or 'primitive'. A parallel component and the
components it contains should be type-compatible

Primitive components specify the content element, which indicates the implementation class containing the business logic for this
component:

content class='org.objectweb.proactive.examples.components.helloworld.ClientImpl'

The virtual-node element offers distributed deployment information. It can be exported and composed in the exportedVirtual-
Nodes element.

Part V: Composing Chapter 32: Architecture Description Lan-
guage

249

http://fractal.objectweb.org/tutorials/adl/index.html

The component will be instantiated on the virtual node it specified (or the one that it exported). For a composite or a parallel com-
ponent, it means it will be instantiated on the (first if there are several nodes mapped) node of the virtual node. For a primitive
component, if the virtual node defines several nodes (cardinality='multiple'), there will be as many instances of the primitive com-
ponent as there are underlying nodes. Each of these instances will have a suffixed name looking like:

primiveComponentName-cyclicInstanceNumber-n

where primitiveComponentName is the name defined in the ADL. This automatic replication is used in the parallel components.

virtual-node name='client-node' cardinality='single'

The syntax is similar to the standard Fractal ADL, and the parsing engine has been extended. Features specific to ProActive are:

• Virtual nodes have a cardinality property: either 'single' or 'multiple'. When 'single', it means the virtual node in the deploy-
ment descriptor should contain 1 node ; when 'multiple', it means the virtual node in the deployment descriptor should con-
tain more than 1 node.

• Virtual nodes can be exported and composed.
• Template components are not handled.
• The controller description includes 'parallel' as a valid attribute.
• The validating DTD has to be specified as: classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd

32.2. Example

The easiest way to understand the ADL is to see an example (Section 33.2.5, “The HelloWorld ADL files”). It corresponds to the
helloworld example described later in this document.

32.3. Exportation and composition of virtual nodes

Components are deployed on the virtual node that is specified in their definition ; it has to appear in the deployment descriptor un-
less this virtual node is exported. In this case, the name of the exported virtual node should appear in the deployment descriptor,
unless this exported virtual node is itself exported.

When exported, a virtual node can take part in the composition of other exported virtual nodes. The idea is to further extend re-
usability of existing (and packaged, packaging being a forthcoming feature of Fractal) components.

In the example, the component defined in helloworld-distributed-wrappers.fractal exports the virtual nodes VN1 and VN2:

exportedVirtualNodes
exportedVirtualNode name='VN1'
composedFrom
composingVirtualNode component='client' name='client-node'
/composedFrom
/exportedVirtualNode
exportedVirtualNode name='VN2'
composedFrom
composingVirtualNode component='server' name='server-node'/
/composedFrom
/exportedVirtualNode

/exportedVirtualNodes

VN1 is composed of the exported virtual node 'client-node' from the component named client

In the definition of the client component (ClientImpl.fractal), we can see that client-node is an exportation of a virtual node which
is also name 'client-node':

exportedVirtualNodes

Part V: Composing Chapter 32: Architecture Description Lan-
guage

250

exportedVirtualNode name='client-node'
composedFrom
composingVirtualNode component='this' name='client-node'/

/composedFrom
/exportedVirtualNode
/exportedVirtualNodes
...
virtual-node name='client-node' cardinality='single'/

Although this is a simplistic example, one should foresee a situation where ClientImpl would be a prepackaged component, where
its ADL could not be modified ; the exportation and composition of virtual nodes allow to adapt the deployment of the system de-
pending on the existing infrastructure. Colocation can be specified in the enclosing component definition
(helloworld-distributed-wrappers.fractal):

exportedVirtualNodes
exportedVirtualNode name='VN1'
composedFrom
composingVirtualNode component='client' name='client-node'
composingVirtualNode component='server' name='server-node'/

/composedFrom
/exportedVirtualNode
/exportedVirtualNodes

As a result, the client and server component will be colocated / deployed on the same virtual node. This can be profitable if there is
a lot of communications between these two components.

When specifying 'null' as the name of an exported virtual node, the components will be deployed on the current virtual machine.
This can be useful for debugging purposes.

32.4. Usage

ADL definitions correspond to component factories. ADL definition can be used directly:

Factory factory = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
Map context = new HashMap();
Component c = (Component) factory.newComponent("myADLDefinition",context);

It is also possible to use the launcher tool, which parses the ADL, creates a corresponding component factory, and instantiates and
assembles the components as defined in the ADL, is started from the org.objectweb.proactive.core.component.adl.Launcher
class:

Launcher [-java|-fractal] <definition> [<itf>] [deployment-descriptor])

where [-java|-fractal] comes from the Fractal ADL Launcher (put -fractal for ProActive components, this will be made optional for
ProActive components in the next release), <definition> is the name of the component to be instantiated and started, <itf> is the
name of its Runnable interface, if it has one, and <deployment-descriptor> the location of the ProActive deployment descriptor to
use. It is also possible to use this class directly from its static main method.

Part V: Composing Chapter 32: Architecture Description Lan-
guage

251

Part V: Composing Chapter 32: Architecture Description Lan-
guage

252

Chapter 33. Component examples
Three examples are presented: code snippets for visualizing the transition between active objects and components, the 'hello
world', from the Fractal tutorial, and C3D component version. The programming model is Fractal, and one should refer to the
Fractal documentation for other detailed examples.

33.1. From objects to active objects to distributed components

In Java, objects are created by instantiation of classes. With ProActive, one can create active objects from Java classes, while com-
ponents are created from component definitions. Let us first consider the 'A' interface:

public interface A {
public String foo(); // dummy method

}

'AImpl' is the class implementing this interface:

public class AImpl implements A {
public AImpl() {}
public String foo() {
// do something
}
}

The class is then instantiated in a standard way:

A object = new AImpl();

Active objects are instantiated using factory methods from the ProActive class (see Section 13.10, “The Hello world example”). It
is also possible to specify the activity of the active object, the location (node or virtual node), or a factory for meta-objects, using
the appropriate factory method.

A active_object = (A)ProActive.newActive(
AImpl, // signature of the base class
new Object[] {}, // Object[]
aNode, // location, could also be a virtual node
);

As components are also active objects in this implementation, they benefit from the same features, and are configurable in a similar
way. Constructor parameters, nodes, activity, or factories, that can be specified for active objects, are also specifiable for compon-
ents. The definition of a component requires 3 sub-definitions: the type, the description of the content, and the description of the
controller.

33.1.1. Type

The type of the component (i.e. the functional interfaces provided and required) is specified in a standard way: (as taken from the
Fractal tutorial)

We begin by creating objects that represent the types of the components of the application. In order to do this, we must first get a
bootstrap component. The standard way to do this is the following one (this method creates an instance of the class specified in the
fractal.provider system property, and uses this instance to get the bootstrap component):

Component boot = Fractal.getBootstrapComponent();

We then get the TypeFactory interface provided by this bootstrap component:

Part V: Composing Chapter 33: Component examples

253

TypeFactory tf = (TypeFactory)boot.getFcInterface('type-factory');

We can then create the type of the first component, which only provides a A server interface named 'a':

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
tf.createFcItfType('a', 'A', false, false, false)

});

33.1.2. Description of the content

The second step in the definition of a component is the definition of its content. In this implementation, this is done through the
ContentDescription class:

ContentDescription contentDesc = new ContentDescription(
AImpl, // signature of the base class
new Object[] {}, // Object[]
aNode // location, could also be a virtual node

);

33.1.3. Description of the controller

Properties relative to the controller can be specified in the ControllerDescription:

ControllerDescription controllerDesc = new ControllerDescription(
'myName', // name of the component
Constants.PRIMITIVE // the hierarchical type of the component
// it could be PRIMITIVE, COMPOSITE, or PARALLEL

);

Eventually, the component definition is instantiated using the standard Fractal API. This component can then be manipulated as
any other Fractal component.

Component component = componentFactory.newFcInstance(
componentType, // type of the component (defining the client and server interfaces)
controllerDesc, // implementation-specific description for the controller
contentDesc // implementation-specific description for the content

);

33.1.4. From attributes to client interfaces

There are 2 kinds of interfaces for a component: those that offer services, and those that require services. They are named respect-
ively server and client interfaces.

From a Java class, it is fairly natural to identify server interfaces: they (can) correspond to the Java interfaces implemented by the
class. In the above example, 'a' is the name of an interface provided by the component, corresponding to the 'A' Java interface.

On the other hand, client interfaces usually correspond to attributes of the class, in the case of a primitive component. If the com-
ponent defined above requires a service from another component, say the one corresponding to the 'Service' Java interface, the
AImpl class should be modified. As we use the inversion of control pattern, a BindingController is provided, and a binding opera-
tion on the 'requiredService' interface will actually set the value of the 'service' attribute, of type 'Service'.

First, the type of the component is changed:

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
tf.createFcItfType('a', 'A', false, false, false),
tf.createFcItfType('requiredService', 'A', true, false, false)

Part V: Composing Chapter 33: Component examples

254

});

The Service interface is the following:

And the AImpl class is:

// The modified AImpl class
public class AImpl implements A, BindingController {
Service service; // attribute corresponding to a client interface
public AImpl() {}
// implementation of the A interface
public String foo() {

return service.bar(); // for example
}
// implementation of BindingController
public Object lookupFc (final String cItf) {

if (cItf.equals('requiredService')) {
return service;

}
return null;

}
// implementation of BindingController
public void bindFc (final String cItf, final Object sItf) {

if (cItf.equals('requiredService')) {
service = (Service)sItf;

}
}
// implementation of BindingController
public void unbindFc (final String cItf) {

if (cItf.equals('requiredService')) {
service = null;

}
}
}

33.2. The HelloWorld example

The mandatory helloworld example (from the Fractal tutorial) shows the different ways of creating a component system
(programmatically and using the ADL), and it can easily be implemented using ProActive.

33.2.1. Set-up

You can find the code for this example in the package org.objectweb.proactive.examples.components.helloworld of the ProActive
distribution.

The code is almost identical to the Fractal tutorial's example [http://fractal.objectweb.org/tutorials/fractal/index.html].

The differences are the following:

• The reference example is provided for level 3.3. implementation, whereas this current implementation is compliant up to
level 3.2: templates are not provided. Thus you will have to skip the specific code for templates.

• The newFcInstance method of the GenericFactory interface, used for directly creating components, takes 2 implementa-
tion-specific parameters. So you should use the org.objectweb.proactive.component.ControllerDescription and
org.objectweb.proactive.component.ContentDescription classes to define ProActive components. (It is possible to use
the same parameters than in Julia, but that hinders you from using some functionalities specific to ProActive, such as distrib-
uted deployment or definition of the activity).

Part V: Composing Chapter 33: Component examples

255

http://fractal.objectweb.org/tutorials/fractal/index.html

• Collective interfaces could be implemented the same way than suggested, but using the Fract-
ive.createCollectiveClientInterface method will prove useful with this implementation: you are then able to use the func-
tionalities provided by the typed groups API.

• Components can be distributed
• the ClientImpl provides an empty no-args constructor.

33.2.2. Architecture

The helloworld example is a simple client-server application, where the client (c) and the server (s) are components, and they are
both contained in the same root component (root).

Another configuration is also possible, where client and server are wrapped around composite components (C and S). The goal was
initially to show the interception shortcut mechanism in Julia. In the current ProActive implementation, there are no such shortcuts,
as the different components can be distributed, and all invocations are intercepted. The exercise is still of interest, as it involves
composite components.

Figure 33.1. Client and Server wrapped in composite components (C and S)

33.2.3. Distributed deployment

This section is specific to the ProActive implementation, as it uses the deployment framework of this library.

If the application is started with (only) the parameter 'distributed', the ADL used is 'helloworld-distributed-no-wrappers.fractal',
where virtualNode of the client and server components are exported as VN1 and VN2. Exported virtual node names from the ADL
match those defined in the deployment descriptor 'deployment.xml'.

One can of course customize the deployment descriptor and deploy components onto virtually any computer, provided it is con-
nectable by supported protocols. Supported protocols include LAN, clusters and Grid protocols (see Chapter 21, XML Deployment
Descriptors).

Have a look at the ADL files 'helloworld-distributed-no-wrappers.fractal' and 'helloworld-distributed-wrappers.fractal'. In a nut-
shell, they say: 'the primitive components of the application (client and server) will run on given exported virtual nodes, whereas
the other components (wrappers, root component) will run on the current JVM.

Therefore, we have the two following configurations:

Part V: Composing Chapter 33: Component examples

256

Figure 33.2. Without wrappers, the primitive components are distributed.

Figure 33.3. With wrappers, where again, only the primitive components are distributed.

Currently, bindings are not optimized. For example, in the configuration with wrappers, there is an indirection that can be costly,
between the client and the server. We are currently working on optimizations that would allow to shortcut communications, while
still allowing coherent dynamic reconfiguration. It is the same idea than in Julia, but we are dealing here with distributed compon-
ents. It could imply compromises between dynamicity and performance issues.

33.2.4. Execution

You can either compile and run the code yourself, or follow the instructions for preparing the examples and use the script hello-
world_fractal.sh (or .bat). If you choose the first solution, do not forget to set the fractal.provider system property.

If you run the program with no arguments (i.e. not using the parser, no wrapper composite components, and local deployment) ,
you should get something like this:

01 --> This ClassFileServer is reading resources from classpath
02 Jini enabled
03 Ibis enabled
04 Created a new registry on port 1099
05 //crusoe.inria.fr/Node363257273 successfully bound in registry at //crusoe.inria.fr/Node363257273

Part V: Composing Chapter 33: Component examples

257

06 Generating class: pa.stub.org.objectweb.proactive.core.component.type.Stub_Composite
07 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ClientImpl
08 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl

You can see:

• line 01: the creation of the class file server which handles the on-the-fly generation and distribution of ProActive stubs and
component functional interfaces

• line 04: the creation of a rmi registry
• line 05: the registration of the default runtime node
• line 06 to 08: the on-the-fly generation of ProActive stubs (the generation of component functional interfaces is silent)

Then you have (the exception that pops out is actually the expected result, and is intended to show the execution path):

01 Server: print method called
02 at org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:37)
03 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
04 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
05 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
06 at java.lang.reflect.Method.invoke(Method.java:324)
07 at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:373)
08 at org.objectweb.proactive.core.component.request.ComponentRequestImpl.serveInternal(ComponentRequestImpl.java:163)
09 at org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:108)
10 at org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:297)
11 at org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:799)
12 at org.objectweb.proactive.core.body.ActiveBody$FIFORunActive.runActivity(ActiveBody.java:230)
13 at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:145)
14 at java.lang.Thread.run(Thread.java:534)
15 Server: begin printing...
16 --------> hello world
17 Server: print done.

What can be seen is very different from the output you would get with the Julia implementation. Here is what happens (from bot-
tom to top of the stack):

• line 14: The active object runs its activity in its own Thread
• line 12: The default activity is to serve incoming request in a FIFO order
• line 08: Requests (reified method calls) are encapsulated in ComponentRequestImpl objects
• line 06: A request is served using reflection
• line 02: The method invoked is the print method of an instance of ServerImpl

Now let us have a look at the distributed deployment: execute the program with the parameters 'distributed parser'. You should get
something similar to the following:

01 --> This ClassFileServer is reading resources from classpath
02 Jini enabled
03 Ibis enabled
04 Created a new registry on port 1099
05 ************* Reading deployment descriptor: file:/0/user/mmorel/ProActive/classes/org/objectweb/proactive/examplescomponents/helloworld/deployment\
.xml ********************
06 created VirtualNode name=VN1
07 created VirtualNode name=VN2
08 created VirtualNode name=VN3
09 **** Starting jvm on crusoe.inria.fr
10 --> This ClassFileServer is reading resources from classpath
11 Jini enabled
12 Ibis enabled
13 Detected an existing RMI Registry on port 1099

Part V: Composing Chapter 33: Component examples

258

14 //crusoe.inria.fr/VN1462549848 successfully bound in registry at //crusoe.inria.fr/VN1462549848
15 **** Mapping VirtualNode VN1 with Node: //crusoe.inria.fr/VN1462549848 done
16 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ClientImpl
17 **** Starting jvm on crusoe.inria.fr
18 --> This ClassFileServer is reading resources from classpath
19 Jini enabled
20 Ibis enabled
21 Detected an existing RMI Registry on port 1099
22 //crusoe.inria.fr/VN21334775605 successfully bound in registry at //crusoe.inria.fr/VN21334775605
23 **** Mapping VirtualNode VN2 with Node: //crusoe.inria.fr/VN21334775605 done
24 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl
25 //crusoe.inria.fr/Node1145479146 successfully bound in registry at //crusoe.inria.fr/Node1145479146
26 Generating class: pa.stub.org.objectweb.proactive.core.component.type.Stub_Composite
27 MOPClassLoader: class not found, trying to generate it
28 ClassServer sent class Generated_java_lang_Runnable_r_representative successfully
39 MOPClassLoader: class not found, trying to generate it
30 ClassServer sent class Generated_java_lang_Runnable_r_representative successfully
31 MOPClassLoader: class not found, trying to generate it
32 ClassServer sent class Generated_org_objectweb_proactive_examples_components_helloworld_Service_s_representative successfully
33 MOPClassLoader: class not found, trying to generate it
34 ClassServer sent class Generated_org_objectweb_proactive_examples_components_helloworld_ServiceAttributes_attribute_controller_representative succe\
ssfully
35 ClassServer sent class pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl successfully

What is new is:

• line 05 the parsing of the deployment descriptor
• line 09 and 17: the creation of 2 virtual machines on the host 'crusoe.inria.fr'
• line 15 and 24: the mapping of virtual nodes VN1 and VN2 to the nodes specified in the deployment descriptor
• line 35: the dynamic downloading of the stub class for ServerImpl: the stub class loader does not find the classes of the stubs

in the current VM, and fetches the classes from the ClassServer
• line 28, 30, 32, 34: the dynamic downloading of the classes corresponding to the components functional interfaces (they

were silently generated)

Then we get the same output than for a local deployment, the activity of active objects is independent from its location.

01 Server: print method called
02 at org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:37)
03 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
04 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
05 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
06 at java.lang.reflect.Method.invoke(Method.java:324)
07 at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:373)
08 at org.objectweb.proactive.core.component.request.ComponentRequestImpl.serveInternal(ComponentRequestImpl.java:163)
09 at org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:108)
10 at org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:297)
11 at org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:799)
12 at org.objectweb.proactive.core.body.ActiveBody$FIFORunActive.runActivity(ActiveBody.java:230)
13 at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:145)
14 at java.lang.Thread.run(Thread.java:534)
15 Server: begin printing...
16 ->hello world
17 Server: print done.

33.2.5. The HelloWorld ADL files

org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers.fractal

Part V: Composing Chapter 33: Component examples

259

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name=
"org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers">

<interface name="r" role="server" signature="java.lang.Runnable"/>
<exportedVirtualNodes>

<exportedVirtualNode name="VN1">
<composedFrom>

<composingVirtualNode component="client" name="client-node"/>
</composedFrom>

</exportedVirtualNode>
<exportedVirtualNode name="VN2">

<composedFrom>
<composingVirtualNode component="server" name="server-node"/>

</composedFrom>
</exportedVirtualNode>

</exportedVirtualNodes>
<component name="client-wrapper" definition=

"org.objectweb.proactive.examples.components.helloworld.ClientType">
<component name="client" definition=

"org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
<binding client="this.r" server="client.r"/>
<binding client="client.s" server="this.s"/>
<controller desc="composite"/>

</component>
<component name="server-wrapper" definition=

"org.objectweb.proactive.examples.components.helloworld.ServerType">
<component name="server" definition=

"org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
<binding client="this.s" server="server.s"/>
<controller desc="composite"/>

</component>
<binding client="this.r" server="client-wrapper.r"/>
<binding client="client-wrapper.s" server="server-wrapper.s"/>

</definition>

org.objectweb.proactive.examples.components.helloworld.ClientType.fractal

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientType" extends=
"org.objectweb.proactive.examples.components.helloworld.RootType">

<interface name="r" role="server" signature="java.lang.Runnable"/>
<interface name="s" role="client" signature=

"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ClientImpl.fractal

Part V: Composing Chapter 33: Component examples

260

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ClientType">
<exportedVirtualNodes>

<exportedVirtualNode name="client-node">
<composedFrom>

<composingVirtualNode component="this" name="client-node"/>
</composedFrom>

</exportedVirtualNode>
</exportedVirtualNodes>
<content class="org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
<virtual-node name="client-node" cardinality="single"/>

</definition>

org.objectweb.proactive.examples.components.ServerType

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerType">
<interface name="s" role="server" signature=

"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ServerImpl

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ServerType">
<exportedVirtualNodes>

<exportedVirtualNode name="server-node">
<composedFrom>

<composingVirtualNode component="this" name="server-node"/>
</composedFrom>

</exportedVirtualNode>
</exportedVirtualNodes>

<content class="org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
<attributes signature=

"org.objectweb.proactive.examples.components.helloworld.ServiceAttributes">
<attribute name="header" value="->"/>
<attribute name="count" value="1"/>

</attributes>
<controller desc="primitive"/>
<virtual-node name="server-node" cardinality="single"/>

</definition>

Part V: Composing Chapter 33: Component examples

261

33.3. The Comanche example

The Comanche example [http://fractal.objectweb.org/tutorial/index.html] is a nice introduction to component based development
with Fractal. It explains how to design applications using components, and how to implement these applications using the Fractal
API.

You will notice that the example presented in this tutorial is based on Comanche, a simplistic http server. However, this example
extensively uses reference passing through components. For example Request objects are passed by reference. This is incompat-
ible with the ProActive programming model, where, to avoid shared passive objects, all passive objects passed to active objects are
actually passed by copy (see Chapter 12, ProActive Basis, Active Object Definition). As active objects are themselves passed by
reference, one could argue that we could turn some passive object into active objects. This would allow remote referencing through
stubs. Unfortunately, for reasons specific to the Sockets and Streams implementations, (Socket streams implementations do not
provide empty no-arg constructors), it is not easily possible to encapsulate some of the needed resource classes into active objects.

33.4. The C3D component example

There is a complete example of migrative Active Object code to Component code. This can be seen in the Guided Tour:
Chapter 10, C3D - from Active Objects to Components.

Part V: Composing Chapter 33: Component examples

262

http://fractal.objectweb.org/tutorial/index.html

Chapter 34. Component perspectives: a
support for our research work
The ProActive/Fractal framework is a functional and flexible implementation of the Fractal API and model. One can configure and
deploy a system of distributed components, including Grids. The framework also proposes extensions for collective interactions
(gathercast and multicast interfaces), allocation configuration through virtual nodes extensions, and some optimizations.

It is now a mature framework for developing Grid applications, and as such it is a basis for experimenting new research paths.

34.1. Dynamic reconfiguration

One of the challenges of Grid computing is to handle changes in the execution environments, which are not predictable in systems
composed of large number of distributed components on heterogeneous environments. For this reason, the system needs to be dy-
namically reconfigurable, and must exhibit autonomic properties.

Simple and deterministic dynamic reconfiguration is a real challenge in systems that contain hierarchical components that feature
their own activities and that communicate asynchronously.

The autonomic computing paradigm is related to this challenge because is consists of building applications out of self-managed
components. Components which are self-managed are able to monitor their environment and adapt to it by automatically optimiz-
ing and reconfiguring themselves. The resulting systems are autonomous and automatically fulfill the needs of the users, but the
complexity of adaptation is hidden to them. Autonomicity of components represents a key asset for large scale distributed comput-
ing. We are also

34.2. Model-checking

Encapsulation properties, components with configurable activities, and system description in ADL files provide safe basis for mod-
el checking of component systems.

For instance:

1. Behavioral information on components can be specified in extended ADL files.
2. Automatas can be generated from behavioral information and structural description.
3. Model checking tools are used to verify the automatas.

The Vercors [http://www-sop.inria.fr/oasis/Vercors/] platform investigates such kinds of scenarii.

34.3. Pattern-based deployment

Distributed computational applications are designed by defining a functional or do- main decomposition, and these decompositions
often present structural similarities (master-slave, 2D-Grid, pipeline etc.).

In order to facilitate the design of complex systems with large number of entities and recurring similar configurations, we plan to
propose a mechanism for defining parameterizable assembly patterns in the Fractal ADL, particularly for systems that contain
parameterized numbers of identical components.

34.4. Graphical user interface

Another area of investigation is the tools for configuring, deploying and monitoring distributed component systems.

Because component based programming is somewhat analogous to the assembly of building blocks into a functional product,
graphical tools are well suited for the design and monitoring of component based systems. The Fractal community actually pro-
poses such a tool: the Fractal GUI. We have extended this tool to evaluate the feasibility of a full-fledge graphical interface for the
design and monitoring of distributed components. The result is available within the IC2D GUI, you can try it out, but consider it as
a product in alpha state. Development is indeed currently discontinued as we are waiting for a new release of the Fractal GUI, and
some features are only partially implemented (runtime monitoring, composition of virtual nodes).

The GUI allows the creation of ADL files representing component systems, and - the other way around - also allows to load ADL

Part V: Composing Chapter 34: Component perspectives: a sup-
port for our research work

263

http://www-sop.inria.fr/oasis/Vercors/

files and get a visual representation of systems described in the ADL files. We have worked on the manipulation of virtual nodes -
a deployment abstraction -: components display the virtual nodes where they are deployed, and it is also possible to compose virtu-
al nodes

Ultimately, we would like to couple the visualization of components at runtime (currently unavailable here) with the standard mon-
itoring capabilities of IC2D: we would get a structural view of the application in the Fractal GUI, and a topological view in the
standard IC2D.

34.4.1. Howto use it

If you want to try out the extended Fractal GUI for ProActive (for versions of ProActive < 3.2):

• start IC2D
• Components --> start components GUI
• to load an ADL file:

1. File --> Storage --> select the storage repository which is the root repository of your ADL files. For example you can
select the 'src' directory of the ProActive distribution

2. File --> Open --> select an ADL file in the storage repository. For example you can select the 'helloworld-distrib-
uted-wrappers.fractal' file in the src/org/objectweb/proactive/examples/components/helloworld directory of the
ProActive distribution.

• to modify an ADL file, you can use the Graph tab for a structural view, while the Dialog tab gives you access to the proper-
ties of the components, including the composition of the virtual ndoes.

• to save an ADL file: File --> Save

Note

Since version 3.2 the experimental GUI in IC2D is not functional anymore. Developments are discontinued as we are
moving towards an eclipse plugin integrated with the new eclipse-plugin-based version of IC2D. A proposal specific-
ation for this new GUI is available here [http://www.objectweb.org/wws/arc/fractal/2004-05/msg00044.html]. We in-
tend add extension for Grid-specific features (control of deployment, visual abstractions etc.)

34.5. Other

Other areas of research that we are opening around this work include:

• wrapping legacy codes (MPI for instance) for interoperability with existing software
• packaging: a bit like enterprise archives for Enterprise JavaBeans, though there is also a notion of composition of deploy-

ment that needs to be addressed.
• formalism (ProActive is based on a formal deterministic model for asynchronous distributed objects)
• MxN data redistribution: automatic redistribution of data from M components to N components

34.6. Limitations

Some features of the Fractal model are not implemented:

• Shared components

Part V: Composing Chapter 34: Component perspectives: a sup-
port for our research work

264

http://www.objectweb.org/wws/arc/fractal/2004-05/msg00044.html

Part VI. Advanced

Table of Contents

Chapter 35. ProActive Peer-to-Peer Infrastructure .. 267
35.1. Overview ... 267
35.2. The P2P Infrastructure Model .. 267

35.2.1. What is Peer-to-Peer? .. 268
35.2.2. The P2P Infrastructure in short .. 268

35.3. The P2P Infrastructure Implementation .. 273
35.3.1. Peers Implementation ... 273
35.3.2. Dynamic Shared ProActive Group .. 274
35.3.3. Sharing Node Mechanism ... 275
35.3.4. Monitoring: IC2D ... 275

35.4. Installing and Using the P2P Infrastructure ... 276
35.4.1. Create your P2P Network ... 276
35.4.2. Example of Acquiring Nodes by ProActive XML Deployment Descriptors 281
35.4.3. The P2P Infrastructure API Usage Example ... 283

35.5. Future Work ... 284
35.6. Research Work .. 284

Chapter 36. Load Balancing .. 285
36.1. Overview ... 285
36.2. Metrics .. 285

36.2.1. MetricFactory and Metric classes ... 285
36.3. Using Load Balancing .. 285

36.3.1. In the application code ... 285
36.3.2. Technical Service .. 286

36.4. Non Migratable Objects .. 286

Chapter 37. ProActive Security Mechanism .. 287
37.1. Overview ... 287
37.2. Security Architecture .. 287

37.2.1. Base model .. 287
37.2.2. Security is expressed at different levels ... 288

37.3. Detailed Security Architecture ... 289
37.3.1. Nodes and Virtual Nodes .. 289
37.3.2. Hierarchical Security Entities .. 289
37.3.3. Resource provider security features .. 291
37.3.4. Interactions, Security Attributes ... 291
37.3.5. Combining Policies ... 292
37.3.6. Dynamic Policy Negotiation .. 293
37.3.7. Migration and Negotiation .. 293

37.4. Activating security mechanism ... 293
37.4.1. Construction of an XML policy: ... 294

37.5. How to quickly generate certificate? .. 297

Chapter 38. Exporting Active Objects and components as Web Services 301
38.1. Overview ... 301
38.2. Principles ... 301
38.3. Pre-requisite: Installing the Web Server and the SOAP engine .. 302
38.4. Steps to expose an active object or a component as a web services .. 302
38.5. Undeploy the services ... 302
38.6. Accessing the services .. 303
38.7. Limitations ... 303
38.8. A simple example: Hello World ... 303

Part VI: Advanced

38.8.1. Hello World web service code ... 303
38.8.2. Access with Visual Studio .. 304

38.9. C# interoperability: an example with C3D .. 304
38.9.1. Overview ... 304
38.9.2. Access with a C# client .. 304
38.9.3. Dispatcher methods calls and callbacks ... 305
38.9.4. Download the C# example .. 307

Chapter 39. ProActive on top of OSGi .. 309
39.1. Overview of OSGi -- Open Services Gateway initiative .. 309
39.2. ProActive bundle and service ... 310
39.3. Yet another Hello World ... 311
39.4. Current and Future works .. 312

Chapter 40. An extended ProActive JMX Connector ... 313
40.1. Overview of JMX - Java Management eXtention ... 313
40.2. Asynchronous ProActive JMX connector ... 313
40.3. How to use the connector ? .. 314
40.4. Notifications JMX via ProActive .. 315
40.5. Example : a simple textual JMX Console ... 315

Chapter 41. Wrapping MPI Legacy code ... 317
41.1. Simple Wrapping ... 317

41.1.1. Principles .. 317
41.1.2. API For Deploying MPI Codes .. 318
41.1.3. How to write an application with the XML and the API .. 320
41.1.4. Using the Infrastructure .. 321
41.1.5. Example with several codes .. 323

41.2. Wrapping with control .. 324
41.2.1. One Active Object per MPI process .. 325
41.2.2. MPI to ProActive Communications .. 327
41.2.3. ProActive to MPI Communications .. 332
41.2.4. MPI to MPI Communications through ProActive .. 337
41.2.5. USER STEPS - The Jacobi Relaxation example .. 341

41.3. Design and Implementation ... 354
41.3.1. Simple wrapping ... 354

41.4. Summary of the API .. 356
41.4.1. Simple Wrapping and Deployment of MPI Code ... 356
41.4.2. Wrapping with Control ... 357

Part VI: Advanced

Chapter 35. ProActive Peer-to-Peer
Infrastructure
35.1. Overview

Computational Peer-To-Peer (P2P) is becoming a key execution environment. The potential of 100,000 nodes interconnected to
execute a single application is rather appealing, especially for Grid computing. Mimicking data P2P, one could start a computation
that no failure would ever be able to stop (and maybe nobody).

The ProActive P2P aims to use spare CPU cycles from organization's or institution's desktop workstations.

This short document explains how to create a simple computational P2P network. This network is a dynamic JVMs network
which works like computational nodes.

The P2P infrastructure works as an overlay network. It works with a P2P Service which is a peer which in turn is in computational
node. The P2P Service is implemented with a ProActive Runtime and few Active Objects. The next figure shows an example of a
network of hosts where some JVMs are running and several of them are running the P2P Service.

Example of a ProActive P2P infrastructure.

Figure 35.1. A network of hosts with some running the P2P Service

When the P2P infrastructure is running, it is very easy to obtain some nodes (JVMs). The next section describes how to use it.

Further research information is available at http://www-sop.inria.fr/oasis/Alexandre.Di_Costanzo/AdC/Publications.html.

35.2. The P2P Infrastructure Model

The goals of this work are to use sparse CPU cycles from institutions' desktop workstations combined with grids and clusters.
Desktop workstations are not available all the time for sharing computation times with different users other than the workstation
owner. Grids and clusters have the same problem as normal users don't want to share their usage time.

Managing different sorts of resources (grids, clusters, desktop workstations) as a single network of resources with a high instability

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

267

http://www-sop.inria.fr/oasis/Alexandre.Di_Costanzo/AdC/Publications.html

between them needs a fully decentralized and dynamic approach.

Therefore, P2P is a good solution for sharing a dynamic JVM network, where JVMs are the shared resources. Thereby, the P2P In-
frastructure is a P2P network which shares JVMs for computation. This infrastructure is completely self-organized and fully con-
figurable.

Before going on to consider the P2P infrastructure, it's important to define what Peer-to-Peer is.

35.2.1. What is Peer-to-Peer?

There are a lot of P2P definitions, many of them are similar to other distributed infrastructures, such as Grid, client / server, etc.
There are 2 better definitions which describe really P2P well:

• From Peer-to-Peer Harnessing the Power of Disruptive Technologies (edited by Andy Oram):

'[...] P2P is a class of applications that take advantage of resources - available at the edges of the Internet [...]'

• And from A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures and Applications
(Rdiger Schollmeier - P2P'01):

'[...] Peers are accessible by other peers directly [...] Any arbitrary chosen peer can be removed from the network without fault
[...]'

P2P's focus on sharing, decentralization, instability and fault tolerance.

35.2.2. The P2P Infrastructure in short

35.2.2.1. Bootstrapping: First Contact

A fresh (or new) peer which would like to join the P2P network, will encounter a serious bootstrapping problem or first contact
problem: 'How can it connect to the P2P network?'

A solution for that is to use a specific protocol. ProActive provides an interface for a network-centric services protocol which is
named JINI. JINI can be used for discovering services in a dynamic computing environment, such as a fresh peer which would like
to join a P2P network. This protocol is perfectly adapted to solve the bootstrapping problem. However, there is a serious drawback
for using a protocol such as JINI as peer discovering protocol. JINI is limited to working only in the same sub-network. That
means JINI doesn't pass through firewalls or NAT and can't be considered to be used for Internet.

Therefore, a different solution for the bootstrapping problem was chosen. The solution for ProActive first contact P2P is inspired
from Data P2P Networks. This solution is based on real life , i.e. when a person wants to join a community, this person has to first
know another person who is already a member of the community. After the first person has contacted the community member, the
new person is introduced to all the community members.

The ProActive P2P bootstrapping protocol works as follows:

• A fresh peer has a list of 'server' addresses. These are peers which have a high potential to be available and to be in the P2P
network, they are in a certain way the P2P network core.

•
With this list the fresh peer tries to contact each server. When a server is reached the server is added to ithe fresh peer's list
of known peers (acquaintances).

• Then the fresh peer knows some servers, it is in the P2P Network and it is no longer a fresh peer, it is a peer of the P2P net-
work.

Furthermore, in the case of the fresh peer not able to contact any servers from the list, the fresh peer will try every TTU (see below,
about Time To Update parameter) to re-contact all of them until one or several of them are finally available. At any moment when
the peer knows nobody because all of its acquaintances are no longer available, the peer will try to contact all the servers as ex-
plained earlier.

An example of a fresh peer which is trying to join a P2P network is shown by the next Figure. The new peer has 2 servers to con-
tact in order to join the existing P2P infrastructure.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

268

Example of first contact (Bootstrapping).

Figure 35.2. New peer trying to join a P2P network

35.2.2.2. Discovering and Self-Organizing in Continue

The main particularity of a P2P network is the peers high volatility. This results from various attributes which compose P2P:

• Peers run on different kinds of computers: desktop workstations, laptops, servers, cluster nodes, etc.
• Each peer has a particular configuration: operating system, etc.
• Communicating network between peers consists of different speed connections: modem, 100Mb Ethernet, fiber channel, etc.
• Peers are not available all the time and not all at the same moment.
• Peer latency is not equal for all.
• etc.

The result is the instability of the P2P network. But the ProActive P2P infrastructure deals with these problems with transparency.

ProActive P2P infrastructure aims to maintain a created P2P network alive while there are available peers in the network, this is
called self-organizing of the P2P network. Because P2P doesn't have exterior entities, such as centralized servers which maintain
peer data bases, the P2P network has to be self-organized. That means all peers should be enabled to stay in the P2P network by
their own means.

There is a solution which is widely used in data P2P networks; this consists of each peer keeping a list of their neighbors, a peer's
neighbor is typically a peer close to it (IP address or geographically).

In the same way, this idea was selected to keep the ProActive P2P infrastructure up. All peers have to maintain a list of acquaint-
ances. At the beginning, when a fresh peer has just joined the P2P infrastructure, it knows only peers from its bootstrapping step
(Section 35.2.2.1, “Bootstrapping: First Contact”). However, depending on how long the list of servers is, many of them could be
unreachable, unavailable, etc. and the fresh peer ends up knowing a small number of acquaintances. Knowing a small number of
acquaintances is a real problem in a dynamic P2P network when all the servers will be unavailable, the fresh peer will be uncon-

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

269

nected from the P2P infrastructure.

Therefore, the ProActive P2P infrastructure uses a specific parameter called: Number Of Acquaintances (NOA). This is a minim-
um size of the list of acquaintances of all peers. The more the peers are highly dynamic, the more NOA should be high. Thereby, a
peer must discover new acquaintances through the P2P infrastructure.

In Section 35.2.2.3, “Asking Computational Nodes”, we will see in detail how the message protocol works. For the moment we
will just explain briefly the discovering acquaintances process without going into detail about the message protocol.

The peer called 'Alice' has 2 acquaintances resulting from its first contact with the P2P infrastructure and by default NOA is 10
peers. Alice must find at least 8 peers to be able to stay with a certain guarantee inside the infrastructure.

The acquaintance discovering works as follows:

• Send an exploring message to all of its acquaintances, and wait for responses from new acquaintances (not peers that have
already been contacted peers and not already known peers).

• When receiving an exploring message:
• Forward the message to acquaintances until the message Time To Live (TTL) reaches 0.
• Choose to be or not to be an acquaintance of the asking peer.

In order to not have isolated peers in the infrastructure, all peers registration are symmetric. That means if Alice knows the peer
'Bob', Bod also knows Alice. Hence, when a peer chooses whether to be an acquaintance or not, the peer has to check previously in
its own acquaintance list if it doesn't already know the asking peer. Next, if it's an unknown peer, the peer decides with a random
function to be an acquaintance or not. With the parameter of agree responses, it is possible to configure the percentage of positive
responses to an exploring message. The random function is a temporary solution to solve the flooding problem due to the message
protocol (see Section 35.2.2.3, “Asking Computational Nodes”), we are thinking of using a new parameter Maximum Number of
Acquaintances and improving the message protocol. For the moment, we don't consider peers IP addresses or geographical loca-
tion of the peers as an acquaintances criteria.

As the P2P infrastructure is a dynamic environment, the list of acquaintances must also be dynamic. Many acquaintances could be
unavailable and must be removed of the list. When the size of the list is less than the NOA, the peer has to discover new peers.
Therefore, all peers keep their lists up-to-date. That's why a new parameter must be introduced: Time To Update (TTU). The peer
must frequency check its own acquaintances' list to remove unavailable peers and discover new peers. To verify the acquaintances
availability, the peer send a Heart Beat to all of its acquaintances. The heart beat is sent every TTU.

The next figure shows a peer which is sending a heart beat to all of its acquaintances.

Figure 35.3. Heart beat sent every TTU

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

270

35.2.2.3. Asking Computational Nodes

The main goal of this work is to provide an infrastructure for sharing computational nodes (JVMs). Therefore, a resource query
mechanism is needed; there are 2 types of resources in this context, thus 2 query types:

• Exploring the P2P infrastructure to search new acquaintances.
• Asking free computational nodes to deploy distributed applications.

The mechanism is similar to Gnutella's communication system: Breadth-First Search algorithm (BFS). The system is message-
based with application-level routing.

All BFS messages must contain this information:

• A Unique Universal Message Identifier (UUID): this message identifier is not totally universally unique, it is just unique for
the infrastructure;

•
The Time To Live (TTL) infrastructure parameter, in number of hops;

• A reference to the requester peer. The peer waits for responses for nodes or acquaintances.

Our BFS inspired version works as follow:

• Broadcasting a request message to all of its acquaintances with an UUID, and TTL, and number of asked nodes.
• When receiving a message:

• Test the message UUID, is it an old message?
• Yes, it is: continue;
• No, it's not:

• Keep the UUID;
• I have a free node:
• • Send the node reference to the caller and waiting an ACK until timeout

• if timeout is reached or NACK
• • continue;
• if ACK and asked nodes - 1 > 0 and TTL > 0 then
• • Broadcast with TTL - 1 and asked nodes -1
• continue;

Gnutella's BFS got a lot of justified critics for scaling, bandwidth, etc. It is true this protocol is not good enough but we're working
to improve it. We are inquiring into solutions with a not fixed TTL to avoid network flooding.

The next Figure shows briefly the execution of the inspired BFS algorithm:

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

271

Figure 35.4. Asking nodes to acquaintances and getting a node

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

272

35.3. The P2P Infrastructure Implementation

35.3.1. Peers Implementation

The P2P infrastructure is implemented with ProActive. Thus the shared resource is not a JVMs but a ProActive node, nodes are
like a container which receives work.

The P2P infrastructure is not directly implemented in the ProActive core at the ProActive runtime level because we choose to be
above communication protocols, such as RMI, HTTP, Ibis, etc. Therefore, the P2P infrastructure can use RMI or HTTP as commu-
nication layer. Hence, the P2P infrastructure is implemented with classic ProActive active objects and especially with ProActive
typed group for broadcasting communications between peers due to your inspired BFS.

Using active objects for the implementation is a good mapping with the idea of a peer which is an independent entities that works
as a server with a FIFO request queue. The peer is also a client which sends requests to other peers.

The list of P2P active objects:

• P2PService: is the main active object. It serves all register requests or resource queries, such as nodes or acquaintances.
• P2PNodeManager: works together with the P2PService, this active object manages one or several shared nodes. It handles

the booking node system, see Section 35.3.3, “Sharing Node Mechanism” for more details.
• P2PAcquaintanceManager: manages the list of acquaintances and provides group communication, see Section 35.3.2, “

Dynamic Shared ProActive Group”.
• P2PNodeLookup: works as a broker when the P2PService asks nodes. All the asking node protocol is inside it. This broker

can migrate to a different node to be closer to the deployed application.
• FirstContact: it's the bootstrapping object (see Section 35.2.2.1, “Bootstrapping: First Contact”).

The Figure below shows the connection between all active objects:

Figure 35.5. Nodes and Active Objects which make up a P2P Service.

All communications between peers use Group communication but for sending a response to a request message, it's a point-to-point
communication. Though ProActive communications are asynchronous, it's not really messages which are sent between peers. Nev-

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

273

ertheless, it's not a real problem; ProActive is implemented above Java RMI which is RPC and RPC is synchronous. However,
ProActive uses future mechanism and Rendez-vous method to turn RPC methods to asynchronous. That means ProActive is asyn-
chronous RPC. Rendez-vous is interesting in your case because it guarantees the method is successfully received by the receiver.
With the Heart beat message which is sent a Java exception when an acquaintance is down.

The P2PAcquaintanceManager manages the list of acquaintances, this list is represented by a ProActive typed group of
P2PService. This is the point of the next section.

35.3.2. Dynamic Shared ProActive Group

ProActive typed group does not allow access to group elements and make calls from different active objects to the same group is
not possible, i.e. a group can not be shared. However, the point of the P2P infrastructure is to broadcast messages to all members
on the acquaintance list, ProActive typed group is perfect for doing that. A typed group of P2PService is a good implementation of
the acquaintance list design.

But a typed group does not support to be shared by many active objects, especially for making group method calls from different
objects, adding / removing / etc. members in the group. For the P2P infrastructure the P2PAcquaintanceManager (PAM) was de-
signed.

The PAM is a standard active object, at its initialization it constructs an empty P2PService group. The PAM provides an access to
few group methods, such as removing, adding and group size methods. All other active objects, such as P2PService or
P2PNodeLookup, have to use PAM methods to access the group. The PAM works as a server with an FIFO queue behind the
group.

That solves the problem of group members accessing but not how other active objects can call methods on the group. The ProAct-
ive group API provides a method to active a group that is made possible to get ProActive reference on the group. The PAM actives
the group after its creation. P2PService, P2PNodeLookup and all get the group reference from a PAM's getter.

The PAM, during its activity, frequently sends heart beats to remove unavailable peers. The P2PService adds, via the PAM, new
discovered acquaintances (P2PService) and the P2PNodeLookup calls group methods to ask nodes to the group reference. The
P2PService does also group method calls.

In short, this can be seen in the next Figure:

Figure 35.6. Dynamic Shared ProActive Typed Group.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

274

We just explained how to share a typed group between active objects but that is not solve all the problems. For the moment, the
BFS implementation with broadcasting to all acquaintances each time is not perfect due to the message which is always send back
to the previous sender. We are working to add member exclusion in a group method call.

35.3.3. Sharing Node Mechanism

The sharing node mechanism is an independent activity from the P2P service. Nodes are the sharing resource of this P2P network.
This activity is handled by the P2PNodeManager active object.

At the initialization of the P2PNodeManager (PNM), it has to instantiate the shared resource. By default, it's 1 ProActive nodes by
CPUs, for example on a single processor machine the PNM starts 1 node and on a bi-processors machine it starts 2 nodes. It's pos-
sible to choose to share only a single node. An another way is to share nodes from an XML deployment descriptor file by specifing
the descriptor to the PNM which actives the deployment and gets nodes ready to share.

When the P2P service receives a node request, the request is forwarded (after the BFS broadcast) to the PNM which checks for a
free node. In the case of at least 1 free node, the PNM must book the node and send back a reference to the the node to the original
request sender. However, the booking remains valid for a predetermined time, this time expires after a configurable timeout. The
PNM knows if the node is used or not by testing the active object presence inside the node. Consequently, at the end of the book-
ing time, the PNM kills the node, the node is no longer usable. Though, some applications need empty nodes for a long time before
using them, thereby there is a pseudo expand booking time system: creating 'Dummy' active objects in booked nodes for later use.
This system is allowed by the P2PNodeLookup.

The P2PNodeLookup could receive more nodes than it needs, for all additional nodes, the P2PNodeLookup sends a message to all
PNMs' nodes to cancel its booking on the node.

The deployed applications have to leave nodes after use. Therefore, the PNM offers a leaving node mechanism that is the applica-
tion sent a leaving message for a specified node to the PNM which kills all node's active objects by terminating their bodies and
kills the node. After that, the PNM creates a new node which is ready for sharing. However, if nodes are deployed by an XML
descriptor the PNM does't kill the node, it just terminates all its active objects and re-shares the same node.

The asking node mechanism is allowed by the P2PNodeLookup, this object is active by the P2PService when it receives an asking
node request from an application. The P2PNodeLookup (PNL) works as a broker, it could migrate to another place (node, ma-
chine, etc.) to be near the application.

The PNL aims to find the number of nodes requested by the application. It uses the BFS to frequently flood the network until it
gets all nodes or until the timeout is reached. However, the application can ask to the maximum number of nodes, in that case the
PNL asks to nodes until the end of the application. The PNL provides a listener / producer event mechanism which is great for the
application which wants to know when a node is found.

Finally, the application kills nodes by the PNL which is in charge of contacting all the PNMs of each node and asks them to leave
nodes. The PNMs leave nodes with the same mechanism of the booking timeout.

Lastly, the asking nodes mechanism with the PNL is fully integrated to the ProActive XML deployment descriptor.

35.3.4. Monitoring: IC2D

IC2D hides all P2P internal object by default, in order to monitor the infrastructure itself we invite you to check the IC2D docu-
mentation Chapter 42, IC2D: Interactive Control and Debugging of Distribution and Eclipse plugin to set the right option.

A screen shot made with IC2D. You can see 3 P2P services which are sharing 2 nodes (bi-processors machines). Inside the nodes
there are some active Domain objects from the nBody application which is deployed on this small P2P infrastructure.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

275

Figure 35.7. nBody application deployed on P2P Infrastructure.

35.4. Installing and Using the P2P Infrastructure

35.4.1. Create your P2P Network

The P2P infrastructure is self-organized and configurable. When the infrastructure is running you have nothing to do to keep it up.
There are 3 main parameters to configure:

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

276

• Time To Update (TTU): each peer checks if its known peers are available when TTU expires. By default, its value is 1
minute.

• Number Of Acquaintances (NOA): is the minimal number of peers one peer needs to know to keep up the infrastructure.
By default, its value is 10 peers.

• Time To Live (TTL): in hops for JVMs (node) depth search (acquisition). By default, its value is 5 hops.

All parameter descriptions and the way to change their default values are explained in Section 20.4.3, “ Peer-to-Peer properties ”.
Next section shows how to configure the infrastructure when starting the P2P Service with the command line.

The bootstrapping or first contact problem is how a new peer can join the p2p infrastructure. We solved this problem by just spe-
cifying one or several addresses of supposed peers which are running in the p2p infrastructure. Next, we will explain how and
where you can specify this list of peers.

Now, you just have to start peers. There are two ways to do so:

35.4.1.1. Quick Start Peer

This method explains how to rapidly launch a simple P2P Service on one host.

ProActive provides a very simple script to start a P2P Service on your local host. The name of this script is startP2PService.

• UNIX, GNU/Linux, BSD and MacOsX systems: the script is located in ProActive/scripts/unix/p2p/startP2PService.sh
file.

• Microsoft Windows system: the script is located in ProActive/p2p/scripts/windows/p2p/startP2PService.bat file.

Before launching this script, you have to specify some parameters to this command:

startP2PService [-acq acquisitionMethod] [-port portNumber] [-s Peer ...] [-f PeersListFile]

• -acq acquisitionMethod the ProActive Runtime communication protocol used. Examples: rmi, http, ibis, ... By default it is
rmi.

• -port portNumber is the port number where the P2P Service will listen. By default it is 2410
• -s Peer ... specify addresses of peers which are used to join the P2P infrastructure. Example:

rmi://applepie.proactive.org:8080

• -f PeersListFile same of -s but peers are specified in file ServerListFile. One per line.

More options:

• -noa NOA in number of host. NOA is the minimal number of peers one peer needs to know to keep up the infrastructure. By
default, its value is 10 peers.

• -ttu TTU is in minutes. Each peer sends a heart beat to its acquaintances. By default, its value is 1 minute.
• -ttl TTL is in hop. TTL represents live time messages in hops of JVMs (node). By default, its value is 5 hops.
• -capacity Number_of_Messages is the maximum memory size to stock message UUID. Default value is 1000 messages

UUID.
• -exploring Percentage is the percentage of agree response when a peer is looking for acquaintances. By default, its value is

66%.
• -booking Time in ms it takes while booking a shared node. It's the maximum time in milliseconds to create at least an active

object in the shared node. After this time, and if no active objects are created, the shared node will leave and the peer which
gets this shared node will be no longer be able to use it. Default is 3 minutes.

• -node_acq Time in milliseconds which is the timeout for node acquisition. The default value is 3 minutes.
• -lookup Time is the lookup frequency in milliseconds for re-asking nodes. By default, it's value is 30 seconds.
• -no_multi_proc_nodes to share only a node. Otherwise, 1 node by CPU that means the p2p service which is running on a

bi-pro will share 2 nodes. By default, 1 shared node for 1 CPU.
• -xml_path to share nodes from a XML deployment descriptor file. This option takes a file path. By default, no descriptors

are specified. That means the P2P Service shares only one local node or one local node by CPUs.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

277

All arguments are optional.

Comment: With the UNIX version of the startP2PService script, the P2P service is persistent and runs like a UNIX nice process.
If the JVMs that are running the P2P service stop (for a Java exception) the script re-starts a new one.

35.4.1.2. Usage Example

In this illustration, we will explain how to start a first peer and then how new peers can create a P2P network with the first one.

Start the first peer with rmi protocol and listening on port 2410:

first.peer.host$startP2PService.sh -acq rmi -port 2410

Now, start new peers and connect them to the first peer to create a tiny P2P network:

second.peer.host$startP2PService.sh -acq rmi -port 2410 -s rmi://first.peer.host
third.peer.host$startP2PService.sh -acq rmi -port 2602 -s rmi://first.peer.host

You could specify a different port number for each peer.

Use a file to specify the addresses of peers:

The file hosts.file:

rmi://first.peer.host:2410
rmi://third.peer.host:2602

file.peer.host$startP2PService.sh -acq rmi -port 8989 -f hosts.file

Lastly, a new peer joins the P2P network:

last.peer.host$startP2PService.sh -acq rmi -port 6666 -s rmi://third.peer.host:2410

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

278

Figure 35.8. Usage example P2P network (after firsts connections)

35.4.1.3. The P2P Daemon

The daemon aims to use computers in Peer-to-Peer computations. There will be a Java virtual machine sleeping on your computer
and waking up at scheduled times to get some work done.

By default, the JVM is scheduled to wake up during the weekend and during the night. Next, we will explain how to change the
schedule. The JVM is running with the lowest priority.

35.4.1.3.1. Installation

UNIX

Go to the directory: ProActive/compile and run this command:

$./build daemon

Before compiling you should change some parameters like the daemon user or the port in the file:

ProActive/p2p/src/common/proactivep2p.h

Ask your system administrator to add the daemon in a crontab or init.d. The process to run is located here:

ProActive/p2p/build/proactivep2p

Microsoft Windows

To compile daemon source (in c++), we don't provide any automatic script, you have to do it yourself. All sources for Windows

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

279

are in the directory: ProActive/p2p/src/windows. If you use Microsoft Visual Studio, you can find in the src directory the Mi-
crosoft VS project files.

After that you are ready to install the daemon with Windows, you just have to run this script:

C:>ProActive\scripts\windows\p2p\Service\install.bat

To remove the daemon:

C:>ProActive\scripts\windows\p2p\Service\remove.bat

Comment: By default the port number of the daemon is 9015.

35.4.1.3.2. Configuration

The daemon is configured with XML files in the ProActive/p2p/config/ directory. To find the correct configuration file, the dae-
mon will first try with a host dependent file: config/proactivep2p.${HOST}.xml for example: config/proact-
ivep2p.camel.inria.fr.xml if the daemon is running on the host named camel.inria.fr.

If this host specific file is not found, the daemon will load config/proactivep2p.xml. This mechanism can be useful to setup a de-
fault configuration and have a specific configuration for some hosts.

The reference is the XML Schema called proactivep2p.xsd, shown in Example C.34, “P2P configuration: proactivep2p.xsd”. For
those not fluent in XML Schema, here is a description of all markup tags

The root element in <configFile> it contains one or many <p2pconfig> . This latter element can start with a <loadconfig
path='path/to/xml'/> it will include the designated XML file. After these file inclusions, you can with <host
name='name.domain'> specify which hosts are concerned by the configuration. Then there can be a <configForHost> element
containing a configuration for the selected hosts and/or a <default> element if no suitable configuration was already found.

Bear in mind that the XML parser sees a lot of configuration and the first that matches is used and the parsing is finished. This
means that the elements we have just seen are tightly linked together. For example if an XML file designated by a <loadconfig>
contains a <default> element, then after this file no other element will be evaluated. This is because either a configuration was
already found so the parsing stops, or no configuration matched and the <default> does, so the parsing ends.

The proper configuration is contained in a <configForHost> or <default> element. It consists of the scheduled times for work and
the hosts where we register ourselves. Here is an example:

<periods>
<period>
<start day='monday' hour='18'

minute='0'/>
<end day='tuesday' hour='6'

minute='0'/>
</period>
<period>
<start day='saturday' hour='0'

minute='0'/>
<end day='monday' hour='6'

minute='0'/>
</period>

</periods>
<register>
<registry url='trinidad.inria.fr'/>
<registry url='amda.inria.fr'/>
<registry url='tranquility.inria.fr'/>
<registry url='psychoquack.inria.fr'/>
</register>

In this example we clearly see that the JVM will wake up Monday evening and shut down Tuesday morning. It will also work dur-

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

280

ing the weekend. In the <register> part we put the URL in which we will register ourselves, in the example we used the short form
which is equivalent to rmi://host:9301.

35.4.1.3.3. Control

The following commands only work with UNIX friendly systems.

• Stop the JVM: This command will stop the JVM and will restart it at the next scheduled time, which is the day after:

$ProActive/p2p/build/p2pctl stop [hostname]

•
Kill the daemon:

$ProActive/p2p/build/p2pctl killdaemon [hostname]

• Restart the daemon:

$ProActive/p2p/build/p2pctl restart [hostname]

• Test the daemon:

$ProActive/p2p/build/p2pctl alive [hostname]

• Flush the daemon logs:

$ProActive/p2p/build/p2pctl flush [hostname]

hostname is the name of the remote host which the daemon command is sent to. This parameter is optional, if the host name is not
specified the command is executed on the local host.

Under Windows you could use some littles scripts in ProActive//script/windows/p2p/JVM to do that.

All daemon logs are written in a file. All logs are available in:

ProActive/p2p/build/logs/hostname

35.4.2. Example of Acquiring Nodes by ProActive XML Deployment Descriptors

You can customize some P2P settings such as:

• nodesAsked is the number of nodes you want from the P2P infrastructure. Setting MAX as value is equivalent to an infinite
number of nodes. This attribute is required.

• acq is the communication protocol that's used to communicate with this P2P Service. All ProActive communication proto-
cols are supported: rmi, http, etc. Default is rmi.

• port represents the port number on which to start the P2P Service. Default is 2410. The port is used by the communication
protocol.

• The NOA Number Of Acquaintances is the minimal number of peers one peer needs to know to keep up the infrastructure.
By default, its value is 10 peers.

• The TTU Time To Update each peer sends a heart beat to its acquaintances. By default, its value is 1 minute.
• The TTL Time To Live represents messages live time in hops of JVMs (node). By default, its value is 5 hops.
• multi_proc_nodes is a boolean (use true or false) attribute. When its value is true the P2P service will share 1 node by CPU,

if not only one node is shared. By default, its value is true, i.e. 1 node / CPU.
• xml_path is used with a XML deployment descriptor path. The P2P Service shares nodes which are deployed by the

descriptor. No default nodes are shared.
• booking_nodes is a boolean value (true or false). During asking nodes processs there is a timeout, booking timeout is used

for obtaining nodes. That means if no active objects are created before the end of the timeout, the node will be free and no
longer shared. To avoid the booking timeout, put this attribute at true, obtained nodes will be permanently booked for you.
By default, its value is false. See below, for more information about the booking timeout.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

281

With elements acq and port, if a P2P Service is already running with this configuration the descriptor will use this one, if not a
new one is started.

In order to get nodes, the peerSet tag will allow you to specify entry point of your P2P Infrastructure.

You can get nodes from the P2P Infrastructure using the ProActive Deployment Descriptor as described above.

In fact you will ask for a certain number of nodes and ProActive will notify a 'listener' (one of your class), every time a new node
is available.

ProActiveDescriptor pad = ProActive.getProactiveDescriptor('myP2PXmlDescriptor.xml');
// getting virtual node 'p2pvn' defined in the ProActive Deployement Descriptor
VirtualNode vn = pad.getVirtualNode('p2pvn');

// adding 'this' or anyother class has a listener of the 'NodeCreationEvent'
((VirtualNodeImpl) vn).addNodeCreationEventListener(this);
//activate that virtual node
vn.activate();

As you can see, the class executing this code must implement an interface in order to be notified when a new node is available
from the P2P infrastructure.

Basically you will have to implement the interface NodeCreationEventListener that can be found in package
org.objectweb.proactive.core.event. For example, this method will be called every time a new host is acquired:

public void nodeCreated(NodeCreationEvent event)
{
// get the node
Node newNode = event.getNode();
// now you can create an active object on your node.

}

You should carefully notice that you can be notified at any time, whatever the code you are executing, once you have activated the
virtual node.

A short preview of a XML descriptor:

<infrastructure>
<services>
<serviceDefinition id='p2pservice'>
<P2PService nodesAsked='2' acq='rmi'

port='2410' NOA='10' TTU='60000'
TTL='10'>

<peerSet>
<peer>rmi://localhost:3000</peer>
</peerSet>
</P2PService>

</serviceDefinition>
</services>
</infrastructure>

A complete example of file is available, see Example C.35, “P2P configuration: sample_p2p.xml” .

The next figure shows a P2P Service started with a XML deployment descriptor (xml_path attribute). Six nodes are shared on dif-
ferent hosts:

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

282

Figure 35.9. A P2P Service which is sharing nodes deployed by a descriptor

For more information about ProActive XML Deployment Descriptor see org.objectweb.proactive.Descriptor javadoc.

35.4.3. The P2P Infrastructure API Usage Example

The next little sample of code explains how, from an application, you can start a P2P Service and get nodes:

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.ProActiveException;
import org.objectweb.proactive.core.mop.ClassNotReifiableException;
import org.objectweb.proactive.core.node.Node;
import org.objectweb.proactive.core.node.NodeException;
import org.objectweb.proactive.core.node.NodeFactory;
import org.objectweb.proactive.core.runtime.ProActiveRuntime;
import org.objectweb.proactive.core.runtime.RuntimeFactory;
import org.objectweb.proactive.p2p.service.P2PService;
import org.objectweb.proactive.p2p.service.StartP2PService;
import org.objectweb.proactive.p2p.service.node.P2PNodeLookup;
...
// This constructor uses a file with address of peers
// See the Javadoc to choose different parameters
StartP2PService startServiceP2P = new StartP2PService(p2pFile)
// Start the P2P Service on the local host
startServiceP2P.start();
// Get the reference on the P2P Service
P2PService serviceP2P = startServiceP2P.getP2PService();
// By the application's P2P Service ask to the P2P infrastructure
// for getting nodes.
P2PNodeLookup p2pNodeLookup = p2pService.getNodes(nNodes,

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

283

virtualNodeName, JobID);
// You can migrate the P2P node lookup from the p2p service
// to an another node:
p2pNodeLookup.moveTo('//localhost/localNode');
// Use method from p2pNodeLookup to get nodes
// such as
while (! p2pNodeLookup.allArrived()) {
Vector arrivedNodes = p2pNodeLookup.getAndRemoveNodes();
// Do something with nodes
...

}
// Your application
...
// End of your program
// Free shared nodes
p2pNodeLookup.killAllNodes();

35.5. Future Work
• Plug technical services (Chapter 26, Technical Service), such as Fault-tolerance schemes or Load Balancing, for each applic-

ation at the deployment time.

35.6. Research Work

The seminal paper [CCMPARCO07] .

Further research information is available at http://www-sop.inria.fr/oasis/Alexandre.Di_Costanzo/.

Part VI: Advanced Chapter 35: ProActive Peer-to-Peer Infra-
structure

284

http://www-sop.inria.fr/oasis/Alexandre.Di_Costanzo/

Chapter 36. Load Balancing
36.1. Overview

Load balancing is the process of distributing load among a set of processors in a smart way for exploiting the parallelism and min-
imize the response time. There are two main approaches to distributed load balancing: work sharing, in which processors try to
equalize the load among them, and work stealing, in which idle processor request extra work.

The load balancing uses the migration to move objects from a node to an other : ProActive.migrateTo(object,node,false). (see
Chapter 16, Active Object Migration for more details).

36.2. Metrics

The load balancing need metrics to evaluate each node and so to take a decision. You can define your own Metrics (CPU Load,
number of active objects, communication between active objects ...).

36.2.1. MetricFactory and Metric classes

You must implement two classes : MetricFactory and Metric (package org.objectweb.proactive.loadbalancing.metrics).

36.2.1.1. MetricFactory

You have to implements the method public Metric getNewMetric() which returns a new Metric.

36.2.1.2. Metric

There are two concepts : the rank and the load. The rank is used to compare two nodes without considering the load (ex: CPU
mHz). The load can evoluate in time

Three methods have to be implemented :

• public void takeDecision(LoadBalancer lb) : this method has to call lb.startBalancing() (overload) or lb.stealWork()
(underload)

• public double getRanking() : this method returns the rank of the node.

• public double getLoad() : this method returns the load of the node.

36.3. Using Load Balancing

There is two ways for using load balancing : manually in the application code or as a technical service.(see Chapter 26, Technical
Service for more details).

36.3.1. In the application code

In order to ease the use of the load balancing, we provide static methods on the LoadBalancing class. First of all, you need to ini-
tialize the load balancing with the MetricFactory as described in the previous paragraph. You can specify a list of nodes at the ini-
tialization or later.

Node[] nodes;
Node node;
//... initialisation of nodes
LoadBalancing.activateOn(nodes, new MyMetricFactory()); // or LoadBalancing.activate(new
MyMetricFactory());

// to add a node
LoadBalancing.addNode(node);

Part VI: Advanced Chapter 36: Load Balancing

285

36.3.2. Technical Service

In your deployment descriptor, you have to define the load balancing technical service as following :

<technical-service id="LoadBalancingService" class=
"org.objectweb.proactive.loadbalancing.LoadBalancingTS">

<arg name="MetricFactory" value="myPackage.myMetricFactory" />
</technical-service>

This service has to be applied on a Virtual Node :

<virtualNode name="Workers" property="multiple" technicalServiceId="LoadBalancingService"/>

36.4. Non Migratable Objects

Sometimes, active objects can't migrate : non-serializable attributes ...; in that case, you have to specify that these objects have to
be ignored by the load balancing mechanism.

So, these objects have to implement the interface org.objectweb.proactive.loadbalancing.NotLoadBalanceableObject

Part VI: Advanced Chapter 36: Load Balancing

286

Chapter 37. ProActive Security Mechanism
In order to use the Proactive Security features, you have to installthe Java(TM) Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files available at Sun's website [http://www.java.sun.com]. Extract the file and copy jar files to your
<jre_home>/lib/security.

37.1. Overview

Usually, applications and security are developed for a specific use. We propose here a security framework that allows dynamic de-
ployment of applications and security configuration according to this deployment.

ProActive security mechanism provides a set of security features from basic ones like communications authentication, integrity,
and confidentiality to more high-level features including secure object migration, hierarchical security policies, and dynamically
negotiated policies. All these features are expressed at the ProActive middleware level and used transparently by applications.

It is possible to attach security policies to Runtimes, Virtual Nodes, Nodes and Active Objects. Policies are expressed inside an
XML descriptor.

37.2. Security Architecture

37.2.1. Base model

A distributed or concurrent application built using ProActive is composed of a number of medium-grained entities called active
objects. Each active object has one distinguished element, the root, which is the only entry point to the active object; all other ob-
jects inside the active object are called passive objects and cannot be referenced directly from objects which are outside this active
object (see following figure); the absence of sharing is important with respect to security.

Figure 37.1. A typical object graph with active objects

The security is based on Public Key Infrastructure. Each entity owns a certificate and an private key generated from the certificate
of a user.

Certificates are generated automatically by the security mechanism. The validity of a certificate is checked by validating its certi-
ficate chain. As shown in the next figure, before validating the certificate of an active object, the application certificate and user
certificate will be checked. If a valid path is found then the object certificate is validated.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

287

http://www.java.sun.com

Figure 37.2. Certificate chain

37.2.2. Security is expressed at different levels

Security is expressed at different levels, according to who wants to set policy:

• Administrators set policy at domain level. It contains general security rules.
• Resource provider set policy for resource. People who have access to a cluster and wants to offer cpu time under some re-

strictions. The runtime loads its policy file at launch time.
• Application level policy is set when an application is deployed through an XML descriptor.

The ProActive middleware will enforce the security policy of all entites interacting within the system, ensuring that all policies are
adhered to.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

288

Figure 37.3. Hierarchical security

37.3. Detailed Security Architecture

37.3.1. Nodes and Virtual Nodes

The security architecture relies on two related abstractions for deploying Grid applications: Node and Virtual Node. A node gath-
ers several objects in a logical entity. It provides an abstraction for the physical location of a set of activities. Objects are bound to
a node at creation or after migration. In order to have a flexible deployment (eliminating from the source code machine names, cre-
ation protocols), the system relies on Virtual Nodes (VNs). A VN is identified as a name (a simple string), used in a program
source, defined and configured in an descriptor. The user can attach policy to these virtual nodes. Virtual Nodes are used within
application code to structure it. By example, an object which will be used as a server will be set inside a virtual node named "Serv-
er_VN", client objects will be set inside "Client_VN". The user expresses policy between server and client object inside a
descriptor file. The mapping between Virtual Nodes and Nodes is done when the application starts.

37.3.2. Hierarchical Security Entities

Grid programming is about deploying processes (activities) on various machines. The final security policy that must be set for
those processes depends upon many factors: primarily, this is dictated by the application's policy, but the machine locations, the se-
curity policies of their administrative domain, and the network being used to reach those machines must also be considered.

The previous section defined the notions of Virtual Nodes, and Nodes. Virtual Nodes are application abstractions, and nodes are
only a run-time entity resulting from the deployment: a mapping of Virtual Nodes to processes and hosts. A first decisive feature
allows the definition of application-level security on those abstractions:

Part VI: Advanced Chapter 37: ProActive Security Mechanism

289

As such, virtual nodes are the foundation for intrinsic application level security. If, at design time, it appears that a process always
requires a specific level of security (e.g. authenticated and encrypted communications at all time), then that process should be at-
tached to a virtual node on which those security features are imposed. It is the designer responsibility to structure his/her applica-
tion or components into virtual node abstractions compatible with the required security. Whatever deployment occurs, those secur-
ity features will be maintained. We expect this case to occur infrequently, for instance in very sensitive applications where even an
intranet deployment calls for encrypted communications.

The second decisive feature deals with a major Grid aspect: deployment-specific security. The issue is actually twofold:

1. allowing organizations (security domains) to specify general security policies,
2. allowing application security to be specifically adapted to a given deployment environment.

Domains are a standard way to structure (virtual) organizations involved in a Grid infrastructure; they are organized in a hierarch-
ical manner. They are the logical concept which allow the expression of security policies in a hierarchical way.

This principle deals with the two issues mentioned above:

(1) the administrator of a domain can define specific policy rules that must be obeyed by the applications running within the do-
main. However, a general rule expressed inside a domain may prevent the deployment of a specific application. To solve this issue,
a policy rule can allow a well-defined entity to weaken it. As we are in a hierarchical organization, allowing an entity to weaken a
rule means allowing all entities included to weaken the rule. The entity can be identified by its certificate;

(2) a Grid user can, at the time he runs an application, specify additional security based on the domains being deployed onto.

The Grid user can specify additional rules directly in his deployment descriptor for the domains he deploys onto. Note that those
domains are actually dynamic as they can be obtained through external allocators, or even Web Services in an OGSA infrastructure
(see [FKTT98]). Catch-all rules might be important in that case to cover all cases, and to provide a conservative security strategy
for unforseen deployments.

Finally, as active objects are active and mobile entities, there is a need to specify security at the level of such entities.

In open applications, e.g. several principals interacting in a collaborative Grid application, a JVM (a process) launched by a given
principal can actually host an activity executing under another principal. The above principle specific security privileges to be re-
tained in such a case. Moreover, it can also serve as a basis to offer, in a secure manner, hosting environments for mobile agents.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

290

Figure 37.4. Syntax and attributes for policy rules

37.3.3. Resource provider security features

Prior to an application starting on a grid, a user needs to acquire some resources (CPU time, disk storage, bandwidth) from the
grid. A resource provider is an individual, a research institute, an organization who wants to offer some resources under a certain
security policy to a restricted set of peoples. According to our definition, the resource provider will set up one or more runtimes
where clients will be able to perform computation. Each runtime is set with its own policy. Theses runtimes could be globally dis-
tributed.

37.3.4. Interactions, Security Attributes

Security policies are able to control all the interactions that can occur when deploying and executing a multi-principals Grid ap-
plication. With this goal in mind, interactions span the creation of processes, to the monitoring of activities (Objects) within pro-
cesses, including of course the communications. Here is a brief description of those interactions:

• RuntimeCreation (RC): creation of a new Runtime process
• NodeCreation (NC): creation of a new Node within a Runtime (as the result of Virtual Node mapping)
• CodeLoading (CL): loading of bytecode within a Node, used in presence of object migration.
• ObjectCreation (OC): creation of a new activity (active object) within a Node
• ObjectMigration (OM): migration of an existing activity object to a Node
• Request (Q), Reply (P): communications, method calls and replies to method calls
• Listing (L): list the content of an entity; for Domain/Node provides the list of Node/Objects, for an Object allows to monitor

its activity.

For instance, a domain is able to specify that it accepts downloading of code from a given set of domains, provided the transfers
are authenticated and guaranteed not to be tampered with. As a policy might allow un-authenticated communications, or because a
domain (or even country) policy may specify that all communications are un-encrypted, the three security attributes Authentication
(A), Integrity (I) and Confidentiality (C) can be specified in three modes: Required (+), Optional (?), Disallowed (-)

For example, the tuple [+A,?I,-C] means that authentication is required, integrity is accepted but not required, and confidentiality is
not allowed.

As grids are decentralized, without a central administrator controlling the correctness of all security policies, these policies must be
combined, checked, and negotiated dynamically. The next two sections discuss how this is done.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

291

37.3.5. Combining Policies

As the proposed infrastructure takes into account different actors of the grid (e.g. domain administrator, grid user), even for a
single-principal single-domain application, there are potentially several security policies in effect. This section deals with the com-
bination of those policies to obtain the final security tuples of a single entity. An important principle being that a sub-domain can-
not weaken the rules of its super-domains.

During execution, each activity (Active Object) is always included in a Node (due to the Virtual Node mapping) and at least in one
Domain, the one used to launch a JVM (D

0
). Figure 37.5, “Hierarchical Security Levels” hierarchically represents the security

rules that can be activated at execution: from the top, hierarchical domains (D
1

to D
0
), the virtual node policy (VN), and the Active

Object (AO) policy. Of course, such policies can be inconsistent, and there must be clear principles to combine the various sets of
rules.

Figure 37.5. Hierarchical Security Levels

There are three main principles: (1) choosing the most specific rules within a given domain (as a single grid actor is responsible
for it), (2) an interaction is valid only if all levels accept it (absence of weakening of authorizations), (3) the security attributes re-
tained are the most constrained based on a partial order (absence of weakening of security). Consider the following example,
where the catch-all rule specifies that all Requests (Q) and Replies (P) must be authenticated, integrity checked, and confidential,
however within the specific "CardPlus" domain integrity and confidentiality will be optional.

Domain[*] -> Domain[*]: Q,P: [+A,+I,+C]
Domain[CardPlus] -> Domain[CardPlus]: Q,P: [+A,?I,?C]

This means that any activity taking place within the CardPlus domain the second rule will be chosen (integrity and confidentiality
will be optional), as the catch-all rule is less-specific than the "CardPlus" domain rule, and there is no hierarchical domain relation-
ship between the two rules. Of course, comparison of rules is only a partial order, and several incompatible most specific rules can
exist within a single level (e.g. both ACCEPT and DENY most specific rules for the same interaction, or both +A and -A).

Between levels, an incompatibility can also occur, especially if a sub-level attempts to weaken the policy on a given interaction

Part VI: Advanced Chapter 37: ProActive Security Mechanism

292

(e.g. a domain prohibits confidentiality [-C] while a sub-domain or the Virtual Node requires it [+C], a domain D
i
prohibits loading

of code while D
j
(j <= i) authorizes it). In all incompatible cases, the interaction is not authorized and an error is reported.

37.3.6. Dynamic Policy Negotiation

During execution, entities interact in a pairwise fashion. Each entity, for each interaction (JVM creation, communication, migra-
tion, ...), will want to apply a security policy based on the resolution presented in the previous section. Before starting an interac-
tion, a negotiation occurs between the two entities involved. Table 37.1, “Result of security negotiations” shows the result of such
negotiation. For example, if for a given interaction, entity A's policy is [+A,?I,?C], and B's policy is [+A,?I,-C], the negotiated
policy will be [A,?I,-C]. If both policies specify an attribute as optional, the attribute is not activated.

The other case which leads to an error is when an attribute is required by one, and disallowed by the other. In such cases, the inter-
action is not authorized and an error is reported. If the two entities security policies agree, then the interaction can occur. In the
case that the agreed security policy includes confidentiality, the two entities negotiate a session key.

Table 37.1. Result of security negotiations

37.3.7. Migration and Negotiation

In large scale grid applications, migration of activities is an important issue. The migration of Active Objects must not weaken the
security policy being applied.

When an active object migrates to a new location, three scenarios are possible:

• the object migrates to a node belonging to the same virtual node and included in the same domain. In this case, all negotiated
sessions remain valid.

• the object migrates to a known node (created during the deployment step) but which belongs to another virtual node. In this
case, all current negotiated sessions become invalid. This kind of migration requires reestablishing the object security policy,
and if it changes, renegotiating with interacting entities.

• The object migrates to an unknown node (not known at the deployment step). In this case, the object migrates with a copy of
the application security policy. When a secured interaction takes place, the security system retrieves not only the object's ap-
plication policy but also policies rules attached to the node on which the object is to compute the policy.

37.4. Activating security mechanism

Part VI: Advanced Chapter 37: ProActive Security Mechanism

293

Within the deployment descriptor, the tag <security> is used to specify the policy for the deployed application. It will be the policy
for all Nodes and Active Objects that will be created. Below is a fragment of a sample deployment descriptor:

2:<ProActiveDescriptor xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>
3: <security file='../../descriptors/security/applicationPolicy.xml'></security>
4: <componentDefinition>
5: <virtualNodesDefinition>
6: <virtualNode name='Locale' property='unique'/>
7: <virtualNode name='vm1' property='unique'/>
8: <virtualNode name='vm2' property='unique'/>
9: </virtualNodesDefinition>
10:</componentDefinition>
11:
50:<infrastructure>
51: <processes>
52: <processDefinition id='linuxJVM'>
53: <jvmProcess

class='org.objectweb.proactive.core.process.JVMNodeProcess'>
54: <classpath>
....
74: </classpath>
75: <jvmParameters>
<parameter value='-Dproactive.runtime.security=/.../descriptors/security/jvm1-sec.xml'/>
82: </jvmParameters>
83: </jvmProcess>
84: </processDefinition>
....

Inside the policy file, you can express policy between entities (domain, runtime, node, active object).

The entity tag can be used to:

• express policies on entities described inside the descriptor (lines 13, 15)
• express policies on existing entities by specifying theirs certificates (line 32).

37.4.1. Construction of an XML policy:

A policy file must begin with:

2:<Policy>

next, application specific information is given.

3: <ApplicationName>Garden</ApplicationName>

<ApplicationName> sets the application name. This allows easy identification of which application an entity belongs to.

4: <Certificate>/.../appli.cert</Certificate>
5: <PrivateKey>/.../appli.key</PrivateKey>

<Certificate> is the X509 certificate of the application, generated from a user certificate, and

<PrivateKey> the private key associated to the certificate.

6: <CertificationAuthority>
7: <Certificate>/.../ca.cert</Certificate>
8: </CertificationAuthority>

Part VI: Advanced Chapter 37: ProActive Security Mechanism

294

<CertificationAuthority> contains all trusted certificate authority certificates.

10: <Rules>

Then we can define policy rules. All rules are located within the <Rules>

A <Rule> is constructed according the following syntax:

11: <Rule>

<From> tag contains all entities from which the interaction is made (source). It is possible to specify many entities in order to
match a specific fine-grained policy.

12: <From>
13: <Entity type='VN' name='vm2'/>
14: </From>

<Entity> is used to define an entity. the 'type' parameter can be 'VN', 'certificate', or 'DefaultVirtualNode'.

• 'VN' (Virtual Node) referrers to virtual nodes defined inside the deployment descriptor.
• 'DefaultVirtualNode' is a special tag. This is taken as the default policy. The "name" attribute is ignored.
• 'certificate' requires that the path to the certificate is set inside the 'name' parameters.

<To> tag contains all entities onto which the interaction is made (targets). As with the <From> tag, many entities can be specified.

15: <To>
16: <Entity type='VN' name='Locale'/>
17: </To>

The <Communication> tag defines security policies to apply to requests and replies.

18: <Communication>

<Request> sets the policy associated with a request. The 'value' parameter can be:

• 'authorized' means a request is authorized.
• 'denied' means a request is denied.

Each <Attribute> (authentication,integrity, confidentiality) can be required, optional or denied.

19: <Request value='authorized'>
20: <Attributes authentication='required' integrity='optional' confidentiality='optional'/>
21: </Request>

<Reply> tag has the same parameters that <Request>

22:<Reply value='authorized'>
23: <Attributes authentication='required' integrity='required' confidentiality='required'/>
24:</Reply>
25:</Communication>

<Migration> controls migration between <From> and <To> entities. Values can be 'denied' or 'authorized'.

26: <Migration>denied</Migration>

Part VI: Advanced Chapter 37: ProActive Security Mechanism

295

<OACreation> controls creation of active objects by <From> entities onto <To> entities.

Values can be 'denied' or 'authorized'.

27: <OACreation>denied</OACreation>

The following shows the complete security policy.

2: <Policy>
3: <ApplicationName>Garden</ApplicationName>
4: <Certificate>/net/home/acontes/certif/appli.cert</Certificate>
5: <PrivateKey>/net/home/acontes/certif/appli.key</PrivateKey>
6: <CertificationAuthority>
7: <Certificate>...</Certificate>
8: </CertificationAuthority>
9:
10: <Rules>
11: <Rule>
12: <From>
13: <Entity type='VN' name='vm2'/>
14: </From>
15: <To>
16: <Entity type='VN' name='Locale'/>
17: </To>
18: <Communication>
19: <Request value='authorized'>
20: <Attributes authentication='required'

integrity='required'
confidentiality='required'/>

21: </Request>
22: <Reply value='authorized'>
23: <Attributes authentication='required'

integrity='required'
confidentiality='required'/>

24: </Reply>
25: </Communication>
26: <Migration>denied</Migration>
27: <OACreation>denied</OACreation>
29: </Rule>
30: <Rule>
31: <From>
32: <Entity type='certificate' name='certificateRuntime1.cert'/>
33: </From>
34: <To>
35: <Entity type='VN' name='Locale'/>
36: </To>
37: <Communication>
38: <Request value='authorized'>
39: <Attributes authentication='required'

integrity='required'
confidentiality='required'/>

40: </Request>
41: <Reply value='authorized'>
42: <Attributes authentication='required'

integrity='required'
confidentiality='required'/>

43: </Reply>
44: </Communication>
45: <Migration>denied</Migration>
46: <OACreation>denied</OACreation>

Part VI: Advanced Chapter 37: ProActive Security Mechanism

296

48: </Rule>
...
90: <Rule>
91: <From>
92: <Entity type='DefaultVirtualNode' name='*'/>
93: </From>
94: <To>
95: <Entity type='DefaultVirtualNode' name='*'/>
96: </To>
97: <Communication>
98: <Request value='denied'>
99: <Attributes authentication='optional'

integrity='optional'
confidentiality='optional'/>

100: </Request>
101: <Reply value='denied'>
102: <Attributes authentication='optional'

integrity='optional'
confidentiality='optional'/>

103:
104: </Reply>
105: </Communication>
106: <Migration>denied</Migration>
107: <OACreation>authorized</OACreation>
109: </Rule>
110:
111: </Rules>
112:</Policy>

Note that the JVM that reads the deployment descriptor should be started with a security policy. In order to start a secure JVM, you
need to use the property proactive.runtime.security and give a path a security file descriptor.

Here is an example:

java -Dproactive.runtime.security=descriptors/security/jvmlocal.xml TestSecureDeployment secureDeployment.xml

37.5. How to quickly generate certificate?

A GUI has been created to facilitate certificate generation.

The first screenshot presents a root certificate. Notice that the certificate chain table is empty.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

297

Figure 37.6. The ProActive Certificate Generator (for oasis)

The second screenshot presents a certificate generated from the previous one using menu entry 'Certificate -> generate a sub-
certificate'.

Notice that the certification table contains one entry and Distinguished Name of the Entity ID 1 is the same as the subject DN of
the certificate

Part VI: Advanced Chapter 37: ProActive Security Mechanism

298

Figure 37.7. The ProActive Certificate Generator (for proactive)

Using this GUI, a user is able to generate a certificate and if needed a certificate chain.

Certificates are saved under a PKCS12 format (extension .p12). This format is natively supported by the ProActive Security mech-
anism.

Part VI: Advanced Chapter 37: ProActive Security Mechanism

299

Part VI: Advanced Chapter 37: ProActive Security Mechanism

300

Chapter 38. Exporting Active Objects and
components as Web Services
38.1. Overview

This feature allows the call and monitoring of active objects and ProActive components from any client written in any foreign lan-
guage.

Indeed, applications written in C#, for example, cannot communicate with ProActive applications. We choose the web services
technology that enable interoperability because they are based on XML and HTTP. Thus, any active object or component can be
accessible from any enabled web service language.

38.2. Principles

A web service is a software entity, providing one or several functionnalities, that can be exposed, discovered and accessed over the
network. Moreover, web services technology allows heterogenous applications to communicate and exchange data in a remotely
way. In our case, the usefull elements, of web services are:

• The SOAP Message

The SOAP message is used to exchange XML based data over the internet. It can be sent via HTTP and provides a serializa-
tion format for communicating over a network.

• The HTTP Server

HTTP is the standard web protocol generally used over the 80 port. In order to receive SOAP messages you need to install
an HTTP server that will be responsible of the data transfer. This server is not sufficient to treat a SOAP request.

• The SOAP Engine

A SOAP Engine is the mechanism responsible of making transparent the unmarshalling of the request and the marshalling of
the response. Thus, the service developer doesn't have to worry with SOAP. In our case, we use Apache SOAP which is in-
stalled on a Jakarta Tomcat web server. Moreover, Apache SOAP contains a web based administration tool that permit to
list, deploy and undeploy services.

• The client

Client's role is to consume a web service. It is the producer of the SOAP message. The client developer doesn't have to
worry about how the service is implemented.

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

301

Figure 38.1. This figure shows the steps when a active object is called via SOAP.

38.3. Pre-requisite: Installing the Web Server and the SOAP engine

First of all, you need to install the Jakarta Tomcat web server here and install it. You can find some documentation about it here
[http://tomcat.apache.org/] .

You don't really have to do a lot of installation. Just uncompress the archive.

To start and stop the server, launch the start and the shutdown scripts in the bin directory.

We also use a SOAP engine which is the Apache SOAP engine, available here [http://www.apache.org/dyn/closer.cgi/ws/soap/] .
This SOAP engine will be responsible of locating and calling the service.

To install Apache SOAP refer to the server-side instructions. [http://ws.apache.org/soap/faq/faq_chawke.html]

The SOAP Engine is now installed ! You can verify, after starting the server that you access to the welcome page of Apache SOAP
at: http://localhost:8080/soap/index.html.

Now we have to install ProActive into this SOAP engine. For that, follow these steps:

• Copy the ProActive.jar file into the $APACHE-SOAP/WEB-INF/lib/
• Replace the $TOMCAT/webapps/soap/WEB-INF/web.xml by the one found in Example C.36, “SOAP configuration: web-

services/web.xml”.

38.4. Steps to expose an active object or a component as a web services

The steps for exporting and using an active object as a web service are the following:

• Write your active object or your component in a classic way; for example:

A a = (A)ProActive.newActive("A", new Object [] {});

• Once the element is created and activated, deploy it onto a web server by using:
• For an active object:

ProActive.exposeAsWebService(Object o, String url, String urn, String [] methods);

where:
• o is the active object
• url is the url of the web server; typically http://localhost:8080.
• urn is the service name which identify the active object on the server.
• methods a String array containing the methods name you want to make accessible. If this parameter is null, all the

public methods will be exposed.
• For a component:

Proactive.exposeComponentAsWebService(Component component, String url, String componentName);

where:
• component is the component whose interfaces will be exposed as web services
• url is the url of the web server; typically http://localhost:8080.
• componentName is the name of the component. Each service available in this way will get a name composed by the

component name followed by the interface name: componentName_interfaceName

38.5. Undeploy the services

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

302

http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.apache.org/dyn/closer.cgi/ws/soap/
http://ws.apache.org/soap/faq/faq_chawke.html
http://localhost:8080/soap/index.html

To undeploy an active object as a service, use the ProActive static method:

ProActive.unExposeAsWebService (String urn, String url);

where:

• urn is the service name
• url the url of the server where the service is deployed

To undeploy a component you have to specify the component name and the component(needed to know the interfaces to un-
deploy):

ProActive.unExposeAsWebService (String componentName , String url, Component component);

38.6. Accessing the services

Once the active object or the interfaces component are deployed, you can access it via any web service enabled client (such as C#).

First of all, the client will get the WSDL file matching this active object. This WSDL file is the 'identity card' of the service. It con-
tains the web service public interfaces and its location. Generally, WSDL files are used to generate a proxy to the service. For ex-
ample, for a given service, say 'compute', you can get the WSDL document at http://localhost:8080/servlet/wsdl?id=compute.

Now that this client knows what and where to call the service, it will send a SOAP message to the web server, the web server looks
into the message and perform the right call then returns the reply into another SOAP message to the client.

38.7. Limitations

Apache Soap supports all defined types in the SOAP 1.1 specification. All Java primitive types are supported but it is not always
the case for complex types. For Java Bean Objects, ProActive register them in the Apache SOAP mapping registry, in order to use
a specific (de)serializer when such objects are exchanged. All is done automatically, you don't have to matter about the registering
of the type mapping. However, if the methods attributes types or return types are Java Beans, you have to copy the beans classes
you wrote into the $APACHE_SOAP_HOME/WEB_INF/classes.

38.8. A simple example: Hello World

38.8.1. Hello World web service code

Let's start with a simple example, an Hello world active object exposed as a web service:

public class HelloWorld implements Serializable {
public HelloWorld () {}
public String helloWorld (String name) {

return "Hello world !";
}
public static void main (String [] args) {

try {
HelloWorld hw = (HelloWorld)ProActive.newActive("HelloWorld", new Object []{});
ProActive.exposeAsWebService(hw,
"helloWorld","http://localhost:8080", new String [] { "helloWorld" });

} catch (ActiveObjectCreationException e) {
e.printStackTrace();

} catch (NodeException e) {
e.printStackTrace();

}
}

}

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

303

http://localhost:8080/servlet/wsdl?id=compute

The active object hw has been deployed as a web service on the web server located at "http://localhost:8080" . The accessible ser-
vice method is helloWorld.

Now that the server-side Web service is deployed, we can create a new client application in Visual Studio .NET.

38.8.2. Access with Visual Studio

In your new Visual Studio Project:

• In the Solution Explorer window, right-click References and click Add Web Reference.
• In the address box enter the WSDL service address, for example: http://localhost:8080/soap/servlet/wsdl?id=helloWorld

.When clicking the 'add reference' button, this will get the service's WSDL and creates the specific proxy to the service.
• Once the web reference is added, you can use the helloWorld service as an object and perform calls on it:

...
localhost.helloWorld hw = new localhost.helloWorld();
string s = hw.helloWorld ();
...

38.9. C# interoperability: an example with C3D

38.9.1. Overview

C3D [http://www-sop.inria.fr/oasis/ProActive/apps/c3d.html] is a Java benchmark application that measures the performance of a
3D raytracer renderer distributed over several Java virtual machines using ProActive. C3D is composed of several parts: the dis-
tributed engine (renderers) and the dispatcher that is an active objet. This dispactcher permits users to see the 3D scene and to col-
laborate. Users can send messages and render command to this dispatcher. This enhancement of C3D is to send commands to the
dispatcher from any language. To perform such an enhancement, the Dispatcher object must be exposed as a web service in order
to a C# client for example controls it. Only one instruction has been added in the main method:

ProActive.exposeAsWebService (dispatcher, "C3DDispatcher",
"http://localhost:8080", new String [] {
"rotateRight", "getPicture", "rotateLeft", "rotateUp",
"rotateDown", "getPixels", "getPixelMax", "waitForImage",
"spinClock", "spinUnclock", "addRandomSphere", "resetScene",
"registerWSUser", "unregisterWSUser"

});

Once the dispatcher is deployed as a web service, we have a WSDL url: http://localhost:8080/soap/servlet/id=C3DDispactcher. It
will be usefull to construct the dispatcher client.

38.9.2. Access with a C# client

First of all, we have to generate the service proxy following the steps described for the hello world access.

All the SOAP calls will be managed by the generated proxy localhost.C3DDispatcher.

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

304

http://localhost:8080/soap/servlet/wsdl?id=helloWorld
http://www-sop.inria.fr/oasis/ProActive/apps/c3d.html
http://localhost:8080/soap/servlet/id=C3DDispactcher

Figure 38.2. The dispatcher handling all calls

38.9.3. Dispatcher methods calls and callbacks

C# client registers to the C3D dispatcher and then can send commands. C3D is a collaborative application. Indeed, when a client
performs a call, all others users must be advised by the dispatcher. Although dispatcher can contact ProActive applications, it can-
not communicate with other applications (it cannot initiate the communication). In other words, the dispacher must communicate
remotely with an application witten in another language.

The answer to this problem is to use .Net web service on the C# user machine. Such a web service is waiting for callback requests
that come from dispatcher. When receiving a request, the service sends it to the client via a .Net Remoting shared objet. Thus,
when the .Net web service receives a callback request, the C# client is updated thanks to propagated events.

Here are screenshots of the user application:

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

305

Figure 38.3. The first screenshot is a classic ProActive application

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

306

The application is using the same dispatcher the ProActive user uses.

Figure 38.4. C# application communicating via SOAP

38.9.4. Download the C# example

You can find here [http://www-sop.inria.fr/oasis/proactive/C3DCSharp.zip] the whole C# Visual Studio .Net project. N.B: In order
to run this project, you must install the Microsoft IIS server.

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

307

http://www-sop.inria.fr/oasis/proactive/C3DCSharp.zip

Part VI: Advanced Chapter 38: Exporting Active Objects and
components as Web Services

308

Chapter 39. ProActive on top of OSGi
39.1. Overview of OSGi -- Open Services Gateway initiative

OSGi is a corporation that works on the definition and promotion of open specifications. These specifications are mainly aimed to
packaging and delivering services among all kinds of networks.

OSGi Framework

The OSGi specification define a framework that allows to a diversity of services to be executed in a service gateway, by this way,
many applications can share a single JVM .

Figure 39.1. The OSGi framework entities

Bundles

In order to be delivered and deployed on OSGi, each piece of code is packaged into bundles. Bundles are functionnal entities of-

Part VI: Advanced Chapter 39: ProActive on top of OSGi

309

fering services and packages. They can be delivered dynamically to the framework. Concretely a bundle is a Java jar file contain-
ing:

• The application classes, including the so called bundle Activator
• The Manifest file that specifies properties about the application, for instance, which is the bundle Activator, whick packages

are required by the application
• Other resources the application could need (images, native libraries, or data files ...) .

Bundles can be plugged dynamically and their so called lifecycle can be managed through the framework (start, stop, update, ...).

Manifest file

This important file contains crucial parameters for the bundle file. It specifies which Activator (entry point) the bundle has to use,
the bundle classpath, the imported and exported packages, ...

Services

Bundles communicates with each other thanks to services and packages sharing. A service is an object registered into the frame-
work in order to be used by other applications. The definition of a service is specified in a Java interface. OSGi specify a set of
standard services like Http Service, Log Service ...

We currently use the OSCAR objectweb [http://oscar.objectweb.org] implementation. For more information on OSGi, please visit
the OSGi [http://www.osgi.org] website .

39.2. ProActive bundle and service

In order to use ProActive on top of OSGi, we have developped the ProActive Bundle that contains all classes required to launch a
ProActive runtime.

The ProActive bundle offers a service , the ProActiveService that have almost the same interface that the ProActive static
classe. When installed, the ProActive bundle starts a new runtime, and clients that use the ProActive Service will be able to create
active object on this runtime.

Part VI: Advanced Chapter 39: ProActive on top of OSGi

310

http://oscar.objectweb.org
http://www.osgi.org

Figure 39.2. The Proactive Bundle uses the standard Http Service

The active object will be accessible remotely from any java application, or any other OSGi gateway. The communication can be
either rmi or http; in case of using http, the ProActive bundle requires the installation of the Http Service that will handle http
communications through a Servlet. We show in the example section how to use the ProActive service.

39.3. Yet another Hello World

The example above is a simple hello world that uses ProActive Service . It creates an Hello active Object and register it as a ser-
vice. We use the hello basic service in the ProActive example. We have to write a bundle Activator that will create the active ob-
ject and register it as a OSGi service.

The HelloActivator has to implements the BundleActivator interface.

public class HelloActivator implements BundleActivator {
...

}

The start () method is the one executed when the bundle starts. When the hello bundle start we need to get the reference on the
ProActive service and use it. Once we have the reference, we can create our active object thanks to the ProActiveSer-
vice.newActive() method. Finally, we register our new service in the framework.

public void start(BundleContext context) throws Exception {
this.context = context;

/* gets the ProActive Service */
ServiceReference sr = this.context.getServiceReference(ProActiveService.class.getName());
this.proActiveService = (ProActiveService) this.context.getService(sr);
Hello h = (Hello)this.proActiveService.newActive(

'org.objectweb.proactive.examples.hello.Hello',
new Object [] {});

/* Register the service */
Properties props = new Properties();
props.put('name', 'helloWorld');

reg = this.context.registerService(
'org.objectweb.proactive.osgi.ProActiveService',
h, props);

}

Now that we created the hello active service, we have to package the application into a bundle. First of all, we have to write a
Manifest File where we specify:

• The name of the bundle: Hello World ProActive Service
• The class of the Activator: org.objectweb.proactive.HelloActivator
• The packages our application requires: org.objectweb.proactive....
• The packages our application exports: org.objectweb.proactive.examples.osgi.hello
• We can specify others informations like author, ...

Here is what the Manifest looks like:

Bundle-Name: ProActive Hello World Bundle
Bundle-Description: Bundle containing Hello World ProActive example
Bundle-Vendor: OASIS - INRIA Sophia Antipolis
Bundle-version: 1.0.0

Part VI: Advanced Chapter 39: ProActive on top of OSGi

311

Export-Package: org.objectweb.proactive.examples.hello
DynamicImport-Package: org.objectweb.proactive ...
Bundle-Activator: org.objectweb.proactive.examples.osgi.hello.HelloActivator

Installing the ProActive Bundle and the Hello Bundle.

In order to run the example you need to install an OSGi framework. You can download and install one from the OSCAR website
[http://oscar.objectweb.org]. Install the required services on the OSCAR framework:

--> obr start 'Http Service'

• Generation of the ProActive Bundle

To generate the proActiveBundle you have to run the build script with the proActiveBundle target.

> cd $PROACTIVE_DIR/compile
> ./build proActiveBundle

The bundle jar file will be generated in the $PROACTIVE_DIR/dist/ProActive/bundle/ directory. We need now to in-
stall and start it into the OSGi Framework:

--> start file:///$PROACTIVE_DIR/dist/ProActive/bundle/proActiveBundle.jar

• This command will install and start the proActive bundle on the gateway. Users can now deploy application that uses the
ProActiveService.

• Generation of the Hello World example bundle

To generate the Hello World bundle you have to run the build script with the helloWorldBundle target.

> cd $PROACTIVE_DIR/compile
> ./build helloWorldBundle

The bundle jar file will be generated in the $PROACTIVE_DIR/dist/ProActive/bundle/ directory. We need now to in-
stall and start it into the OSGi Framework:

--> start file:///$PROACTIVE_DIR/dist/ProActive/bundle/helloWorldBundle.jar

• The command will install and start the Hello active service. The hello service is now an OSGi service and can be accessed
remotely.

39.4. Current and Future works
• We are working on a management application that remotely monitors and manages a large number of OSGi gateways. It

uses standard Management API such as JMX (Java Management eXtension). We are writing a ProActive Connector in or-
der to access these JMX enabled gateways and uses Group Communications to handle large scale. Moreover, this application
will be graphically written as an Eclipse plugin.

• We plan to deploy remotely active objects and fractal components on OSGi gateways.

Part VI: Advanced Chapter 39: ProActive on top of OSGi

312

http://oscar.objectweb.org
http://oscar.objectweb.org

Chapter 40. An extended ProActive JMX
Connector
40.1. Overview of JMX - Java Management eXtention

JMX [http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/] Java Management Extensions is a Java
technology providing tools and APIs for managing and monitoring Java applications and their resources. Resources are represented
by objects called MBeans (for Managed Bean).

Figure 40.1. This figure shows the JMX 3 levels architecture and the integration of the ProActive
JMX Connector.

JMX defines a 3 layers management architecture :

• The instrumentation level contains MBeans and their manageable resources. A Mbean is a Java Object implementing a
specific interface and pattern. They contain and define the manageable attributes, the management operations that can be
performed onto resources and the notifications that can be emitted by the resources.

• The Agent Level The agent acts as a MBeans containers (the MBeanServer) and controls them. This level represents the
main part in the JMX specification : because it give access to the managed resources to the clients, the agent is the architec-
ture central point.

• The Distributed Level The distributed Level enables the remote management of Java applications. In order to access re-
motely to managed application, JMX specification defines two type of remote access : protocol adaptors and protocol con-
nectors. Connectors allow a manager to perform method calls onto a distant agent's MBeanServer (for example RMI). Ad-
aptors are components that ensure binding between a specific protocol (for example for SNMP or Http) and thre managed re-
sources. Indeed, they enable Mbeans to be accessed by existing approches.

40.2. Asynchronous ProActive JMX connector

The JMX technology defines a connector based on RMI. The RMI connector allows the manager to connect to an MBean in a

Part VI: Advanced Chapter 40: An extended ProActive JMX
Connector

313

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

MBeanServer from a remote location and performs operations on it.

We defined a ProActive Connector according to the JMX Remote API JSR 160 [http://jcp.org/en/jsr/detail?id=160] that enables
asynchronous remote access to a JMX Agent thanks to ProActive. This connector is based on a call via an active object. When in-
voking the standard API specification methods, the access to the managed application is synchronous, because the JMX remote
API provides non-reifiable methods. For example, the method invoke that allow to invoke a Mbean's method throws exceptions :

public Object invoke(ObjectName name, String
operationName, Object[] params, String[] signature)
throws InstanceNotFoundException, MBeanException,
ReflectionException, IOException;

We extended the API in order to provide asynchronous acces thanks to additionnal reifiable methods. The additional invoke meth-
od looks like :

public GenericTypeWrapper invokeAsynchronous(ObjectName
name, String operationName, Object[] params, String[]
signature) (method names connector (non reifiable
methods).

Thus, all requests sent to the MBean are put in the active object requests queue and a future object is returned to the client.

40.3. How to use the connector ?

The ProActive connector allows you yo connect to an MBean in an MBean server to a remote location, and perform operations on
it, exactly as if the operations were being performed locally.

To perform such a call, you have first to enable the server connector on the application you wish to manage. This is simply done by
adding one line of code in the application to be managed :

org.objectweb.proactive.jmx.server.ServerConnector
connector = new
org.objectweb.proactive.jmx.server.ServerConnector ();

Once the connector server part launched, any ProActive JMX connector client can connect to it and manage the application thanks
to the ClientConnector class.

org.objectweb.proactive.jmx.client.ClientConnector
clientConnector = new
org.objectweb.proactive.jmx.client.ClientConnector
(String serverUrl);

To perform remote operations on a given MBean, you have to get the reference of the current MBeanServerConnection, which is
actually a ProActiveConnection :

ProActiveConnection connection =
clientConnector.getConnection(); //invoke the
performAction method on the MBean named beanName with
the parameter param1 wich type is typeParam1 ObjectName
beanName = new ObjectName ("myDomain:name=beanName");
GenericTypeWrapper return =

Part VI: Advanced Chapter 40: An extended ProActive JMX
Connector

314

http://jcp.org/en/jsr/detail?id=160

connection.invokeAsynchronous(beanName,
"performAction", new Object[] { param1 } , new String []
{typeOfParam1});

Note

To know all available methods on a MBeanServerConnection, have a look at the
[http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html]

40.4. Notifications JMX via ProActive

The JMX specification defines a notification mechanism,based on java events, that allows alerts to be sent to client management
applications. To use JMX Notifications, one has to use a listener object that is registered within the MBean server. On the server
side, the MBean has to implement the NotificationBroadcaster interface. As we work in a distributed environment, listeners are
located remotely and thus, have to be joined remotely. Hence, the listener must be a serializable active object and added as a
NotificationListener :

/*creates an active listener MyNotificationListener */
MyNotificationListener listener =
(MyNotificationListener)ProActive.newActive(MyNotificationListener.class.getName(),
new Object[] { connection}); /*adds the listener to the
Mbean server where we are connected to*/
connection.addNotificationListener(beanName, listener,
null, handback);

Note

More informations on JMX on : Getting Started with Java Management Extensions (JMX): Developing Management
and Monitoring Solutions [http://java.sun.com/developer/technicalArticles/J2SE/jmx.html]

40.5. Example : a simple textual JMX Console

The example available in the ProActive examples directory, is a simple textual tool to connect to a remote MBeanServer and list
available domains and mbeans registered in this server.

To launch the connector server side, execute the jmx/connector script. To connect this server, execute the jmx/simpleJmx script
and specify the machine name where is hosted the Mbean server. For example:

--- JMC Test client
connector---
Enter the url of the JMX MBean Server : localhost

The console shows the domains list, for example :

Registered Domains :
[0] java.util.logging
[1] JMImplementation
[2] java.lang

By choosing a specific domain, the console will show the Mbeans registered in this domain.

Part VI: Advanced Chapter 40: An extended ProActive JMX
Connector

315

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

The console shows the domains list, for example :

[0] java.lang:type=Memory
[1] java.lang:type=GarbageCollector,name=Copy
[2] java.lang:type=MemoryPool,name=Tenured Gen
[3] java.lang:type=MemoryPool,name=Eden Space
[4] java.lang:type=MemoryPool,name=Code Cache
[5] java.lang:type=Threading
[6] java.lang:type=OperatingSystem
...
Type the mbean number to see its properties :

If you wish to get informations about Memory, choose 0, and the console will show the whole information about this MBean.

Part VI: Advanced Chapter 40: An extended ProActive JMX
Connector

316

Chapter 41. Wrapping MPI Legacy code
The Message Passing Interface (MPI) is a widely adopted communication library for parallel and distributed computing. This
work has been designed to make it easier to wrap, deploy and couple several MPI legacy codes, especially on the Grid.

On one hand, we propose a simple wrapping method designed to automatically deploy MPI applications on clusters or desktop
Grid through the use of deployment descriptor, allowing an MPI application to be deployed using most protocols and schedulers
(LSF, PBS, SSH, SunGRID, etc) . The proposed wrapping also permits programmers to develop conventional stand-alone Java ap-
plications using some MPI legacy codes.

On the other hand, we propose a wrapping method with control designed to let SPMD processes associated with one code com-
municate with the SPMD processors associated with another simulation code. This feature adds the parallel capability of MPI on
the Grid with the support of ProActive for inter-process communication between MPI processes at different Grid points. A special
feature of the proposed wrapping is the support of "MPI to/from Java application" communications which permit users to exchange
data between the two worlds.

The API is organized in the package org.objectweb.proactive.mpi, with the class org.objectweb.proactive.mpi.MPI gathering
static methods and the class org.objectweb.proactive.mpi.MPISpmd whose, instances represent and allow to control a given de-
ployed MPI code.

In sum, the following features are proposed:

• Simple Wrapping and deployment of MPI code (without changing source)
• Wrapping with control:

• Deploying an Active Object for control MPI process,
• MPI to ProActive Communications,
• ProActive to MPI Communications,
• MPI to MPI Communication through ProActive.

41.1. Simple Wrapping

41.1.1. Principles

This work is mainly intended to deploy automatically and transparently MPI parallel applications on clusters. Transparency means
that the deployer does not know what particular resources provide computer power. So the deployer should have to finalize the de-
ployment descriptor file and to get back the result of the application without worrying about resources selections, resource loca-
tions and types, or mapping processes on resources.

One of the main principle is to specify and wrap the MPI code in an XML descriptor.

Figure 41.1. File transfer and asking for resources

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

317

Main Features for Deployment:

• File Transfer [using XML deployment descriptor]

The primary objective is to provide deployer an automatic deployment of his application through an XML deployment
descriptor. In fact, ProActive provides support for File Transfer. In this way, deployer can transfer MPI application input
data and/or MPI application code to the remote host. The File Transfer happens before the deployer launches his applica-
tion. For more details about File Transfer see Section 23.1, “Introduction and Concepts”.

• Asking for resources [using XML deployment descriptor]

Deployer describes MPI job requirements in the file deployment descriptor using one or several Virtual Node. He gets
back a set of Nodes corresponding to the remote available hosts for the MPI Job execution. For more details (or usage ex-
ample) about resources booking, have a look at Section 41.1.4, “Using the Infrastructure” .

• Control MPI process [using ProActive API]

After deployment, deployer obtains the Virtual Node containing resources required for the MPI job, that is a set of Nodes.
The MPI API provides programmer with the ability to create a stateful MPISpmd object from the Virtual Node obtained.
To this end the programmer is able to control the MPI program, that is: trigger the job execution, kill the job, synchronize
the job, get the object status/result etc..). This API is detailed in the next chapter.

41.1.2. API For Deploying MPI Codes

41.1.2.1. API Definition

• What is an MPISpmd object ?

An MPISpmd object is regarded as an MPI code wrapper. It has the following features :
• it holds a state (which can take different value, and reflects the MPI code status)
• it can be controlled through an API (presented in the next section)

• MPISpmd object creation methods

import org.objectweb.proactive.mpi;

/**
* creates an MPISpmd object from a Virtual Node which represents the deployment of an MPI code.
* Activates the virtual node (i.e activates all the Nodes mapped to this VirtualNode
* in the XML Descriptor) if not already activated, and returns an object representing
* the MPI deployment process.
* The MPI code being deployed is specified in the XML descriptor where the Virtual Node is
defined.
*/

static public MPISpmd MPI.newMPISpmd(VirtualNode virtualNode);

• MPISpmd object control methods

/**
* Triggers the process execution represented by the MPISpmd object on the resources previously
* allocated. This method call is an asynchronous request, thus the call does not
* block until the result (MPI result) is used or explicit synchronization is required. The method
* immediately returns a future object, more specially a future on an MPIResult object.
* As a consequence, the application can go on with executing its code, as long as it doesn't need
* to invoke methods on this MPIResult returned object, in which case the calling thread is
* automatically blocked if the result of the method invocation is not yet available, i.e.
* In practice, mpirun is also called
*/

public MPIResult startMPI();

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

318

/**
* Restarts the process represented by the MPISpmd object on the same resources. This process has
* to previously been started once with the start method, otherwise the method throws an
* IllegalMPIStateException. If current state is Running, the
* process is killed and a new independent computation is triggered,
* and a new MPIResult object is created. It is also an asynchronous method which returns a future
* on an MPIResult object.
*/

public MPIResult reStartMPI();

/**
* Kills the process and OS MPI processes represented by the MPISpmd object.
* It returns true if the process was running when it has been killed, false otherwise.
*/

public boolean killMPI();

/**
* Returns the current status of the MPISpmd object. The different status are listed below.
*/

public String getStatus();

/**
* Add or modify the MPI command parameters. It allows programmers to specify arguments to the MPI
code.
* This method has to be called before startMPI or reStartMPI.
*/

public void setCommandArguments(String arguments);

• MPIResult object

An MPIResult object is obtained with the startMPI/reStartMPI methods call. Rather, these methods return a future on an
MPIResult object that does not block application as long as no method is called on this MPIResult object. On the contrary,
when a MPIResult object is used, the application is blocked until the MPIResult object is updated, meaning that the MPI
program is terminated. The following method gets the exit value of the MPI program.

import org.objectweb.proactive.mpi.MPIResult;

/**
* Returns the exit value of the MPI program.
* By usual convention, the value 0 indicates normal termination.
*/

public int getReturnValue();

• MPISpmd object status

import org.objectweb.proactive.mpi;

MPIConstants.MPI_UNSTARTED; // default status - MPISpmd object creation (newMPISpmd)

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

319

MPIConstants.MPI_RUNNING; // MPISpmd object has been started or restarted
MPIConstants.MPI_FINISHED; // MPISpmd object has finished
MPIConstants.MPI_KILLED; // MPISpmd object has been killed

Each status defines the current state of the MPISpmd object. It provides the guarantee of application consistency and a better
control of the application in case of multiple MPISpmd objects.

Figure 41.2. State transition diagram

41.1.3. How to write an application with the XML and the API

First finalize the xml file descriptor to specify the MPI code, and files that have to be transfered on the remote hosts and resources
requirement as it is explained at Section 41.1.4, “Using the Infrastructure”. Then, in a Java file import the package
org.objectweb.proactive.mpi. In an attempt to keep application consistency, the MPISpmd object makes use of status. It guaran-
tees that either a method called on object is coherent or an exception is thrown. Especially the exception IllegalMPIStateExcep-
tion signals a method that has been called at an illegal or inappropriate time. In other words, an application is not in an appropriate
state for the requested operation.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

320

An application does not require to declare in its throws clause because IllegalMPIStateException is a subclass of RuntimeExcep-
tion. The graph above presents a kind of finite state machine or finite automaton, that is a model of behavior composed of states
(status of the MPISpmd object) and transition actions (methods of the API). Once the MPISpmd object is created
(newMPISpmd), the object enters in the initial state: ProActiveMPIConstants.MPI_UNSTARTED.

Sample of code (available in the release) These few lines show how to execute the MPI executive jacobi, and show how to get
its return value once finished. No modification have to be made to the source code.

import org.objectweb.proactive.mpi.*;

...
// load the file descriptor
ProActiveDescriptor pad = ProActive.getProactiveDescriptor('file:descriptor.xml');

// get the Virtual Node that references the jacobi MPI code you want to execute
VirtualNode jacobiVN = pad.getVirtualNode('JACOBIVN');

// activate Virtual Node (it's not mandatory because the MPI.newMPISpmd method does
// it automatically if it has not been already done)
jacobiVN.activate();

// create the MPISpmd object with the Virtual Node
MPISpmd jacobiSpmd = MPI.newMPISpmd(jacobiVN);

// trigger jacobi mpi code execution and get a future on the MPIResult
MPIResult jacobiResult = jacobiSpmd.startMPI();

// print current status
logger.info("Current status: "+jacobiSpmd.getStatus());

// get return value (block the thread until the jacobiResult is available)
logger.info("Return value: "+jacobiResult.getReturnValue());

// print the MPISpmd object caracteristics (name, current status, processes number ...)
logger.info(jacobiSpmd);

...

41.1.4. Using the Infrastructure

Resources booking and MPI code are specified using ProActive Descriptors. We have explained the operation with an example in-
cluded in the release. The deployment goes through sh, then PBS, before launching the MPI code on 16 nodes of a cluster. The en-
tire file is available in Example C.37, “MPI Wrapping: mpi_files/MPIRemote-descriptor.xml”.

• File Transfer: specify all the files which have to be transferred on the remote host like binary code and input data. In the
following example, jacobi is the binary of the MPI program. For further details about File Transfer see Section 23.1,
“Introduction and Concepts”.

<componentDefinition>
<virtualNodesDefinition>

<virtualNode name="JACOBIVN" />
</virtualNodesDefinition>

</componentDefinition>
<deployment>

...
</deployment>
<fileTransferDefinitions>

<fileTransfer id="jacobiCodeTransfer">

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

321

<file src="jacobi" dest="jacobi" />
</fileTransfer>

</fileTransferDefinitions>

• Resource allocation: define processes for resource reservation. See Section 21.7, “Infrastructure and processes” for more
details on processes.

• SSHProcess: first define the process used to contact the remote host on which resources will be reserved. Link the refer-
ence ID of the file transfer with the FileTransfer previously defined, and link the reference ID to the DependentPro-
cessSequence process explained below.

<processDefinition id="sshProcess">
<sshProcess class="org.objectweb.proactive.core.process.ssh.SSHProcess"

hostname="nef.inria.fr"
username="user">
<processReference refid="jacobiDependentProcess" />
<fileTransferDeploy refid="jacobiCodeTransfer">

<copyProtocol>scp</copyProtocol>
<sourceInfo prefix=

"/user/user/home/ProActive/src/org/objectweb/proactive/examples/mpi" />
<destinationInfo prefix="/home/user/MyApp"/>

</fileTransferDeploy>
</sshProcess>

</processDefinition>

• DependentProcessSequence: This process is used when a process is dependent on another process. The first process of
the list can be any process of the infrastructure of processes in ProActive, but the second has to be imperatively a De-
pendentProcess, that is to implement the org.objectweb.proactive.core.process.DependentProcess interface. The fol-
lowing lines express that the mpiProcess is dependent on the resources allocated by the pbsProcess.

<processDefinition id="jacobiDependentProcess">
<dependentProcessSequence class="org.objectweb.proactive.core.process.DependentListProcess">

<processReference refid="jacobiPBSProcess"/>
<processReference refid="jacobiMPIProcess"/>

</dependentProcessSequence>
</processDefinition>

• PBS Process: note that you can use any services defined in ProActive to allocate resources instead of the PBS one.

<processDefinition id="jacobiPBSProcess">
<pbsProcess class="org.objectweb.proactive.core.process.pbs.PBSSubProcess">

<processReference refid="jvmProcess" />
<commandPath value="/opt/torque/bin/qsub" />
<pbsOption>

<hostsNumber>16</hostsNumber>
<processorPerNode>1</processorPerNode>
<bookingDuration>00:02:00</bookingDuration>
<scriptPath>

<absolutePath value="/home/smariani/pbsStartRuntime.sh" />
</scriptPath>

</pbsOption>
</pbsProcess>

</processDefinition>

• MPI process: defines the MPI actual code to be deployed (executable) and its attributes. It is possible to pass a command
option to mpirun by filling the attribute mpiCommandOptions. Specify the number of hosts you wish the application to be
deployed on, and at least the MPI code local path. The local path is the path from which you start the application.

<processDefinition id="jacobiMPIProcess">

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

322

<mpiProcess class="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"
mpiFileName="jacobi"
mpiCommandOptions="input_file.dat output_file.dat">
<commandPath value="/usr/src/redhat/BUILD/mpich-1.2.6/bin/mpirun" />
<mpiOptions>

<processNumber>16</processNumber>
<localRelativePath>

<relativePath origin="user.home" value="/ProActive/scripts/unix"/>
</localRelativePath>
<remoteAbsolutePath>

<absolutePath value="/home/smariani/MyApp"/>
</remoteAbsolutePath>

</mpiOptions>
</mpiProcess>

</processDefinition>

41.1.5. Example with several codes

Let's assume we want to interconnect together several modules (VibroToAcous, AcousToVibro, Vibro, Acous, CheckConver-
gency) which are each a parallel MPI binary code.

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.ProActiveException;
import org.objectweb.proactive.core.config.ProActiveConfiguration;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;

...
// load the file descriptor
ProActiveDescriptor pad = ProActive.getProactiveDescriptor('file:descriptor.xml');

// get the Virtual Nodes which references all the MPI code we want to use
VirtualNode VibToAc = pad.getVirtualNode("VibToAc");
VirtualNode AcToVib = pad.getVirtualNode("AcToVib");
VirtualNode Vibro = pad.getVirtualNode("Vibro");
VirtualNode Acous = pad.getVirtualNode("Acous");
VirtualNode CheckConvergency = pad.getVirtualNode("CheckConvergency");

// it's not necessary to activate manually each Virtual Node because it's done
// when creating the MPISpmd object with the Virtual Node

// create MPISpmd objects from Virtual Nodes
MPISpmd vibToAc = MPI.newMPISpmd(VibToAc);
MPISpmd acToVib = MPI.newMPISpmd(AcToVib);
MPISpmd vibro = MPI.newMPISpmd(Vibro);
MPISpmd acous = MPI.newMPISpmd(Acous);

// create two different MPISpmd objects from a single Virtual Node
MPISpmd checkVibro = MPI.newMPISpmd(CheckConvergency);
MPISpmd checkAcous = MPI.newMPISpmd(CheckConvergency);

// create MPIResult object for each MPISpmd object
MPIResult vibToAcRes, acToVibRes, vibroRes, acousRes, checkVibroRes, checkAcousRes;

boolean convergence = false;
boolean firstLoop = true;

While (!convergence)
{

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

323

// trigger execution of vibToAc and acToVib MPISpmd object
if (firstLoop){

vibToAcRes = vibToAc.startMPI();
acToVibRes = acToVib.startMPI();

}else{
vibToAcRes = vibToAc.reStartMPI();
acToVibRes = acToVib.reStartMPI();

}

// good termination?
if ((vibToACRes.getReturnValue() < 0) || (acToVibRes.getReturnValue() < 0))

System.exit(-1);

// trigger execution of vibro and acous MPISpmd object
if (firstLoop){

vibroRes = vibro.startMPI();
acousRes = acous.startMPI();

}else{
vibroRes = vibro.reStartMPI();
acousRes = acous.reStartMPI();

}

// good termination?
if ((vibroRes.getReturnValue() < 0) || (acousRes.getReturnValue() < 0))

System.exit(-1);

// Check convergency of acoustic part and structure part
if (firstLoop){

// modify argument
checkVibro.setCommandArguments("oldVibro.res newVibro.res");
checkAcous.setCommandArguments("oldAcous.res newAcous.res");
checkVibroRes = checkVibro.startMPI();
checkAcousRes = checkAcous.startMPI();

}else{
checkVibroRes = checkVibro.reStartMPI();
checkAcousRes = checkAcous.reStartMPI();

}

// Convergency?
if ((checkVibroRes.getReturnValue() == 0) || (checkAcousRes.getReturnValue() == 0))
{

convergence = true;
}
firstLoop = false;

}

// free resources
VibToAc.killAll(false);
AcToVib.killAll(false);
Vibro.killAll(false);
Acous.killAll(false);
CheckConvergency.killAll(false);

41.2. Wrapping with control

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

324

Some MPI applications may decompose naturally into components that are better suited to execute on different plateforms, e.g., a
simulation component and a visualization component; other applications may be too large to fit on one system. If each subsystem
is a parallel system, then MPI is likely to be used for "intra-system" communication, in order to achieve better performance thanks
to MPI vendor MPI libraries, as compared to the generic TCP/IP implementations.

ProActive makes it possible to deploy at once a set of MPI applications on a set of clusters or desktop machines. Moreover, this
section will also demonstrate how to deploy at the same time a set of ProActive JVMs, to be used mainly for the sake of two as-
pects:

• communicating between the different codes,
• controlling, and synchronizing the execution of several (coupled) MPI codes.

"Inter-system" message passing is implemented by ProActive asynchronous remote method invocations. An MPI process may par-
ticipate both in intra-system communication, using the native MPI implementation, and in inter-system communication, with Pro-
Active through JNI (Java Native Interface) layered on top of IPC system V.

This wrapping defines a cross implementation protocol for MPI that enables MPI implementations to run very efficiently on each
subsystem, and ProActive to allow interoperability between each subsystem. A parallel computation will be able to span multiple
systems both using the native vendor message passing library and ProActive on each system. New ProActive specific MPI API are
supporting these features. The goal is to support some point-to-point communication functions for communication across systems,
as well as some collectives. This binding assume that inter-system communication uses ProActive between each pair of communic-
ating systems, while intra-system communication uses proprietary protocols, at the discretion of each vendor MPI implementation.

The API for the wrapping with control is organized in the package org.objectweb.proactive.mpi.control, with the class
org.objectweb.proactive.mpi.control.ProActiveMPI gathering static method for deployment.

41.2.1. One Active Object per MPI process

First the principle to wrap MPI code is similar to the Simple Wrapping method: deployer describes MPI job requirements in the
file deployment descriptor using a Virtual Node and gets back a set of Nodes corresponding to the remote available hosts for the
MPI Job execution. After deployment, deployer obtains the Virtual Node containing a set of Nodes on which the whole MPI pro-
cesses will be mapped.

Further, to ensure control, an Active Object is deployed on each Node where an MPI process resides. The Active Object has a role
of wrapper/proxy, redirecting respectively local MPI process output messages to the remote recipient(s) and incoming messages to
the local MPI process. For more details, please refer to Section 41.2.4, “MPI to MPI Communications through ProActive”.

This approach provides programmer with the ability to deploy some instances of his own classes on any Node(s) using the API
defined below. It permits programmer to capture output messages of MPI process towards his own classes, and to send new mes-
sages towards any MPI process of the whole application. For more details, please refer to Section 41.2.2, “MPI to ProActive Com-
munications” and Section 41.2.3, “ProActive to MPI Communications”. The deployment of Java Active Objects takes place after
all MPI processes have started and once the ProActiveMPI_Init() function has been called. That way the implementation can en-
sure that, when an SPMD group of Active Objects is created by calling the newActiveSpmd function on an MPISpmd object, then
programmer SPMD instance ranks will match with the MPI process ones.

41.2.1.1. Java API

• MPISpmd object methods

For more details about MPISpmd object creation, please refer to Section 41.1.2, “API For Deploying MPI Codes”.

import org.objectweb.proactive.mpi;

/**
* Builds (and deploys) an 'SPMD' group of Active objects with all references between them
* to communicate. This method creates objects of type class on the same nodes on which
* this MPISpmd object has deployed the MPI application, with no parameters.
* There's a bijection between mpi process rank of the application deployed by this
* MPISpmd object and the rank of each active object of the 'SPMD' group.
*/

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

325

public void newActiveSpmd(String class);

import org.objectweb.proactive.mpi;

/**
* Builds (and deploys) an 'SPMD' group of Active objects class on the same nodes on which
* this MPISpmd object has deployed the MPI application.
* Params contains the parameters used to build the group's member.
* There's a bijection between mpi process rank of the application deployed by this
* MPISpmd object and the rank of each active object of the 'SPMD' group
*/

public void newActiveSpmd(String class, Object[] params);

import org.objectweb.proactive.mpi;

/**
* Builds (and deploys) an 'SPMD' group of Active objects of type class on the same
* nodes on which this MPISpmd object has deployed the MPI application.
* Params contains the parameters used to build the group's member.
* There's a bijection between mpi process rank of the application deployed by this
* MPISpmd object and the rank of each active object of the 'SPMD' group
*/

public void newActiveSpmd(String class, Object[][] params);

import org.objectweb.proactive.mpi;

/**
* Builds (and deploys) an Active object of type class on the same node where the mpi process
* of the application deployed with this MPISpmd object has rank rank.
* Params contains the parameters used to build the active object
*/

public void newActive(String class, Object[] params, int rank);
throws ArrayIndexOutOfBoundsException - if the specified rank is greater than number of nodes

• Deployment method

The MPI API in the package org.objectweb.proactive.mpi provides programmer with the ability to create an MPISpmd ob-
ject from the Virtual Node obtained. The following static method is used to achieve MPI processes registration and job num-
ber attribution. Each MPI process belongs to a global job, which permits to make difference between two MPI processes
with same rank in the whole application. For instance, it would exist a first root process which belongs to job 0 (the first MPI
application) and a second root process which belongs to job 1 (the second MPI application). The JobID of an MPI code is
directly given by the rank of the MPISpmd Object in the ArrayList at deployment time.

import org.objectweb.proactive.mpi;

/**
* Deploys and starts (startMPI() being called) all MPISpmd objects contained in the list
mpiSpmdObjectList.
*/

static public void ProActiveMPI.deploy(ArrayList mpiSpmdObjectList);

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

326

41.2.1.2. Example

The following piece of code is an example of a java main program which shows how to use the wrapping with control feature with
two codes. The xml file descriptor is finalized exactly in the same manner that for the Simple Wrapping. For more details about
writing a file descriptor, please refer to Section 41.1.4, “Using the Infrastructure”.

import org.objectweb.proactive.mpi.*;

...
// load the file descriptor
ProActiveDescriptor pad = ProActive.getProactiveDescriptor('file:descriptor.xml');

// get the Virtual Nodes which reference the different MPI codes
VirtualNode vnA = pad.getVirtualNode("CLUSTER_A");
VirtualNode vnB = pad.getVirtualNode("CLUSTER_B");

// create the MPISpmd objects with the Virtual Nodes
MPISpmd spmdA = MPI.newMPISpmd(vnA);
MPISpmd spmdB = MPI.newMPISpmd(vnB);

Object[][] params = new Object[][]{{param_on_node_1},{param_on_node_2}, {param_on_node_3}};

// deploy "MyClass" as an 'SPMD' group on same nodes that spmdA object, with the list of parameters
// defined above
spmdA.newActiveSpmd("MyClass", params);

// deploy "AnotherClass" on the node where the mpi process of the application is rank 0,
// with no parameters
spmdB.newActiveSpmd("AnotherClass", new Object[]{}, 0);

// create the list of MPISpmd objects (First MPI job is job with value 0, second is job with value
1 etc...)
ArrayList spmdList = new ArrayList();
spmdList.add(spmdA); spmdList.add(spmdB);

// deploy and start the listed MPISpmd objects
ProActiveMPI.deploy(spmdList);

...

41.2.2. MPI to ProActive Communications

The wrapping with control allows the programmer to send messages from MPI to Java Objects. Of course these classes have to be
previously deployed using the API seen above. This feature could be useful for example if a simulation code is an MPI computa-
tion and the visualization component is a java code. All MPI Code that need to be controled or communicate through ProActive
needs to call the ProActiveMPI_Init() function detailed in the Section 41.2.4, “MPI to MPI Communications through ProActive”

41.2.2.1. MPI API

ProActiveSend
Performs a basic send from mpi side to a ProActive java class

Synopsis
#include "ProActiveMPI.h"
int ProActiveSend(void* buf, int count, MPI_Datatype datatype, int dest, char* className, char*

methodName, int jobID, ...);

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

327

Input Parameters
buf initial address of send buffer
count number of elements in send buffer (nonnegative integer)
datatype datatype of each send buffer element
dest rank of destination(integer)
classNamename of class
methodNamename of the method to be called
jobID remote or local job (integer)
variable arguments string parameters to be passed to the method

41.2.2.2. ProActiveMPIData Object

The ProActiveMPIData class belongs to the package org.objectweb.proactive.mpi.control. While a message is sent from MPI
side, a corresponding object ProActiveMPIData is created on java side and is passed as parameter to the method which name is
specified in the ProActiveSend method, called by MPI. The ProActiveMPIData object contains severals fields that can be useful
to the programmer. The following methods are available:

import org.objectweb.proactive.mpi.control;

/**
* return the rank of the MPI process that sent this message
*/

public int getSrc();

/**
* return the sender job ID
*/

public int getJobID();

/**
* return the type of elements in the buffer data contained in the message.
* The type can be compared with the constants defined in the class ProActiveMPIConstants
* in the same package.
*/

public int getDatatype();

/**
* return the parameters as an array of String specified in the ProActiveSend method call.
*/

public String [] getParameters();

/**
* return the data buffer as an array of primitive type byte.
*/

public byte [] getData();

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

328

/**
* return the number of elements in the buffer.
*/

public int getCount();

41.2.2.3. ProActiveMPIUtil Class

The ProActiveMPIUtil class in the package org.objectweb.proactive.mpi.control.util brings together a set of static function for
conversion. In fact, the programmer may use the following functions to convert an array of bytes into an array of elements with a
different type:

/* Given a byte array, restore it as an int
* param bytes the byte array
* param startIndex the starting index of the place the int is stored
*/

public static int bytesToInt(byte[] bytes, int startIndex);

/* Given a byte array, restore it as a float
* param bytes the byte array
* param startIndex the starting index of the place the float is stored
*/

public static float bytesToFloat(byte[] bytes, int startIndex);

/* Given a byte array, restore it as a short
* param bytes the byte array
* param startIndex the starting index of the place the short is stored
*/

public static short bytesToShort(byte[] bytes, int startIndex);

/*
* Given a byte array, restore a String out of it.
* the first cell stores the length of the String
* param bytes the byte array
* param startIndex the starting index where the string is stored,
* the first cell stores the length
* ret the string out of the byte array.
*/

public static String bytesToString(byte[] bytes, int startIndex);

/* Given a byte array, restore it as a long
* param bytes the byte array
* param startIndex the starting index of the place the long is stored
*/

public static long bytesToLong(byte[] bytes, int startIndex);

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

329

/* Given a byte array, restore it as a double
* param bytes the byte array
* param startIndex the starting index of the place the double is stored
*/

public static double bytesToDouble(byte[] bytes, int startIndex);

41.2.2.4. Example

• Main program [ProActive deployment part]

import org.objectweb.proactive.mpi.*;

...
// load the file descriptor
ProActiveDescriptor pad = ProActive.getProactiveDescriptor('file:descriptor.xml');

// get the Virtual Nodes which reference the different MPI codes
VirtualNode vnA = pad.getVirtualNode("CLUSTER_A");

// create the MPISpmd object with the Virtual Node
MPISpmd spmdA = MPI.newMPISpmd(vnA);

// deploy "MyClass" on same node that mpi process #3
spmdA.newActive("MyClass", new Object[]{}, 3);

// create the list of MPISpmd objects
ArrayList spmdList = new ArrayList();
spmdList.add(spmdA);

// deploy and start the listed MPISpmd objects
ProActiveMPI.deploy(spmdList);

...

• Programmer class definition

public class MyClass{

public MyClass() {
}

// create a method with a ProActiveMPIData parameter which will be called by the MPI part
public void foo(ProActiveMPIData data){
int icnt = m_r.getCount();
for (int start = 0; start < data.getData().length; start = start + 8) {

// print the buffer received by converting the bytes array to an array of doubles
System.out.print(" buf["+(icnt++)+"]= " +

ProActiveMPIUtil.bytesToDouble(data.getData(), start));
}

}
}

• MPI Side

#include <stdio.h>

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

330

#include "mpi.h"
#include "ProActiveMPI.h"

// variables declaration
...

// initialize MPI environment
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// initialize MPI with ProActive environment
ProActiveMPI_Init(rank);

// get this process job number
ProActiveMPI_Job(&myjob);

// send a buffer of maxn doubles to MyClass"Active Object, located on the same
// host that mpi process #3 of job #0, by calling method "foo" with some parameters.

if ((rank == 0) && (myjob == 0)){
error = ProActiveSend(xlocal[0], maxn, MPI_DOUBLE, 3, "MyClass", "foo", 0, "params1",

"params2", NULL);
if (error < 0){

printf("!!! Error Method call ProActiveSend \n");
}

}

ProActiveMPI_Finalize();
MPI_Finalize();
return 0;

}

• Snapshot of this example

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

331

Figure 41.3. MPI to ProActive communication

41.2.3. ProActive to MPI Communications

The wrapping with control allows programmer to pass some messages from his own classes to the MPI computation. Of course
these classes have to be previously deployed using the API seen at Section 41.2.1.1, “Java API”. This feature could be useful for
example if the programmer want to control the MPI code by sending some "start" or "stop" messages during computation.

41.2.3.1. ProActive API

• Send Function

import org.objectweb.proactive.mpi.control;

/**
* Sends a buffer of bytes containing count elements of type datatype
* to destination dest of job jobID
* The datatypes are listed below
*/

static public void ProActiveMPICoupling.MPISend(byte[] buf, int count, int datatype, int dest, int
tag, int jobID);

• Datatypes

The following constants have to be used with the ProActiveMPICoupling.MPISend method to fill the datatype parameter.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

332

import org.objectweb.proactive.mpi.control;

MPIConstants.MPI_CHAR;
eMPIConstants.MPI_UNSIGNED_CHAR;
MPIConstants.MPI_BYTE;
MPIConstants.MPI_SHORT;
MPIConstants.MPI_UNSIGNED_SHORT;
MPIConstants.MPI_INT;
MPIConstants.MPI_UNSIGNED;
MPIConstants.MPI_LONG;
MPIConstants.MPI_UNSIGNED_LONG;
MPIConstants.MPI_FLOAT;
MPIConstants.MPI_DOUBLE;
MPIConstants.MPI_LONG_DOUBLE;
MPIConstants.MPI_LONG_LONG_INT;

41.2.3.2. MPI API

ProActiveRecv
Performs a blocking receive from mpi side to receive data from a ProActive java class

Synopsis
#include "ProActiveMPI.h"
int ProActiveRecv(void *buf, int count, MPI_Datatype datatype, int src, int tag, int jobID);

Output Parameters
buf initial address of receive buffer

Input Parameters
count number of elements in send buffer (nonnegative integer)
datatype datatype of each recv buffer element
src rank of source (integer)
tag message tag (integer)
jobID remote job (integer)

ProActiveIRecv
Performs a non blocking receive from mpi side to receive data from a ProActive java class

Synopsis
#include "ProActiveMPI.h"
int ProActiveIRecv(void *buf, int count, MPI_Datatype datatype, int src, int tag, int jobID,

ProActiveMPI_Request *request);

Output Parameters
request communication request (handle)

Input Parameters
buf initial address of receive buffer
count number of elements in send buffer (nonnegative integer)
datatype datatype of each recv buffer element
src rank of source (integer)
tag message tag (integer)
jobID remote job (integer)

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

333

ProActiveTest
Tests for the completion of receive from a ProActive java class

Synopsis
#include "ProActiveMPI.h"
int ProActiveTest(ProActiveMPI_Request *request, int *flag);

Output Parameters
flag true if operation completed (logical)

Input Parameters
request communication request (handle)

ProActiveWait
Waits for an MPI receive from a ProActive java class to complete

Synopsis
#include "ProActiveMPI.h"
int ProActiveWait(ProActiveMPI_Request *request);

Input Parameters
request communication request (handle)

41.2.3.3. Example

The following example shows how to send some messages from a ProActive class to his MPI computation.

• Main program [ProActive deployment part]

import org.objectweb.proactive.mpi.*;

...
// load the file descriptor
ProActiveDescriptor pad = ProActive.getProactiveDescriptor('file:descriptor.xml');

// get the Virtual Nodes which reference the different MPI codes
VirtualNode vnA = pad.getVirtualNode("CLUSTER_A");

// create the MPISpmd object with the Virtual Node
MPISpmd spmdA = MPI.newMPISpmd(vnA);

// deploy "MyClass" on same node that mpi process #3
spmdA.newActive("MyClass", new Object[]{}, 3);

// create the list of MPISpmd objects
ArrayList spmdList = new ArrayList();
spmdList.add(spmdA);

// deploy and start the listed MPISpmd objects
ProActiveMPI.deploy(spmdList);

...

• Programmer class definition

Assume for example the "postTreatmentForVisualization" method. It is called at each iteration from MPI part, gets the
current array of doubles generated by the MPI computation and makes a java post treatment in order to visualize them in a
java viewer. If the java computation fails, the method sends a message to MPI side to abort the computation.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

334

import org.objectweb.proactive.mpi.control;

public class MyClass{

public MyClass() {
}

// create a method with a ProActiveMPIData parameter
public void postTreatmentForVisualization(ProActiveMPIData data){
int icnt = m_r.getCount();
double [] buf = new double [icnt];
int error = 0;
for (int start = 0; start < data.getData().length; start = start + 8) {

// save double in a buffer
buf[start/8]=ProActiveMPIUtil.bytesToDouble(data.getData(), start);

}

// make data post-treatment for visualization
...

if (error == -1){
// convert int to double
byte [] byteArray = new byte [4];
ProActiveMPIUtil.intToBytes(error, byteArray, 0);

// send message to the local MPI process to Abort computation
ProActiveMPICoupling.MPISend(byteArray, 1, ProActiveMPIConstants.MPI_INT, 3, 0, 0);

}
}

• MPI Side

#include <stdio.h>
#include "mpi.h"
#include "ProActiveMPI.h"

// variables declaration
short buf;
ProActiveMPI_Request request;

int flag;

// initialize MPI environment
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// initialize MPI with ProActive environment
ProActiveMPI_Init(rank);

// get this process job number
ProActiveMPI_Job(&myjob);

// computation
for (itcnt=0; itcnt<10000; itcnt++){

// call the "postTreatmentForVisualization" method in "MyClass" Active Object,
// located on the same host that root process of job #0 and send the current data

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

335

// generated by the computation
if ((rank == 0) && (myjob == 0)){

error = ProActiveSend(xlocal[0], 1, MPI_DOUBLE, 3, "MyClass",
"postTreatmentForVisualization", 0,NULL);

if (error < 0){
printf("!!! Error Method call ProActiveSend \n");

}
}

// perform a non-blocking recv
if ((rank == 3) && (myjob == 0)){

error = ProActiveIRecv(&buf, 1 , MPI_INT, 3, 0, 0, &request);
if (error < 0){

printf("!!! Error Method call ProActiveIRecv \n");
}

}

// do computation
...

// check if a message arrived from ProActive side
if ((rank == 3) && (myjob == 0)){

error = ProActiveTest(&request, &flag);
if (error < 0){

printf("!!! Error Method call ProActiveTest \n");
}

// if a message is captured, flag is true and buf contains message
// it is not mandatory to check the value of the buffer because we know that
// the reception of a message is due to a failure of java side computation.
if (flag == 1){

MPI_Abort(MPI_COMM_WORLD, 1);
}

}
}

ProActiveMPI_Finalize();
MPI_Finalize();
return 0;

}

• Snapshot of this example

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

336

Figure 41.4. ProActive to MPI communication

41.2.4. MPI to MPI Communications through ProActive

The ProActiveMPI features handles the details of starting and shutting down processes on different system and coordinating exe-
cution. However passing data between the processes is explicitly specified by the programmer in the source code, depending on
whether messages are being passed between local or remote systems, programmer would choose respectively either the MPI API
or the ProActiveMPI API defined below.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

337

Figure 41.5. File transfer and asking for resources

41.2.4.1. MPI API

ProActiveMPI_Init
Initializes the MPI with ProActive execution environment

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Init(int rank);

Input Parameters
rank the rank of the mpi process previously well initialized with MPI_Init

ProActiveMPI_Job
Initializes the job environment variable

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Job(int *job);

Output Parameters
job job the mpi process belongs to

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

338

ProActiveMPI_Finalize
Terminates MPI with ProActive execution environment

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Finalize();

ProActiveMPI_Send
Performs a basic send

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, int jobID

);

Input Parameters
buf initial address of send buffer
count number of elements in send buffer (nonnegative integer)
datatype datatype of each send buffer element
dest rank of destination (integer)
tag message tag (integer)
jobID remote job (integer)

ProActiveMPI_Recv
Performs a basic Recv

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag, int

jobID);

Output Parameters
buf initial address of receive buffer (choice)

Input Parameters
count number of elements in recv buffer (nonnegative integer)
datatype datatype of each recv buffer element
src rank of source (integer)
tag message tag (integer)
jobID remote job (integer)

ProActiveMPI_IRecv
Performs a non blocking receive

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_IRecv(void *buf, int count, MPI_Datatype datatype, int src, int tag, int

jobID, ProActiveMPI_Request *request);

Output Parameters
request communication request (handle)

Input Parameters
buf initial address of receive buffer

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

339

count number of elements in send buffer (nonnegative integer)
datatype datatype of each recv buffer element
src rank of source (integer)
tag message tag (integer)
jobID remote job (integer)

ProActiveMPI_Test
Tests for the completion of receive

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Test(ProActiveMPI_Request *request, int *flag);

Output Parameters
flag true if operation completed (logical)

Input Parameters
request communication request (handle)

ProActiveMPI_Wait
Waits for an MPI receive to complete

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Wait(ProActiveMPI_Request *request);

Input Parameters
request communication request (handle)

ProActiveMPI_AllSend
Performs a basic send to all processes of a remote job

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_AllSend(void *buf, int count, MPI_Datatype datatype, int tag, int jobID);

Input Parameters
buf initial address of send buffer
count number of elements in send buffer (nonnegative integer)
datatype datatype of each recv buffer element
tag message tag (integer)
jobID remote job (integer)

ProActiveMPI_Barrier
Blocks until all process of the specified job have reached this routine
No synchronization is enforced if jobID is different from current jobID, and -1 is returned.

Synopsis
#include "ProActiveMPI.h"
int ProActiveMPI_Barrier(int jobID);

Input Parameters
jobID jobID for which the caller is blocked until all members have entered the call.

41.2.4.2. Example

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

340

#include <stdio.h>
#include "mpi.h"
#include "ProActiveMPI.h"

// variables declaration
...

// initialize MPI environment
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// initialize MPI with ProActive environment
ProActiveMPI_Init(rank);

// get this process job number
ProActiveMPI_Job(&myjob);

// send from process (#size, #0) to (#0, #1) [#num_process, #num_job]
if ((rank == size-1) && (myjob==0)){

error = ProActiveMPI_Send(xlocal[maxn/size], maxn, MPI_DOUBLE, 0, 0, 1);
if (error < 0){

printf(" Error while sending from #%d-%d \n", rank, myjob);}
}

// recv (#0, #1) from (#size, #0)
if ((rank == 0) && (myjob==1)) {

error = ProActiveMPI_Recv(xlocal[0], maxn, MPI_DOUBLE, size-1, 0, 0);
if (error < 0){

printf(" Error while recving with #%d-%d \n", rank, myjob);}
}

ProActiveMPI_Finalize();
MPI_Finalize();
return 0;

}

41.2.5. USER STEPS - The Jacobi Relaxation example

The Jacobi relaxation method for solving the Poisson equation has become a classic example of applying domain decomposition to
parallelize a problem. Briefly, the original domain is divided into sub-domains. Figure below illustrates dividing a 12x12 domain
into two domains with two 12x3 sub-domains (one-dimensional decomposition). Each sub-domain is associated with a single cpu
of a cluster, but one can divide the original domain into as many domains as there are clusters and as many sub-domains as there
are cpu's. The iteration in the interior (green) cells can proceed independently of each other. Only the perimeter (red) cells need in-
formation from the neighbouring sub-domains. Thus, the values of the solution in the perimeter must be sent to the "ghost" (blue)
cells of the neighbours, as indicated by the arrows. The amount of data that must be transferred between cells (and the correspond-
ing nodes) is proportional to the number of cells in one dimension, N.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

341

Figure 41.6. Jacobi Relaxation - Domain Decomposition

In example below, the domain decomposition is applied on two clusters. The domain is a 1680x1680 mesh divided in 16 sub-
domains of 1680x280 on each cluster.

41.2.5.1. Compiling the ProActiveMPI package

To compile the ProActiveMPI package, you may enter the ProActive/compile directory and type:

linux> build clean ProActiveMPI

Note

The compilation requires an implementation of MPI installed on your machine otherwise it leads an error.

If build is successful, it will:

• compile recursively all java classes in the org.objectweb.proactive.mpi package.
• generate the native library that all wrapper/proxy Active Objects will load in their JVM.
• execute the configure script in directory org/objectweb/proactive/mpi/control/config. The script -configure- generates a

Makefile in same directory. The Makefile permits to compile MPI source code which contains the ProActiveMPI functions.

41.2.5.2. Defining the infrastructure

For more details about writing a file descriptor, please refer to Section 41.1.4, “Using the Infrastructure”.

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME" value="ProActive"/>
<descriptorVariable name="LOCAL_HOME" value="/home/smariani"/>
<descriptorVariable name="REMOTE_HOME_NEF" value="/home/smariani"/>
<descriptorVariable name="REMOTE_HOME_NINA" value="/user/smariani/home"/>
<descriptorVariable name="MPIRUN_PATH_NEF" value=

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

342

"/usr/src/redhat/BUILD/mpich-1.2.6/bin/mpirun"/>
<descriptorVariable name="MPIRUN_PATH_NINA" value=

"/user/smariani/home/mpich-1.2.6/bin/mpirun"/>
<descriptorVariable name="QSUB_PATH" value="/opt/torque/bin/qsub"/>

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="Cluster_Nef" />
<virtualNode name="Cluster_Nina" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="Cluster_Nef">
<jvmSet>

<vmName value="Jvm1" />
</jvmSet>

</map>
<map virtualNode="Cluster_Nina">
<jvmSet>

<vmName value="Jvm2" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="sshProcess_nef" />
</creation>

</jvm>
<jvm name="Jvm2">
<creation>

<processReference refid="sshProcess_nina" />
</creation>

</jvm>
</jvms>

</deployment>
<fileTransferDefinitions>

<fileTransfer id="JACOBI">
<!-- Transfer mpi program on remote hosts -->
<file src="jacobi" dest="jacobi" />

</fileTransfer>
</fileTransferDefinitions>
<infrastructure>

<processes>

<processDefinition id="localJVM_NEF">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<classpath>
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/ProActive.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/asm.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/log4j.jar" />
<absolutePath value=

"${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/components/fractal.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/xercesImpl.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/bouncycastle.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/jsch.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/lib/javassist.jar" />
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/classes" />

</classpath>

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

343

<javaPath>
<absolutePath value="${REMOTE_HOME_NEF}/jdk1.5.0_05/bin/java" />

</javaPath>
<policyFile>
<absolutePath value="${REMOTE_HOME_NEF}/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>
<absolutePath value="${REMOTE_HOME_NEF}/${PROACTIVE_HOME}/compile/proactive-log4j"

/>
</log4jpropertiesFile>
<jvmParameters>
<parameter value="-Dproactive.useIPaddress=true" />
<parameter value="-Dproactive.rmi.port=6099" />
<!-- DO NOT FORGET TO SET THE java.library.path VARIABLE to the remote directory

path of the application -->
<parameter value="-Djava.library.path=${REMOTE_HOME_NEF}/MyApp" />

</jvmParameters>
</jvmProcess>

</processDefinition>

<processDefinition id="localJVM_NINA">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<classpath>
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/ProActive.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/asm.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/log4j.jar" />
<absolutePath value=

"${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/components/fractal.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/xercesImpl.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/bouncycastle.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/jsch.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/lib/javassist.jar" />
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/classes" />

</classpath>
<javaPath>
<absolutePath value="/user/smariani/home/NOSAVE/jdk1.5.0_05/bin/java"/>

</javaPath>
<policyFile>
<absolutePath value="${REMOTE_HOME_NINA}/proactive.java.policy"/>

</policyFile>
<log4jpropertiesFile>
<absolutePath value="${REMOTE_HOME_NINA}/${PROACTIVE_HOME}/compile/proactive-log4j"

/>
</log4jpropertiesFile>
<jvmParameters>
<parameter value="-Dproactive.useIPaddress=true" />
<parameter value="-Dproactive.rmi.port=6099" />
<!-- DO NOT FORGET TO SET THE java.library.path VARIABLE to the remote directory

path of the application -->
<parameter value="-Djava.library.path=${REMOTE_HOME_NINA}/MyApp" />

</jvmParameters>
</jvmProcess>

</processDefinition>

<!-- pbs Process -->
<processDefinition id="pbsProcess">

<pbsProcess class="org.objectweb.proactive.core.process.pbs.PBSSubProcess">
<processReference refid="localJVM_NEF" />
<commandPath value="${QSUB_PATH}" />
<pbsOption>

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

344

<!-- ask for 16 nodes on cluster nef (8 hosts, 2 nodes per machine)-->
<hostsNumber>8</hostsNumber>
<processorPerNode>2</processorPerNode>
<bookingDuration>01:00:00</bookingDuration>
<scriptPath>
<absolutePath value="${REMOTE_HOME_NEF}/pbsStartRuntime.sh" />

</scriptPath>
</pbsOption>

</pbsProcess>
</processDefinition>

<processDefinition id="lsfProcess">
<bsubProcess class="org.objectweb.proactive.core.process.lsf.LSFBSubProcess">

<processReference refid="localJVM_NINA"/>
<bsubOption>
<!-- ask for 16 nodes on cluster nina (8 hosts, 2 nodes per machine)-->
<processor>16</processor>
<resourceRequirement value="span[ptile=2]"/>
<scriptPath>
<absolutePath value="${REMOTE_HOME_NINA}/startRuntime.sh"/>

</scriptPath>
</bsubOption>

</bsubProcess>
</processDefinition>

<!-- mpi Process -->
<processDefinition id="mpiProcess_nef">
<mpiProcess class="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"

mpiFileName="jacobi" >
<commandPath value="${MPIRUN_PATH_NEF}" />
<mpiOptions>

<processNumber>16</processNumber>
<localRelativePath>
<relativePath origin="user.home" value="Test" />

</localRelativePath>
<remoteAbsolutePath>
<absolutePath value="${REMOTE_HOME_NEF}/MyApp" />

</remoteAbsolutePath>
</mpiOptions>

</mpiProcess>
</processDefinition>

<!-- mpi Process -->
<processDefinition id="mpiProcess_nina">
<mpiProcess class="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"

mpiFileName="jacobi" >
<commandPath value="${MPIRUN_PATH_NINA}" />
<mpiOptions>

<processNumber>16</processNumber>
<localRelativePath>
<relativePath origin="user.home" value="Test" />

</localRelativePath>
<remoteAbsolutePath>
<absolutePath value="${REMOTE_HOME_NINA}/MyApp" />

</remoteAbsolutePath>
</mpiOptions>

</mpiProcess>
</processDefinition>

<!-- dependent process -->

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

345

<processDefinition id="dpsProcess_nef">
<dependentProcessSequence class=

"org.objectweb.proactive.core.process.DependentListProcess">
<processReference refid="pbsProcess" />
<processReference refid="mpiProcess_nef" />

</dependentProcessSequence>
</processDefinition>

<!-- dependent process -->
<processDefinition id="dpsProcess_nina">

<dependentProcessSequence class=
"org.objectweb.proactive.core.process.DependentListProcess">

<processReference refid="lsfProcess" />
<processReference refid="mpiProcess_nina" />

</dependentProcessSequence>
</processDefinition>

<!-- ssh process -->
<processDefinition id="sshProcess_nef">

<sshProcess class="org.objectweb.proactive.core.process.ssh.SSHProcess" hostname=
"nef.inria.fr" username="smariani">

<processReference refid="dpsProcess_nef" />
<fileTransferDeploy refid="JACOBI">
<copyProtocol>processDefault, scp, rcp</copyProtocol>
<!-- local host path -->
<sourceInfo prefix=

"${PROACTIVE_HOME}/src/org/objectweb/proactive/mpi/control/config/bin" />
<!-- remote host path -->
<destinationInfo prefix="${REMOTE_HOME_NEF}/MyApp" />

</fileTransferDeploy>
</sshProcess>

</processDefinition>

<!-- ssh process -->
<processDefinition id="sshProcess_nina">

<sshProcess class="org.objectweb.proactive.core.process.ssh.SSHProcess" hostname=
"cluster.inria.fr" username="smariani">

<processReference refid="dpsProcess_nina" />
<fileTransferDeploy refid="JACOBI">
<copyProtocol>scp</copyProtocol>
<!-- local host path -->
<sourceInfo prefix=

"${PROACTIVE_HOME}/src/org/objectweb/proactive/mpi/control/config/bin" />
<!-- remote host path -->
<destinationInfo prefix="${REMOTE_HOME_NINA}/MyApp" />

</fileTransferDeploy>
</sshProcess>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Note

To be interfaced with some native code, each wrapper/proxy loads a library in their JVM context. Then, it is neces-
sary that the value of the java.library.path variable for each JVM is set to the remote directory path. To be done, use
the following tag in each jvmProcess definition:

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

346

<parameter value="-Djava.library.path=${REMOTE_HOME_NEF}/MyApp" />

41.2.5.3. Writing the MPI source code

Place the source file in org/objectweb/proactive/mpi/control/config/src directory

#include <stdio.h>
#include "mpi.h"
#include "ProActiveMPI.h"
#include <time.h>

/* This example handles a 1680x1680 mesh, on 2 clusters with 16 nodes (2 ppn) for each */
#define maxn 1680
#define size 840
#define JOB_ZERO 0
#define JOB_ONE 1
#define NB_ITER 10000

int main(argc, argv)
int argc;
char **argv;
{

int rank, initValue, i, j, itcnt, idjob, nb_proc, error;
int i_first, i_last;
double xlocal[(size/3)+2][maxn];
double xnew[(size/3)+3][maxn];
char processor_name[MPI_MAX_PROCESSOR_NAME];
int namelen;

// MPI initialization
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nb_proc);
MPI_Get_processor_name(processor_name,&namelen);

// ProActive with MPI initialization
error = ProActiveMPI_Init(rank);
if (error < 0){

printf("[MPI] !!! Error ProActiveMPI init \n");
MPI_Abort(MPI_COMM_WORLD, 1);

}

// get this process job ID
ProActiveMPI_Job(&idjob);
if (nb_proc != 16) MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][size+2] is upper */

/*
* Note that top and bottom processes have one less row of interior points
*/

i_first = 1;
i_last = size/nb_proc;

if ((rank == 0) && (idjob == JOB_ZERO)) i_first++;
if ((rank == nb_proc - 1) && (idjob == JOB_ONE)) i_last--;

// matrix initialization

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

347

if (idjob==JOB_ZERO) initValue=rank;
else {initValue = nb_proc+rank;}

/* Fill the data as specified */
for (i=1; i<=size/nb_proc; i++)

for (j=0; j<maxn; j++)
xlocal[i][j] = initValue;

for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] = -1;
xlocal[i_last+1][j] = -1;

}

itcnt = 0;
do {

/*----+----+----+----+----+----+ MPI COMMS +----+----+----+----+----+----+*/
/* Send up unless I'm at the top, then receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < nb_proc - 1)

MPI_Send(xlocal[size/nb_proc], maxn, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

if (rank > 0)
MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);

/*----+----+----+----+----+----+ PROACTIVE COMMS +----+----+----+----+----+----+*/
if ((rank == nb_proc - 1) && (idjob == JOB_ZERO)){

error = ProActiveMPI_Send(xlocal[size/nb_proc], maxn, MPI_DOUBLE, 0, 0, JOB_ONE);
if (error < 0){

printf("[MPI] !!! Error ProActiveMPI send #15/0 -> #0/1 \n");}
}

if ((rank == 0) && (idjob==JOB_ONE)) {
error = ProActiveMPI_Recv(xlocal[0], maxn, MPI_DOUBLE, nb_proc - 1, 0, JOB_ZERO);
if (error < 0){

printf("[MPI] !!! Error ProActiveMPI recv #0/1 <- #15/0 \n");}

}

/*----+----+----+----+----+----+ MPI COMMS +----+----+----+----+----+----+*/
/* Send down unless I'm at the bottom */
if (rank > 0)

MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);

if (rank < nb_proc - 1)
MPI_Recv(xlocal[size/nb_proc+1], maxn, MPI_DOUBLE, rank + 1, 1,

MPI_COMM_WORLD, &status);

/*----+----+----+----+----+----+ PROACTIVE COMMS +----+----+----+----+----+----+*/
if ((rank == 0) && (idjob==JOB_ONE)){

error = ProActiveMPI_Send(xlocal[1], maxn, MPI_DOUBLE, nb_proc - 1, 1, JOB_ZERO);
if (error < 0){

printf("[MPI] !!! Error ProActiveMPI send #0/1 -> #15/0 \n");}

}

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

348

if ((rank == nb_proc - 1) && (idjob==JOB_ZERO)) {
t_00 = MPI_Wtime();
error = ProActiveMPI_Recv(xlocal[size/nb_proc+1], maxn, MPI_DOUBLE, 0, 1, JOB_ONE);
t_01 = MPI_Wtime();
if (error < 0){

printf("[MPI] !!! Error ProActiveMPI recv #15/0 <- #0/1 \n");}
waitForRecv += t_01 - t_00;

}
/*----+----+----+----+----+----+ COMPUTATION +----+----+----+----+----+----+*/
/* Compute new values (but not on boundary) */
itcnt ++;
diffnorm = 0.0;
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

xlocal[i+1][j] + xlocal[i-1][j]) / 4.0;
diffnorm += (xnew[i][j] - xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]);

}
/* Only transfer the interior points */
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++)
xlocal[i][j] = xnew[i][j];

if (rank == 0) printf("[MPI] At iteration %d, job %d \n", itcnt, idjob);
} while (itcnt < NB_ITER);

// print this process buffer
printf("[MPI] Rank: %d Job: %d \n",rank, idjob);
for (i=1; i<(size/16); i++){

printf("[");
for (j=0; j<maxn; j++)

printf("%f ",xlocal[i][j]);
printf("] \n");

}

// clean environment
ProActiveMPI_Finalize();
MPI_Finalize();
return 0;

}

41.2.5.4. Compiling the MPI source code

To compile the MPI code with the added features for wrapping, you may enter the org/objectweb/proactive/mpi/control/config
directory and type:

linux> make clean
linux> make mpicode=jacobi

Note

The mpicode value is the name of the source file without its extension. The Makefile generates a binary with the

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

349

same name in /bin directory.

41.2.5.5. Writing the ProActive Main program

import org.apache.log4j.Logger;

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.ProActiveException;
import org.objectweb.proactive.core.config.ProActiveConfiguration;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;
import org.objectweb.proactive.core.node.Node;
import org.objectweb.proactive.core.util.log.Loggers;
import org.objectweb.proactive.core.util.log.ProActiveLogger;
import org.objectweb.proactive.mpi.MPI;
import org.objectweb.proactive.mpi.MPISpmd;
import org.objectweb.proactive.mpi.control.ProActiveMPI;

import java.util.ArrayList;
import java.util.Vector;

public class Main {
public static void main(String[] args) {

Logger logger = ProActiveLogger.getLogger(Loggers.EXAMPLES);

if (args.length != 1) {
logger.error("Usage: java " + Main.class.getName() +

" <deployment file>");
System.exit(0);

}

ProActiveConfiguration.load();

VirtualNode jacobiOnNina;
VirtualNode jacobiOnNef;
ProActiveDescriptor pad = null;

try {
pad = ProActive.getProactiveDescriptor("file:" + args[0]);

// gets virtual node
jacobiOnNef = pad.getVirtualNode("Cluster_Nef");
jacobiOnNina = pad.getVirtualNode("Cluster_Nina");

MPISpmd nefMPISpmd = MPI.newMPISpmd(jacobiOnNef);
MPISpmd ninaMPISpmd = MPI.newMPISpmd(jacobiOnNina);

ArrayList my_jobs = new ArrayList();
my_jobs.add(nefMPISpmd);
my_jobs.add(ninaMPISpmd);
ProActiveMPI.deploy(my_jobs);

} catch (ProActiveException e) {
e.printStackTrace();
logger.error("Pb when reading descriptor");

}
}

}

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

350

41.2.5.6. Executing application

Deploy the ProActive main program above like any another ProActive application using a script like the following one:

#!/bin/sh

echo --- ProActive/MPI JACOBI example ---

workingDir=`dirname $0`
. $workingDir/env.sh

XMLDESCRIPTOR=/user/smariani/home/Test/MPI-Jacobi-nina-nef.xml

$JAVACMD -classpath $CLASSPATH -Djava.security.policy=$PROACTIVE/compile/proactive.java.policy
-Dproactive.rmi.port=6099
-Dlog4j.configuration=file:$PROACTIVE/compile/proactive-log4j Main $XMLDESCRIPTOR

41.2.5.7. The Output

Reading of the file descriptor and return of 16 nodes from the first cluster Nef and 16 nodes from the second cluster Nina

************* Reading deployment descriptor: file:/user/smariani/home/TestLoadLib/MPI-Jacobi-nina-nef.xml ********************
created VirtualNode name=Cluster_Nef
created VirtualNode name=Cluster_Nina
...
**** Mapping VirtualNode Cluster_Nef with Node: //193.51.209.75:6099/Cluster_Nef932675317 done
**** Mapping VirtualNode Cluster_Nef with Node: //193.51.209.76:6099/Cluster_Nef1864357984 done
**** Mapping VirtualNode Cluster_Nef with Node: //193.51.209.70:6099/Cluster_Nef1158912343 done
...

**** Mapping VirtualNode Cluster_Nina with Node: //193.51.209.47:6099/Cluster_Nina1755746262 done
**** Mapping VirtualNode Cluster_Nina with Node: //193.51.209.47:6099/Cluster_Nina-1139061904 done
**** Mapping VirtualNode Cluster_Nina with Node: //193.51.209.45:6099/Cluster_Nina-941377986 done
...

Deployment of proxies on remote nodes and environment initialization

[MANAGER] Create SPMD Proxy for jobID: 0
[MANAGER] Initialize remote environments
[MANAGER] Activate remote thread for communication
[MANAGER] Create SPMD Proxy for jobID: 1
[MANAGER] Initialize remote environments
[MANAGER] Activate remote thread for communication

Processes registration

[MANAGER] JobID #0 register mpi process #12
[MANAGER] JobID #0 register mpi process #3
[MANAGER] JobID #0 register mpi process #1
[MANAGER] JobID #0 register mpi process #15

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

351

[MANAGER] JobID #0 register mpi process #4
[MANAGER] JobID #0 register mpi process #7
[MANAGER] JobID #0 register mpi process #0
[MANAGER] JobID #0 register mpi process #9
[MANAGER] JobID #0 register mpi process #2
[MANAGER] JobID #0 register mpi process #13
[MANAGER] JobID #0 register mpi process #10
[MANAGER] JobID #0 register mpi process #5
[MANAGER] JobID #0 register mpi process #11
[MANAGER] JobID #0 register mpi process #14
[MANAGER] JobID #0 register mpi process #6
[MANAGER] JobID #0 register mpi process #8
[MANAGER] JobID #1 register mpi process #10
[MANAGER] JobID #1 register mpi process #13
[MANAGER] JobID #1 register mpi process #6
[MANAGER] JobID #1 register mpi process #3
[MANAGER] JobID #1 register mpi process #7
[MANAGER] JobID #1 register mpi process #8
[MANAGER] JobID #1 register mpi process #15
[MANAGER] JobID #1 register mpi process #9
[MANAGER] JobID #1 register mpi process #4
[MANAGER] JobID #1 register mpi process #1
[MANAGER] JobID #1 register mpi process #0
[MANAGER] JobID #1 register mpi process #11
[MANAGER] JobID #1 register mpi process #2
[MANAGER] JobID #1 register mpi process #5
[MANAGER] JobID #1 register mpi process #12
[MANAGER] JobID #1 register mpi process #14

Starting computation

[MPI] At iteration 1, job 1
[MPI] At iteration 2, job 1
[MPI] At iteration 3, job 1
[MPI] At iteration 4, job 1
[MPI] At iteration 5, job 1
...
[MPI] At iteration 1, job 0
[MPI] At iteration 2, job 0
[MPI] At iteration 3, job 0
[MPI] At iteration 4, job 0
[MPI] At iteration 5, job 0
[MPI] At iteration 6, job 0
...

[MPI] At iteration 9996, job 1
[MPI] At iteration 9997, job 1
[MPI] At iteration 9998, job 1
[MPI] At iteration 9999, job 1
[MPI] At iteration 10000, job 1
...
[MPI] At iteration 9996, job 0
[MPI] At iteration 9997, job 0
[MPI] At iteration 9998, job 0
[MPI] At iteration 9999, job 0
[MPI] At iteration 10000, job 0

Displaying each process result, for example

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

352

[MPI] Rank: 15 Job: 1
[31.000000 27.482592 24.514056 ... 24.514056 27.482592 31.000000]
[31.000000 26.484765 22.663677 ... 22.663677 26.484765 31.000000]
[31.000000 24.765592 19.900617 ... 19.900617 24.765592 31.000000]

All processes unregistration

[MANAGER] JobID #1 unregister mpi process #15
[MANAGER] JobID #1 unregister mpi process #14
[MANAGER] JobID #0 unregister mpi process #0
[MANAGER] JobID #1 unregister mpi process #13
[MANAGER] JobID #0 unregister mpi process #1
[MANAGER] JobID #1 unregister mpi process #12
[MANAGER] JobID #0 unregister mpi process #2
...

The following snapshot shows the 32 Nodes required, distributed on 16 hosts (two processes per host, and 8 hosts on each cluster).
Each Node contains its local wrapper, a ProActiveMPICoupling Active Object. One can notice the ProActive communication
between two MPI processes trough the communication between two proxies which belongs to two Nodes residing on different
clusters.

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

353

Figure 41.7. IC2D Snapshot

41.3. Design and Implementation

41.3.1. Simple wrapping

41.3.1.1. Structural Design

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

354

Figure 41.8. Proxy Pattern

• The proxy has the role of a smart reference that performs additional actions when the MPISpmdImpl Active Object is ac-
cessed. Especially the proxy forwards requests to the Active Object if the current status of this Active Object is in an appro-
priate state, otherwise an IllegalMPIStateException is thrown.

41.3.1.2. Infrastructure of processes

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

355

Figure 41.9. Process Package Architecture

• DependentListProcess and IndependentListProcess (left part on the picture)

The SequentialListProcess relative classes are defined in the org.objectweb.proactive.core.process package. The two
classes share the same characteristics: both contain a list of processes which have to be executed sequentially. This de-
pendent constraint has been integrated in order to satisfy the MPI process requirement. Indeed, the DependentListProcess
class specifies a list of processes which have to extend the DependentProcess interface, unless the header process which is
a simple allocation resources process. It provides deployer to be sure that the dependent process will be executed if and only
if this dependent process gets back parameters from which it is dependent.

• MPIDependentProcess (right part on the picture)

The MPI relative classes are defined in the org.objectweb.proactive.core.process.mpi package. MPI process preliminary
requires a list of hosts for job execution. Thus, this process has to implement the Dependent Process interface. See section
11.7. Infrastructure and processes (part III) for more details on processes.

41.4. Summary of the API

41.4.1. Simple Wrapping and Deployment of MPI Code

org.objectweb.proactive.mpi

public class MPI

static MPISpmd newMPISpmd(VirtualNode virtualNode)
throws IllegalMPIStateException

Creates an MPISpmd object from an exist-
ing VirtualNode

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

356

public class MPISpmd

MPIResult startMPI() throws IllegalMPIStateEx-
ception

Triggers MPI code execution and returns a
future on an MPIResult object

MPIResult reStartMPI() throws Illeg-
alMPIStateException

Restarts MPI code execution and returns a
new future on an MPIResult object

boolean killMPI() throws IllegalMPIStateExcep-
tion

Kills the MPI code execution

String getStatus() Returns the current status of MPI code ex-
ecution

void setCommandArguments(String argu-
ments)

Adds or modifies the MPI command para-
meters

public class MPIResult

int getReturnValue() Returns the exit value of the MPI code

public class MPIConstants

static final String MPI_UNSTARTED MPISpmd object status after creation

static final String MPI_RUNNING MPISpmd object has been started or re-
started

static final String MPI_KILLED MPISpmd object has been killed

static final String MPI_FINISHED MPISpmd object has finished

Table 41.1. Simple Wrapping of MPI Code

41.4.2. Wrapping with Control

41.4.2.1. One Active Object per MPI process

org.objectweb.proactive.mpi

public class MPISpmd

void newActiveSpmd(String class) Deploys an SPMD group of Active Ob-
jects on each MPISpmd Nodes

void newActiveSpmd(String class, Object[]
params)

Deploys an SPMD group of Active Ob-
jects with specific constructor parameters
on each MPISpmd Nodes

void newActiveSpmd(String class, Object[][] Deploys an SPMD group of Active Ob-

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

357

params)
jects with specific constructor parameters
on each MPISpmd Nodes

void newActive(String class, Object[] params,
int rank)

throws ArrayIndexOutOfBoundsExcep-
tion

Deploys an Active object with specific
constructor parameters on a single node
specified with rank

org.objectweb.proactive.mpi.control

public class ProActiveMPI

void deploy(ArrayList mpiSpmdList) Deploys and starts all MPISpmd objects in
the list

Table 41.2. API for creating one Active Object per MPI process

41.4.2.2. MPI to ProActive Communications

int ProActiveSend(void* buf, int count,
MPI_Datatype datatype, int dest, char*
className, char* methodName, int jobID,
...)

Performs a basic send from mpi side to a
ProActive java class

Table 41.3. MPI to ProActive Communications API

org.objectweb.proactive.mpi.control

public class ProActiveMPIData

int getSrc() Returns the rank of mpi process sender

int getJobID() Returns jobID of mpi process sender

int getDataType() Returns type of data

String [] getParameters() Returns the parameters passed in the Pro-
ActiveSend method call

byte [] getData() Returns the data as a byte array

int getCount() Returns the number of elements in data ar-
ray

org.objectweb.proactive.mpi.control.uti
l

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

358

public class ProActiveMPIUtil

static int bytesToInt(byte[] bytes, int startIndex) Given a byte array, restores it as an int

static float bytesToFloat(byte[] bytes, int startIndex) Given a byte array, restores it as a float

static short bytesToShort(byte[] bytes, int startIndex) Given a byte array, restores it as a short

static long bytesToLong(byte[] bytes, int startIndex) Given a byte array, restores it as a long

static double bytesToDouble(byte[] bytes, int startIn-
dex)

Given a byte array, restores it as a double

static String bytesToString(byte[] bytes, int startIn-
dex)

Given a byte array, restores a string out of
it

static int intTobytes(int num, byte[] bytes, int
startIndex)

Translates int into bytes, stored in byte ar-
ray

static int floatToByte(float num, byte[] bytes, int
startIndex)

Translates float into bytes, stored in byte
array

static int shortToBytes(short num, byte[] bytes, int
startIndex)

Translates short into bytes, stored in byte
array

static int stringToBytes(String str, byte[] bytes, int
startIndex)

Gives a String less than 255 bytes, store it
as byte array

static int longToBytes(long num, byte[] bytes, int
startIndex)

Translates long into bytes, stored in byte
array

static int doubleToBytes(double num, byte[] bytes,
int startIndex)

Translates double into bytes, stored in
byte array

Table 41.4. Java API for MPI message conversion

41.4.2.3. ProActive to MPI Communications

org.objectweb.proactive.mpi.control

public class ProActiveMPICoupling

static void MPISend(byte[] buf, int count, int data-
type, int dest, int tag, int jobID)

Sends a buffer of bytes to the specified
MPI process

org.objectweb.proactive.mpi.control

public class ProActiveMPIConstants

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

359

static final int MPI_CHAR char

static final int MPI_UNSIGNED_CHAR unsigned char

static final int MPI_BYTE byte

static final int MPI_SHORT short

static final int MPI_UNSIGNED_SHORT unsigned short

static final int MPI_INT int

static final int MPI_UNSIGNED unsigned int

static final int MPI_LONG long

static final int MPI_UNSIGNED_LONG unsigned long

static final int MPI_FLOAT float

static final int MPI_DOUBLE double

static final int MPI_LONG_DOUBLE long double

static final int MPI_LONG_LONG_INT long long int

Table 41.5. ProActiveMPI API for sending messages to MPI

int ProActiveRecv(void *buf, int count,
MPI_Datatype datatype, int src, int tag, int
jobID)

Performs a blocking receive from MPI
side to receive data from a ProActive java
class

int ProActiveIRecv(void *buf, int count,
MPI_Datatype datatype, int src, int tag, int
jobID, ProActiveMPI_Request *request)

Performs a non blocking receive from
MPI side to receive data from a ProActive
java class

int ProActiveTest(ProActiveMPI_Request
*request, int *flag)

Tests for the completion of receive from a
ProActive java class

int ProActiveWait(ProActiveMPI_Request
*request)

Waits for an MPI receive from a ProAct-
ive java class to complete

Table 41.6. MPI message reception from ProActive

41.4.2.4. MPI to MPI Communications through ProActive

int ProActiveMPI_Init(int rank) Initializes the MPI with ProActive execu-
tion environment

int ProActiveMPI_Job(int *job) Initializes the variable with the JOBID

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

360

int ProActiveMPI_Finalize() Terminates MPI with ProActive execution
environment

int ProActiveMPI_Send(void *buf, int
count, MPI_Datatype datatype, int dest,
int tag, int jobID)

Performs a basic send

int ProActiveMPI_Recv(void *buf, int
count, MPI_Datatype datatype, int src, int
tag, int jobID)

Performs a basic Recv

int ProActiveMPI_IRecv(void *buf, int
count, MPI_Datatype datatype, int src, int
tag, int jobID, ProActiveMPI_Request
*request)

Performs a non blocking receive

int (ProActiveMPI_Req
ProActiveMPI_Testuest *request, int
*flag)

Tests for the completion of receive

int (ProActiveMPI_Req
ProActiveMPI_Waituest *request)

Waits for an MPI receive to complete

int ProActiveMPI_AllSend(void *buf, int
count, MPI_Datatype datatype, int tag, int
jobID)

Performs a basic send to all processes of a
remote job

int ProActiveMPI_Barrier(int jobID) Blocks until all process of the specified
job have reached this routine

Table 41.7. MPI to MPI through ProActive C API

Datatypes: MPI_CHAR, MPI_UNSIGNED_CHAR, MPI_BYTE, MPI_SHORT, MPI_UNSIGNED_SHORT, MPI_INT,
MPI_UNSIGNED, MPI_LONG, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE, MPI_LONG_DOUBLE,
MPI_LONG_LONG_INT

Call PROACTIVEMPI_INIT(rank, err)

integer :: rank, err

Initializes the MPI with ProActive execu-
tion environment

Call PROACTIVEMPI_JOB(job, err)

integer :: job, err

Initializes the job environment variable

Call PROACTIVEMPI_FINALIZE(err)

integer :: err

Terminates MPI with ProActive execution
environment

Call PROACTIVEMPI_SEND(buf, count,
datatype, dest, tag, jobID, err)

< type >, dimension(*) :: buf

integer :: count, datatype, dest, tag, jobID,
err

Performs a basic send

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

361

Call PROACTIVEMPI_RECV(buf, count,
datatype, src, tag, jobID, err)

< type >, dimension(*) :: buf

integer :: count, datatype, src, tag, jobID,
err

Performs a basic Recv

Call PROACTIVEMPI_ALLSEND(buf,
count, datatype, tag, jobID, err)

< type >, dimension(*) :: buf

integer :: count, datatype, tag, jobID, err

Performs a basic send to all processes of a
remote job

Call PROACTIVEMPI_BARRIER(jobID,
err)

integer :: jobID, err

Blocks until all process of the specified
job have reached this routine

Table 41.8. MPI to MPI through ProActive Fortran API

Datatypes: MPI_CHARACTER, MPI_BYTE, MPI_INTEGER, MPI_DOUBLE

Part VI: Advanced Chapter 41: Wrapping MPI Legacy code

362

Part VII. Graphical User Interface (GUI) and
tools

Table of Contents

Chapter 42. IC2D: Interactive Control and Debugging of Distribution and Eclipse plugin 365
42.1. Monitoring and Control .. 365

42.1.1. The Monitoring plugin ... 365
42.1.2. The Job Monitoring plugin .. 369

42.2. Launcher and Scheduler .. 371
42.2.1. The Launcher plug-in ... 371
42.2.2. The Scheduler plug-in .. 374

42.3. Programming Tools ... 374
42.3.1. ProActive Wizards .. 374
42.3.2. The ProActive Editor ... 374

42.4. The Guided Tour as Plugin .. 375

Chapter 43. Interface with Scilab .. 377
43.1. Presentation .. 377
43.2. Scilab Interface Architecture .. 377
43.3. Graphical User Interface (Scilab Grid ToolBox) .. 380

43.3.1. Launching Scilab Grid ToolBox ... 381
43.3.2. Deployment of the application ... 382
43.3.3. Task launching ... 383
43.3.4. Display of results .. 384
43.3.5. Task monitoring .. 385
43.3.6. Engine monitoring ... 386

Chapter 44. TimIt API ... 387
44.1. Overview ... 387
44.2. Quick start ... 388

44.2.1. Define your TimIt configuration file ... 388
44.2.2. Add time counters and event observers in your source files ... 391

44.3. Usage .. 392
44.3.1. Timer counters ... 393
44.3.2. Event observers .. 393

44.4. TimIt extension ... 394
44.4.1. Configuration file .. 394
44.4.2. Timer counters ... 395
44.4.3. Event observers .. 395
44.4.4. Chart generation ... 396

Part VII: Graphical User Interface (GUI)
and tools

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42. IC2D: Interactive Control and
Debugging of Distribution and Eclipse
plugin
IC2D is a graphical environment for remote monitoring and steering of distributed and grid applications. IC2D is built on top
of ProActive that provides asynchronous calls and migration.

IC2D is available in two forms :

• A Java standalone application based on Eclipse Rich Client Platform (RCP)
[http://wiki.eclipse.org/index.php/Rich_Client_Platform], available for any platform (Windows, Linux, Mac OSX,Solaris,
...)

• A set of Eclipse [http://www.eclipse.org] plugins: with all the functionnalities within the standalone application, enhanced
with a tool that makes easier the development of Grid Applications, including:
• ProActive Editor (error highlighting, ...)
• ProActive Wizards
• Cheat Sheets for ProActive (Guided Tour)

42.1. Monitoring and Control

IC2D is based on a plugin architecture and provides 2 plugins in relation to the monitoring and the control of ProActive applica-
tions:

• The Monitoring plugin which provides a graphical visualisation for hosts, Java Virtual Machines, and active objects, in-
cluding the topology and the volume of communications

• The Job Monitoring plugin which provides a tree representation of all these objects.

42.1.1. The Monitoring plugin

42.1.1.1. The Monitoring perspective

The Monitoring plugin provides the Monitoring perspective
[http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/gettingStarted/qs-43.htm] displayed in the Fig-
ure 42.1, “The Monitoring Perspective”.

This perspective defines the following set of views [http://wiki.eclipse.org/index.php/FAQ_What_is_a_view%3F]:

• The Monitoring view: contains the graphical visualisation for ProActive objects
• The Legend view: contains the legend corresponding to the Monitoring view's content
• The Console view: contains log corresponding to the Monitoring view's events

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

365

http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.eclipse.org
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/gettingStarted/qs-43.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/gettingStarted/qs-43.htm
http://wiki.eclipse.org/index.php/FAQ_What_is_a_view%3F

Figure 42.1. The Monitoring Perspective

42.1.1.2. Monitor a new host

In order to monitor a new host:

1. open the Monitoring Perspective: Window->Open Perspective->Other...->Monitoring (in the standalone IC2D, it should
be already opened because it is the default perspective)

2. select Monitoring->Monitor a new host..., it opens the "Monitor a new Host" dialog displayed in the Figure 42.2,
“Monitor New Host Dialog”

3. enter informations required about the host to monitor, and click OK

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

366

Figure 42.2. Monitor New Host Dialog

42.1.1.3. The Monitoring buttons

Here the buttons proposed in the monitoring view:

Figure 42.3. Monitor a new host

Display the "Monitor a new host" dialog in order to monitor a new host.

Figure 42.4. Set depth control

Display the "Set Depth Control" dialog in order to change the depth variable. For example: We have 3 hosts: 'A' 'B' and 'C'. And on
A there is an active object 'aoA' which communicates with another active object 'aoB' which is on B. This one communicates with
an active object 'aoC' on C, and aoA don't communicate with aoC. Then if we monitor A, and if the depth is 1, we will not see aoC.

Figure 42.5. Set time to refresh

Display the "Set Time to Refresh" dialog in order to change the time to refresh the model. And find the new added objects.

Figure 42.6. Refresh

Refreh the model.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

367

Figure 42.7. Enable/Disable Monitoring

When the eye is opened the monitoring is activated.

Figure 42.8. Show P2P objects

Allows to see or not the P2P objects.

Figure 42.9. Zoom In

Figure 42.10. Zoom out

Figure 42.11. New Monitoring View

Open a new Monitoring view. This button can be used in any perspective. The new created view will be named 'Monitor-
ing#number_of_this_view'

42.1.1.4. The Virtual Nodes list

At the top of the Monitoring View, one can find the Virtual Nodes list. When some nodes are monirored, their virtual nodes are
added to this list. And when a virtual node is checked, all its nodes are highlighted.

Figure 42.12. Virtual nodes List

gin

368

42.1.1.5. Management of the communications display

At the bottom of the Monitoring view, one can find a set of buttons used to manage the communications display:

1. Auto Reset: Automatic reset of communications, you can specify the auto reset time
2. Display topology: show/hide communications
3. Proportional: arrows thickness is proportional to the number of requests
4. Ratio: arrows thickness uses a ratio of the number of requests
5. Fixed: arrows always have the same thickness whatever the number of communications
6. Topology: show/hide communications, and erase all communications
7. Monitoring enable: listen or not communications between active objects

42.1.1.6. Example

The Figure 42.16, “Monitoring of 2 applications” shows an example where 3 hosts are monitored. The applications running are
philosophers and C3D (Section 5.2, “C3D: a parallel, distributed and collaborative 3D renderer”).

42.1.2. The Job Monitoring plugin

To look at the tree representation of the monitored objects, one have to open the Job Monitoring view.

For that, select Window->Show view->Other...->Job Monitoring->Job Monitoring.

gin

369

Figure 42.13. Select the Job Monitoring view in the list

Then, select the model that you want to monitor. Each name corresponds to a monitoring view. You can also monitor a new host.

Figure 42.14. Select the Monitoring model

Figure 42.15. The monitoring views

One can see in the Figure 42.16, “Monitoring of 2 applications” an example of a tree representation of some monitored objects.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

370

Figure 42.16. Monitoring of 2 applications

42.2. Launcher and Scheduler

42.2.1. The Launcher plug-in

In order to launch a deployment descriptor , you must open your file with the IC2D XML Editor .

To use this editor, you have two possibilities:

42.2.1.1. First possibility

Open the Launcher perspective . Select: Window > Open perspective > Other... > Launcher

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

371

Figure 42.17. The "Open Perspective" window

Then select: File > Open File... and open your deployment descriptor, it will be opened with the IC2D XML editor. And its name
will appear in the Deployment descriptors list.

42.2.1.2. Second possibility

In the Navigator view, or another similar, a right click on the XML file allows you to open your file with the IC2D XML editor .

gin

372

Figure 42.18. The open with action

42.2.1.3. The Launcher perspective

The Figure 42.19, “The Launcher perspective” represents the Launcher perspective containing an XML editor , a console , and the
list of deployment descriptors .

To launch an application, select your file in the deployment descriptors list, and click on the launch icon.

You can kill the applications launched from a popup-menu in the "Deployment descriptors" list.

To see your application running, open the "Monitoring perspective" and monitor the corresponding host.

gin

373

Figure 42.19. The Launcher perspective

42.2.2. The Scheduler plug-in

Coming soon ...

42.3. Programming Tools

42.3.1. ProActive Wizards

These wizards will guide developpers to make complex operations with ProActive, such as installation, integration, configuration,
or execution :

1. a ProActive installation wizard
2. a wizard that create applications using ProActive
3. an active object creation wizard
4. a configuration and execution wizard

Figure 42.20. A wizard popup

42.3.2. The ProActive Editor

This editor checks coding rules. It informs the developper of error concerning ProActive in his classes and can resolve some of
these errors.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

374

Figure 42.21. The editor error highlighting

42.4. The Guided Tour as Plugin

The aim of the guided tour is to provide a step by step explanation to the ProActive beginners.

Figure 42.22. The plugin's interface

This guided tour (that is actually eclipse cheat sheet) purposes:

• To Explain ProActive to beginners
• To make interactions with the user with simple situations
• To Show the important points

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

375

Part VII: Graphical User Interface (GUI)
and tools

Chapter 42: IC2D: Interactive Control and
Debugging of Distribution and Eclipse plu-

376

Chapter 43. Interface with Scilab
43.1. Presentation

Scilab is a scientific software for numerical computations. Developped since 1990 by researchers from INRIA and ENPC, it is now
maintained and developed by Scilab Consortium since its creation in May 2003. Scilab includes hundreds of mathematical func-
tions with the possibility to add interactively programs from various languages (C, Fortran...). It has sophisticated data structures
(including lists, polynomials, rational functions, linear systems...), an interpreter and a high level programming language. Scilab
works on most Unix systems (including GNU/Linux) and Windows (9X/2000/XP).

The goal of the ProActive Interface is to equip Scilab with a generic interface to Grid computing. This extension has to allow the
deployment of Scilab instances on several nodes of the grid (and to use these instances like computing engines) and the submital of
Scilab tasks over the grid. These Scilab engines are monitored by a central ProActive API. A natural condition is to deploy an ap-
plication (based on this interface) strictly on hosts where the Scilab software is intsalled. To install Scilab and find some docu-
mentation about it on the scilab website [http://www.scilab.org/download/index_download.php?page=release.html]. This ProAct-
ive interface supports the release 4.0 and manipulates the following types: Double, String, Double Matrix, String Matrix.

43.2. Scilab Interface Architecture

The interface architecture is based on the Master-Slaves model. In this communication model, the master entity monitors the slaves
entities. In our case:

• The role of the master is to deploy the topology of scilab instances (slaves) and to distribute tasks (between the different en-
gines);

• The role of the slave is to perform the submitted tasks (by the master).

There are four classes which are intented for the user:

The Class ScilabService implememts all functionnalities to deploy engines, to distribute tasks, and to retrieve results (of com-
puted tasks).

• The depoyment is made thank to a ProActive descriptor. This deployment descriptor describes the different nodes of the grid
taking part at the computation. One of particularities of this descriptor is the declaration of specific scilab environment vari-
ables for each node. The deployment is achieved by a call of the method "deployEngine". This method takes in parameters
the VirtualNode id, the descriptor path, and the number of engines to create.

• The distribution of a Scilab task is made thanks to the call of the method "sendTask". After the call, the task is set in pending
queue. This queue is managed like a FIFO with priority. The task is in head of the queue is sent when a engine is available.

• After the compution of a task, the scilab engine returns the result. To retrieve this result, it is necessary to listen the event
"SciEventTask" thank to the method "addEnventListenerTask".

• This class offers also the possibilities to cancel a pending task, to kill a running task , and to restart a engine.

The Class SciTaskInfo contains all informations about a Scilab task. Among these informations, there are:

• The state of the tasks:
• WAIT: The task is in the pending queue
• RUN: The task is computing by a scilab engine
• SUCCES: The computation of the task is terminated with success
• ABORT: The computation of the task was avorted
• KILL: The task was killed by the user during the computation
• CANCEL: The Task was cancelled by the user before its computation

• The global and execution time
• The priority of the task (LOW, NORMAL, HIGH)
• The task itself
• The result of the assiciated task (It is available when the state is ABORT or SUCCESS)

The class SciTask describes a scilab task. It defines In and Out data, the job and the job initialization. A job is a scilab script

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

377

http://www.scilab.org/download/index_download.php?page=release.html

(*.sce), it contains all instructions executed by a remote engine. In data and the job initialization allow to customize the execution
and Out data define the values to return after the execution.

The class SciResult describes a scilab result. A result is the list of return values (defining in the task).

The following example Example 43.1, “Example: Interface Scilab” presents how to compute a basic task and to display the result.
In our case the task initializes the variable "n" and increments it. The next example shows a possibly deployment descriptor Ex-
ample 43.2, “Descriptor deployment”.

public class SciTest {

SciTask task;
ScilabService scilab;

public void displayResult(SciTaskInfo scitaskInfo){
// scilab result
SciResult sciResult = scitaskInfo.getSciResult();
// list of retrun values
ArrayList listResult = sciResult.getList();

for (int i = 0; i < listResult.size(); i++) {
SciData result = (SciData) listResult.get(i);

System.out.println(result.toString());
}
scilab.exit();

}

public SciTest(String idVN, String pathVN) throws Exception{
// a new scilab task
SciTask task = new SciTask("id");
task.setJobInit("n = 10;");
task.addDataOut(new SciData("n"));
task.setJob("n = n+1;");

//a new scilab service
ScilabService scilab = new ScilabService();

//add task event listener
scilab.addEventListenerTask(new SciEventListener(){

public void actionPerformed(SciEvent evt){
SciTaskInfo sciTaskInfo = (SciTaskInfo) evt.getSource();

if(sciTaskInfo.getState() == SciTaskInfo.SUCCESS){
displayResult(sciTaskInfo);
return;

}
}

});

// deploy engine
scilab.deployEngine(idVN, pathVN, new String[]{"Scilab"});
// send task
scilab.sendTask(task);

}

public static void main(String[] args) throws Exception {
new SciTest(args[0], args[1]);

}
}

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

378

Example 43.1. Example: Interface Scilab

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME" value="****"/>
<descriptorVariable name="REMOTE_HOME" value="****"/>
<descriptorVariable name="SCILAB_HOME" value="****"/>

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="ScilabVN" property="multiple"/>

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="ScilabVN">
<jvmSet>

<vmName value="Jvm0"/>
<vmName value="Jvm1"/>
<vmName value="Jvm2"/>
<vmName value="Jvm3"/>

</jvmSet>
</map>

</mapping>
<jvms>

</jvm>
<jvm name="Jvm1">
<creation>

<processReference refid="rsh_predadab"/>
</creation>

</jvm>
<jvm name="Jvm2">
<creation>

<processReference refid="rsh_trinidad"/>
</creation>

</jvm>
<jvm name="Jvm3">
<creation>

<processReference refid="rsh_apple"/>
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<classpath>
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/ProActive.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/asm.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/log4j.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/components/fractal.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/xercesImpl.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/bouncycastle.jar" />

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

379

<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/jsch.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/javassist.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/classes" />
<absolutePath value="${REMOTE_HOME}/${SCILAB_HOME}/bin/javasci.jar" />

</classpath>
<javaPath>
<absolutePath value="****" />

</javaPath>
<policyFile>
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/scripts/proactive.java.policy"

/>
</policyFile>
<log4jpropertiesFile>

<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/scripts/proactive-log4j" />
</log4jpropertiesFile>

</processDefinition>
<processDefinition id="rsh_predadab">

<rshProcess class="org.objectweb.proactive.core.process.rsh.RSHProcess" hostname=
"predadab">

<environment>
<variable name="SCIDIR" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="SCI" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="LD_LIBRARY_PATH" value="${REMOTE_HOME}/${SCILAB_HOME}/bin"/>

</environment>
<processReference refid="localJVM"/>

</rshProcess>
</processDefinition>
<processDefinition id="rsh_trinidad">

<rshProcess class="org.objectweb.proactive.core.process.rsh.RSHProcess" hostname=
"trinidad">

<environment>
<variable name="SCIDIR" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="SCI" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="LD_LIBRARY_PATH" value="${REMOTE_HOME}/${SCILAB_HOME}/bin"/>

</environment>
<processReference refid="localJVM"/>

</rshProcess>
</processDefinition>
<processDefinition id="rsh_apple">

<rshProcess class="org.objectweb.proactive.core.process.rsh.RSHProcess" hostname="apple"
>

<environment>
<variable name="SCIDIR" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="SCI" value="${REMOTE_HOME}/${SCILAB_HOME}"/>
<variable name="LD_LIBRARY_PATH" value="${REMOTE_HOME}/${SCILAB_HOME}/bin"/>

</environment>
<processReference refid="localJVM"/>

</rshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example 43.2. Descriptor deployment

43.3. Graphical User Interface (Scilab Grid ToolBox)

This interface allows to manipulate the functionnalities of the API in a user friendly way.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

380

43.3.1. Launching Scilab Grid ToolBox

To launch the application, you have to execute the script:

On Unix:

cd scripts/unix
scilab.sh

On Windows:

cd scripts\windows
scilab.bat

if you use a local version of Scilab, you must declare the environment variables in the file:

scripts/[unix|windows]/scilab_env.[sh|bat]

Once the application is started, the main frame is displayed. This frame is composed in three parts:

• The tree of Scilab engines .
• The ltables of pending, running, and terminated tasks.
• The text area to display the log of user operations.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

381

Figure 43.1. Main frame

43.3.2. Deployment of the application

The first step is to deploy the topology of the application. A dialog enables to choice the descriptor and to select the virtual node.
The button "deploy" launches the deployment of scilab engine over the nodes.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

382

Figure 43.2. Deployment of the application

43.3.3. Task launching

The next step is the task launching. A dialog enables to select the script and possibly to define the script initialization, the return
values, and the task priority. The button start creates and sends the task.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

383

Figure 43.3. Creation of a task

43.3.4. Display of results

The last step is the display of results. A double click on a task in the table of terminated tasks sets visible a dialog. This dialog dis-
plays the tasks properties and the result (with the possibility to save it in a file)

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

384

Figure 43.4. Display a result

43.3.5. Task monitoring

In the main frame, several tables of tasks (pending, executing , terminated) allow to monitor the application. These tables allows to
show just for each task the relevant informations. A double click on a task in these tables sets visible a dialog. This dialog displays
the tasks properties (path, script initialization, results).

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

385

• The table of pending tasks enables to cancel selected tasks and to clear all cancelled tasks
• The table of executing tasks enables to kill selected tasks and to clear all killed tasks
• The table of terminated tasks enables to get the status of tasks (SUCCESS or ABORT), to save the first selected task in file

the result, to remove selected tasks.

43.3.6. Engine monitoring

In the main frame, a tree describes all nodes used by the application. Over the execution of the application, if a task is aborted, the
engine of this task may be unstable (this one is displayed with a red foreground). A rigth-click on it show a popup menu to restart
it.

Figure 43.5. State of Engines

Part VII: Graphical User Interface (GUI)
and tools

Chapter 43: Interface with Scilab

386

Chapter 44. TimIt API
44.1. Overview

TimIt offer a complete solution to benchmark an application. It is an API which provide some advanced timing and event ob-
serving services. Benchmarking your ProActive application will permit you to enhance performance of it. Thanks to generated
statistics charts, you will be able to determine critical points of your application.

Different kind of statistics can be done. You can setup different timers with hierarchical capabilities and see them in charts.
Event observers can be placed to study, for example, communication pattern between your application's workers.

TimIt generate charts and results XML file, with exact timing and event observers values. Here are some examples of charts and
XML files generated by TimIt :

<timit>

<FinalStatistics name="Example2 4" runs="10" timeoutErrors="0"
date="2006-11-05 10:46:56.742">

<timers>
<timer name="total"

min="2095.0" avg="2191.250" max="2357.0" dev="1.603" sum="2187.750">
<timer name="work"

min="1453.0" avg="1466.000" max="1473.0" dev="0.951" sum="0.000" />
<timer name="init"

min="147.0" avg="175.250" max="205.0" dev="2.932" sum="0.000" />
<timer name="end"

min="467.0" avg="546.500" max="679.0" dev="1.439" sum="0.000" />
</timer>

</timers>

<events>
<event name="nbComms" min="92.000" avg="92.000" max="92.000" dev="0.000" />
<event name="commPattern" value="Too complex value, first run shown">.

10 0 13 0
0 13 0 10

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

387

13 0 10 0
0 10 0 13

</event>
<event name="densityPattern" value="Too complex value, first run shown">.

20 0 2080 0
0 2080 0 20

2080 0 20 0
0 20 0 2080

</event>
</events>

<informations>
<deployer jvm="Java HotSpot(TM) Client VM 1.5.0_06-64 - Version 1.5.0_06"

os="ppc Mac OS X 10.4.8" processors="1" />
</informations>

</FinalStatistics>

</timit>

44.2. Quick start

44.2.1. Define your TimIt configuration file

Configuring TimIt is done through an XML configuration file which is axed around four major tags :

44.2.1.1. Global variables definition

This part set variables which can be used both inside this file as you can see in next parts, but also in ProActive descriptor file.

TimIt offer a nice tool to deal with variables and redundancy : the sequences variables

These variables are very useful to reduce your configuration file size and its management.

A sequence is a list of values for a variable. In our example, NP is a sequence variable which have values 4 and 8 and the bench-
mark tag will be expanded into two benchmark tags : one with NP value set to 4 and the other with NP value set to 8.

If sequence variables are used in a Serie's attribute, you will expand this Serie into as tags as you have values in your sequence.

For example, these two examples are equivalents :

<timit>

<globalVariables>
<descriptorVariable name="ALGO" value="Algo1,Algo2"/>
<descriptorVariable name="NP" value="4,8"/>
<descriptorVariable name="TEST" value="#1"/>

</globalVariables>

<serie (...) result="${ALGO}">
<benchmarks>
<benchmark name="Test ${TEST} : algo ${ALGO} on ${NP} nodes" (...)/>

</benchmarks>
</serie>

</timit>

<timit>

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

388

<globalVariables>
<descriptorVariable name="TEST" value="#1"/>

</globalVariables>

<serie (...) result="Algo1">
<benchmarks>

<benchmark name="Test #1 : algo Algo1 on 4 nodes" (...)/>
<benchmark name="Test #1 : algo Algo1 on 8 nodes" (...)/>

</benchmarks>
</serie>

<serie (...) result="Algo2">
<benchmarks>

<benchmark name="Test #1 : algo Algo2 on 4 nodes" (...)/>
<benchmark name="Test #1 : algo Algo2 on 8 nodes" (...)/>

</benchmarks>
</serie>

</timit>

Important :

Sequences variables are not handled by ProActive descriptor files, so do not use same names for ProActive descriptor and se-
quence variable names to avoid bad overwriting. To do it, you should prefer overwriting in benchmark tag like this :

<benchmark name="Test ${TEST} : algo ${ALGO} on ${NP} nodes" (...) >
<descriptorVariable name="NBNODES" value="${NP} />

</benchmark>

Note :

You can use sequences without using variables with #{...} pattern :

<benchmark name="Test ${TEST} : algo #{Algo1,Algo2} on ${NP} nodes" (...) >
<descriptorVariable name="NBNODES" value="${NP} />

</benchmark>

44.2.1.2. Serie

A Serie represent a suite of benchmarks. For example, if you want to benchmark two algorithms with different parameters each,
you can specify two Series (one for each algorithm) and then specify different benchmarks for all parameters.

Description of the attributes :

• [CAN] descriptorBase : the file containing the base ProActive deployment descriptor
• [MUST] class : the class of your application which is Startable (see section 2.2)
• [MUST] result : the output file for writing final results
• [CAN] errorFile : if an error occur (recoverable), logs will be outputed into this file

44.2.1.3. Chart definition

Here you specify parameters for the charts. Those charts will be generated thanks to benchmark results.

Description of the attributes :

Other attributes are chart's type specific :

• [MUST] type : the type of chart you want to create
• [MUST] title : your chart title
• [MUST] subtitle : your chart subtitle

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

389

• [MUST] xaxislabel : the X axis label
• [MUST] yaxislabel : the Y axis label
• [CAN] width : the width of the output chart
• [CAN] height : the height of the output chart
• [MUST] filename : the chart output filename (will produce both a .PNG and .SVG files)

Other attributes are chart's type specific :

• [CAN] filter : the name of the counter (event) you want to involve in this chart. All activated counters (events) are involved
if not specified (available only for HierarchicalBarChart and Line2dChart)

• [MUST] tag : the tag to deal with (timers or events) must be associated with attribute (available only for Line2dChart)
• [MUST] attribute : the attribute value (min, average, max or deviation) to use for the chart (available only for

Line2dchart)
• [CAN] legendFormatMode : the format of the legend (Default, None, K1000, K1024) to show value in legent as stand-

ard, power of 2 or power of 10 numbers (available only for MatrixChart)
• [CAN] scaleMode : the scale mode (Default, Linear, Logarithmic) for che chart (available only for MatrixChart)

44.2.1.4. Benchmark suite definition

Define the suite of tests with different parameters. Each test will generate a result file and an entry in chart.

Description of the attributes :

• [MUST] name : the name of this benchmark. Will be set in result file.
• [MUST] run : the number of runs you want to perform. Final result will give the min/average/max/deviation between these

runs.
• [CAN] warmup : the number of "untimed" runs you want to perform before starting the real runs.
• [CAN] timeout : the time in seconds before restarting a run (with a maximum of 3 restarts per benchmark).
• [CAN] descriptorGenerated : the ouput file where TimIt but the ProActive deployment descriptor.
• [CAN] removeExtremums : if true, max and min values between all runs will be removed.
• [CAN] note : the text entered here will be copied into result file. Useful for specifying launch environnement.
• [MUST] parameters : the parameters to launch your application.
• [MUST] output : result of all runs will be outputted into this output file.

In addition to these attributes, you can specify descriptorVariable tags which will be copied into generated ProActive deployment
descriptor file.

Here is a complete example of a configuration file :

<?xml version="1.0" encoding="UTF-8"?>
<timit>

<!-- GLOBAL VARIABLES DEFINITION
Will replace those in ProActive deployment descriptor -->

<globalVariables>
<descriptorVariable name="VMARGS" value="-Xmx32M -Xms32M" />
<descriptorVariable name="CLASS_PREFIX"

value="org.objectweb.proactive.examples.timit" />
<descriptorVariable name="NP" value="4,8" />
<descriptorVariable name="RUN" value="1" />
<descriptorVariable name="WARMUP" value="0" />

</globalVariables>

<!-- Running example2 suite and generate different charts -->
<serie descriptorBase="${PROJECT_PATH}/descriptors/TimIt.xml"

result="${PROJECT_PATH}/results/example2.4-8.xml"
class="${CLASS_PREFIX}.example2.Launcher">

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

390

<charts>
<chart type="HierarchicalBarChart"

filter="total,init,foo"
title="Example2 on 4 and 8 nodes"
subtitle="Timing values" width="800" height="600"
xaxislabel="Benchmarks" yaxislabel="Time in seconds"
filename="${PROJECT_PATH}/results/example2.Timing" />

<chart type="MatrixChart"
eventName="commPattern"
title="Example2"
subtitle="Communications pattern"
xaxislabel="Receiver rank" yaxislabel="Sender rank"
scalemode="logarithmic" legendFormatMode="pow2"
filename="${PROJECT_PATH}/results/example2.Pattern" />

<chart type="Line2dChart"
tag="events" filter="nbComms" attribute="avg"
title="Example2"
subtitle="Total number of communications"
xaxislabel="Benchmarks" yaxislabel="Nb communications"
filename="${PROJECT_PATH}/results/example2.nbComms" />

</charts>

<benchmarks>
<benchmark name="Example2 ${NP}"

run="${RUN}" warmup="${WARMUP}" timeout="100"
descriptorGenerated="${PROJECT_PATH}/descriptors/generated.xml"
removeExtremums="true"
note="My first test"
parameters="${PROJECT_PATH}/descriptors/generated.xml ${NP}"
output="${PROJECT_PATH}/results/example2-${NP}.xml">

<descriptorVariable name="NODES" value="${NP}" />
<descriptorVariable name="TIMIT_ACTIVATE"

value="total,init,work,end,foo,densityPattern,commPattern,nbComms"/>
</benchmark>

</benchmarks>
</serie>

</timit>

44.2.2. Add time counters and event observers in your source files

1. Main class have to implement Startable interface

public class Example implements Startable {

/** TimIt needs a noarg constructor (can be implicit) **/
public Example() {}

/** The main method is not used by TimIt **/
public static void main(String[] args) {

new Example().start(args);
}

/** Invoked by TimIt to start your application **/
public void start(String[] args) {

// Creation of the Timed object(s)
// It can be by example :
// - a classic java object
// - an active object

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

391

// - a group of objects
Worker workers = ProSPMD.newSPMDGroup(...);

// You have to create an instance of TimItManager and
// give to it the Timed objects
TimItManager tManager = TimItManager.getInstance();

// Timed objects start their job
workers.start();

// At the and of you application, you must invoke
// the getBenchmarkStatistics to retrieve the results
// from the Timed objects
BenchmarkStatistics bStats = tManager.getBenchmarkStatistics();

// Then, you can modify or print out the results
System.out.println(bStats);

}
}

2. Analyzed class have to extend Timed

public class Worker extends Timed {

/** Declaration of all TimerCounters and EventObservers **/
private TimerCounter T_TOTAL, T_INIT, T_WORK, T_COMM;
private EventObserver E_COMM, E_MFLOPS;

public void start() {
// Register the TimerCounters and EventObservers
T_TOTAL = TimIt.add(new HierarchicalTimerCounter("total"));
T_INIT = TimIt.add(new HierarchicalTimerCounter("init"));
T_WORK = TimIt.add(new HierarchicalTimerCounter("work"));
T_COMM = TimIt.add(new HierarchicalTimerCounter("comms"));
E_MFLOPS = TimIt.add(new DefaultEventObserver("mdlops"));
E_COMM = TimIt.add(new CommEventObserver(

"communicationPattern", groupSize, timedID));

// You must activate TimIt before using your counters and observers
// According to the 'proactive.timit.activation' property value, it
// will activate or not concerned TimerCounters (EventObservers)
TimIt.activation();

// The you can use your counters and observers
// (better examples of usage in next section)
T_TOTAL.start();
for(int destID=0; destID<nbTimeds; destID++) {
TimIt.notifyObservers(new CommEvent(E_COMM,destID,1));

}
T_TOTAL.stop();
TimIt.notifyObservers(new Event(E_MFLOPS,mflops));

// At the end, you have invoke finalization method to return results
// to the startable object
TimIt.finalization(timedID,"Worker "+timedID+" OK");

}
}

44.3. Usage

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

392

TimIt provide different kind of services. By combinig them, you will be able to measure many parameters of your application.
TimIt package contains few examples for using these services in your application.

44.3.1. Timer counters

It will help you to time some piece of code in your application. For example you can get total, initialization, working and commu-
nication time. These counters are hierarchicals. It means that time values will be defined by counter dependances.

Example of hierarchy :

• Total time = 60 seconds
• Initialization time = 10 seconds

• Communication time = 4 seconds
• Working time = 50 seconds

• Communication time = 17 seconds

Here you can see communication part both in initialization and working time.

The code associated to this example is :

T_TOTAL.start();

T_INIT.start();
// Initialization part...
T_COMM.start();

// Communications...
T_COMM.stop();

T_INIT.stop();

T_WORK.start();
// Working part...
T_COMM.start();

// Communications...
T_COMM.stop();

T_WORK.stop();

T_TOTAL.stop();

44.3.2. Event observers

It will help you to keep an eye on different events that occur in your application.

There is two types of events :

• Default event

This event manage a single value (a double). It can be useful to compute mflops or total number of performed communica-
tions.

Example of usage :

// Initialization
int collapseOperation = DefaultEventData.SUM;
int notifyOperation = DefaultEventData.SUM;
EventObserver E_NBCOMMS = TimIt.add(

new DefaultEventObserver("nbComms", collapseOperation, notifyOperation));

Value of notifyOperation determine what operation to perform between notifications.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

393

Value of collapseOperation determine what operation to perform between Timed objects.

// Utilization
for(int i=0; i<10; i++) {

TimIt.notifyObservers(new Event(E_NBCOMMS, 1));
}

For each Timed object, nbComms value will be 10, and final value would be 30 if we had 3 Timed objects.
• Communication event

This event were designed for communications. It manage a square matrix which can be used by example to determine topo-
logy of communications between Timed objects.

Example of usage :

// Initialization
EventObserver E_COMM = TimIt.add(

new CommEventObserver("mflops", groupSize, timedID);

Value of groupSize represent the number of Timed objects which are involved in these communications.

Value of timedID represent an identification number which represent the current Timed object (like the rank).

// Utilization
int destID = (timedID + 1) % groupSize;
TimIt.notifyObservers(new CommEvent(E_COMM, destID, 1));

Between each notification an addition with the old value will be performed. Then the collapsing operation between the
Timed objects will be an sum. In this case, we will obtain a matrix showing the toplogy of our application.

In line we have the sender, and in column with have the receiver. Here we obtain a ring topology :

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

44.4. TimIt extension

TimIt package can be found in org.objectweb.proactive.benchmarks.timit. We try to make easy as possible the way to add a
new feature to this application. To do so, TimIt is organized in 5 major points which can be extended :

44.4.1. Configuration file

The subpackage timit.config contains all classes related to the configuration file management.

• ConfigReader

This class read the configuration file. It deal with globalVariable and serie tags.
• Tag

All created tags (except globalVariable) have to extend this class. It makes easier the way to read tag's attributes. If you
want to create a new tag, extend this class and take example on a new tag, like Benchmark, which is a good example.

Example :

Suppose you want to add attribute myOption to the Benchmark tag where the default value is 1.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

394

// Add these lines in the get method of Benchmark class
if (name.equals("myOption")) {
return "1";

}

Then, you will be able to use it like this it TimIt class:

String result = bench.get("myOption");
// ... and do whatever you want with it...

44.4.2. Timer counters

The subpackage timit.util.timing contains all classes related to the timing management.

• HierarchicalTimer

This class will contain values of all timer counters. Here is all the "intelligency" of the timer. For example, if you want to use
nanoseconds instead of milliseconds, you should extend this class and overwrite getCurrentTime() method.

44.4.3. Event observers

The subpackage timit.util.observing contains all classes related to the event observers management. Existant event observers are
default and communication specific. Default (DefaultEventObserver) is base on a single value, while the communication specific
(CommEventObserver) is based on 2D square matrix.

Event observers are based on observer/observaSuble design pattern.

• EventObserver

This interface must be implemented by all kind of event observers. These implementations will have to deal with an Event-
Data.

• Event

Each kind of event should have its own Event implementation. An instance of this event will be passed at each notification.
• EventData

Like HierarchicalTimer for the timing service, EventData is the "intelligence" of event observing. It will contain all data
values for a particular Timed object. It also contain a collapseWith() method which will be used to merge data values from
all Timed objects.

• EventObservable

For performance purpose, there is to implementations of this interface. A FakeEventObservable and a RealEventObserv-
able.

• EventDataBag

This class contains data values from all Timed objects. You are able to get it through an EventStatistics.
• EventStatistics

When a benchmark run is done, you can get a BenchmarkStatistics which contains both timer and event statistics.

Example :

Suppose you want to create a new kind of Event which work with a 3D matrix instead of 2D matrix like CommEventObserver.

You will have to implement 2 or 3 classes :

1. MyEventObserver which implements EventObserver

It will receive notifications and transmit them to your EventData.
2. MyEventData which implements EventData

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

395

It will contain your 3D matrix computed from your notifications.
3. MyEvent which implements Event

It will be passed at each notification of your observer and will contain necessary data to update your 3D matrix.

Notice that you can reuse an other Event implementation if existing ones are sufficient.

44.4.4. Chart generation

The subpackage timit.util.charts contains all classes related to charts generation. This service is based on JFreeChart API
(http://www.jfree.org/jfreechart/). Three major type of charts are proposed with TimIt :

• HierarchicalBarChart, used to represent a serie of hierarchical timing statistics.
• Line2dChart, used to represent a serie of single values.
• MatrixChart, used to represent communications specific event observer.

Remember that in configuration file, choosing your chart type is done through the type attribute of chart tag. Actually, it represent
the classname used to handle your chart creation.

By the way, to create an new kind of chart, you just have to implement the Chart interface. So, you will have access to XML res-
ults file, full BenchmarkStatistics and all chart parameters given in configuration file (see section 4.1 to add new attributes).

If you need a very complex rendering chart method, you can implement your own renderer like we did for HierarchicalBarChart.
Take example on this class, and see JFreeChart documentation.

Part VII: Graphical User Interface (GUI)
and tools

Chapter 44: TimIt API

396

Part VIII. Extending ProActive

Table of Contents

Chapter 45. How to write ProActive documentation .. 399
45.1. Aim of this chapter .. 399
45.2. Getting a quick start into writing ProActive doc ... 399
45.3. Example use of tags ... 399

45.3.1. Summary of the useful tags ... 399
45.3.2. Figures .. 400
45.3.3. Bullets .. 400
45.3.4. Code ... 400
45.3.5. Links .. 403
45.3.6. Tables ... 403

45.4. DocBok limitations imposed .. 403
45.5. Stylesheet Customization .. 404

45.5.1. File hierarchy ... 404
45.5.2. What you can change ... 404
45.5.3. The Bible .. 404
45.5.4. Profiling .. 404
45.5.5. The XSL debugging nightmare .. 404
45.5.6. DocBook subset: the dtd ... 405
45.5.7. Todo list, provided by Denis ... 405

Chapter 46. Adding Grahical User Interfaces and Eclipse Plugins ... 407
46.1. Architecture and documentation ... 407

46.1.1. org.objectweb.proactive.ic2d.monitoring ... 407
46.1.2. org.objectweb.proactive.ic2d.console .. 418
46.1.3. org.objectweb.proactive.ic2d.lib ... 418

46.2. Extending IC2D .. 418
46.2.1. How to checkout IC2D ... 418
46.2.2. How to implement a plug-in for IC2D ... 420

Chapter 47. Developing Conventions .. 437
47.1. Code logging conventions ... 437

47.1.1. Declaring loggers name .. 437
47.1.2. Using declared loggers in your classes .. 437
47.1.3. Managing loggers .. 437
47.1.4. Logging output ... 438
47.1.5. More information about log4j .. 438

47.2. Regression Tests Writing .. 438
47.3. Committing modifications in the SVN ... 438

Chapter 48. ProActive Test Suite API .. 439
48.1. Structure of the API ... 439

48.1.1. Goals of the API ... 439
48.1.2. Functional Tests & Benchmarks ... 439
48.1.3. Group ... 440
48.1.4. Manager .. 440

48.2. Timer for the Benchmarks ... 440
48.2.1. The solution ... 441
48.2.2. How to use Timer in Benchmarck? ... 441
48.2.3. How to configure the Manager with your Timer? .. 441

48.3. Results .. 441
48.3.1. What is a Result? .. 441
48.3.2. What we don't use a real logger API? .. 442

Part VIII: Extending ProActive

48.3.3. Structure of Results classes in TestSuite .. 442
48.3.4. How to export results ... 442
48.3.5. Format Results like you want .. 443

48.4. Logs .. 443
48.4.1. Which logger? .. 443
48.4.2. How it works in TestSuite API? ... 443
48.4.3. How to use it? .. 443

48.5. Configuration File ... 444
48.5.1. How many configuration files you need? ... 444
48.5.2. A simple Java Properties file ... 444
48.5.3. A XML properties file .. 445

48.6. Extends the API .. 447
48.7. Your first Test ... 447

48.7.1. Description .. 447
48.7.2. First step: write the Test ... 447
48.7.3. Second step: write a manager .. 449
48.7.4. Now launch the test 450
48.7.5. Get the results .. 450
48.7.6. All the code ... 451

48.8. Your first Benchmark ... 452
48.8.1. Description .. 452
48.8.2. First step: write the Benchmark .. 452
48.8.3. Second step: write a manager .. 454
48.8.4. Now launch the benchmark 455
48.8.5. All the Code ... 456

48.9. How to create a Test Suite with interlinked Tests ... 458
48.9.1. Description of our Test ... 458
48.9.2. Root Test: ProActive Group Creation .. 458
48.9.3. An independant Test: A Group migration ... 460
48.9.4. Run your tests .. 460
48.9.5. All the code ... 461

48.10. Conclusion ... 465

Chapter 49. Adding a Deployment Protocol ... 467
49.1. Objectives .. 467
49.2. Overview ... 467
49.3. Java Process Class ... 467

49.3.1. Process Package Arquitecture .. 467
49.3.2. The New Process Class .. 468
49.3.3. The StartRuntime.sh script .. 469

49.4. XML Descriptor Process ... 469
49.4.1. Schema Modifications .. 469
49.4.2. XML Parsing Handler .. 470

Chapter 50. How to add a new FileTransfer CopyProtocol .. 473
50.1. Adding external FileTransfer CopyProtocol .. 473
50.2. Adding internal FileTransfer CopyProtocol .. 473

Chapter 51. Adding a Fault-Tolerance Protocol .. 475
51.1. Overview ... 475

51.1.1. Active Object side ... 475
51.1.2. Server side ... 477

Chapter 52. MOP: Metaobject Protocol ... 479
52.1. Implementation: a Meta-Object Protocol .. 479
52.2. Principles ... 479
52.3. Example of a different metabehavior: EchoProxy ... 479

52.3.1. Instantiating with the metabehavior .. 479
52.4. The Reflect interface .. 480
52.5. Limitations ... 481

Part VIII: Extending ProActive

Chapter 45. How to write ProActive
documentation
45.1. Aim of this chapter

This chapter is meant to help you as a reference for writing ProActive-directed documentation. If you have added a new feature
and want to help its uptake by documenting it, you should be reading this chapter.

The examples sections (Section 45.3, “Example use of tags”) describes the use of the main tags you will use (eventually, all the
ProActive-allowed docbook tags should be described). The limitations (Section 45.4, “DocBok limitations imposed”) section de-
scribes what is allowed in our docbook style, and why we restrict ourselves to a subset of docbook.

45.2. Getting a quick start into writing ProActive doc

First off, all the documentation is written in docbook [http://nwalsh.com/docbook/]. You can find all the documentation source
files in the ProActive/doc-src/ directory.

Here are the instrtuctions to follow to start well & fast writing documentation for the ProActive middleware:

1. Get a working copy of the XMLMind XML Editor (XXE)
2. If you want a new chapter of your own, copy one of the existing files. (ProActive/doc-src/WSDoc.xml for example)
3. Reference your file in the root element of the doc (it is currently called PA_index.xml)
4. Open your file with XXE (it should not complain)

• REMEMBER: YOU ARE EDITING AN XML FILE - you can always edit it with vi if you dare
• Use generously the icons at the top, they have the essential tags you will use
• Use the list of tags, just under the icons, to select the item you want to edit
• Use the column on the right to add tags, when you know their names
• When you're done, there is a spellchecker intergated, as well as a DocBook validator. Please use these tools!

5. Make sure your new additions make a nice new document. Run the ant target build manualHtml, and you should have an
html copy of the doc. If you want to generate all the possible output formats, call build manual. You can also see what the
results seem to be without compiling! Try to open one of the docbook xml files in a browser (mozilla/firefox do it) and you
have a preview of what it might look like. Those who dislike XXE should be more than happy of it...

6. Commit your changes to the svn repository

45.3. Example use of tags

These are the basic rules to follow to use docbook tags. This document is made up of the files in the docBookTutorial directory,
and you may find it with the other manual files in the 'doc-src' directory.

45.3.1. Summary of the useful tags

The main tags/structures you should be using are:

• <figure> When you want an image
• <example> when you want an example with a title (should contain a <screen> or <programlisting>). You can also use

<literal> inside paragraphs.
• <screen> or <programlisting> for the code/text/descriptor examples
• <para> to start a paragraph, <sectX>, with X=1..4 to have headings, and <emphasis> when you want some particular bit to

stick out.
• <itemizedlist> followed by several <listitem> when you want bullets
• <xref> when you want to reference another section/chapter/part
• <ulink> when you want to reference a web url
• <table> when you want a table

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

399

http://nwalsh.com/docbook/

Note

BUT, you should always be using the XXE icons. They have all you need (except for EXAMPLE/SCREEN)!
You can also cut n paste!

45.3.2. Figures

This is the figure example. Please use the TITLE tag

Figure 45.1. A Drawing using the FIGURE tag

45.3.3. Bullets

Use ITEMIZEDLIST followed by as many 'LISTITEM's as you want!

• Provide an implementation for the required server-side functionalities
• Provide an empty, no-arg constructor
• Write a method in order to instantiate one server object.

45.3.4. Code

Code sources should be written between PROGRAMLISTING tags (possiblibly lang="java" or "xml"). You don't have to write
valid code, as the highlighting (done by LanguageToDocBook classes) is based on regular expression replacement, and not on lan-
guage grammars. If you want to show some program output, you can use SCREEN instead of PROGRAMLISTING. In any case,
watch out, because spaces count (and produce your own indentation)! You can also use the EXAMPLE TAG around your PRO-
GRAMLISTING or SCREEN tags, to give a title, and be referenced in the table of examples.

You can also insert directly sources from their original files, or type the code in the docbook. When you are typing the code inside
the docbook file, you can even highlight yourself some bits of the code you want to emphasis. This is shown in the last example.
But beware, as you are inside docbook you have to escape the "&" and the "<" signs. If you don't want to, hide everything in a
CDATA block.

Within normal text, for instance in a paragraph, you can also just use the LITERAL tag to highlight the main methods.

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

400

public class TinyHello implements java.io.Serializable {
static Logger logger = ProActiveLogger.getLogger(Loggers.EXAMPLES);
private final String message = "Hello World!";

/** ProActive compulsory no-args constructor */
public TinyHello() {
}

/** The Active Object creates and returns information on its location
* @return a StringWrapper which is a Serialized version, for asynchrony */
public StringMutableWrapper sayHello() {

return new StringMutableWrapper(
this.message + "\n from " + getHostName() + "\n at " +
new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss").format(new java.util.Date()));

}

/** finds the name of the local machine */
static String getHostName() {

try {
return java.net.InetAddress.getLocalHost().toString();

} catch (UnknownHostException e) {
return "unknown";

}
}

/** The call that starts the Acive Objects, and displays results.
* @param args must contain the name of an xml descriptor */
public static void main(String[] args)

throws Exception {
// Creates an active instance of class Tiny on the local node
TinyHello tiny = (TinyHello) ProActive.newActive(

TinyHello.class.getName(), // the class to deploy
null // the arguments to pass to the constructor, here none

); // which jvm should be used to hold the Active Object

// get and display a value
StringMutableWrapper received = tiny.sayHello(); // possibly remote call
logger.info("On " + getHostName() + ", a message was received: " + received); // potential

wait-by-necessity
// quitting

ProActive.exitSuccess();
}

}

Example 45.1. JAVA program listing with file inclusion

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<!-- A user component. It has an interface to the dispatcher. -->

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

401

<definition name="org.objectweb.proactive.examples.components.c3d.adl.UserImpl">

<!-- The interfaces the component defines -->
<interface signature="org.objectweb.proactive.examples.c3d.Dispatcher" role="client" name=

"user2dispatcher"/>

<!-- The implementation of the component -->
<content class="org.objectweb.proactive.examples.components.c3d.UserImpl"/>
<controller desc="primitive"/>

<!-- deploy this component only on 'User' VirtualNodes (which must be found in the deploy.
descr.) -->
<virtual-node name="User" cardinality="single"/>

</definition>

Example 45.2. XML program listing with file inclusion

A screen example, for instance some code inside a unix shell:

linux > start.sh &

Here is some java code directly included in the docbook (you can use CDATA to escape & and <):

package util;

import java.io.IOException;

/** Just a dummy class. */

public class Dummy {

/** Just the method description
* @param fileToConvert the name of the file to convert
* @return a String created */
String convert(String fileToConvert) throws IOException {

if (a > b && c < d) {
// can use "this" for 'NodeCreationEvent'
VirtualNode vn = pad.getVirtualNode("p2pvn");
vn.start();
}

return "Hello World";
}

}

Here is an example of deployment descriptor that deploys 3 virtual nodes .

<!-- Deploying 3 virtual Nodes -->
<ProActiveDescriptor>
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="NonFT-Workers" property="multiple"/>
<virtualNode name="FT-Workers" property="multiple" ftServiceId="appli"/>

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

402

<virtualNode name="Failed" property="multiple" ftServiceId="resource"/>
</virtualNodesDefinition>

</componentDefinition>

<deployment>
<mapping>
<map virtualNode="NonFT-Workers">
<jvmSet>
<vmName value="Jvm1"/>
</jvmSet>
</map>
<map virtualNode="FT-Workers">
<jvmSet>
<vmName value="Jvm2"/>
</jvmSet>
</map>

....

45.3.5. Links

Use XREF tags to point to the Figures id (Section 45.3.2, “Figures”) which is in the doc above. The LINKEND attribute points to
the id which is referenced, for example, in a SECT1 tag. The ENDTERM tag (example with the biblio) is used to customize the
string which will be used to point to the reference.

You can also use XREF to include files which are in the html hierararchy already. This goes for java files, and deployment
descriptors. You have a few examples in Descriptor.xml. (technical note: including files is done through the java files in util. This
may be done in pure xsl, but I gave up! The pdf and html look different thanks to profiling)

Use ULINK tags to point to web references (ProActive for instance) [http://www-sop.inria.fr/oasis/proactive/]. Use freely, it sticks
out nicely in pdf too!

Use CITATION followed by an XREF for citations. For example, see [BBC02] to learn on groups. All the biblio entries should be
put in biblio.xml. You should consider using the bibdb tool to convert from bibtex
(http://charybde.homeunix.org/~schmitz/code/bibdb/).

45.3.6. Tables

The tag to use is TABLE.

Name Hits

Bob 5

Mike 8

Jude 3

Table 45.1. This is an example table

45.4. DocBok limitations imposed

Here is described what is allowed in our docbook style. We restrict ourselves to a subset of docbook, because we want a uniform
doc style, and want maintainable doc. To achieve this goal, we require minimum learning investment from our PA developers, who
are meant to be coding, not spend their time writing doc. So you still want to add a fancy feature? Well, you can, as long as you de-
scribe how to use this new tag in this howto, and be extra careful with the pdf output.

There is a schema specifying which are the allowed tags. You can only use the tags which this dtd allows. If you want more free-
dom, refer to Section 45.5.6, “DocBook subset: the dtd”. For now, you can use the following tags:

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

403

http://www-sop.inria.fr/oasis/proactive/

• part, appendix, chapter, sect[1-5], title, para, emphasis, xref, ulink
• table, figure, caption, informalfigure, informaltable
• itemizedlist and orderedlist, listitem
• example, programlisting, screen, and literal
• The others that you might come along, albeit less frequently, are citation, email, indexterm, inlinemediaobject, note, answer,

question, subscript, superscript

45.5. Stylesheet Customization

Ok, now you're nearly a docbook guru? You want to get right down to the entrails of the machinery? OK, hop on and enjoy the
ride! Here are a few notes on how you should go about customizing the output. That means, changing how the pdf and html are
written.

45.5.1. File hierarchy

The files for configuration are the following:

• common.xsl This is where all the common specifications are made, ie those that go and in pdf and in html.
• pdf.xsl This is where all the pdf specific customizations are made
• html.xsl This is where most html specific customizations are made.
• onehtml.xsl and chunkedhtml.xsl, specifics for html, the former on one page, "chunked", one file per chapter, for the latter.
• ProActive.css Which is yet another extra layer on top of the html output.

45.5.2. What you can change

Basically, in the customization layers, you have full control (just do what you want). The only thing is that each block (template,
variable...) should be described by a comment. That will help later users. As customization can get cryptic, make a special effort!

45.5.3. The Bible

The book you want to have with you is the following: "DocBook XSL: The Complete Guide", Third Edition, by Bob Stayton, on-
line version at http://www.sagehill.net.

Have a look at the index if you just want to change a little something in the customization. Parse through it at least once if you in-
tend to do some heavy editing. I have found everything I needed in this book, but sometimes in unexpected sections.

45.5.4. Profiling

If you want to write some stuff that should go in pdf but not html, or vice-versa, you want to do some "profiling". This is very easy
to do, as it was needed and tuned for the processing stages. Add an "os" attribute to the sections you want to exclude, specifying
the wanted output format in which it should only appear.

<para os="pdf"> This paragraph only appears in pdf output! </para>

(Comment) Using the "os" attribute to specify the output is not elegant. Agreed. But in docbook there is no default attribute inten-
ded to express the expected output file format, and using the "role" attribute is discouraged.

45.5.5. The XSL debugging nightmare

If you are editing the xsl stylesheets, and are having a hard time figuring out what's happening, don't panic! Use many messages to
find out what the values of the variables are at a given time:

<xsl:message>
<xsl:text> OK, in question.toc, id is </xsl:text> <xsl:copy-of select="$id" />
</xsl:message>

<xsl:for-each select="./@*">
<xsl:message>
<xsl:text> Attribute <xsl:value-of select="name(.)"/> = <xsl:value-of select="."/> </xsl:text>

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

404

http://www.sagehill.net

</xsl:message>
</xsl:for-each >

You will very soon find that you still have to dig deeper into the templates, and they certainly are not easy to follow. Here's a little
helper:

java -cp $CLASSPATH org.apache.xalan.xslt.Process -TT -xsl ... -in ... -out ...

This uses the specified templates with the xsl file specified, but tracing every template called. Useful when you're wondering
what's being called. I'm sorry but I have not found a way to trace the call tree of a method, ie knowing exactly where it comes
from. Have to do without!

45.5.6. DocBook subset: the dtd

The dtd is the file detailling which are the allowed tags in our DocBook subset. Some tags have been removed, to make it easier to
manage. Please refer to the file called ProActive/doc-src/ProActiveManual.dtd to know how much freedom you have been gran-
ted.

When you run the manual generation through the ant tasks, the xml is checked for validity. The message you should see is

XML is VALID and complies to dtd in ../docs/tmp/PA_index.xml

If you happen to modify the dtd, you should put also copy it on the web, on /proj/oasis/www/proactive/doc/dtd/$version/ or else
the previous version one will always be used.

45.5.7. Todo list, provided by Denis

1. Ensure no dead links exist (easy with wget --spider OR http://www.dead-links.com/ for html, harder for the pdf).
2. Create an index, and put the main words in it
3. All important code examples should be wrapped in EXAMPLE tags

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

405

Part VIII: Extending ProActive Chapter 45: How to write ProActive docu-
mentation

406

Chapter 46. Adding Grahical User Interfaces
and Eclipse Plugins
46.1. Architecture and documentation

IC2D is composed of several plugins:

• org.objectweb.proactive.ic2d : This plugin is the "frame" which contains the other plugins. It is only needed in the stan-
dalone version.

• org.objectweb.proactive.ic2d.monitoring : provides graphical representation of hosts, runtimes, virtual nodes and active
objects topology, also displaying communications between active objects.

• org.objectweb.proactive.ic2d.jobmonitoring : provides tree-based representation of hosts, runtimes , virtual nodes and act-
ive objects.

• org.objectweb.proactive.ic2d.launcher : initiates application deployment using deployment descriptors
• org.objectweb.proactive.ic2d.lib : provides Java archives (jar) required by the other plugins which are not provided by the

Eclipse like ProActive.jar, log4j.jar, etc.
• org.objectweb.proactive.ic2d.console : provides logging capability through the Eclipse console.

46.1.1. org.objectweb.proactive.ic2d.monitoring

The aim of this plugin is to provide the essential features for monitoring of ProActive applications. Monitorable entities are

Figure 46.1, “Graphical representation of the data” shows the graphical representation of hosts, virtual nodes, runtimes
(ProActive JVM), nodes, and active objects.

Figure 46.1. Graphical representation of the data

46.1.1.1. Class Diagrams

The diagram Figure 46.2, “Class diagram” describes relationships between Java classes:

• The AOObject class represents an Active Object.
• The NodeObject class represents a node. Nodes contain Active Objects.
• The VMObject represents a runtime. Runtimes contain nodes
• The VNObject class represents a virtual node. The virtual node is a logical entity which has no real existence at runtime.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

407

When using Deployment Descriptors, it is the mapping of a virtual node on a runtime that leads to the creation of one or
more nodes on this runtime. Virtual nodes can be mapped on more than one runtime, thus as shown in the figure, a node is
bound to both a runtime and a virtual node.

• The HostObject class represents the hardware that hosts the runtime, it is possible to coallocate several runtimes on the same
host

• The WorldObject class is a "special" object that allows to gather hosts and virtual nodes under a common root.

Figure 46.2. Class diagram

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

408

46.1.1.2. Monitoring in detail

When IC2D is used to monitor a host, it looks for any available runtimes on the host, then enumerates any nodes, virtual nodes and
active objects contained within each runtime.

In order to do this, it grabs the URL entered by the user, then creates a new HostObject and add it to the WorldObject. Next, a
thread starts and regularly queries the WorldObject to explore itself. The following sequence diagram explains how a WorldObject
explores itself for the first time (Figure 46.3, “The world exploring itself for the first time”).

• The WorldObject queries its HostObjects to explore themselves
• Each HostObject looks for ProActive Runtimes on the current host then creates VMObject s corresponding to the newly dis-

covered runtimes
• Each VMObject explores itself, looking for Nodes contained within its ProActiveRuntime. Each Node is mapped into a

NodeObject
• Each NodeObject looks for contained active objects asking it to the ProActiveRuntime of its parent (VMObject) and creates

the corresponding AOObject s.

Figure 46.3. The world exploring itself for the first time

Now all objects are found. And these operation will be regularly repeated until the user stops monitoring.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

409

46.1.1.3. Model View Controller (MVC) -- The Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF) [http://www.eclipse.org/gef] allows developers to take an existing application model and
quickly create a rich graphical interface.

GEF employs an MVC (Model View Controller) architecture which enables simple changes to be applied to the model from the
view.

This section introduces the needed to the comprehension of GEF. For more details about GEF go to the Section 46.1.1.4, “Links” .

We describe here the implementation of the MVC pattern used within IC2D:

• The Models (Figure 46.4, “The Models”)
• The Controllers = In GEF the controllers are subclasses of EditPart (Figure 46.5, “The Controllers and the factory”)
• The Views = The Figure s (Figure 46.6, “The Views”)

Figure 46.4. The Models

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

410

http://www.eclipse.org/gef

Figure 46.5. The Controllers and the factory

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

411

Figure 46.6. The Views

Three things to not forget

• The data must be organized in a tree structure. . See Figure 46.7, “ The data strucure of the monitoring plugin ”
• In GEF the controllers are subclasses of EditPart
• A factory (implementing EditPartFactory) allows GEF to create the controller corresponding to the model.

In blue, the data which we use with GEF. As you can see it, they are organized in a tree structure.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

412

Figure 46.7. The data strucure of the monitoring plugin

Description of the creation of the controllers and the figures step by step :

1. We indicate to GEF the root element of the tree, and the factory.
2. GEF queries the factory to create the controller corresponding to the root.
3. GEF queries the obtained controller to create the figure corresponding to the model.
4. GEF queries the root to provide it its sons.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

413

5. On each one of these children, GEF do the same process.
6. GEF queries the factory to create the controller corresponding to the first child.
7. GEF queries the obtained controller to create the figure corresponding to the model.
8. GEF queries the model to provide it its sons.
9. etc...

46.1.1.4. Links

The official site of GEF: http://www.eclipse.org/gef/

A web page referring a lot of very interesting links about GEF: http://eclipsewiki.editme.com/GEF
[http://eclipsewiki.editme.com/GEF]

A detailed description of GEF : http://eclipse-wiki.info/GEFDescription [http://eclipse-wiki.info/GEFDescription]

A tutorial : 'Building a GEF-based Eclipse editor' : Part 0
[http://home.izforge.com/index.php/2005/08/08/160-building-a-gef-based-eclipse-editor-part-0] , Part 1
[http://home.izforge.com/index.php/2005/08/09/161-building-a-gef-based-eclipse-editor-part-1] , Part 2
[http://home.izforge.com/index.php/2005/08/18/166-building-a-gef-based-eclipse-editor-part-2] , Part 3
[http://home.izforge.com/index.php/2005/09/01/170-building-a-gef-based-eclipse-editor-part-3] .

Somes GEF examples : http://eclipse-wiki.info/GEFExamples [http://eclipse-wiki.info/GEFExamples]

46.1.1.5. Observer/Observable

The pattern Observer/Observable is used to update the figures when the model changes.

In the Figure 46.8, “Observable objects” you can see all the observable objects with methods which can call notifyObservers .

Figure 46.8. Observable objects

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

414

http://www.eclipse.org/gef/
http://eclipsewiki.editme.com/GEF
http://eclipsewiki.editme.com/GEF
http://eclipse-wiki.info/GEFDescription
http://home.izforge.com/index.php/2005/08/08/160-building-a-gef-based-eclipse-editor-part-0
http://home.izforge.com/index.php/2005/08/08/160-building-a-gef-based-eclipse-editor-part-0
http://home.izforge.com/index.php/2005/08/09/161-building-a-gef-based-eclipse-editor-part-1
http://home.izforge.com/index.php/2005/08/09/161-building-a-gef-based-eclipse-editor-part-1
http://home.izforge.com/index.php/2005/08/18/166-building-a-gef-based-eclipse-editor-part-2
http://home.izforge.com/index.php/2005/08/18/166-building-a-gef-based-eclipse-editor-part-2
http://home.izforge.com/index.php/2005/09/01/170-building-a-gef-based-eclipse-editor-part-3
http://home.izforge.com/index.php/2005/09/01/170-building-a-gef-based-eclipse-editor-part-3
http://eclipse-wiki.info/GEFExamples

In the Figure 46.9, “Observer objects” , you can see all the observer objects and where the method update is overriden.

Figure 46.9. Observer objects

In the Table 46.1, “Observable and Observer objects” , you can see each observable with their observers.

Observable Observer

WorldObject

WorldEditPart

MonitorThread

VirtualNodesGroup

HostObject HostEditPart

VMObject VMEditPart

NodeObject NodeEditPart

AOObject AOEditPart

Table 46.1. Observable and Observer objects

46.1.1.6. The espionage of the active objects

In the following diagram, you can see all classes necessary to the espionage of the active objects.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

415

Figure 46.10. Spy classes

When a node is found for the first time, IC2D put a spy in the node.

46.1.1.7. How an event of a proactive object arrive to the monitoring plugin?

Once the spy is in the node, it regularly asks to the SpyEventManager to provide all the events. The next step is explained in the
Figure 46.11, “Active Objects' events management”.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

416

Figure 46.11. Active Objects' events management

1. Then the Spy transmits all these events to the SpyListener .
2. For the each event, the SpyListener calls the corresponding method on SpyEventListener
3. The SpyEventListener searches the AOObject concerned with this event (thanks to the Node attribut of his class). And it

modifies the state of this object.
4. The AOObject notify its observers.
5. The AOEditPart , which is an AOObject observer, update the view of this Active Object.

46.1.1.8. When a new Spy is created?

A new spy is created each time that a new Node is found.

46.1.1.9. How a new Spy is created?

The NodeObject calls its "addSpy()" method :

1. This method creates a SpyEventListener with the NodeObject in parameter.
2. It creates also a SpyListener with the SpyEventListener in parameter.
3. Next,it turns active the previous SpyListener.
4. And creates a new Active Object (with the ProActive.newActive method) which is the spy with 2 parameters : the turned

active object (SpyListener) , and the node . (This node is given in parameter at the constructor of the NodeObject)

46.1.1.10. How an active object is added to the objects to monitor?

1. When an active object is found for the first time, we ask to the NodeObject to provide us the spy.
2. We call the ' addMessageEventListener ' method on the Spy .
3. The Spy calls on its SpyEventManager the ' addMessageEventListener ' method.
4. The SpyEventManager adds a MessageEvent listener to the body of the active object.

46.1.1.11. How to create and use filters

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

417

In some cases, you may want to hide some objects to the users, i.e. don't monitor some internal objects. For example, spy objects
used by IC2D for monitoring JVMs. That's why we introduce the concept of filtering in the monitoring plugin.

The package org.objectweb.proactive.monitoring.filters contains:

• Filter : an abstract class, which has to be extended by all filter classes. This class provides the method filter
(AbstractDataObject) that returns true if it matches the filter, otherwise false.

• FilterProcess : provides the method filter (AbstractDataObject object).This is the first method called when a new object is
discovered. It applies all filters on the object and if at least one filter returns true the object is not monitored.

46.1.2. org.objectweb.proactive.ic2d.console

This plugin provides several methods to log in the console :

• log (String message)
• warn (String message)
• err (String message)
• logException (Throwable e)
• debug (String message)
• debug (Throwable e)

You can have several different consoles. For example, the plugin monitoring logs in a console named "Monitoring", all the log4j
messages are logged in the console "Log4j", ...

If you want to add your own console, you must choose a unique name. and call the method Console. getInstance (String yourU-
niqueName) to obtain the console (if it didn't exist it is created). Then you can call the methods above on your console.

46.1.3. org.objectweb.proactive.ic2d.lib

This plugin contains all jar (which are not provided by Eclipse) necessary to the other plugins (like ProActive.jar, log4j.jar, ...). So
if you modify the code and need a new jar, you have to add it to the plugin lib. And if you create a new plugin which needs a jar
which is in the plugin lib, it must be dependent of this plugin.

46.2. Extending IC2D

46.2.1. How to checkout IC2D

Here is the IC2D SVN repository : svn://scm.gforge.inria.fr/svn/proactive/branches/proactive_newIC2D

You have to checkout :

• org.objectweb.proactive.ic2d
• org.objectweb.proactive.ic2d.monitoring
• org.objectweb.proactive.ic2d.lib
• org.objectweb.proactive.ic2d.console
• org.objectweb.proactive.ic2d.launcher

If you are using Eclipse and its plugin Subclipse , open the SVN Repository perspective and checkout all those folders as new
Java projects .

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

418

Figure 46.12. SVN Repository

You'll maybe have to replace the proactive.jar file in the plugin org.objectweb.proactive.ic2d.lib, it depends on your ProActive ver-
sion.

Now, you can run IC2D clicking on the link Launch the product in ic2d.product in the org.objectweb.proactive.ic2d project.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

419

Figure 46.13. ic2d.product

46.2.2. How to implement a plug-in for IC2D

IC2D is a Rich Client Platform (RCP) based on the familiar Eclipse plug-in architecture .

46.2.2.1. Create a project with the plug-in project wizard

If you want to create a plug-in for IC2D, you have to use the Eclipse's Plug-in Development Environment (PDE) . This is a com-
plete environment that Eclipse provides for plug-in development. The PDE adds a new perspective and several views and wizards
that help you create, maintain, and publish plug-ins. The PDE creates boilerplate starter code that you can use to build your plug-
in. This section explains how to use the plug-in project wizard to create your plug-in.

1. Select File > New > Project from the menu bar to open the new project wizard.
2. Select Plug-in Project in Plug-in Development .

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

420

Figure 46.14. Create a new project

3. Click Next .
4. In the Project name field, enter a name for the plug-in. For example, we chose org.objectweb.proactive.ic2d.example. You

must use the fully-qualified name to ensure its uniqueness.
5. In the Project contents pane, accept the default directory value.
6. Make sure the Create a Java project option is selected since we want our project to contain Java files. Accept the default

values of the other options.
7. Beginning in Eclipse 3.1 you will get best results by using the OSGi bundle manifest . In contrast to previous versions,

this is now the default.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

421

Figure 46.15. Specify name and plug-in structure

8. Click Next .
9. Now enter the fully qualified ID of the plug-in . By default it is the same as its project name.
10. Accept the default values of the other options.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

422

Figure 46.16. Specify plug-in content

11. Click Finish .

46.2.2.2. The plug-in structure

The plug-in project has the file structure illustrated in the followed figure.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

423

Figure 46.17. The plug-in structure

46.2.2.3. Plug-in manifest

The plug-in manifest ties all the code and resources together. When you first create a plug-in, Eclipse will create and open the
manifest for you automatically. The manifest is split into two files: MANIFEST.MF and plugin.xml . PDE provides a fancy edit-
or to modify the options stored in these files (see Figure 46.18, “ Interface for editing the manifest and related files. ”) but also al-
lows you to edit the source directly.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

424

Figure 46.18. Interface for editing the manifest and related files.

MANIFEST.MF

The OSGi bundle manifest is stored in MANIFEST.MF. OSGi is the name of a standard that Eclipse uses for dynamically load-
ing plug-ins. Example 46.1, “MANIFEST.MF” shows the OSGi bundle manifest generated by the plug-in wizard. Everything in
this file can be edited by the Manifest editor, so there should be no need to edit it by hand . However if you need to, just double-
click it in the Package Explorer to bring up the Manifest editor, then click on the MANIFEST.MF tab in the editor to see and modi-
fy the source.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2 Bundle-Name:
Example Plug-in Bundle-SymbolicName:
org.objectweb.proactive.ic2d.example
Bundle-Version: 1.0.0 Bundle-Activator:
org.objectweb.proactive.ic2d.example.ExamplePlugin
Bundle-Localization: plugin Require-Bundle:
org.eclipse.ui, org.eclipse.core.runtime
Eclipse-AutoStart: true

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

425

Example 46.1. MANIFEST.MF

plugin.xml

The Eclipse extension manifest is called plugin.xml. It's used for defining and using Eclipse extension points , so if you're not us-
ing extension points then this file may be omitted. Extension points are the fundamental way that Eclipse plug-ins are tied together.
This new plug-in is not yet using extension points so the plug-in wizard didn't generate the plugin.xml file.

46.2.2.4. Plug-in class

The plug-in class is an optional singleton class that can be used to store global information for the plug-in. It's also a convenient
place to put a few static utility functions used by other classes in the plug-in. See the listing Example 46.2, “ExamplePlugin.java”
for the plug-in class that was created for us by the plug-in wizard.

package org.objectweb.proactive.ic2d.example;

import org.eclipse.ui.plugin.*;
import org.eclipse.jface.resource.ImageDescriptor;
import org.osgi.framework.BundleContext;

/**
* The main plugin class to be used in the desktop.
*/

public class ExamplePlugin extends AbstractUIPlugin {

//The shared instance.
private static ExamplePlugin plugin;

/**
* The constructor.
*/

public ExamplePlugin() {
plugin = this;

}

/**
* This method is called upon plug-in activation
*/

public void start(BundleContext context) throws Exception {
super.start(context);

}

/**
* This method is called when the plug-in is stopped
*/

public void stop(BundleContext context) throws Exception {
super.stop(context);
plugin = null;

}

/**
* Returns the shared instance.
*/

public static ExamplePlugin getDefault() {
return plugin;

}

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

426

/**
* Returns an image descriptor for the image file at the given
* plug-in relative path.
*
* @param path the path
* @return the image descriptor
*/

public static ImageDescriptor getImageDescriptor(String path) {
return AbstractUIPlugin.imageDescriptorFromPlugin("org.objectweb.proactive.ic2d.example", path);

}
}

Example 46.2. ExamplePlugin.java

46.2.2.5. Build properties

The build.properties file (see Example 46.3, “build.properties”) will be needed when exporting the application for others to
use . In particular if your application needs any resources like icons they should be listed here in the bin.includes section. The
Plug-in Manifest editor provides a convenient interface to modify this file that is less error-prone than modifying it by hand.

source.. = src/
output.. = bin/
bin.includes = META-INF/,\ .

Example 46.3. build.properties

46.2.2.6. How to add your plugin to IC2D

In the project org.objectweb.proactive.ic2d , open ic2d.product . In the Configuration tab, click Add .

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

427

Figure 46.19. Configuration

Then select your plug-in.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

428

Figure 46.20. Plug-in selection

1. Now, click Add Required Plug-ins .
2. Return to the Overview tab and click Synchronize . Now launch ic2d by clicking Launch the product .
3. You can verify that your plug-in is integrated : in the IC2D frame, go to Help > About product > Plug-in Details .

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

429

Figure 46.21. About product Plug-ins

46.2.2.7. Perspectives, views and editors

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

430

Figure 46.22. Workbench structure

46.2.2.8. Perspectives

Perspectives provide an additional layer of organization inside the workbench page. A perspective defines an appropriate collec-
tion of views , their layout, and applicable actions for a given user task. Users can switch between perspectives as they move
across tasks. From an implementation point of view, the user's active perspective controls which views are shown on the work-
bench page and their positions and sizes. Editors are not affected by a change in perspective.

A new perspective is added to the workbench using a simple two step process :

1. Add a perspective extension to the plugin.xml file.
2. Define a perspective class for the extension within the plug-in.

Step 1 : Add a Perspective Extension to the plugin.xml file

1. Open MANIFEST.MF with the Plug-in Manifest Editor
2. Open the Extensions tab

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

431

Figure 46.23. Extensions tab (no extensions)

3. Click Add
4. In the Extensions Points tab, select org.eclipse.ui.perspectives

Ajouter un screenshot

5. Click Finish

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

432

Figure 46.24. Extensions tab (org.eclipse.ui.perspectives)

6. Right click the new extension : New > perspective
7. Now, enter the ID , the name and the class corresponding to the perspective.

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

433

Figure 46.25. Extensions tab (Example)

If the plugin.xml file didn't exist, it is now created. Example 46.4, “plugin.xml” shows the plugin.xml file that was created.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>

<extension
point="org.eclipse.ui.perspectives">

<perspective
class="org.objectweb.proactive.ic2d.example.ExamplePerspective"
id="org.objectweb.proactive.ic2d.example.ExamplePerspective"
name="Example"/>

</extension>

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

434

</plugin>

Example 46.4. plugin.xml

Step 2 : Define a Perspective Class for the Extension within the Plug-in

Now we need to define the perspective class which must implements the IPerspectiveFactory interface :

package org.objectweb.proactive.ic2d.example;

import org.eclipse.ui.IPageLayout;
import org.eclipse.ui.IPerspectiveFactory;

public class ExamplePerspective implements IPerspectiveFactory {

public static final String ID="org.objectweb.proactive.ic2d.example.ExamplePerspective";

public void createInitialLayout(IPageLayout layout) {
// TODO Auto-generated method stub

}

}

Example 46.5. ExamplePlugin.java

You have created your first perspective !

46.2.2.9. Views

A view is typically used to navigate a hierarchy of information, open an editor, or display properties for the active editor.

Create a view looks like create a perspective. You have to add a perspective extension to the plugin.xml file and to define a
view class for the extension within the plug-in .

Step 1 : Add a View Extension to the plugin.xml file

Add an extension : org.eclipse.ui.views, then add a view and configure it.

46.2.2.10. Editors

An editor is a visual component within a workbench page. It is used to interact with the primary focus of attention, which may be a
document, data object, or person. The primary focus of attention is a reflection of the primary task.

46.2.2.11. Useful links

• Creating Eclipse plug-ins [http://devresource.hp.com/drc/technical_articles/ePlugIn/index.jsp]
• Rich Client Tutorial Part 1 [http://www.eclipse.org/articles/Article-RCP-1/tutorial1.html]
• Rich Client Tutorial Part 2 [http://www.eclipse.org/articles/Article-RCP-2/tutorial2.html]
• Rich Client Tutorial Part 3 [http://www.eclipse.org/articles/Article-RCP-3/tutorial3.html]
• Developing for the Rich Client Platform [http://www.eclipsecon.org/2005/presentations/EclipseCon2005_Tutorial26.pdf]

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

435

http://devresource.hp.com/drc/technical_articles/ePlugIn/index.jsp
http://www.eclipse.org/articles/Article-RCP-1/tutorial1.html
http://www.eclipse.org/articles/Article-RCP-2/tutorial2.html
http://www.eclipse.org/articles/Article-RCP-3/tutorial3.html

• Rich Client Application Development [http://wiki.eclipse.org/images/d/d9/EclipseCon_RCP_Tutorial_2006.pdf]
• Creating an Eclipse View [http://www.eclipse.org/articles/viewArticle/ViewArticle2.html]
• Using Perspectives in the Eclipse UI [http://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html]
• The Official Eclipse FAQs [http://wiki.eclipse.org/index.php/Eclipse_FAQs]

Part VIII: Extending ProActive Chapter 46: Adding Grahical User Inter-
faces and Eclipse Plugins

436

http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html
http://wiki.eclipse.org/index.php/Eclipse_FAQs

Chapter 47. Developing Conventions
47.1. Code logging conventions

The ProActive code is currently using log4j as logging service. The purpose of this chapter is to assist developers for adding a
valuable logging system in their codes. Furthermore, this page aims to fix logging conventions as rules. The main goal is to have
an undifferentiated and powerful logging service for a useful using of log messages that's why everybody must apply these rules.

47.1.1. Declaring loggers name

The interface org.objectweb.proactive.core.util.Loggers contains all loggers' name as constants (public static final String). All
loggers' name must start with proactive. It is the root logger. Therefore all loggers are hierarchic.

/** Root logger for ProActive P2P. **/
public static final String P2P = "proactive.p2p";

/** Sub logger for starting P2P service. */
public static final String P2P_STARTSERVICE = P2P + ".startservice";

/** Sub logger for P2P acquaintances managing. */
public static final String P2P_ACQUAINTANCES = P2P + ".acquaintances";

/** Sub logger for P2P first contact step. */
public static final String P2P_FIRST_CONTACT = P2P + ".first_contact";

Example 47.1. declaring P2P loggers in the interface org.objectweb.proactive.core.util.Loggers

47.1.2. Using declared loggers in your classes

Firstly, import good classes:

import org.objectweb.proactive.core.util.log.ProActiveLogger;
import org.objectweb.proactive.core.util.log.Loggers;

Secondly, get the logger or loggers:

private static final ProActiveLogger logger_acq =
ProActiveLogger.getLogger(Loggers.P2P_ACQUAINTANCES);

Thirdly, log your code:

if (logger.isDeubugEnable()) {
logger_acq.debug("message log debug level for P2P acquaintances managing");

}

Override logging methods in ProActiveLogger. Use this class to add some specific treatments to log messages.

47.1.3. Managing loggers

Using hierarchic loggers is realy helpful to choose which logging level for what is logged. In the log4j configuration file, typicaly
proactive-log4j, set level of loggers, such as:

All logger at debug level
log4j.logger.proactive = DEBUG

Part VIII: Extending ProActive Chapter 47: Developing Conventions

437

and P2P logger only info level is needed
log4j.logger.proactive.p2p = INFO
#For P2P first contact step needs only fatal messages
log4j.logger.proactive.p2p..first_contact = FATAL

47.1.4. Logging output

Enabling the name of the category using for instance [%c] facilitates the understanding of the logging output.

[proactive.p2p.service] DEBUG [P2PService on //trinidad.inria.fr:3000/P2PNode]: Heart-beat message received

Here we can clearly see:

• a p2p.service log,
• at debugging level,
• received from the thread P2PService on trinidad/P2PNode,
• and the log message.

47.1.5. More information about log4j

• Short introduction to log4j [http://logging.apache.org/log4j/docs/manual.html],
• javadoc documentation [http://logging.apache.org/log4j/docs/api/index.html].

47.2. Regression Tests Writing

Add your test in nonregressiontest package and run all tests before committing with compile/build.sh runTestsLocal.

47.3. Committing modifications in the SVN

You need to do several things:

1. Get a recent PA version : svn co svn+ssh://my_login@scm.gforge.inria.fr/svn/proactive/trunk ProActive (use your
login)

2. Clean up your version : run the command 'build clean all format' this should compile with no errors and will also format the
files with the OASIS formatting rules

3. Make sure you have integrated the latest modifications of others. For that, you may try
• with eclipse, a team -> synchronize. This view shows conflicts.
• with the shell, svn update -dP changes files if there is no conflict, and tells you which files are conflicting.

4. Commit the files, making bunches for functionalities. If, to add the functionality "foo", you've modified files A, B, and
C.java, your commit should be of these 3 files, and should contain a description of "foo"

Part VIII: Extending ProActive Chapter 47: Developing Conventions

438

http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/api/index.html

Chapter 48. ProActive Test Suite API
This tour is a practical introduction to create, run and manage tests or benchmarks.

First you will get an API's description with its features.

Second, you will be guided through some examples of tests and benchmarks.

48.1. Structure of the API

48.1.1. Goals of the API

• Benchmarks on ProActive
• Functional Tests framework
• Interlinked Tests
• Automatic results generation

48.1.2. Functional Tests & Benchmarks

48.1.2.1. Test definition

A Test runs successfully of:

• Its Pre-Conditions are verified
• Its action method runs with no Java Exception
• Its Post-Conditions are also verified

48.1.2.2. Benchmark definition

Benchmark is a Test, its result is a time.

48.1.2.3. Interlinked Functional Tests

First, we specify parents Tests.

To do this, just overload Action method with needed inputs and outputs, after, with the Java reflection mechanism we found the
first good Action method to execute the Test.

Mechanism in details

In standalone mode the test runs with this method:

void action() throws Exception;

In interlinked mode, the developer must to add a similar method in his code Test:

A action(B toto, C tutu, …) throws Exception;

Where toto is the result output of the first parent of this test and tutu the result output of second parent, … A is the type of result
output of this Test.

Reflection code

Find the first action method:

Method[] methods = getClass().getMethods();
Method actionWithParams = null;
for (int i = 0; i < methods.length; i++) {

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

439

if ((methods[i].getName().compareTo('action') == 0) &&
(methods[i].getReturnType().getName().compareTo('void') != 0)) {

actionWithParams = methods[i];
break;

}
}

Array of params type:

if (actionWithParams != null) {
Object[] args = null;
if (tests != null) {

args = new Object[tests.length];
for (int i = 0; i < tests.length; i++)

args[i] = tests[i].getOut();
} else {

args = new Object[1];
args[0] = null;

}

Call the method:

out = actionWithParams.invoke(this, args);

48.1.3. Group

What is a Group of Tests?

• Collection of Tests

What is the role of a Group?

• Initialise and cleanup all Tests
• Collect Results
• Add, remove, … Tests like a Java Collection

48.1.4. Manager

What is a Manager in Testsuite API?

• Collection of Groups

What is the role of a Manager?

• Initialise and launch all Tests
• Collect and format Results

We have different types of Manager to better manage of specialised Tests or Benchmarks:

• BenchmarkManager
• ProActiveBenchManager
• FunctionalTestManager
• ProActiveFuncTestManager

48.2. Timer for the Benchmarks

In this API, it is the benchmark programmer who make the measure, he can simply use: System.currentTimeMillis() of Java. This
method is in the wrong !

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

440

If you want to change the method to make measure you must to modify the code of all your Benchmarks.

48.2.1. The solution

To solve this problem, we have chosen an interface: Timeable

package testsuite.timer;
public interface Timeable {

// Start the timer
public void start();
// Stop the timer
public void stop();
// Get the total time, measured
public long getCumulatedTime();
// To print the time unit
public String getUnit();

}

By default the API provides two timer which of implement this interface:

To make measure in milliseconds: testsuite.timer.ms.MsTimer

To make measure in microseconds: testsuite.timer.micro.MicroTimer

By implementing the interface you can easily create new timer for more performents for you needs.

48.2.2. How to use Timer in Benchmarck?

Use this.timer like this:

public long action() throws Exception {
String className = ReifiableObject.class.getName();
Node node = getNode();
this.timer.start();
object = (ReifiableObject) ProActive.newActive(className, null, node);
this.timer.stop();
return this.timer.getCumulatedTime();

}

48.2.3. How to configure the Manager with your Timer?

By a prop file or a XML file:

<prop key="Timer" value="testsuite.timer.micro.MicroTimer"/>
Timer=testsuite.timer.micro.MicroTimer

Or by the code:

yourManager.setTimer('class.name.YourTimer');

48.3. Results

This section describes, how to format the Results of the tests.

48.3.1. What is a Result?

In this API, the result concept is two things:

• A real result: the test successes or fails, the benchmark runs in 2.0ms

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

441

• Like a logger to log error, message, ...

48.3.2. What we don't use a real logger API?

The problem with a real logger (like log4J) is we don't have the notion of results.

In the TestSuite APi we decide to split logs of the program and results.

48.3.3. Structure of Results classes in TestSuite

There is a super-class abstract: AbstractResult where there is the bare essentials to specify a Result:

• The type of the result, in order of increase importance:
• • INFO: an information message to debug

• MSG: a message to debbug
• RESULT: a none important result, typically a middle result
• IMP_MSG: an important message
• GLOBAL_RESULT: an important result, typically a group result
• ERROR: typically an error in out Test method, for example: can't init a group

• A message to describe the result
• An exception to show the stack trace of an error
• Time of creation of the result

There are two classes which implements this abstract class:

• AbstractResult is only abstract to make generic formating, so TestResult can print itself like a Java String and a XML
node.

• BenchmarkResult add a time result to print.

48.3.4. How to export results

In TestSuite API, the results are stocked in ResultsCollection, there are two classes who contains a ResultCollection:

• Manager
• Group

These classes implements the ResultsExporter interface. After the execution of your Manager you can choose where and how to
print results:

yourManager.toXXX();

Where toXXX() is:

• String toString(): return all results, if yourManager.setVerbatim(true), as a String else only results who the level >=
IMP_MSG

• void toPrintWriter(PrintWriter out): return all results, if yourManager.setVerbatim(true), in out else only results who
the level >= IMP_MSG

• void toOutPutStream(OutputStream out): return all results, if yourManager.setVerbatim(true), in out else only results
who the level >= IM_MSG

• Document toXML(): return all results, in a DOM tree, it is useful to transform, to format, to operate, ... results like you
want.

• void toHTML(File location): return all results, in location file like an HTML document. To do this the API export the res-
ults in a DOM tree, with the precedent method, and transform the XML with XSLT into a HTML file.

48.3.4.1. About the Manager Verbatim option

In Manager you can modify this by:

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

442

yourManager.setVerbatim(true/false)

If Verbatim value is:

• true: All results types could be show.
• false: Only results with a level >= IMP_MSG could be show. In concrete terms, on your output you have only the messages

from the Manager, final result of group and th errors.

By default Verbatim is at false

This option has no effect on XML and HTML exports.

To see the value of Verbatim:

yourManager.isVerbatim()

48.3.4.2. By the file configurator

See Section 48.5, “Configuration File” for more detail to configure result output through the file descriptor.

48.3.5. Format Results like you want

If you export your results in a XML DOM tree, with toXML() method, you can use XSLT to create new formats.

48.4. Logs

TestSuite API offers to tests developers a log system, to tace or debug their tests.

48.4.1. Which logger?

As in ProActive API we choose Jakarta Log4J [http://jakarta.apache.org/log4j/] like logger.

48.4.2. How it works in TestSuite API?

A static logger is create in Manager, all Groups and Tests who are added in the Manager have a reference to this logger.

By default all logs are written in a simple text file: $HOME/tests.log

With this file, it very easy to debug your test. You can also, with Log4J, specify a different place and different format for your
logs. For more details see the next part.

48.4.3. How to use it?

48.4.3.1. Log your code

To add logs in your Test code it is very easy: you can directly use the variable logger or the getter getLogger(). This is a
org.apache.log4j.Logger

In your Test code just add logs like this:

if (logger.isDebugEnabled())
logger.debug('A debug message ...');

For more information about use logger see the log4J manual [http://jakarta.apache.org/log4j/docs/manual.html].

48.4.3.2. Configure the logger

By default all logs with a level higher than INFO are written in $HOME/tests.log.

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

443

http://jakarta.apache.org/log4j/
http://jakarta.apache.org/log4j/docs/manual.html

But you can configure the format and plac where you want to get logs.

The log4j environment is fully configurable programmatically. However, it is far more flexible to configure log4j using configura-
tion files. Currently, configuration files can be written in XML or in Java properties (key=value) format.

You can also configure the logger by the Section 48.5, “Configuration File”.

Use default configuration of log4J. Add this code Manager constructor:

// Set up a simple configuration that logs on the console.
BasicConfigurator.configure();

An another example to write logs in an HTML file:

public YourManager() {
super('Function calls', 'Alpha version');
HTMLLayout layout = new HTMLLayout();
WriterAppender appender = null;
try {

FileOutputStream output = new FileOutputStream(
'/net/home/adicosta/output2.html');

appender = new WriterAppender(layout, output);
} catch (Exception e) {
}
logger.addAppender(appender);
logger.setLevel(Level.DEBUG);

}

For more information about logger configuration see the log4J manual [http://jakarta.apache.org/log4j/docs/manual.html].

48.5. Configuration File

48.5.1. How many configuration files you need?

• You can have just no file.
• One file to configure the Manager.
• One file for the Manager and all its Tests (recommended).
• One file for the Manager and one file for each Tests.
• No file for the Manager and one file for each Tests.

48.5.2. A simple Java Properties file

With this file you can configure Manager's properties and Tests properties. You can have just one file for the Manager and all
Tests or just one for the Manager and one file for each Tests.

By default the name of this file is the class name of the Manager or the Test which it is associated with .prop as file extention. For
example:

ManagerToto.class <-> ManagerToto.prop

48.5.2.1. How to use it?

It is very simple to use it. Just do like this example:

You have a private variable in your Manager or Test:

private int packetSize = 1024;

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

444

http://jakarta.apache.org/log4j/docs/manual.html

First add a setter of which it take a String in input:

public void setPacketSize(String value){
this.packetSize = Integer.parseInt(value);

}

Next, int the prop file:

PacketSize=2048

Warning: the key in the prop file must be the same of the setter name without the prefix set.

Now, to load the prop file:

// Level: Manager
// At the execution load properties
manager.execute(yes);
// To load properties from differents types of sources
manager.loadAttributes();
manager.loadAttributes(java.io.File propFile);
manager.loadAttributes(java.util.Properties javaProp);
// Level: Test

// To load properties from differents types of sources
test.loadAttributes();
test.loadAttributes(java.io.File propFile);
test.loadAttributes(java.util.Properties javaProp);

48.5.3. A XML properties file

To configure all from just one file.

Like a simple prop file this one must be have the same name of the Manager class:

YourManager <-> YourManager.xml

48.5.3.1. The structure of the XML document

<Manager>
<name>A Manager </name>
<description>Try XML descriptor file. </description>
<!-- by default nbRuns is 1, but for benchmarks you can change it -->
<nbRuns>100 </nbRuns>

</Manager>

48.5.3.2. Add a simple group of tests

<simpleGroup name="A simple Group" description="just for test.">
<unitTest class="test.objectcreation.TestNewActive"/>
<unitTest class="test.groupmigration.TestGroupCreation"/>
<unitTest class="test.groupmigration.TestGroupCreation"/>
<unitTest class="test.objectcreation.TestNewActive"/>

</simpleGroup>

You have created a group with 4 tests.

48.5.3.3. Add a group from a Java package

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

445

<packageGroup name="A Package Group"
description="Construct Group from package."
dir="/net/home/adicosta/workspace/ProActive/classes"
packageName="nonregressiontest" >

</packageGroup>

You have created a group with all Tests was found in the package nonregressiontest

With this method you don't have any order on Tests, but you can specify some order:

<packageGroup name="A Package Group" description="Construct Group from package."
dir="/net/home/adicosta/workspace/ProActive/classes"
packageName="nonregressiontest" >

<unitTest class="nonregressiontest.runtime.defaultruntime.Test" />
<unitTest class="nonregressiontest.node.nodefactory.Test" />
<unitTest class="nonregressiontest.stub.stubgeneration.Test" />
<unitTest class="nonregressiontest.stub.stubinterface.Test" />
<unitTest class="nonregressiontest.activeobject.creation.local.newactive.Test" />
<unitTest class="nonregressiontest.activeobject.creation.local.turnactive.Test" />
<unitTest class="nonregressiontest.activeobject.creation.remote.newactive.Test" />
<unitTest class="nonregressiontest.activeobject.creation.remote.turnactive.Test" />

</packageGroup>

All classes in package nonregressiontest are added, only the specified tests are sorted.

48.5.3.4. Add a group of InterLinked Tests

<interLinkedGroup name="Group with interlinked tests" description="Construct a Group with
interlinked tests">

<!-- Declare the tests in the execution order -->
<idTest class="test.groupmigration.TestGroupCreation" id="1"/>
<idTest class="test.groupmigration.TestGroupMigration" id="2"/>
<idTest class="test.groupmigration.TestGroupMessage" id="3"/>

<interLinks>
<link id="3">
<parent id="1"/>
<parent id="2"/>

</link>
</interLinks>

</interLinkedGroup>

TestGroupMessage depends from TestGroupCreation and TestGroupMigration.

48.5.3.5. How to configure log4j

<log4j>
/net/home/adicosta/log4j/config/file/path/log4j-file-config

</log4j>

48.5.3.6. How to configure results output?

Results in a text file:

<result type="text" file="/net/home/adicosta/tmp/results.txt" />

Results in a HTML file:

<result type="html" file="/net/home/adicosta/tmp/results.html" />

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

446

Results in the console:

<result type="console" />

Results in a XML file:

<result type="xml" file="/net/home/adicosta/tmp/results.xml"/>

To execute all with the XML file configuration:

Manager manager = new Manager(java.io.File xmlConfigFile);
manager.execute();

48.5.3.7. Configure properties

Like in simple prop file:

<properties>
<prop key="RemoteHostname" value="nahuel"/>

</properties>

48.6. Extends the API

Thanks to the structure of the API, with many Interfaces and Abstracts classes, you can easily extends the API for you needs.

For more details about this, you can the class: ProActiveManager, ProActiveFuncTest or ProActiveBenchmark which they are ex-
tends the API.

The choice of XML to export results can to help you with XSLT to export and format results for you needs.

The logger log4j is also configurable like you want.

48.7. Your first Test

This section describes how to write simple test and execute it.

48.7.1. Description

For this example, we choose to test the object creation in ProActive API with newActive() method. This test aims to perform ob-
ject creation on the same JVM, on an other local JVM and on a remote JVM.

48.7.2. First step: write the Test

Create a new class who extends testsuite.test.ProActiveFunctionalTest, it is an abstract class.

See this template code:

import testsuite.test.ProActiveFunctionalTest;
import org.objectweb.proactive.core.node.Node;
public class TestNewActive extends ProActiveFunctionalTest {
public TestNewActive() {

super();
setName('newActive');

setDescription('Test object creation with newActive in a node.');
}

public TestNewActive(Node node, String name) {
super(node,name,

'Test object creation with newActive in a node.');

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

447

}
public void initTest() throws Exception {
}
public void action() throws Exception {

}
public void endTest() throws Exception {
}

}

We also override two methods from the super-super class: testsuite.test.FunctionalTest, to check if post and pre-conditions are
verified:

public boolean postConditions() throws Exception { }
public boolean preConditions() throws Exception { }

48.7.2.1. Implementing initTest() and endTest()

In this example both methods are empty, but they could be overridden in order to initialize and finalyze the test.

48.7.2.2. Implementing preConditions()

We will simply verify if the node is created:

public boolean preConditions() throws Exception {
return getNode() != null;

}

48.7.2.3. Implementing action()

This method is the test, we will create an active object:

private ReifiableObject active = null;
public void action() throws Exception {

active = (ReifiableObject) ProActive.newActive(ReifiableObject.class.getName(),
null, getNode());

}

Remarks: The ReifiableObject class is a simple class who just extends java.lang.Object, implements java.io.Serilizable and has
an empty constructor with no argument.

48.7.2.4. Implementing postConditions()

We will check if active is different of null and if the node contains active:

public boolean postConditions() throws Exception {
Object[] activeObjects = getNode().getActiveObjects();
return (active != null) && (activeObjects != null) &&
(activeObjects.length == 1) && activeObjects[0].equals(active);

}

48.7.2.5. The complete code of the test

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveFunctionalTest;
public class TestNewActive extends ProActiveFunctionalTest {

private ReifiableObject active = null;
public TestNewActive() {

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

448

super();
setName('newActive');
setDescription('Test object creation with newActive in a node.');

}
public TestNewActive(Node node, String name) {

super(node, name,
'Test object creation with newActive in a node.');

}
public void initTest() throws Exception {

// nothing to do
}
public boolean preConditions() throws Exception {

return getNode() != null;
}
public void action() throws Exception {

active = (ReifiableObject) ProActive.newActive(ReifiableObject.class.getName(),
null, getNode());

}
public boolean postConditions() throws Exception {

Object[] activeObjects = getNode().getActiveObjects();
return (active != null) && (activeObjects != null) &&
(activeObjects.length == 1) && activeObjects[0].equals(active);

}
public void endTest() throws Exception {

// nothing to do
}

}

Tips: if you want to make a trace in your test or in all classes who extends a testsuite class, you have access to a log4j logger by:
getLogger()

48.7.3. Second step: write a manager

Now, we will write a Manager to execute our test.

For this example it is very simple, you have just to extends testsuite.manager.ProActiveFuncTestManager:

import testsuite.manager.ProActiveFuncTestManager;
public class ObjectCreationManager extends ProActiveFuncTestManager {
public ObjectCreationManager() {

super('Object Creation','Manage objects creation tests.');
}

}

48.7.3.1. Override initManager()

Normaly, you have nothing to do to initialize the manager. In this example, we choose to create tests and group in this method , but
you can do this in the same place where you create the manager.

Create group by the initManager():

import testsuite.group.Group;
public void initManager() throws Exception {

Group testGroup = new Group('Test Group', 'no description.');
// adding a test in same VM
testGroup.add(new TestNewActive(getSameVMNode(),'NewActive same VM'));
// adding a test in local VM
testGroup.add(new TestNewActive(getLocalVMNode(),'NewActive local VM'));
// adding a test in remote VM
testGroup.add(new TestNewActive(getRemoteVMNode(),'NewActive remote VM'));
// adding the group

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

449

add(testGroup);
}

Create group in the same place of the manager:

ObjectCreationManager manager = new ObjectCreationManager();
Group testGroup = new Group('Test Group', 'no description.');
// adding a test in same VM
testGroup.add(new TestNewActive(getSameVMNode(),'NewActive same VM'));
// adding a test in local VM
testGroup.add(new TestNewActive(getLocalVMNode(),'NewActive local VM'));
// adding a test in remote VM
testGroup.add(new TestNewActive(getRemoteVMNode(),'NewActive remote VM'));
// adding the group
manager.add(testGroup);

Warning: if you override endManager() method in a ProActiveManager you must to add in this code:

super.endManager()

The reason is to delete the ProActive nodes create at the beginning.

48.7.3.2. The attribute file

Our manager is a ProActiveManager, so an attibutes file is mandatory.

Create a file ObjectCreationManager.prop in the same directory of the manager. This file must contains the name (or URL) of
the remote host, like this:

RemoteHostname=owenii

Warning: respect the upper an lower cases.

Tips: you can use this file to specify attributes for your tests classes. You can also use a different file, in this case you must specify
its path in the execute() method of the manager.

48.7.4. Now launch the test ...

Add this code in your main method:

ObjectCreationManager manager = new ObjectCreationManager();
// the argument must have true value, because it is a ProActiveManager
// and the attributes file is obligatory
manager.execute(true);

Warning: when you use a ProActiveManager you must had System.exit(0) at the end of the main method. If you don't do that, the
manager can't stop properly.

48.7.5. Get the results

System.out.println(manager.getResults());

If you want all details:

manager.setVerbatim(true);

You can also have the results in a HTML or XML file or in a stream, in Section 48.3, “Results”, look for: tests-

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

450

suite.result.ResultsExporter

48.7.5.1. An example of results for this test with verbatim option

8/22/03 13:48:10.450 [MESSAGE] Local hostname: amda.inria.fr
8/22/03 13:48:10.450 [MESSAGE] Remote hostname: owenii
8/22/03 13:48:10.452 [MESSAGE] Starting ...
8/22/03 13:48:10.458 [MESSAGE] Init Manager with success
8/22/03 13:48:10.749 [RESULT] NewActive same VM: Test run with success [SUCCESS]
8/22/03 13:48:11.141 [RESULT] NewActive local VM: Test run with success [SUCCESS]
8/22/03 13:48:12.195 [RESULT] NewActive remote VM: Test run with success [SUCCESS]
8/22/03 13:48:12.195 [RESULT] Group: Test Group Runs: 3 Errors: 0 [SUCCESS]
8/22/03 13:48:12.195 [MESSAGE] ... Finish

48.7.6. All the code

TestNewActive.java

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveFunctionalTest;
public class TestNewActive extends ProActiveFunctionalTest {

private ReifiableObject active = null;
public TestNewActive() {

super();
setName('newActive');
setDescription('Test object creation with newActive in a node.');

}
public TestNewActive(Node node, String name) {

super(node, name,
'Test object creation with newActive in a node.');

}
public void initTest() throws Exception {
// nothing to do
}
public boolean preConditions() throws Exception {

return getNode() != null;
}
public void action() throws Exception {

active = (ReifiableObject) ProActive.newActive(ReifiableObject.class.getName(),
null, getNode());

}
public boolean postConditions() throws Exception {

Object[] activeObjects = getNode().getActiveObjects();
return (active != null) && (activeObjects != null) &&
(activeObjects.length == 1) && activeObjects[0].equals(active);

}
public void endTest() throws Exception {

// nothing to do
}

}

ReaifiableObject.java

import java.io.Serializable;
public class ReifiableObject implements Serializable {

public ReifiableObject() {
}

}

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

451

ObjectCreationManager.prop

RemoteHostname=owenii

ObjectCreationManager.java

import testsuite.group.Group;
import testsuite.manager.ProActiveFuncTestManager;
public class ObjectCreationManager extends ProActiveFuncTestManager {

public ObjectCreationManager() {
super('Object Creation', 'Manage objects creation tests.');

}
public void initManager() throws Exception {

Group testGroup = new Group('Test Group', 'no description.');
// adding a test in same VM
testGroup.add(new TestNewActive(getSameVMNode(),'NewActive same VM'));
// adding a test in local VM
testGroup.add(new TestNewActive(getLocalVMNode(),'NewActive local VM'));
// adding a test in remote VM
testGroup.add(new TestNewActive(getRemoteVMNode(),'NewActive remote VM'));
// adding the group
add(testGroup);

}
public static void main(String[] args) {

ObjectCreationManager manager = new ObjectCreationManager();
// the argument must have true value, because it is a ProActiveManager
// and the attributes file is obligatory
manager.execute(true);

manager.setVerbatim(true);
System.out.println(manager.getResults());
// for exit, also ProActive don't stop the application

System.exit(0);

}
}

48.8. Your first Benchmark

This section describes how to write and execute a simple Benchmark.

48.8.1. Description

For this example, we choose to measure the time of an object creation with ProActive.newActive(). This benchmark aims to per-
form object creation on the same JVM, on an other local JVM and on a remote JVM.

48.8.2. First step: write the Benchmark

Create new class who extends testsuite.test.ProActiveBenchmark, it is an abstract class.

See this template code:

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveBenchmark;
public class BenchNewActive extends ProActiveBenchmark {

public BenchNewActive() {
super(null, 'Object Creation with newActive',

'Measure time to create an active object with newActive.');
}

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

452

public BenchNewActive(Node node) {
super(node, 'Object Creation with newActive',

'Measure time to create an active object with newActive.');
}
public long action() throws Exception {
}
public void initTest() throws Exception {
}
public void endTest() throws Exception {
}

}

We also override two methods from the super-class: testsuite.test.Benchmark, to check if post and pre-conditions are verified:

public boolean postConditions() throws Exception { }
public boolean preConditions() throws Exception { }

48.8.2.1. Implementing initTest() and endTest()

In this exampple both methods are empty, but they could be overridden in order to initialize and finalyze the benchmark.

48.8.2.2. Implementing preConditions()

We will simply verify if the node is created:

public boolean preConditions() throws Exception {
return getNode() != null;

}

48.8.2.3. Implementing action()

This method measures the time of a creation of an Object with ProActive.newActive() on a specified node:

private ReifiableObject object = null;
public long action() throws Exception {

ReifiableObject object;
String className = ReifiableObject.class.getName();
Node node = getNode();
this.timer.start();
object = (ReifiableObject) ProActive.newActive(className, null, node);
this.timer.stop();
return this.timer.getCumulatedTime();

}

Note

It is the benchmark's programmer who measure the time of the action with a configurable timer, see the Section 48.2,
“Timer for the Benchmarks” for more details.

The ReifiableObject class is a simple class who just extends java.lang.Object, implements java.io.Serilizable and has an empty
constructor with no argument.

48.8.2.4. Implementing postConditions()

We will check if object is different of null and if the node contains object:

public boolean postConditions() throws Exception {
Object[] activeObjects = getNode().getActiveObjects();

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

453

return (object != null) && (activeObjects != null) &&
(activeObjects.length == 1) && activeObjects[0].equals(object);

}

Tips: if you want to make a trace in your benchmark , you have access to a log4j logger by: getLogger() or by the variable logger

48.8.3. Second step: write a manager

Now, we will write a Manager to execute ou test.

For this example it is very simple, you have just to extends testsuite.manager.ProActiveBenchManager:

import testsuite.manager.ProActiveBenchManager;
public class Manager extends ProActiveBenchManager {

public Manager() {
super('Manager','To manage ProActive Benchmarks.');

}
}

48.8.3.1. Override initManager() and endManager()

Normaly, you have nothing to do to initialize the manager. In this example, we choose to create benchmarks and group in this
method , but you can do this in the same place where you create the manager.

Create group by initManager():

import testsuite.group.Group;
public void initManager() throwsException {

Group benchGroup = new Group('Bnechmark Group','no description.');
// adding bench in same VM
benchGroup.add(new BenchNewActive(getSameVMNode()));
// adding bench in local VM
benchGroup.add(new BenchNewActive(getLocalVMNode()));
// adding bench in remote VM
benchGroup.add(new BenchNewActive(getRemoteVMNode()));
// adding the group
add(benchGroup);

}

Create group int the same place of the manager:

// ...
Manager manager = new Manager();
Group benchGroup = new Group('Bnechmark Group','no description.');
// adding bench in same VM
benchGroup.add(new BenchNewActive(getSameVMNode()));
// adding bench in local VM
benchGroup.add(new BenchNewActive(getLocalVMNode()));
// adding bench in remote VM
benchGroup.add(new BenchNewActive(getRemoteVMNode()));
manager.add(benchGroup);
// ...

Warning: if you override endManager() method in a ProActiveManager you must to add in this code:

super.endManager()

The reason is to delete the ProActive nodes create at the beginning.

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

454

48.8.3.2. The attribute file

Our manager is a ProActiveManager, so an attibutes file is mandatory.

Create a file Manager.prop in the same directory of the manager. This file must contains the name (or URL) of the remote host,
like this:

RemoteHostname=owenii

Warning: respect the upper an lower cases.

Tips: you can use this file to specify attributes for your tests classes. You can also use a different file, in this case you must specify
its path in the execute() method of the manager.

48.8.4. Now launch the benchmark ...

Add this code in your main method:

Manager manager = new Manager();
// the argument must have true value, because it is a ProActiveManager
// and the attributes file is obligatory
manager.execute(true);

Warning: when you use a ProActiveManager you must to had System.exit(0) at the end of the main method. If don't do that, the
manager can't properly.

48.8.4.1. Get the results

Results in your console:

System.out.println(manager);

If you want all details:

manager.setVerbatim(true);

For benchmarks it is more interesting to export results in a HTML file. Indeed, you have average, min, max, STDEV and charts to
help you to analyse all results

Object Creation
Object Creation with newActive and turnActive.
Messages of Object Creation:
9/18/2003 at 13:0:32.527 [RESULT]
Object Creation with newActive -- Same VM: no message [SUCCESS] See the chart [Bench.png]
Max=113ms Moy=24.0ms STDEV=24.64ms --> Min1ms
9/18/2003 at 13:0:36.693 [RESULT]
Object Creation with turnActive -- Same VM: no message [SUCCESS]See the chart [Bench1.png]
Max=98ms Moy=41.0ms STDEV=32.20ms --> Min1ms
9/18/2003 at 13:0:43.425 [RESULT]
Object Creation with newActive -- Local VM: no message [SUCCESS]See the chart [Bench2.png]
Max=376ms Moy=67.03ms STDEV=83.73ms --> Min6ms
9/18/2003 at 13:0:50.434 [RESULT]
Object Creation with turnActive -- Local VM: no message [SUCCESS]See the chart [Bench3.png]
Max=326ms Moy=69.82ms STDEV=86.15ms --> Min6ms
9/18/2003 at 13:0:53.297 [RESULT]
Object Creation with newActive -- Remote VM: no message [SUCCESS]See the chart [Bench4.png]
Max=290ms Moy=28.03ms STDEV=50.79ms --> Min5ms
9/18/2003 at 13:0:55.980 [RESULT]

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

455

Bench.png
Bench1.png
Bench2.png
Bench3.png
Bench4.png

Object Creation with turnActive -- Remote VM: no message [SUCCESS]See the chart [Bench5.png]
Max=250ms Moy=26.32ms STDEV=53.46ms --> Min5ms

9/18/2003 at 13:0:55.982 [RESULT]:
Group: Object Creation, Moy in 42.7ms Runs: 600 Errors: 0
To see all results of this group in a BarChart [Group1.png].

Example 48.1. Example of HTML results

48.8.5. All the Code

BenchnewActive.java

import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveBenchmark;
import util.ReifiableObject;
public class BenchNewActive extends ProActiveBenchmark {

private ReifiableObject object = null;
public BenchNewActive() {

super(null, 'Object Creation with newActive',
'Measure time to create an active object with newActive.');

}
public BenchNewActive(Node node) {

super(node, 'Object Creation with newActive',
'Measure time to create an active object with newActive.');

}
public long action() throws Exception {

String className = ReifiableObject.class.getName();
Node node = getNode();
this.timer.start();
object = (ReifiableObject) ProActive.newActive(className, null, node);
this.timer.stop();
return this.timer.getCumulatedTime();

}
public void initTest() throws Exception {

// nothing to do
}
public void endTest() throws Exception {

// nothing to do
}
public boolean preConditions() throws Exception {

return getNode() != null;
}

public boolean postConditions() throws Exception {
Object[] activeObjects = getNode().getActiveObjects();
return (object != null) && (activeObjects != null) &&
(activeObjects.length == 1) && activeObjects[0].equals(object);

}
}

ReifiableObject.java

import java.io.Serializable;
public class ReifiableObject implements Serializable {

public ReifiableObject() {
}

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

456

Bench5.png
Group1.png

}

Manager.prop

RemoteHostname=owenii

Manager.java

import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.HTMLLayout;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.WriterAppender;
import testsuite.group.Group;
import testsuite.manager.ProActiveBenchManager;
import java.io.File;
public class Manager extends ProActiveBenchManager {

private Logger logger = Logger.getLogger(Test1.class);
public Manager() {

super('Manager','To manage ProActive Benchmarks.');
// Log in a HTML file
HTMLLayout layout = new HTMLLayout();
WriterAppender appender = null;
try {

FileOutputStream output = new FileOutputStream(
'/net/home/adicosta/output2.html');

appender = new WriterAppender(layout, output);
} catch (Exception e) {
}
logger.addAppender(appender);
BasicConfigurator.configure();
logger.setLevel(Level.DEBUG);

}
public void initManager() throws Exception {

Group benchGroup = new Group('Bnechmark Group','no description.');
// adding bench in same VM
benchGroup.add(new BenchNewActive(getSameVMNode()));
// adding bench in local VM
benchGroup.add(new BenchNewActive(getLocalVMNode()));
// adding bench in remote VM
benchGroup.add(new BenchNewActive(getRemoteVMNode()));
// adding the group
add(benchGroup);

}
public static void main(String[] args) {

Manager manager = new Manager();
// To run all benchmarks 100 times
manager.setNbRuns(100);
// Execute all benchmarks
manager.execute(true);
//Write results in a HTML file
try {

File file = new File(System.getProperty('user.home') +
File.separatorChar + 'results.html');

manager.toHTML(file);
} catch (Exception e) {

e.printStackTrace();
}
System.exit(0);

}

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

457

}

48.9. How to create a Test Suite with interlinked Tests

In this part we will not explain how to write a simple test, for this see Section 48.7, “Your first Test” .

48.9.1. Description of our Test

In first step, we will test a ProActive Group creation with 3 Agents, and after this creation we will test the Agents migration by a
group communication.

48.9.2. Root Test: ProActive Group Creation

48.9.2.1. A simply ProActiveTest

Create a new class who extends testsuite.test.ProActiveFunctionalTest, it is an abstract class.

See this template code:

import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveFunctionalTest;
import java.io.Serializable;
public class TestGroupCreation extends ProActiveFunctionalTest

implements Serializable {
public TestGroupCreation() {

super(null, 'Group Creation',
'Create a Group of active object in specify node.');

}
public TestGroupCreation(Node node) {

super(node, 'Group Creation',
'Create a Group of active object in specify node.');

}
public void action() throws Exception {
}
public boolean postConditions() throws Exception {
}
public boolean preConditions() throws Exception {
}
public void initTest() throws Exception {

// nothing to do
}
public void endTest() throws Exception {

// nothing to do
}

}

Next we will simply test in preconditions if the node exists (different of null):

public boolean preConditions() throws Exception {
return getNode() != null;

}

Now we will implement the action method to create a ProActive Group with 3 Agent (see the Agent code at the end of this section
- Example 48.2, “Agent class”):

import org.objectweb.proactive.core.group.Group;
import org.objectweb.proactive.core.group.ProActiveGroup;
public class TestGroupCreation extends ProActiveFunctionalTest

implements Serializable {
private Agent group = null;

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

458

// ...
public void action() throws Exception {

createGroupAgent();
}

private void createGroupAgent() throws Exception {
Object[][] params = {

{ 'Agent0' },
{ 'Agent1' },
{ 'Agent2' }

};
Node node = getNode();

Node[] nodes = { node };
group = (Agent) ProActiveGroup.newGroup(Agent.class.getName(), params,
nodes);

}
// ...

}

Remarks: We use an external method to create the group is for the simple reason of we use this code after in another method.

Remarks: We don't explain the Agent code because it is a ProActive example.

For the postconditions we will test if the group containts 3 elements and they are in the good node:

public boolean postConditions() throws Exception {
if (group == null) {

return false;
} else {

Group agentGroup = ProActiveGroup.getGroup(group);
if (agentGroup.size() != 3) {

return false;
} else {

Agent agent0 = (Agent) agentGroup.get(0);
Agent agent1 = (Agent) agentGroup.get(1);
Agent agent2 = (Agent) agentGroup.get(2);
String nodeURL = getNode().getNodeInformation().getURL()

.toUpperCase();
return (agent0.getNodeName().compareTo(nodeURL) == 0) &&
(agent1.getNodeName().compareTo(nodeURL) == 0) &&
(agent2.getNodeName().compareTo(nodeURL) == 0);

}
}

}

This class is now readi for a standalone use.

48.9.2.2. Action method for interlinked mode

Now, we will add a new action method who return a ProActive Group:

public Agent action(Object o) throws Exception {
createGroupAgent();
return this.group;

}

This method return an Agent (who is the group) and have one argument: o. This argument will not use , we must to put this argu-
ment is for have a different method signature from action().

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

459

Our test for group creation is now ready.

48.9.3. An independant Test: A Group migration

All the code is the same of the precedant class unexcepted for the actions methods and for the method to create group of course.

48.9.3.1. The default action method

In this test we can't run this method in a standalone test, but for other maybe you can. It is just for this test.

public void action() throws Exception {
throw new Exception('This test doesn't work in standalone mode');

}

48.9.3.2. The action method for interlinked tests

The result of the precedent test is an Agent, so the argument will be an Agent. This test have no result but we must to return an Ob-
ject here it is null because the API use the reflection mechanism of Java.

public Object action(Agent group) throws Exception {
this.group = group;
this.group.moveTo(getNode().getNodeInformation().getURL());
return null;

}

48.9.4. Run your tests

Create a simple ProActiveFuncTestManager with a main:

import testsuite.manager.ProActiveFuncTestManager;
public class Manager extends ProActiveFuncTestManager {

public Manager(String name, String description) {
super(name, description);

}
public static void main(String[] args) {

Manager manager = new Manager('Migration Tests',
'Create a group and migrate its objects.');

}
}

Create a new Group (testsuite.group.Group) in our main:

import testsuite.group.Group;
// ...
Group group = new Group('Group Migration', 'Migration on an active group objects.');
// ...

Create and add the 2 precends tests in the group:

// ...
TestGroupCreation creation = new TestGroupCreation(manager.getLocalVMNode());

group.add(creation);
TestGroupMigration migration = new TestGroupMigration(manager.getRemoteVMNode());
group.add(migration);

// ...

Specify the ancestor test of migration is creation:

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

460

// ...
FunctionalTest[] params = { creation };

migration.setTests(params);
// ...

You can see in the Section 48.5, “Configuration File” how to do this by a configuration file.

Warning: Don't forget to write a prop file with the name of the remote host.

Add the group and launch the test:

// ...
manager.add(group);
manager.execute(group, migration, true);
// ...

Warning: when you use a ProActiveManager you must to had System.exit(0) at the end of the main method. If don't do that, the
manager can't properly.

48.9.4.1. An example of results for this test with verbatim option

8/26/03 12:40:47.407 [MESSAGE] Local hostname: amda.inria.fr
8/26/03 12:40:47.408 [MESSAGE] Remote hostname: owenii
8/26/03 12:40:47.498 [MESSAGE] Starting with interlinked Tests ...
8/26/03 12:40:47.498 [MESSAGE] Init Manager with success
8/26/03 12:40:48.547 [RESULT] Group Creation: Test run with success [SUCCESS]
8/26/03 12:40:50.149 [RESULT] Group Migration: Test run with success [SUCCESS]
8/26/03 12:40:50.149 [RESULT] Group: Group Migration Runs: 2 Errors: 0 [SUCCESS]
8/26/03 12:40:50.243 [MESSAGE] ... Finish

48.9.5. All the code

Manager.prop

RemoteHostname=owenii

Manager.java

import testsuite.group.Group;
import testsuite.manager.ProActiveFuncTestManager;
public class Manager extends ProActiveFuncTestManager {

public Manager(String name, String description) {
super(name, description);

}
public static void main(String[] args) {

Manager manager = new Manager('Migration Tests',
'Create a group and migrate its objects.');

Group group = new Group('Group Migration',
'Migration on an active group objects.');

TestGroupCreation creation = new TestGroupCreation(manager.getLocalVMNode());
group.add(creation);
TestGroupMigration migration = new TestGroupMigration(manager.getRemoteVMNode());
group.add(migration);
FunctionalTest[] params = { creation };
migration.setTests(params);
manager.add(group);
manager.execute(group, migration, true);
manager.setVerbatim(true);

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

461

manager.getResults().toOutPutStream(System.out);
System.exit(0);

}
}

TestGroupMigration.java

import java.io.Serializable;
import org.objectweb.proactive.core.group.Group;
import org.objectweb.proactive.core.group.ProActiveGroup;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveFunctionalTest;
public class TestGroupMigration extends ProActiveFunctionalTest

implements Serializable {
private Agent group = null;
public TestGroupMigration() {

super(null, 'Group Migration',
'Migrate all Group Element in a specified node.');

}
public TestGroupMigration(Node node) {

super(node, 'Group Migration',
'Migrate all Group Element in a specified node.');

}
public boolean postConditions() throws Exception {

if (group == null) {
return false;

} else {
Group agentGroup = ProActiveGroup.getGroup(group);
if (agentGroup.size() != 3) {

return false;
} else {

Agent agent0 = (Agent) agentGroup.get(0);
Agent agent1 = (Agent) agentGroup.get(1);
Agent agent2 = (Agent) agentGroup.get(2);
String nodeURL = getNode().getNodeInformation().getURL()

.toUpperCase();
return (agent0.getNodeName().compareTo(nodeURL) == 0) &&
(agent1.getNodeName().compareTo(nodeURL) == 0) &&
(agent2.getNodeName().compareTo(nodeURL) == 0);

}
}

}
public boolean preConditions() throws Exception {

return getNode() != null;
}
public void action() throws Exception {

throw new Exception('This test doesn't work in standalone mode');
}
public Object action(Agent group) throws Exception {

this.group = group;
this.group.moveTo(getNode().getNodeInformation().getURL());
return null;

}
public void initTest() throws Exception {

// nothing to do
}
public void endTest() throws Exception {

// nothing to do
}

}

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

462

TestGroupCreation.java

import org.objectweb.proactive.core.group.Group;
import org.objectweb.proactive.core.group.ProActiveGroup;
import org.objectweb.proactive.core.node.Node;
import testsuite.test.ProActiveFunctionalTest;
import java.io.Serializable;
public class TestGroupCreation extends ProActiveFunctionalTest

implements Serializable {
private Agent group = null;
public TestGroupCreation() {

super(null, 'Group Creation',
'Create a Group of active object in specify node.');

}
public TestGroupCreation(Node node) {

super(node, 'Group Creation',
'Create a Group of active object in specify node.');

}
// Default action method
public void action() throws Exception {

createGroupAgent();
}
// For interlinked tests action method
public Agent action(Object o) throws Exception {

createGroupAgent();
return this.group;

}
private void createGroupAgent() throws Exception {

Object[][] params = {
{ 'Agent0' },
{ 'Agent1' },
{ 'Agent2' }

};
Node node = getNode();
Node[] nodes = { node };
group = (Agent) ProActiveGroup.newGroup(Agent.class.getName(), params,

nodes);
}
public boolean postConditions() throws Exception {

if (group == null) {
return false;

} else {
Group agentGroup = ProActiveGroup.getGroup(group);
if (agentGroup.size() != 3) {

return false;
} else {

Agent agent0 = (Agent) agentGroup.get(0);
Agent agent1 = (Agent) agentGroup.get(1);
Agent agent2 = (Agent) agentGroup.get(2);
String nodeURL = getNode().getNodeInformation().getURL()

.toUpperCase();
return (agent0.getNodeName().compareTo(nodeURL) == 0) &&
(agent1.getNodeName().compareTo(nodeURL) == 0) &&
(agent2.getNodeName().compareTo(nodeURL) == 0);

}
}

}
public boolean preConditions() throws Exception {

return getNode() != null;
}
public void initTest() throws Exception {

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

463

// nothing to do
}
public void endTest() throws Exception {

// nothing to do
}

}

Agent.java

import org.objectweb.proactive.Body;
import org.objectweb.proactive.EndActive;
import org.objectweb.proactive.InitActive;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.RunActive;
public class Agent implements InitActive, RunActive,

EndActive, java.io.Serializable {
private String name;
private String nodename;
private String hostname;
public Agent() {
}
public Agent(String name) {

this.name = name;
}
public String getName() {

try {
//return the name of the Host
return java.net.InetAddress.getLocalHost().getHostName()

.toUpperCase();
} catch (Exception e) {

e.printStackTrace();
return 'getName failed';

}
}
public String getNodeName() {

try {
//return the name of the Node
return ProActive.getBodyOnThis().getNodeURL().toUpperCase();

} catch (Exception e) {
e.printStackTrace();
return 'getNodeName failed';

}
}
public void moveTo(String nodeURL) {

try {
System.out.println(' I am going to migate');
ProActive.migrateTo(nodeURL);
System.out.println('migration done');

} catch (Exception e) {
e.printStackTrace();

}
}
public void endBodyActivity() {

ProActive.getBodyOnThis().terminate();
}
public void initActivity(Body body) {

System.out.println('Initialization of the Activity');
}
public void runActivity(Body body) {

org.objectweb.proactive.Service service =

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

464

new org.objectweb.proactive.Service(body);
while (body.isActive()) {

// The synchro policy is FIFO
service.blockingServeOldest();

}
}
public void endActivity(Body body) {

System.out.println('End of the activity of this Active Object');
}

}

Example 48.2. Agent class

48.10. Conclusion

This tour was intented to guide you through an overview of ProActive TestSuite API.

You can now easily use it for testing and benchmarking your ProActive's applications.

Thanks to its extending mechanism, you can also use it for non-ProActive's applications. Which means that use it for all Java pro-
grams.

Your suggestions [mailto:proactive-support@inria.fr] are welcome.

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

465

mailto:proactive-support@inria.fr

Part VIII: Extending ProActive Chapter 48: ProActive Test Suite API

466

Chapter 49. Adding a Deployment Protocol
49.1. Objectives

ProActive support several deployment protocols. This protocols can be configured through an XML Descriptor file in the process
section. From time to time, new protocols are added. This documentation describes how to add a new deployment protocol
(process) to ProActive.

49.2. Overview

Adding a new process can be divided into two related tasks:

• Java Process Class

In this section, a java class that handles the specific protocol must be implemented. This java class must have certain proper-
ties discussed later on.

• XML Descriptor

Since each new protocol requieres different configuration parameteres, the DescriptorSchema.xsd and related parsing code
must be modified to handle the new process and it's specific parameteres.

Both of this tasks are closely related because the Java Process Class is used when parsing the Descriptor XML.

49.3. Java Process Class

The Java Process Classes are defined in the org.objectweb.proactive.core.process package.

49.3.1. Process Package Arquitecture

Most implementations extend the class AbstractExternalProcessDecorator.

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

467

Figure 49.1. core.process structure

In this figure, OARSubProcess and SSHProcess both extend from AbstractExternalProcessDecorator. Notice, that in the case
of SSH, more than one class maybe required to succesfully implement the protocol. This is why, every protocol is implemented
within it's on directory in the process package:

ProActive/src/org/objectweb/proactive/core/process/newprocessdir/

Sometimes, implementeing a specific process requiers external libraries, possibly from the original protocol client. The correct
place to put this external .jar libraries is in:

ProActive/lib/newprocessdir/*.jar

Before executing a deployment using this new process, don't forget to add this libraries to the $CLASSPATH envirorment vari-
able.

49.3.2. The New Process Class

Usualy the new java process class will have a name such as: ProtocolNameProcess.java. The ProtocolNameProcess class will

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

468

extend from AbstractExternalProcessDecorator. Therefore, at least the following inherited methods must be implemented:

• public ProtocolNameProcess();
• public ProtocolNameProcess(ExternalProcess targetProcess);
• public String getProcessId();
• public int getNodeNumber();
• public UniversalProcess getFinalProcess();
• protected String internalBuildCommand();
• protected void internalStartProcess(String commandToExecute) throws java.io.IOException;

49.3.3. The StartRuntime.sh script

On certain clusters, a starting script might be required. Sometimes, this script will be static and receive parameteres at deployment
time (globus, pbs, ...), and in other cases it will have to be generated at deployment time (oar, oargrid). In either case, the proper
place to put these scipts is:

ProActive/scripts/unix/cluster/

49.4. XML Descriptor Process

49.4.1. Schema Modifications

The schema file is located at: ProActive/descriptors/DescriptorSchema.xsd. This file contains the valid tags allowed in an XML
descriptor file.

• processDefinition Childs

The first thing to do, is add the new process tag in:

<xs:complexType name="ProcessDefinitionType">
<xs:choice>

<xs:element name="jvmProcess" type="JvmProcessType"/>
<xs:element name="rshProcess" type="RshProcessType"/>
<xs:element name="maprshProcess" type="MapRshProcessType"/>
<xs:element name="sshProcess" type="SshProcessType"/>
<xs:element name="processList" type="ProcessListType"/>
<xs:element name="processListbyHost" type="ProcessListbyHostType"/>
<xs:element name="rloginProcess" type="RloginProcessType"/>
<xs:element name="bsubProcess" type="BsubProcessType"/>
<xs:element name="pbsProcess" type="PbsProcessType"/>
<xs:element name="oarProcess" type="oarProcessType"/>
<xs:element name="oarGridProcess" type="oarGridProcessType"/>
<xs:element name="globusProcess" type="GlobusProcessType"/>
<xs:element name="prunProcess" type="prunProcessType"/>
<xs:element name="gridEngineProcess" type="sgeProcessType"/>

</xs:choice>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

• Specific Process Tag

Afterwards, all the tag attributes and subtags need to be defined. In this example, we show the OARGRID tag:

<!--oarGridProcess-->
<xs:complexType name="oarGridProcessType">

<xs:sequence>
<xs:element ref="processReference"/>
<xs:element ref="commandPath" minOccurs="0"/>
<xs:element name="oarGridOption" type="OarGridOptionType"/>

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

469

</xs:sequence>
<xs:attribute name="class" type="xs:string" use="required"

fixed="org.objectweb.proactive.core.process.oar.OARGRIDSubProcess"/>
<xs:attribute name="queue" type="xs:string" use="optional"/>
<xs:attribute name="bookedNodesAccess" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="rsh"/>
<xs:enumeration value="ssh"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="closeStream" type="CloseStreamType" use="optional"/>

</xs:complexType>
<!--oarGridOption-->
<xs:complexType name="OarGridOptionType">

<xs:sequence>
<xs:element name="resources" type="xs:string"/>
<xs:element name="walltime" type="xs:string" minOccurs="0"/>
<xs:element name="scriptPath" type="FilePathType" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

49.4.2. XML Parsing Handler

49.4.2.1. ProActiveDescriptorConstants.java:

This file is located in org.objectweb.proactive.core.descriptor.xml package. It contains the tag names used within XML
descriptor files. When adding a new process, new tags should be registered in this file.

49.4.2.2. ProcessDefinitinonHandler.java:

Located in: org.objectweb.proactive.core.descriptor.xml, this file is the XML handler for the process descriptor section.

• New XML handler innerclass

This class will parse all the process specific tags and attributes. It is an innerclass in the ProcessDefinitinonHandler.java
file. Sometimes, this class will have a subclass in charge of parsing a subsection of the process tag.

protected class OARGRIDProcessHandler extends ProcessHandler {
public OARGRIDProcessHandler(ProActiveDescriptor proActiveDescriptor) {
super(proActiveDescriptor);
this.addHandler(OARGRID_OPTIONS_TAG, new OARGRIDOptionHandler());

}
public void startContextElement(String name, Attributes attributes)
throws org.xml.sax.SAXException {
super.startContextElement(name, attributes);

String queueName = (attributes.getValue("queue"));
if (checkNonEmpty(queueName)) {
((OARGRIDSubProcess) targetProcess).setQueueName(queueName);

}
String accessProtocol = (attributes.getValue("bookedNodesAccess"));
if (checkNonEmpty(accessProtocol)) {
((OARGRIDSubProcess) targetProcess).setAccessProtocol(accessProtocol);

}
}
protected class OARGRIDOptionHandler extends PassiveCompositeUnmarshaller {
public OARGRIDOptionHandler() {

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

470

UnmarshallerHandler pathHandler = new PathHandler();
this.addHandler(OAR_RESOURCE_TAG, new SingleValueUnmarshaller());
this.addHandler(OARGRID_WALLTIME_TAG, new SingleValueUnmarshaller());
BasicUnmarshallerDecorator bch = new BasicUnmarshallerDecorator();
bch.addHandler(ABS_PATH_TAG, pathHandler);
bch.addHandler(REL_PATH_TAG, pathHandler);
this.addHandler(SCRIPT_PATH_TAG, bch);

}
public void startContextElement(String name, Attributes attributes)
throws org.xml.sax.SAXException {

}
protected void notifyEndActiveHandler(String name, UnmarshallerHandler activeHandler)
throws org.xml.sax.SAXException {
OARGRIDSubProcess oarGridSubProcess = (OARGRIDSubProcess) targetProcess;
if (name.equals(OAR_RESOURCE_TAG)) {
oarGridSubProcess.setResources((String) activeHandler.getResultObject());

}
else if(name.equals(OARGRID_WALLTIME_TAG)){
oarGridSubProcess.setWallTime((String) activeHandler.getResultObject());

}
else if (name.equals(SCRIPT_PATH_TAG)) {
oarGridSubProcess.setScriptLocation((String) activeHandler.getResultObject());

}
else {
super.notifyEndActiveHandler(name, activeHandler);

}
}

}
}

• Registering the new XML handler innerclass

The new XML handler innerclass must be registered to handle the parsing of the newprocess tag. This is donde in the con-
structor:

public ProcessDefinitionHandler(ProActiveDescriptor proActiveDescriptor){...}

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

471

Part VIII: Extending ProActive Chapter 49: Adding a Deployment Protocol

472

Chapter 50. How to add a new FileTransfer
CopyProtocol
FileTransfer protocols can be of two types: external or internal. Examples of external protocols are: scp and rcp. While examples
of internal protocols are Unicore and Globus.

Usually external FileTransfer happens before the deployment of the process. On the other hand, internal FileTransfer happens at
the same time of the process deployment, because the specific tools provided by the process are used. This implies that internal
FileTransfer protocols can not be used with other process (ex: unicore file transfer can not be used when deploying with ssh), but
the other way around is valid (ex: scp can be used when deploying with unicore).

50.1. Adding external FileTransfer CopyProtocol
• Implement the protocol class. This is done inside the package: org.objectweb.proactive.core.process.filetransfer; by ex-

tending the abstract class AbstractCopyProtocol.
• FileTransferWorkshop: Add the name of the protocol to array ALLOWED_COPY_PROTOCOLS[]
• FileTransferWorkshop: Add the object named based creation to factory method: copyProtocolFactory(String name){...}

Note: Choosing the correct name for the protocol is simple, but must be done carefully. All names already in the array AL-
LOWED_COPY_PROTOCOLS are forbidden. This includes the name 'processDefault', which is also forbidden. In some cases
'processDefault' will correspond to an external FileTransfer protocol (ex: ssh with scp), and in some cases to an internal protocol
(ex: unicore with unicore)

50.2. Adding internal FileTransfer CopyProtocol
• Implement the method protected boolean internalFileTransferDefaultProtocol() inside the process class. Note that this

method will be called if the processDefault keyword is specified in the XML Descriptor Process Section. Therefore, this
method usually must return true, so no other FileTransfer protocols will be tried.

• FileTransferWorkshop: Add the name of the protocol to array ALLOWED_COPY_PROTOCOLS[]

Note: When adding an internal FileTransfer protocol, nothing must be modified or added to the copyProtocolFactory(){} method.

Part VIII: Extending ProActive Chapter 50: How to add a new FileTransfer
CopyProtocol

473

Part VIII: Extending ProActive Chapter 50: How to add a new FileTransfer
CopyProtocol

474

Chapter 51. Adding a Fault-Tolerance
Protocol
This documentation is a quick overview of how to add a new fault-tolerance protocol within ProActive. A more complete version
should be released with the version 3.3. If you wish to get more informations, please feel free to send a mail to proact-
ive@objectweb.org.

51.1. Overview

51.1.1. Active Object side

Fault-tolerance mechanism in ProActive is mainly based on the org.objectweb.proactive.core.body.ft.protocols.FTManager
class. This class contains several hooks that are called before and after the main actions of an active object, e.g. sending or receiv-
ing a message, serving a request, etc.

For example, with the Pessimistic Message Logging protocol (PML), messages are logged just before the delivery of the message
to the active object. Main methods for the FTManager of the PML protocol are then:

/**
* Message must be synchronously logged before being delivered.
* The LatestRcvdIndex table is updated
* @see org.objectweb.proactive.core.body.ft.protocols.FTManager#onDeli\

verReply(org.objectweb.proactive.core.body.reply.Reply)
*/
public int onDeliverReply(Reply reply) {

// if the ao is recovering, message are not logged
if (!this.isRecovering) {

try {
// log the message
this.storage.storeReply(this.ownerID, reply);
// update latestIndex table
this.updateLatestRvdIndexTable(reply);

} catch (RemoteException e) {
e.printStackTrace();

}
}
return 0;

}
/**
* Message must be synchronously logged before being delivered.
* The LatestRcvdIndex table is updated
* @see org.objectweb.proactive.core.body.ft.protocols.FTManager#onRece\

iveRequest(org.objectweb.proactive.core.body.request.Request)
*/
public int onDeliverRequest(Request request) {

// if the ao is recovering, message are not logged
if (!this.isRecovering) {

try {
// log the message
this.storage.storeRequest(this.ownerID, request);
// update latestIndex table
this.updateLatestRvdIndexTable(request);

} catch (RemoteException e) {
e.printStackTrace();

}
}
return 0;

Part VIII: Extending ProActive Chapter 51: Adding a Fault-Tolerance Pro-
tocol

475

mailto:proactive@objectweb.org
mailto:proactive@objectweb.org

}

The local variable this.storage is remote reference to the checkpoint server. The FTManager class contains a reference to each
fault-tolerance server: fault-detector, checkpoint storage and localization server. Those reference are initialized during the creation
of the active object.

A FTManager must define also a beforeRestartAfterRecovery() method, which is called when an active object is recovered. This
method usually restore the state of the active object so as to be consistent with the others active objects of the application.

For example, with the PML protocol, all the messages logged before the failure must be delivered to the active object. The method
beforeRestartAfterRecovery() thus looks like:

/**
* Message logs are contained in the checkpoint info structure.
*/
public int beforeRestartAfterRecovery(CheckpointInfo ci, int inc) {

// recovery mode: received message no longer logged
this.isRecovering = true;
//get messages

List replies = ci.getReplyLog();
List request = ci.getRequestLog();
// add messages in the body context

Iterator itRequest = request.iterator();
BlockingRequestQueue queue = owner.getRequestQueue();
// requests
while (itRequest.hasNext()) {

queue.add((Request) (itRequest.next()));
}
// replies
Iterator itReplies = replies.iterator();
FuturePool fp = owner.getFuturePool();
try {

while (itReplies.hasNext()) {
Reply current = (Reply) (itReplies.next());
fp.receiveFutureValue(current.getSequenceNumber(),

current.getSourceBodyID(), current.getResult(), current\
);

}
} catch (IOException e) {

e.printStackTrace();
}
// normal mode
this.isRecovering = false;
// enable communication
this.owner.acceptCommunication();
try {

// update servers
this.location.updateLocation(ownerID, owner.getRemoteAdapter())\

;
this.recovery.updateState(ownerID, RecoveryProcess.RUNNING);

} catch (RemoteException e) {
logger.error('Unable to connect with location server');
e.printStackTrace();

}
return 0;

}

The parameter ci is a org.objectweb.proactive.core.body.ft.checkpointing.CheckpointInfo. This object contains all the in-
formations linked to the checkpoint used for recovering the active object, and is used to restore its state. The programmer might

Part VIII: Extending ProActive Chapter 51: Adding a Fault-Tolerance Pro-
tocol

476

defines his own class implementing CheckpointInfo, to add needed informations, depending on the protocol.

51.1.2. Server side

ProActive include a global server that provide fault detection, active object localization, resource service and checkpoint storage.
For developing a new fault-tolerance protocol, the programmer might specify the behavior of the checkpoint storage by extending
the class org.objectweb.proactive.core.body.ft.servers.storage.CheckpointServerImpl. For example, only for the PML pro-
tocol and not for the CIC protocol, the checkpoint server must be able to log synchronously messages. The other parts of the server
can be used directly.

To specify the recovery algorithm, the programmer must extends the
org.objectweb.proactive.core.body.ft.servers.recovery.RecoveryProcessImpl. In the case of the CIC protocol, all the active
object of the application must recover after one failure, while only the faulty process must restart with the PML protocol; this spe-
cific behavior is coded in the recovery process.

Part VIII: Extending ProActive Chapter 51: Adding a Fault-Tolerance Pro-
tocol

477

Part VIII: Extending ProActive Chapter 51: Adding a Fault-Tolerance Pro-
tocol

478

Chapter 52. MOP: Metaobject Protocol
52.1. Implementation: a Meta-Object Protocol

ProActive is built on top of a metaobject protocol (MOP) that permits reification of method invocation and constructor call. As this
MOP is not limited to the implementation of our transparent remote objects library, it also provides an open framework for imple-
menting powerful libraries for the Java language.

As for any other element of ProActive, this MOP is entirely written in Java and does not require any modification or extension to
the Java Virtual Machine, as opposed to other metaobject protocols for Java {Kleinoeder96}. It makes extensive use of the Java
Reflection API, thus requiring JDK 1.1 or higher. JDK 1.2 is required in order to suppress default Java language access control
checks when executing reified non-public method or constructor calls.

52.2. Principles

If the programmer wants to implement a new metabehavior using our metaobject protocol, he or she has to write both a concrete
(as opposed to abstract) class and an interface. The concrete class provides an implementation for the metabehavior he or she
wants to achieve while the interface contains its declarative part.

The concrete class implements interface Proxy and provides an implementation for the given behavior through the method reify:

public Object reify (MethodCall c) throws Throwable;

This method takes a reified call as a parameter and returns the value returned by the execution of this reified call. Automatic wrap-
ping and unwrapping of primitive types is provided. If the execution of the call completes abruptly by throwing an exception, it is
propagated to the calling method, just as if the call had not been reified.

The interface that holds the declarative part of the metabehavior has to be a subinterface of Reflect (the root interface for all
metabehaviors implemented using ProActive). The purpose of this interface is to declare the name of the proxy class that imple-
ments the given behavior. Then, any instance of a class implementing this interface will be automatically created with a proxy that
implements this behavior, provided that this instance is not created using the standard new keyword but through a special static
method: MOP.newInstance. This is the only required modification to the application code. Another static method,
MOP.newWrapper, adds a proxy to an already-existing object; the turnActive function of ProActive, for example, is implemen-
ted through this feature.

52.3. Example of a different metabehavior: EchoProxy

Here's the implementation of a very simple yet useful metabehavior: for each reified call, the name of the invoked method is prin-
ted out on the standard output stream and the call is then executed. This may be a starting point for building debugging or profiling
environments.

class EchoProxy extends Object implements Proxy {
// here are constructor and variables declaration
// [...]
public Object reify (MethodCall c) throws Throwable {

System.out.println (c.getMethodName());
return c.execute (targetObject);

}
}
interface Echo extends Reflect {
public String PROXY_CLASS= 'EchoProxy';

}

52.3.1. Instantiating with the metabehavior

Instantiating an object of any class with this metabehavior can be done in three different ways: instantiation-based, class-based or

Part VIII: Extending ProActive Chapter 52: MOP: Metaobject Protocol

479

object-based. Let's say we want to instantiate a Vector object with an Echo behavior.

• Standard Java code would be:

Vector v = new Vector(3);

• ProActive code, with instantiation-based declaration of the metabehavior (the last parameter is null because we do not have
any additional parameter to pass to the proxy):

Object[] params = {new Integer (3)};
Vector v = (Vector) MOP.newInstance('Vector', params, 'EchoProxy', null);

• with class-based declaration:

public class MyVector extends Vector implements Echo {}
Object[] params = {new Integer (3)} ;
Vector v = (Vector) MOP.newInstance('Vector', params, null);

• with object-based declaration:

Vector v = new Vector (3);
v=(Vector) MOP.newWrapper('EchoProxy',v);

This is the only way to give a metabehavior to an object that is created in a place where we cannot edit source code. A typic-
al example could be an object returned by a method that is part of an API distributed as a JAR file, without source code.
Please note that, when using newWrapper, the invocation of the constructor of the class Vector is not reified.

52.4. The Reflect interface

All the interfaces used for declaring metabehaviors inherit directly or indirectly from Reflect. This leads to a hierarchy of
metabehaviors such as shown in the figure below.

Figure 52.1. Metabehavior hierarchy

Reflect Interface and sub-interfaces diagram

Part VIII: Extending ProActive Chapter 52: MOP: Metaobject Protocol

480

Note that ImplicitActive inherits from Active to highlight the fact that implicit synchronization somewhere always relies on some
hidden explicit mechanism. Interfaces inheriting from Reflect can thus be logically grouped and assembled using multiple inherit-
ance in order to build new metabehaviors out of existing ones.

52.5. Limitations

Due to its commitment to be a 100% Java library, the MOP has a few limitations:

• Calls sent to instances of final classes (which includes all arrays) cannot be reified.
• Primitive types cannot be reified because they are not instance of a standard class.
• Final classes (which includes all arrays) cannot be reified because they cannot be subclassed.

Part VIII: Extending ProActive Chapter 52: MOP: Metaobject Protocol

481

Part VIII: Extending ProActive Chapter 52: MOP: Metaobject Protocol

482

Part IX. Back matters

Table of Contents

Appendix A. Frequently Asked Questions ... 485
A.1. Running ProActive ... 485

A.1.1. How do I build ProActive from the distribution? .. 485
A.1.2. Why don't the examples and compilation work under Windows? ... 486
A.1.3. Why do I get a Permission denied when trying to launch examples scripts under Linux? 486

A.2. General Concepts ... 486
A.2.1. How does the node creation happen? ... 486
A.2.2. How does the RMI Registry creation happen? ... 487
A.2.3. What is the class server, why do we need it? .. 487
A.2.4. What is a reifiable object? .. 487
A.2.5. What is the body of an active object? What are its local and remote representations? 487
A.2.6. What is a ProActive stub? .. 488
A.2.7. Are the call to an Active Object always asynchronous? ... 488

A.3. Exceptions .. 488
A.3.1. Why do I get an exception java.lang.NoClassDefFoundError about asm? 488
A.3.2. Why do I get an exception java.lang.NoClassDefFoundError about bcel? 489
A.3.3. Why do I get an exception java.security.AccessControlException access denied? 489
A.3.4. Why do I get an exception when using Jini? .. 490
A.3.5. Why do I get a java.rmi.ConnectException: Connection refused to host: 127.0.0.1 ? 490

A.4. Writing ProActive-oriented code ... 490
A.4.1. Why aren't my object's properties updated? ... 490
A.4.2. How can I pass a reference on an active object or the difference between this and ProAct-
ive.getStubOnThis()? ... 491
A.4.3. How can I create an active object? ... 491
A.4.4. What are the differences between instantiation based and object based active objects creation? . 492
A.4.5. Why do I have to write a no-args constructor? ... 492
A.4.6. How do I control the activity of an active object? ... 492
A.4.7. What happened to the former live() method and Active interface? 494
A.4.8. Why should I avoid to return null in methods body? ... 494
A.4.9. How can I use Jini in ProActive? ... 495
A.4.10. How do I make a Component version out of an Active Object version? 495
A.4.11. How can I use Jini in ProActive? ... 495
A.4.12. Why is my call not asynchronous? ... 495

A.5. Deployment Descriptors .. 495
A.5.1. What is the difference between passing parameters in Deployment Descriptor and setting properties
in ProActive Configuration file? .. 495
A.5.2. Why do I get the following message when parsing my xml deployment file: ERROR:
file:~/ProActive/descriptor.xml Line:2 Message:cvc-elt.1: Cannot find the declaration of element 'ProAct-
iveDescriptor' ... 495

Appendix B. Reference Card ... 497
B.1. Main concepts and definitions ... 497
B.2. Main principles: asynchronous method calls and implicit futures ... 498
B.3. Explicit Synchronization .. 498
B.4. Programming AO Activity and services .. 498
B.5. Reactive Active Object .. 499
B.6. Service methods ... 499
B.7. Active Object Creation: ... 501
B.8. Groups: ... 501
B.9. Explicit Group Synchronizations ... 502
B.10. OO SPMD ... 502
B.11. Migration .. 502

Part IX: Back matters

B.12. Components ... 503
B.13. Security: .. 503
B.14. Deployment ... 504
B.15. Exceptions ... 505
B.16. Export Active Objects as Web services ... 506
B.17. Deploying a fault-tolerant application ... 507
B.18. Peer-to-Peer Infrastructure .. 507
B.19. Branch and Bound API .. 509
B.20. File Transfer Deployment ... 510

Appendix C. Files of the ProActive source base cited in the manual ... 513
C.1. XML descriptors cited in the manual .. 513
C.2. Java classes cited in the manual ... 537
C.3. Tutorial files : Adding activities and migration to HelloWorld ... 598
C.4. Other files cited in the manual ... 604

Bibliography .. 611

Index ... 613

Part IX: Back matters

Appendix A. Frequently Asked Questions
Note: This FAQ is under construction. If one of your question is not answered here, just send it at proactive@objectweb.org and
we'll update the FAQ.

Table of Contents
A.1. Running ProActive ... 485

A.1.1. How do I build ProActive from the distribution? .. 485
A.1.2. Why don't the examples and compilation work under Windows? ... 486
A.1.3. Why do I get a Permission denied when trying to launch examples scripts under Linux? 486

A.2. General Concepts ... 486
A.2.1. How does the node creation happen? ... 486
A.2.2. How does the RMI Registry creation happen? ... 487
A.2.3. What is the class server, why do we need it? .. 487
A.2.4. What is a reifiable object? .. 487
A.2.5. What is the body of an active object? What are its local and remote representations? 487
A.2.6. What is a ProActive stub? .. 488
A.2.7. Are the call to an Active Object always asynchronous? ... 488

A.3. Exceptions .. 488
A.3.1. Why do I get an exception java.lang.NoClassDefFoundError about asm? 488
A.3.2. Why do I get an exception java.lang.NoClassDefFoundError about bcel? 489
A.3.3. Why do I get an exception java.security.AccessControlException access denied? 489
A.3.4. Why do I get an exception when using Jini? .. 490
A.3.5. Why do I get a java.rmi.ConnectException: Connection refused to host: 127.0.0.1 ? 490

A.4. Writing ProActive-oriented code ... 490
A.4.1. Why aren't my object's properties updated? ... 490
A.4.2. How can I pass a reference on an active object or the difference between this and ProAct-
ive.getStubOnThis()? ... 491
A.4.3. How can I create an active object? ... 491
A.4.4. What are the differences between instantiation based and object based active objects creation? . 492
A.4.5. Why do I have to write a no-args constructor? ... 492
A.4.6. How do I control the activity of an active object? ... 492
A.4.7. What happened to the former live() method and Active interface? 494
A.4.8. Why should I avoid to return null in methods body? ... 494
A.4.9. How can I use Jini in ProActive? ... 495
A.4.10. How do I make a Component version out of an Active Object version? 495
A.4.11. How can I use Jini in ProActive? ... 495
A.4.12. Why is my call not asynchronous? ... 495

A.5. Deployment Descriptors .. 495
A.5.1. What is the difference between passing parameters in Deployment Descriptor and setting properties
in ProActive Configuration file? .. 495
A.5.2. Why do I get the following message when parsing my xml deployment file: ERROR:
file:~/ProActive/descriptor.xml Line:2 Message:cvc-elt.1: Cannot find the declaration of element 'ProAct-
iveDescriptor' ... 495

A.1. Running ProActive

A.1.1. How do I build ProActive from the distribution?

ProActive uses Ant [http://jakarta.apache.org/ant/] for its build. Assuming that the environment variable JAVA_HOME is properly
set to your Java distribution, just go into the compile directory and use the script:

• on Windows: build.bat all
• on Unix systems: build all

Part IX: Back matters Frequently Asked Questions

485

mailto:proactive@objectweb.org
http://jakarta.apache.org/ant/

'all' represents the target of the build. It will compile all sources files and generate the documentation. To compile only the source
files, for example if you have modified the code, you should try

• on Windows: build.bat compile
• on Unix systems: build compile

If you want only to compile only parts of ProActive, you should try build, with no arguments. As of version v3.2, the result is:

/home/bob/ProActive/compile/$ build
Buildfile: ./proactive.xml

Main targets:

all Compile All and build the docs
clean Remove all generated files
compile build the class files
core Compile the ProActive core classes
dist Create the distribution binary
docs Construct the javadoc and the manual
examples Compile all the examples
ibis Everything related to ProActive IBIS
ic2d Compile the IC2D Tool
javadoc Use javadoc to build information on the ProActive classes
manual Build all the different manual version: html, pdf...
manualHtml Make only the html files in the manual
manualPdf Make only the pdf files in the manual
rewrite Rewrite classes to enhance performance with ibis
runBench Run benchmarks
runTests Run all non regression tests
runTestsLocal Run all non regression tests on the current host only
Default target: compile

A.1.2. Why don't the examples and compilation work under Windows?

It happens quite often, that the default installation directory under Windows is under Program Files which contains space. Then
setting the JAVA_HOME environment variable to the install directory, might be a problem for bat files(all windows examples, and
compilation are ran with bat files). To get rid of those problems, the best thing is to install jdk in a directory whose name does not
contain spaces such as C:\java\j2sdk.... or D:\java\j2sdk... and then to set the JAVA_HOME environment variable accordingly: set
JAVA_HOME=C:\java\j2sdk... Another solution is to do a copy paste of the command defined in the bat file in the DOS window.

A.1.3. Why do I get a Permission denied when trying to launch examples scripts under Linux?

According to the tool used to unpackage the ProActive distribution, permissions of newly created files can be based on default
UMASK permissions. If you get a permission denied, just run the command: chmod 755 *.sh in the ProActive/scripts/unix direct-
ory in order to change the permissions.

A.2. General Concepts

A.2.1. How does the node creation happen?

An active object is always attached to a node. A node represents a logical entity deployed onto one JVM. When creating a new act-
ive object you have to provide a URL or a reference to a node. That node has to exist at the moment you create the active object. It
has to be launched on a local or on a remote JVM. In order to be accessible from any remote JVM, a node automatically registers
itself in the local RMI Registry on the local machine. Getting a reference to a remote node ends up doing a lookup into a RMI re-
gistry. The class NodeFactory provides a method getNode for doing that.

In order to start a node you can use the script startNode located in the scripts directory in the sub-directory windows or unix. At
the moment, startNode can only start a node on the local machine. It is not possible to start a remote node using startNode. The

Part IX: Back matters Frequently Asked Questions

486

reason is that starting a node on a remote host implies the use of protocol such as RSH, SSH or rLogin that are platform dependant
and that cannot be easily abstracted from java. We are working on that area at the moment with the XML-based deployment
descriptor that will allow the remote creation of nodes using various protocol.

It is nevertheless possible to create an object on a remote node once it is created. On host X you can use startNode to start a new
node

startNode.sh ///node1

On host Y you can create an active object on host X

org.objectweb.proactive.core.node.Node n = org.objectweb.proactive.core.n\
ode.NodeFactory.getNode('//X/node1');
ProActive.turnActive(myObject, n);

You do not need to start any rmiregistry manually as they are started automatically as needed.

As we support other ways of registration and discovery (such as Jini), getting a node can be protocol dependant. For instance, the
url of a node jini://host.org/node won't be accessed the same way as rmi://host.org/node. The class NodeFactory is able to read
the protocol and to use the right way to access the node.

When an active object is created locally without specifying a node, it is automatically attached to a default node. The default node
is created automatically by ProActive on the local JVM when a first active object is created without a given node. The name of the
default node is generated based on a random number.

A.2.2. How does the RMI Registry creation happen?

ProActive relies on the RMI Registry for registering and discovering nodes. For this reason, the existence of a RMI Registry is ne-
cessary for ProActive to be used. In order to simplify the deployment of ProActive applications, we have included the creation of
the RMI Registry with the creation of nodes. Therefore, if no RMI Registry exists on the local machine, ProActive will automatic-
ally create one. If one exists, ProActive will automatically use it.

A.2.3. What is the class server, why do we need it?

In the RMI model, a class server is a HTTP Server able to answer simple HTTP requests for getting class files. It is needed in the
case an object being sent to a remote location where the class the object belongs to is unknown. In such case, if the property
java.rmi.server.codebase has been set properly to an existing class server, RMI will attempt to download the missing class files.

Because ProActive makes use of on-the-fly, in memory, generated classes (the stubs), a class server is necessary for each JVM us-
ing active objects. For this reason, ProActive starts automatically one small class server per JVM. The launching and the use of
this class server is transparent to you.

A.2.4. What is a reifiable object?

An object is said to be reifiable if it meets certain criterias in order to become an Active Object:

• The object is not of primitive type
• The class of the object is not final
• The object has a constructor with no arguments

A.2.5. What is the body of an active object? What are its local and remote representations?

When created, an active object is associated with a Body that is the entity managing all the non functional properties of the active
object. The body contains the request queue receiving all reified method calls to the reified object (the object from which the active
object has been created). It is responsible for storing pending requests and serving them according to a given synchronization
policy, which default behavior is FIFO.

The body of the active object should be the only object able to access directly the reified object. All other objects accessing the act-
ive object do so through the stub-proxy couple that eventually sends a request to the body. The body owns its own thread that rep-
resent the activity of the active object.

Part IX: Back matters Frequently Asked Questions

487

The body has two representations. One is local and given by the interface Body (see code in Example C.26, “ Body.java ”). This is
the local view of the body an object can have when being in the same JVM as the body. For instance, the implementation of the
activity of an object done through the method runActivity(Body) of the interface RunActive sees the body locally as it is instanti-
ated by the body itself. The other representation, given by the interface UniversalBody (see code in Example C.27, “ core/
body/UniversalBody.java ”), is remote. It represents the view of the body a remote object can have and therefore the methods that
can be invoked. That view is the one used by the proxy of a remote reference to the active object to send request to the body of the
active object.

A.2.6. What is a ProActive stub?

When you create an active object from a regular object, you get in return a reference on an automatically generated ProActive
stub. ProActive uses ASM [http://asm.objectweb.org/] to generate the stub on the fly. Suppose you have a class A and an instance
a of this class. A way to turn the instance a into an active object is to use the method ProActive.turnActive:

A a = new A();
A activeA = (A) ProActive.turnActive(a);

In the code above, the variable a is a direct reference onto the instance of A stored somewhere in memory. In contrast, the variable
activeA is a direct reference onto an instance of the generated ProActive stub for the class A. By convention, the ProActive stub of
a class A is a class generated in memory by ProActive that inherit from A and that is stored in the package pa.stub as
pa.stub.Stub_A. The ProActive stub of a class redefines all public methods to reify them through a generic proxy. The proxy
changes all method calls into requests that are sent to the body associated to the reified object (the object pointed by a in our ex-
ample).

The reified object can be indifferently in the same virtual machine as the active reference or in another one.

A.2.7. Are the call to an Active Object always asynchronous?

No. Calls to an Active Object methods are asynchronous under some conditions. This is explained in Section 13.8, “Asynchronous
calls and futures”. If for instance the return type of a method call is not reifiable, you can use wrappers to keep asynchronism cap-
abilities: suppose that one of your object has a method

int getNumber()

calling this method with ProActive is sychronous since the 'int' type is not reifiable. To keep the asynchronism it is advised to use
the classes given in the org.objectweb.proactive.core.util.wrapper package, or to create your own wrapper based on these ex-
amples. In the case highlighted above, you should use

IntWrapper getNumber()

Then calling this new getNumber() method is asynchronous. Remember that only the methods return type are concerned, not
the parameters.

A.3. Exceptions

A.3.1. Why do I get an exception java.lang.NoClassDefFoundError about asm?

ProActive uses ASM [http://www.objectweb.org/asm/] for the on the fly generation of stub classes. The library asm.jar, provided
in the directory lib of ProActive is needed in order for any active object to function properly. If the library is not in the
CLASSPATH you will get the following exception or a similar one:

Exception in thread 'main' java.lang.NoClassDefFoundError: org/objectweb/asm/Constants
at java.lang.ClassLoader.defineClass0(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:509)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:123)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:246)
at java.net.URLClassLoader.access$100(URLClassLoader.java:54)

Part IX: Back matters Frequently Asked Questions

488

http://asm.objectweb.org/
http://www.objectweb.org/asm/

at java.net.URLClassLoader$1.run(URLClassLoader.java:193)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:186)
at java.lang.ClassLoader.loadClass(ClassLoader.java:306)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:265)
at java.lang.ClassLoader.loadClass(ClassLoader.java:262)
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:322)
at org.objectweb.proactive.core.mop.MOP.<clinit>(MOP.java:88)
at org.objectweb.proactive.ProActive.createStubObject(ProActive.java:836)
at org.objectweb.proactive.ProActive.createStubObject(ProActive.java:830)
at org.objectweb.proactive.ProActive.newActive(ProActive.java:255)
at org.objectweb.proactive.ProActive.newActive(ProActive.java:180)
at org.objectweb.proactive.examples.binarytree.TreeApplet.main(TreeApplet.java:103)

The problem can simply be fixed by adding asm.jar in the CLASSPATH.

A.3.2. Why do I get an exception java.lang.NoClassDefFoundError about bcel?

ProActive uses BCEL [http://jakarta.apache.org/bcel/] for the on the fly generation of stub classes. The library bcel.jar, provided
in the directory lib of ProActive is needed in order for any active object to function properly. If the library if not in the
CLASSPATH you will get the following exception or a similar one:

Exception in thread 'main' java.lang.NoClassDefFoundError: org/apache/bcel/generic/Type
at org.objectweb.proactive.core.mop.MOPClassLoader.loadClass(MOPClassLoader.java:129)
at org.objectweb.proactive.core.mop.MOPClassLoader.loadClass(MOPClassLoader.java:109)
at org.objectweb.proactive.core.mop.MOP.createStubClass(MOP.java:341)
at org.objectweb.proactive.core.mop.MOP.findStubConstructor(MOP.java:376)
at org.objectweb.proactive.core.mop.MOP.createStubObject(MOP.java:443)
at org.objectweb.proactive.core.mop.MOP.newInstance(MOP.java:165)
at org.objectweb.proactive.core.mop.MOP.newInstance(MOP.java:137)
at org.objectweb.proactive.ProActive.createStubObject(ProActive.java:590)
at org.objectweb.proactive.ProActive.createStubObject(ProActive.java:585)
at org.objectweb.proactive.ProActive.newActive(ProActive.java:170)
at org.objectweb.proactive.ProActive.newActive(ProActive.java:137)
at DiscoveryManager.main(DiscoveryManager.java:226)

The problem can simply be fixed by adding bcel.jar in the CLASSPATH.

A.3.3. Why do I get an exception java.security.AccessControlException access denied?

If you don't properly set permissions when launching code using ProActive you may get the following exception or a similar one.

java.security.AccessControlException: access denied (java.net.SocketPermission 127.0.0.1:1099 connect,resolve)
at java.security.AccessControlContext.checkPermission(AccessControlContext.java:270)
at java.security.AccessController.checkPermission(AccessController.java:401)
at java.lang.SecurityManager.checkPermission(SecurityManager.java:542)
at java.lang.SecurityManager.checkConnect(SecurityManager.java:1044)
at java.net.Socket.connect(Socket.java:419)
at java.net.Socket.connect(Socket.java:375)
at java.net.Socket.<init>(Socket.java:290)
at java.net.Socket.<init>(Socket.java:118)
at sun.rmi.transport.proxy.RMIDirectSocketFactory.createSocket(RMIDirectSocketFactory.java:22)
at sun.rmi.transport.proxy.RMIMasterSocketFactory.createSocket(RMIMasterSocketFactory.java:122)
at sun.rmi.transport.tcp.TCPEndpoint.newSocket(TCPEndpoint.java:562)
at sun.rmi.transport.tcp.TCPChannel.createConnection(TCPChannel.java:185)
at sun.rmi.transport.tcp.TCPChannel.newConnection(TCPChannel.java:171)
at sun.rmi.server.UnicastRef.newCall(UnicastRef.java:313)
at sun.rmi.registry.RegistryImpl_Stub.lookup(Unknown Source)
at org.objectweb.proactive.core.rmi.RegistryHelper.detectRegistry(RegistryHelper.java:101)

Part IX: Back matters Frequently Asked Questions

489

http://jakarta.apache.org/bcel/

at org.objectweb.proactive.core.rmi.RegistryHelper.getOrCreateRegistry(RegistryHelper.java:114)
at org.objectweb.proactive.core.rmi.RegistryHelper.initializeRegistry(RegistryHelper.java:77)
at org.objectweb.proactive.core.node.rmi.RemoteNodeFactory(RemoteNodeFactory.java:56)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27)
at java.lang.reflect.Constructor.newInstance(Constructor.java:274)
at java.lang.Class.newInstance0(Class.java:296)
at java.lang.Class.newInstance(Class.java:249)
at org.objectweb.proactive.core.node.NodeFactory.createNodeFactory(NodeFactory.java:281)
at org.objectweb.proactive.core.node.NodeFactory.createNodeFactory(NodeFactory.java:298)
at org.objectweb.proactive.core.node.NodeFactory.getFactory(NodeFactory.java:308)
at org.objectweb.proactive.core.node.NodeFactory.createNode(NodeFactory.java:179)
at org.objectweb.proactive.core.node.NodeFactory.createNode(NodeFactory.java:158)
...

ProActive uses RMI [http://java.sun.com/products/jdk/rmi/] as its underlying transport technology. Moreover it uses code down-
loading features to automatically move generated stub classes from one JVM to another one. For those reasons, ProActive needs to
install a SecurityManager that controls the execution of the Java code based on a set of permissions given to the JVM. Without
explicit permissions nothing is granted for the code running outside java.* or sun.* packages.

See Permissions in the JavaTM 2 SDK [http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html] to learn more about
Java permissions.

As a first approximation, in order to run your code, you can create a simple policy file granting all permissions for all code:

grant { permission java.security.AllPermission; };

Then you need to start your Java program using the property -Djava.security.policy. For instance:

java -Djava.security.policy=my.policy.file MyMainClass

A.3.4. Why do I get an exception when using Jini?

In order to get Jini working properly in ProActive, you have to put in your HOME directory a copy of proactive.java.policy loc-
ated in ProActive/scripts/unix or windows. Indeed the rmid deamon needs this file to start. If you try to use Jini without this policy
file, it will not work. Moreover, if you did it once, make sure that there is no file called machine_namejiniLockFile in your work-
ing directory. This file is usefull to avoid many Service Lookup to be created by concurrent threads. This file is removed automat-
ically when a Lookup Service is created. If the application failed(for instance because of the policy file) it is possible that this file
remains in the directory, in that case if you restart the application it will not work. So checkout if this file is present in your work-
ing directory, if so remove it and restart the application

A.3.5. Why do I get a java.rmi.ConnectException: Connection refused to host: 127.0.0.1 ?

Sometimes, the hosts files (/etc/hosts for UNIX) contains 127.0.0.1 along with the name of the machine. This troubles ProAct-
ive, and JAVA network connexions in general. To circumvent this issue , you should start your programs with the command line
argument

-Dsun.net.spi.nameservice.provider.1=dns,sun"

This tells java not to look at the hosts file, but rather to ask the DNS for network information.

A.4. Writing ProActive-oriented code

A.4.1. Why aren't my object's properties updated?

Suppose you have a class A with an attribute a1 as the example below.

Part IX: Back matters Frequently Asked Questions

490

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

public class A {
public int a1;
public static void main(String[] args) {
A a = new A();
A activeA = (A) ProActive.turnActive(a);
a.a1 = 2; // set the attribute a1 of the instance pointed by a to 2
activeA.a1 = 2; // !!! set the attribute a1 of the stub instance to 2
}
}

When you reference an active object, you always reference it through its associated stub (see Section 13.7, “Advanced: Role of the
elements of an active object” for the definition of Stub). The stub class inheriting from the reified class, it has also all its attributes.
But those attributes are totally useless as the only role of the generated stub is to reify every public methods call into a request
passed to the associated proxy. Therefore accessing directly the attributes of an active object through its active reference would
result in accessing the attributes of the generated stub. This is certainly not the behavior one would expect.

The solution to this problem is very simple: active object properties should only be accessed through a public method. Other-
wise, you're accessing the local Stub's properties.

A.4.2. How can I pass a reference on an active object or the difference between this and ProAct-
ive.getStubOnThis()?

Suppose you have a class A that you want to make active. In A you want to have a method that returns a reference on that instance
of A as the example below.

public class A {
public A getRef() {
return this; // !!!! THIS IS WRONG FOR AN ACTIVE OBJECT
}
}

There is indeed a problem in the code above. If an instance of A is created as, or turned into an active object, the method getRef
will in fact be called through the Body of the active object by its active thread. The value returned by the method will be the direct
reference on the reified object and not a reference on the active object. If the call is issued from another JVM, the value will be
passed by copy and the result (assuming A is serializable) will be a deep copy of A with no links to the active object.

The solution, if you want to pass a link to the active object from the code of the reified object, is to use the method ProAct-
ive.getStubOnThis(). This method will return the reference to the stub associated to the active object whose thread is calling the
method. The correct version of the previous class is:

public class A {
public A getRef() {
return ProActive.getStubOnThis(); // returns a reference on the stub
}
}

A.4.3. How can I create an active object?

To create an active object you invoke one of the methods newActive or turnActive of the ProActive class. ProActive.newActive
creates an active object based on the instantiation of a new object, ProActive.turnActive creates an active object based on an ex-
isting object. The different versions of the same newActive or turnActive methods allow you to specify where to create the active
object (which node) and to customize its activity or its body (see questions below).

Here is a simple example creating an active object of class A in the local JVM. If the invocation of the constructor of class A
throws an exception, it is placed inside an exception of type ActiveObjectCreationException. When the call to newActive re-
turns, the active object has been created and its active thread is started.

public class A {
private int i;

Part IX: Back matters Frequently Asked Questions

491

private String s;
public A() {}
public A(int i, String s) {
this.i = i;
this.s = s;
}
}
// instance based creation
A a;
Object[] params = new Object[] { new Integer (26), 'astring' };
try {
a = (A) ProActive.newActive(A.class.getName(), params);
} catch (ActiveObjectCreationException e) {
// creation of ActiveObject failed
e.printStackTrace();
}
// object based creation
A a = new A(26, 'astring');
try {
a = (A) ProActive.turnActive(a);
} catch (ActiveObjectCreationException e) {
// creation of ActiveObject failed
e.printStackTrace();
}

A.4.4. What are the differences between instantiation based and object based active objects creation?

In ProActive there are two ways to create active objects. One way is to use ProActive.newActive and is based on the instantiation
of a new object, the other is to use ProActive.turnActive and is based on the use of an existing object.

When using instantiation based creation, any argument passed to the constructor of the reified object through ProAct-
ive.newActive is serialized and passed by copy to the object. This is because the model behind ProActive is uniform whether the
active object is instantiated locally or remotely. The parameters are therefore guaranteed to be passed by copy to the constructor.
When using ProActive.newActive you must make sure that the arguments of the constructor are Serializable. On the other hand,
the class used to create the active object does not need to beSerializable even in the case the active object is created remotly.

When using object based creation, you create the object that is going to be reified as an active object before hand. Therefore there
is no serialization involved when you create the object. When you invoke ProActive.turnActive on the object two cases are pos-
sible. If you create the active object locally (on a local node), it will not be serialized. If you create the active object remotely (on a
remote node), the reified object will be serialized. Therefore, if the turnActive is done on a remote node, the class used to create
the active object this way has to beSerializable. In addition, when using turnActive, care must be taken that no other references
to the originating object are kept by other objects after the call to turnActive. A direct call to a method of the originating object
without passing by a ProActive stub on this object will break the model.

A.4.5. Why do I have to write a no-args constructor?

ProActive automatically creates a stub/skeleton pair for your active objects. When the stub is instancied on the remote node, its
constructor ascends the ancestors chain, thus calling its parent constructor [the active object]. So if you place initialization stuff in
your no args constructor, it will be executed on the stub, which can lead to disastrous results!

A.4.6. How do I control the activity of an active object?

As explained in Section 13.3, “Specifying the activity of an active object”, there are two ways to define the activity of your active
object

• Implementing one or more of the sub-interfaces of Active directly in the class used to create the active object
• Passing an object implementing one or more of the sub-interfaces of Active in parameter to the method newActive or

turnActive

Part IX: Back matters Frequently Asked Questions

492

Implementing the interfaces directly in the class used to create the active object

This is the easiest solution when you do control the class that you make active. Depending on which phase in the life of the active
object you want to customize, you implement the corresponding interface (one or more) amongst InitActive, RunActive and En-
dActive. Here is an example that has a custom initialization and activity.

import org.objectweb.proactive.*;
public class A implements InitActive, RunActive {
private String myName;
public String getName() {
return myName;
}
// -- implements InitActive
public void initActivity(Body body) {
myName = body.getName();
}
// -- implements RunActive for serving request in a LIFO fashion
public void runActivity(Body body) {
Service service = new Service(Body);
while (body.isActive()) {
service.blockingServeYoungest();
}
}
public static void main(String[] args) throws Exception {
A a = (A) ProActive.newActive(A.class.getName,null);
System.out.println('Name = '+a.getName());
}
}

Passing an object implementing the interfaces when creating the active object

This is the solution to use when you do not control the class that you make active or when you want to write generic activities
policy and reused them with several active objects. Depending on which phase in the life of the active object you want to custom-
ize, you implement the corresponding interface (one or more) amongst InitActive, RunActive and EndActive. Here an example
that has a custom activity.

Compared to the solution above where interfaces are directly implemented in the reified class, there is one restriction here: you
cannot access the internal state of the reified object. Using an external object should therefore be used when the implementation of
the activity is generic enough not to have to access the member variables of the reified object.

import org.objectweb.proactive.*;
public class LIFOActivity implements RunActive {
// -- implements RunActive for serving request in a LIFO fashion
public void runActivity(Body body) {
Service service = new Service(Body);
while (body.isActive()) {
service.blockingServeYoungest();
}
}
}
import org.objectweb.proactive.*;
public class A implements InitActive {
private String myName;
public String getName() {
return myName;
}
// -- implements InitActive
public void initActivity(Body body) {
myName = body.getName();
}
public static void main(String[] args) throws Exception {

Part IX: Back matters Frequently Asked Questions

493

// newActive(classname, constructor parameter (null = none),
// node (null = local), active, MetaObjectFactory (null = d\
efault)
A a = (A) ProActive.newActive(A.class.getName(), null, null, new LIFO\
Activity(), null);
System.out.println('Name = '+a.getName());
}
}

A.4.7. What happened to the former live() method and Active interface?

The former Active interface was simply a marker interface allowing to change the body and/or the proxy of an active object. It was
of no use most of the time and was made obsolete with the introduction of the MetaObjectFactory (see code in Example C.19, “
core/body/MetaObjectFactory.java ”) in the 0.9.3 release.

Up to ProActive 0.9.3 the activity of an active object was given by a method live(Body) called by reflection of the reified object.
Doing this way didn't allow compile time type checking of the method, was using reflection, didn't allow to externalize from the
reified object its activity, didn't allow to give a custom activity to an active object created using turnActive. We addressed all those
issues using the new mechanism based on the three interfaces InitActive, RunActive and EndActive.

In order to convert the code of an active object containing a method live to the new interface you just need to:

• implement the new interface RunActive (and remove Active if it was implemented)
• changed the name of the method live to runActivity

A.4.8. Why should I avoid to return null in methods body?

On the caller side the test if(result_from_method == null) has no sense. Indeed result_from_method is a couple Stub-Fu-
tureProxy as explained above, so even if the method returns null, result_from_method cannot be null:

public class MyObject{
public MyObject(){
//empty constructor with no-args
}

public Object getObject{
if(.....) {
return new Object();
}
else {
return null; --> to avoid in ProActive
}
}

}

On the caller side:

MyObject o = new MyObject();
Object result_from_method = o.getObject();
if(result_from_method == null){
......
}

This test is never true, indeed, result_from_method is Stub-->Proxy-->null if the future is not yet available or the method returns
null or Stub-->Proxy-->Object if the future is available, but result_from_method is never null. See Documentation on Futures in
Section 13.8.3, “Important Notes: Errors to avoid” for more documentation about common errors to avoid.

Part IX: Back matters Frequently Asked Questions

494

A.4.9. How can I use Jini in ProActive?

In order to use Jini in ProActive you have to configure properly the deployment descriptor. All informations on how to configure
XML deployment descriptor are provided in Chapter 21, XML Deployment Descriptors.

A.4.10. How do I make a Component version out of an Active Object version?

There is such an example, in the examples/components/c3d directory. The code for c3d is adapted to use components.

There are several steps to cover:

1. Make sure you have made interfaces for the objects which are to be made components. This is needed to be able to do the
binding between components

2. Replace the references to Active Object classes by their interfaces
3. Create a component wrapper for each Active Object which should appear as a component. It should contain the binding be-

havior (bindFc,unbindFc,listFc,lookupFc methods), and maybe handle attribute modification.
4. Create a main class where the compoents are created then bound, or use an ADL file to do so.

A.4.11. How can I use Jini in ProActive?

In order to use Jini in ProActive you have to configure properly the deployment descriptor. All informations on how to configure
XML deployment descriptor are provided in Chapter 21, XML Deployment Descriptors.

A.4.12. Why is my call not asynchronous?

ProActive allows to have asynchronous code, in the following cases:

• The return value is reifiable (see Q: A.2.4). This is needed to ensure the creation of the Future, which is the container re-
turned (the future is used while waiting for the effective result to arrive). The returned class has to be Serializable, can not be
final, and must have an empty no-arguments constructor.

• The return value is void. In this case, the rendez-vous is made, and then the caller resumes its activity, while the receiver has
now a new methodCall in its queue.

More explanations can be found in Section 13.8, “Asynchronous calls and futures”.

A.5. Deployment Descriptors

A.5.1. What is the difference between passing parameters in Deployment Descriptor and setting prop-
erties in ProActive Configuration file?

Parameters defined in Deployment Descriptor should be only jvm related, whereas properties set in the Configuration file are Pro-
Active properties or user-defined properties. They are used with a different approach: parameters given in descriptors are part of
the java command that will create other jvms, whereas properties will be loaded once jvms are created

A.5.2. Why do I get the following message when parsing my xml deployment file: ERROR:
file:~/ProActive/descriptor.xml Line:2 Message:cvc-elt.1: Cannot find the declaration of element 'Pro-
ActiveDescriptor'

This message turns up because the Schema cannot be found. Indeed at the beginning of our XML deployment files we put the line

<ProActiveDescriptor xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>

which means, the schema named DescriptorSchema.xsd is expected to be found in the current directory to validate the xml. Be
sure you have this file in the same dir than your file, or just change the path to point to the correct schema.

Part IX: Back matters Frequently Asked Questions

495

Part IX: Back matters Frequently Asked Questions

496

Appendix B. Reference Card
ProActive is a Java library for parallel, distributed, and concurrent computing, also featuring mobility and security in a uni-
form framework. ProActive provides a comprehensive API and a graphical interface. The library is based on an Active Object pat-
tern that is a uniform way to encapsulate:

• a remotely accessible object,
• a thread as an asynchronous activity,
• an actor with its own script,

• a server of incoming requests,
• a mobile and potentially secure entity,
• a component with server and client interfaces.

ProActive is only made of standard Java classes, and requires no changes to the Java Virtual Machine. Overall, it simplifies the
programming of applications distributed over Local Area Network (LAN), Clusters, Intranet or Internet GRIDs.

B.1. Main concepts and definitions

•
Active Objects (AO): a remote object, with its own thread, receiving calls on its public methods

•
FIFO activity: an AO, by default, executes the request it receives one after the other, in the order they were received

• No-sharing: standard Java objects cannot be referenced from 2 AOs, ensured by deep-copy of constructor params, method
params, and results

• Asynchronous Communications: method calls towards AOs are asynchronous
•

Future: the result of a non-void asynchronous method call
•

Request: the occurrence of a method call towards an AO
•

Service: the execution by an AO of a request
•

Reply: after a service, the method result is sent back to the caller
•

Wait-by-necessity: automatic wait upon the use of a still awaited future
•

Automatic Continuation: transmission of futures and replies between AO and JVMs
•

Migration: an AO moving from one JVM to another, computational weak mobility: the AO decides to migrate and stack is
lost

•
Group: a typed group of objects or AOs. Methods are called in parallel on all group members.

•
Component: made of AOs, a component defines server and client interfaces

• Primitive Component: directly made of Java code and AOs
• Composite Component: contains other components (primitives or composites)
• Parallel Component: a composite that is using groups to multicast calls to inner components
• Security: X.509 Authentication, Integrity, and Confidentiality defined at deployment in an XML file on entities such as

communications, migration, dynamic code loading.
•

Virtual Node (VN): an abstraction (a string) representing where to locate AOs at creation
•

Deployment descriptor: an XML file where a mapping VN --> JVMs --> Machine is specified.
•

Node: the result of mapping a VN to a set of JVMs. After activation, a VN contains a set of nodes, living in a set of JVMs.
• IC2D: Interactive Control and Debugging of Distribution: a Graphical environment for monitoring and steering Grid applic-

Part IX: Back matters Reference Card

497

ations

B.2. Main principles: asynchronous method calls and implicit futures

A a = (A) ProActive.newActive('A', params, node);
// Create an active Object of type A in the JVM specified by Node

a.foo (param);
// A one way typed asynchronous communication towards the (remote) AO a
// A request is sent to a,

v = a.bar (param);
// A typed asynchronous communication with result.
// v is first an awaited Future, to be transparently filled up after
// service of the request, and reply

...
v.gee (param);

// Use of the result of an asynchronous call.
// If v is still an awaited future, it triggers an automatic
// wait: Wait-by-necessity

B.3. Explicit Synchronization

boolean isAwaited(Object);
// Returns True if the object is still an awaited Future

void waitFor(Object);
// Blocks until the object is no longer awaited
// A request is sent to a,

void waitForAll(Vector);
// Blocks until all the objects in Vector are no longer awaited

int waitForAny(Vector);
// Blocks until one of the objects in Vector is no longer awaited.
// Returns the index of the available future.

B.4. Programming AO Activity and services

When an AO must implement an activity that is not FIFO, the RunActive interface has to be implemented: it specifies the AO be-
havior in the method named runActivity():

Interface RunActive
void runActivity(Body body)

// The activity of the active object instance of the current class

Example:

public class A implements RunActive {
// Implements RunActive for programming a specific behavior

// runActivity() is automatically called when such an AO is created
public void runActivity(Body body) {

Service service = new Service(body);
while (terminate) {

Part IX: Back matters Reference Card

498

... // Do some activity on its own

...

... // Do some services, e.g. a FIFO service on method named foo
service.serveOldest('foo');
...
}

}
}

Two other interfaces can also be specified:

Interface InitActive
void initActivity(Body body)

// Initializes the activity of the active object.
// not called in case of restart after migration
// Called before runActivity() method, and only once:

Interface EndActive
void endActivity(Body body)

// Finalizes the active object after the activity stops by itself.
// Called after the execution of runActivity() method, and only once:
// not called before a migration

B.5. Reactive Active Object

Even when an AO is busy doing its own work, it can remain reactive to external events (method calls). One just has to program
non-blocking services to take into account external inputs.

public class BusyButReactive implements RunActive {

public void runActivity(Body body) {
Service service = new Service(body);
while (! hasToTerminate) {

...
// Do some activity on its own ...
...
// Non blocking service ...
service.serveOldest('changeParameters', 'terminate');
...
}

}

public void changeParameters () {
......
// change computation parameters
}

public void terminate (){
hasToTerminate=true;
}

}

It also allows one to specify explicit termination of AOs (there is currently no Distributed Garbage Collector). Of course, the react-
ivity is up to the length of going around the loop. Similar techniques can be used to start, suspend, restart, and stop AOs.

B.6. Service methods

Part IX: Back matters Reference Card

499

Non-blocking services: returns immediately if no matching request is pending

void serveOldest();
// Serves the oldest request in the request queue

void serveOldest(String methodName)
// Serves the oldest request aimed at a method of name methodName

void serveOldest(RequestFilter requestFilter)
// Serves the oldest request matching the criteria given be the filter

Blocking services: waits until a matching request can be served

void blockingServeOldest();
// Serves the oldest request in the request queue

void blockingServeOldest(String methodName)

// Serves the oldest request aimed at a method of name methodName

void blockingServeOldest(RequestFilter requestFilter)
// Serves the oldest request matching the criteria given be the filter

Blocking timed services: wait a matching request at most a time given in ms

void blockingServeOldest (long timeout)
// Serves the oldest request in the request queue.
// Returns after timeout (in ms) if no request is available

void blockingServeOldest(String methodName, long timeout)
// Serves the oldest request aimed at a method of name methodName
// Returns after timeout (in ms) if no request is available

void blockingServeOldest(RequestFilter requestFilter)
// Serves the oldest request matching the criteria given be the filter

Waiting primitives:

void waitForRequest();
// Wait until a request is available or until the body terminates

void waitForRequest(String methodName);
// Wait until a request is available on the given method name,
// or until the body terminates

Others:

void fifoServing();
// Start a FIFO service policy. Call does not return. In case of
// a migration, a new runActivity() will be started on the new site

void lifoServing()
// Invoke a LIFO policy. Call does not return. In case of
// a migration, a new runActivity() will be started on the new site

void serveYoungest()
// Serves the youngest request in the request queue

Part IX: Back matters Reference Card

500

void flushAll()
// Removes all requests in the pending queue

B.7. Active Object Creation:

Object newActive(String classname, Object[] constructorParameters,Node node);
// Creates a new AO of type classname. The AO is located on the given node,
// or on a default node in the local JVM if the given node is nul

Object newActive(String classname,Object[] constructorParameters,VirtualNode virtualnode);
// Creates a new set of AO of type classname.
// The AO are located on each JVMs the Virtual Node is mapped onto

Object turnActive(Object, Node node);
// Copy an existing Java object and turns it into an AO.
// The AO is located on the given node, or on a default node in

B.8. Groups:

A ga = (A) ProActiveGroup.newGroup('A', params, nodes);
// Created at once a group of AO of type 'A' in the JVMs specified
// by nodes. ga is a Typed Group of type 'A'.
// The number of AO being created matches the number of param arrays.
// Nodes can be a Virtual Node defined in an XML descriptor */

ga.foo(...);
// A general group communication without result.
// A request to foo is sent in parallel to AO in group ga */

V gv = ga.bar(...);
// A general group communication with a result.
// gv is a typed group of 'V', which is first a group
// of awaited Futures, to be filled up asynchronously

gv.gee (...);
// Use of the result of an asynchronous group call. It is also a
// collective operation: gee method is called in parallel on each object\

in group.
// Wait-by-necessity occurs when results are awaited */

Group ag = ProActiveGroup.getGroup(ga);
// Get the group representation of a typed group

ag.add(o);
// Add object in the group ag. o can be a standard Java object or an AO,
// and in any case must be of a compatible type

ag.remove(index)
// Removes the object at the specified index

A ga2 = (A) ag.getGroupByType();
// Returns to the typed view of a group

void setScatterGroup(g);
// By default, a group used as a parameter of a group communication
// is sent to all as it is (deep copy of the group).
// When set to scatter, upon a group call (ga.foo(g)) such a scatter
// parameter is dispatched in a round robing fashion to AOs in the
// target group, e.g. upon ga.foo(g) */

void unsetScatterGroup(g);
// Get back to the default: entire group transmission in all group
// communications, e.g. upon ga.foo(g) */

Part IX: Back matters Reference Card

501

B.9. Explicit Group Synchronizations

Methods both in Interface Group, and static in class ProActiveGroup

boolean ProActiveGroup.allAwaited (Object);
// Returns True if object is a group and all members are still awaited

boolean ProActiveGroup.allArrived (Object);
// Returns False only if at least one member is still awaited

void ProActiveGroup.waitAll (Object);
// Wait for all the members in group to arrive (all no longer awaited)

void ProActiveGroup.waitN (Object, int nb);
// Wait for at least nb members in group to arrive

int ProActiveGroup.waitOneAndGetIndex (Object);
// Waits for at least one member to arrived, and returns its index

B.10. OO SPMD

A spmdGroup = (A) ProSPMD.newSPMDGroup('A', params, nodes);
// Creates an SPMD group and creates all members with params on the nodes.
// An SPMD group is a typed group in which every member has a reference to
// the others (the SPMD group itself).

A mySpmdGroup = (A) ProSPMD.getSPMDGroup();
// Returns the SPMD group of the activity.

int rank = ProSPMD.getMyRank();
// Returns the rank of the activity in its SPMD group.

ProSPMD.barrier('barrierID');
// Blocks the activity (after the end of the current service) until all
// other members of the SPMD group invoke the same barrier.
// Three barriers are available: total barrier, neighbors based barrier
// and method based barrier.

B.11. Migration

Methods both in Interface Group, and static in class ProActiveGroup

void migrateTo(Object o);
// Migrate the current AO to the same JVM as the AO

void void migrateTo(String nodeURL);
// Migrate the current AO to JVM given by the node URL

int void migrateTo(Node node);
// Migrate the current AO to JVM given by the node

To initiate the migration of an object from outside, define a public method, that upon service will call the static migrateTo primit-
ive:

public void moveTo(Object) {
try{ ProActive.migrateTo(t); }
catch (Exception e) {

e.printStackTrace();

Part IX: Back matters Reference Card

502

logger.info('Cannot migrate.');
}

}

void onDeparture(String MethodName);
// Specification of a method to execute before migration

void onArrival(String MethodName);
// Specification of a method to execute after migration, upon the
// arrival in a new JVM

void setMigrationStrategy(MigrationStrategy);
// Specifies a migration itinerary

void migrationStrategy.add(Destination);
// Adds a JVM destination to an itinerary

void migrationStrategy.remove(Destination d) ;
// Remove a JVM destination in an itinerary

B.12. Components

Components are formed from AOs, a component is linked and communicates with other remote components. A component can be
composite, made of other components, and as such itself distributed over several machines. Component systems are defined in
XML files (ADL: Architecture Description Language); these files describe the definition, the assembly, and the bindings of com-
ponents.

Components follow the Fractal hierarchical component model specification and API, see http://fractal.objectweb.org

The following methods are specific to ProActive.

In the class org.objectweb.proactive.ProActive:

Component newActiveComponent('A', params, VirtualNode, ComponentParameters);
// Creates a new ProActive component from the specified class A.
// The component is distributed on JVMs specified by the Virtual Node
// The ComponentParameters defines the configuration of a component:
// name of component, interfaces (server and client), etc.
// Returns a reference to a component, as defined in the Fractal API

In the class org.objectweb.proactive.core.component.Fractive:

ProActiveInterface createCollectiveClientInterface(String itfName, String itfSignature);
// This method is used in primitive components.
// It generates a client collective interface named itfName, and typed as itfSignature.
// This collective interface is a typed ProActive group.

B.13. Security:

An X.509 Public Key Infrastructure (PKI) allowing communication Authentication, Integrity, and Confidentiality (AIC) to be con-
figured in an XML security file, at deployment, outside any source code. Security is compatible with mobility, allows for hierarch-
ical domain specificationand dynamically negotiated policies.

Example of specification:

<Rule>
<From>
<Entity type='VN' name='VN1'/>
</From>
<To>

Part IX: Back matters Reference Card

503

<Entity type='VN' name='VN2'/>
</To>
<Communication>
<Request value='authorized'>
<Attributes authentication='required' integrity='required' confidentiality='optional'/>

</Request>
</Communication>
<Migration>denied</Migration>
<AOCreation>denied</AOCreation>

</Rule>

This rule specifies that: from Virual Node 'VN1' to the VN 'VN2', the communications (requests) are authorized, provided authen-
tication and integrity are being used, while confidentiality is optional. Migration and AO creation are not authorized.

B.14. Deployment

Virtual Nodes (VN) allow one to specify the location where to create AOs. A VN is uniquely identified as a String, is defined in an
XML Deployment Descriptor where it is mapped onto JVMs. JVMs are themselves mapped onto physical machines: VN --> JVMs
--> Machine. Various protocols can be specified to create JVMs onto machines (ssh, Globus, LSF, PBS, rsh, rlogin, Web Services,
etc.). After activation, a VN contains a set of nodes, living in a set of JVMs. Overall, VNs and deployment descriptors allow to ab-
stract away from source code: machines, creation, lookup and registry protocols.

Descriptor example: creates one jvm on the local machine

<ProActiveDescriptor xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='DescriptorSchema.xsd'>

<virtualNodesDefinition>
<virtualNode name='Dispatcher'/> <!-- Name of the Virtual Node that will be used in

program source -->
</virtualNodesDefinition>
<componentDefinition/>

<deployment>
<mapping>
<!-- This part contains the mapping VNs -- JVMs -->

<map virtualNode='Dispatcher'>
<jvmSet>

<vmName value='Jvm1'/> <!-- Virtual Node Dispatcher is mapped onto
Jvm1 -->

</jvmSet>
</map>

</mapping>
<jvms>

<jvm name='Jvm1'>
<!-- This part defines how the jvm will be obtained: creation or

acquisition: creation in this example -->
<creation>
<processReference refid='creationProcess'/>
<!-- Jvm1 will be created using creationProcess defined below -->

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>

<processDefinition id='creationProcess'>
<!-- Definition of creationProcess referenced above -->
<jvmProcess class='org.objectweb.proactive.core.process.JVMNodeProcess'/>
<!-- creationProcess is a jvmProcess. The jvm will be created on

the local machine using default settings (classpath, java path,...) -->

Part IX: Back matters Reference Card

504

</processDefinition>
</processes>

</infrastructure>
<componentDefinition>

</ProActiveDescriptor>

Deployment API

ProActiveDescriptor pad = ProActive.getProActiveDescriptor(String File);
// Returns a ProActiveDescriptor object from the xml
// descriptor file name

pad.activateMapping(String VN);
// Activates the given Virtual Node: launches or acquires
// all the JVMs the VN is mapped onto

pad.activateMappings();
// Activates all VNs defined in the ProActiveDescriptor

VirtualNode vn = pad.getVirtualNode(String)
// Created at once a group of AO of type 'A' in the JVMs specified
// by the given vn. The Virtual Node is automatically activated if not
// explicitly done before

Node[] n = vn.getNodes();
// Returns all nodes mapped to the target Virtual Node

Object[] n[0].getActiveObjects();
// Returns a reference to all AOs deployed on the target Node

ProActiveRuntime part = n[0].getProActiveRuntime();
// Returns a reference to the ProActive Runtime (the JVM) where the
// node has been created

pad.killall(boolean softly);
// Kills all the JVMs deployed with the descriptor
// not softly: all JVMs are killed abruptely
// softly: all JVMs that originated the creation of a rmi registry
// wait until registry is empty before dying

B.15. Exceptions

Functional exceptions with asynchrony

ProActive.tryWithCatch(MyException.class);
// Just before the try
try {

// Some asynchronous calls with exceptions
// One can use ProActive.throwArrivedException() and
// ProActive.waitForPotentialException() here
ProActive.endTryWithCatch();
// At the end of the try
} catch (MyException e) {
// ...
} finally {

ProActive.removeTryWithCatch();
// At the beginning of the finally }

Part IX: Back matters Reference Card

505

Non-Functional Exceptions

Adding a handler to an active object on its side:

ProActive.addNFEListenerOnAO(myAO, new NFEListener() {

public boolean handleNFE(NonFunctionalException nfe) {
// Do something with the exception...
// Return true if we were able to handle it
return true;
}

});

Handlers can also be added to the client side of an active object with

ProActive.addNFEListenerOnProxy(ao, handler)

or to a JVM with

ProActive.addNFEListenerOnJVM(handler)

These handlers can also be removed with

ProActive.removeNFEListenerOnAO(ao, handler),
ProActive.removeNFEListenerOnProxy(ao, handler),
ProActive.removeNFEListenerOnJVM(handler)

It's possible to define an handler only for some exception types, for example:

ProActive.addNFEListenerOnJVM(new TypedNFEListener(
SendRequestCommunicationException.class,
new NFEListener() {

public boolean handleNFE(NonFunctionalException e) {
// Do something with the SendRequestCommunicationException...
// Return true if we were able to handle it
return true;
} }

));

The behaviour of the default handler (if none could handle the exception) is to throw the exception if it's on the proxy side, or log it
if it's on the body side.

B.16. Export Active Objects as Web services

ProActive allows active objects exportation as web services. The service is deployed onto a Jakarta Tomcat web server with a giv-
en url. It is identified by its urn, an unique id of the service. It is also possible to choose the exported methods of the object.

The WSDL file matching the service will be accesible at http://localhost:8080/servlet/wsdl?id=a for a service which name is 'a' and
which id deployed on a web server which location is http://localhost:8080.

A a = (A) ProActive.newActive('A', new Object []{});
// Constructs an active object

String [] methods = new String [] {'foo', 'bar'};
//A String array containing the exported methods

ProActive.exposeAsWebService(a,'http://localhost:8080','a',methods);
//Export the active object as a web service

Part IX: Back matters Reference Card

506

ProActive.unExposeAsWebService('a', 'http://localhost:8080');
//Undeploy the service 'a' on the web server located at http://localhost:8080

B.17. Deploying a fault-tolerant application

ProActive can provide fault-tolerance capabilities through two differents protocols: a Communication-Induced Checkpointing pro-
tocol (CIC) or a pessimistic message logging protocol (PML). Making a ProActive application fault-tolerant is fully transparent;
active objects are turned fault-tolerant using Java properties that can be set in the deployment descriptor. The programmer can se-
lect at deployment time the most adapted protocol regarding the application and the execution environment.

A Fault-tolerant deployment descriptor

<ProActiveDescriptor>
...
<virtualNodesDefinition>
<virtualNode name='NonFT-Workers' property='multiple'/>
<virtualNode name='FT-Workers' property='multiple' ftServiceId='appli'/>

</virtualNodesDefinition>
...
<serviceDefinition id='appli'>
<faultTolerance>

<!-- Protocol selection: cic or pml -->
<protocol type='cic' />

<!-- URL of the fault-tolerance server -->
<globalServer url='rmi://localhost:1100/FTServer'/>

<!-- URL of the resource server; all the nodes mapped on this virtual
node will be registred in as resource nodes for recovery -->

<resourceServer url='rmi://localhost:1100/FTServer'/>

<!-- Average time in seconds between two consecutive checkpoints for each object -->
<ttc value='5'/>

</faultTolerance>
</serviceDefinition>

</services>
...

</ProActiveDescriptor>

Starting the fault-tolerance server

The global fault-tolerance server can be launched using the ProActive/scripts/[unix|windows]/FT/startGlobalFTServer.[sh|bat]
script, with 5 optional parameters:

• the protocol: -proto [cic|pml]. Default value is cic.
• the server name: -name [serverName]. Default name is FTServer.
• the port number: -port [portNumber]. Default port number is 1100.
• the fault detection period: -fdperiod [periodInSec], the time between two consecutive fault detection scanning. Default

value is 10 sec.
• the URL of a p2p service that can be used by the resource server: -p2p [serviceURL]. No default value.

B.18. Peer-to-Peer Infrastructure

This aims to help you to create a P2P infrastructure over your desktop workstations network. It is self-organized and configurable.
The infrastructure maintains a dynamic JVMs network for deploying computational applications.

Part IX: Back matters Reference Card

507

Deploying the Infrastructure:

Firstly, you have to start P2P Services on each shared machine:

$ cd ProActive/scripts/unix/p2p

$./startP2PService [-acq acquisitionMethod] [-port portNumber] [-s Peer ...]

With that parameters (all are optionals):

• -acq is the ProActive Runtime communication protocol used by the peer. Examples: rmi, http, ibis,... By default it is rmi.
• -port is the port number where the P2P Service listens. By default it is 2410.
• -s specify addresses of peers which are used to join the P2P infrastructure. Example: rmi://applepie.proactive.org:8080

A simple example:

first.peer.host$./startP2PService.sh

second.peer.host$./startP2PService.sh -s //first.peer.host

third.peer.host$./startP2PService.sh -s //second.peer.host

Acquiring Nodes:

Now you have a P2P Infrastructure running, you might want to deploy your ProActive application on it. That is simple, just modi-
fy the XML deployment descriptor:

...
<jvms>

<jvm name='Jvm1'>
<acquisition>

<serviceReference refid='p2plookup'/>
</acquisition>

</jvm>
...

</jvms>
...
<infrastructure>

...
<services>

<serviceDefinition id='p2plookup'>
<P2PService nodesAsked='2' acq='rmi' port='6666'>

<peerSet>
<peer>//second.peer.host</peer>

</peerSet>
</P2PService>

</serviceDefinition>
...

</services>
...

</infrastructure>
...

In the nodesAsked argument, a special value MAX is allowed. When it is used, the P2P infrastructure returns the maximun num-

Part IX: Back matters Reference Card

508

ber of nodes avilable, and continue while the application running to return new nodes to the application. To use all the benefit of
that feature, you might add a nodes creation event listener to your application.

Usage Example:

// getting the p2p virtual node
VirtualNode vn = pad.getVirtualNode('p2pvn');

// adding 'this' as a listener
((VirtualNodeImpl) vn).addNodeCreationEventListener(this);

// then activate the virtual node
vn.activate();

'this' has to implement the NodeCreationEventListener interface:

public void
nodeCreated(NodeCreationEvent event) {

// get the node Node
newNode = event.getNode();
// now you can create an active object on your node.

}

B.19. Branch and Bound API

Firstly, create your own task:

import org.objectweb.proactive.branchnbound.core.Task;

public class YourTask extends Task {

public Result execute() {
// Your code here for computing a solution

}

public Vector split() {
// Your code for generating sub-tasks
}

public Result gather(Result[] results) {
// Override optional
// Default behavior based on the smallest gave by the compareTo
}

public void initLowerBound() {
// Your code here for computing a lower bound
}

public void initUpperBound() {
// Your code here for computing a lower bound
}

public int compareTo(Object arg) {
// Strongly recommended to override this method
// with your behavior
}

}

Part IX: Back matters Reference Card

509

How to interact with the framework from inside a task:

• Some class variables:

protected Result initLowerBound;
// to store your lower bound

protected Result initUpperBound;
// to store you upper bound

protected Object bestKnownSolution;
// set by the framework with the best current solution

protected Worker worker;
// to interact with the framework (see below)

• Interact with the framework (inside a Task):

this.worker.setBestCurrentResult(newBestSolution);
// the worker will broadcast the solution in all Tasks

this.worker.sendSubTasksToTheManager(subTaskList);
// send a set of sub-tasks for computation to the framework

BooleanWrapper workersAvailable = this.worker.isHungry();
// for a smart split, check for free workers

Secondly, choose your task queue:

• BasicQueueImpl: execute task in FIFO order.
• LargerQueueIml: execute task in larger order.
• Extend TaskQueue: your own one.

Finally, start the compution:

Task task = new YourTask(someArguments);
Manager manager = ProActiveBranchNBound.newBnB(task, nodes, LargerQueueImpl.class.getName());

Result futureResult = manager.start();
// this call is asynchronous ...

Keep in mind that is only 'initLower/UpperBound' and 'split' methods are called on the root task. The 'execute' method is called on
the root task's splitted task. Here the methods order execution:

1. rootTask.initLowerBound(); // compute a first lower bound
2. rootTask.initUpperBound(); // compute a first upper bound
3. Task splitted = rootTask.split(); // generate a set of tasks
4. for i in splitted do in parallel

splitted[i].initLowerBound();
splitted[i].initUpperBound();
Result ri = splitted.execute();

5. Result final = rootTask.gather(Result[] ri); // gathering all result

B.20. File Transfer Deployment

File Transfer Deployment is a tool for transfering files at deployment time. This files are specified using the ProActive XML De-

Part IX: Back matters Reference Card

510

ployment Descriptor in the following way:

<VirtualNode name='exampleVNode' FileTransferDeploy='example'/>
....
</deployment>
<FileTransferDefinitions>
<FileTransfer id='example'>

<file src='hello.dat' dest='world.dat'/>
<dir src='exampledir' dest='exampledir'/>

</FileTransfer>
...

</FileTransferDefinitions>
<infrastructure>
....
<processDefinition id='xyz'>
<sshProcess>...

<FileTransferDeploy='implicit'>
<!-- referenceID or keyword 'implicit' (inherit)-->

<copyProtocol>processDefault, scp, rcp</copyProtocol>
<sourceInfo prefix='/home/user'/>
<destinationInfo prefix='/tmp' hostname='foo.org' username='smith' />

</FileTransferDeploy>
</sshProcess>

</processDefinition>
...

Part IX: Back matters Reference Card

511

Part IX: Back matters Reference Card

512

Appendix C. Files of the ProActive source
base cited in the manual
C.1. XML descriptors cited in the manual

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME" value=
"/user/fviale/home/eclipse_workspace/ProActive_Latest"/> <!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/user/fviale/home/bin/jdk1.5.0" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="matrixNode" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="matrixNode">
<jvmSet>

<vmName value="Jvm1" />
<vmName value="Jvm2" />
<vmName value="Jvm3" />
<vmName value="Jvm4" />

</jvmSet>
</map>

</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="localJVM" />
</creation>

</jvm>
<jvm name="Jvm2">
<creation>

<processReference refid="rsh_crusoe" />
</creation>

</jvm>
<jvm name="Jvm3">
<creation>

<processReference refid="rsh_waha" />
</creation>

</jvm>
<jvm name="Jvm4">
<creation>

<processReference refid="rsh_amstel" />
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

Part IX: Back matters Files of the ProActive source base cited in
the manual

513

<processes>
<processDefinition id="localJVM">

<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath value="${PROACTIVE_HOME}/classes"/>
<absolutePath value="${PROACTIVE_HOME}/lib/javassist.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/bouncycastle.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/components/fractal.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/log4j.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/xercesImpl.jar"/>

</classpath>
<javaPath>
<absolutePath value="${JAVA_HOME}/bin/java"/>

</javaPath>
<policyFile>
<absolutePath value="${PROACTIVE_HOME}/scripts/proactive.java.policy"/>

</policyFile>
<log4jpropertiesFile>
<absolutePath value="${PROACTIVE_HOME}/scripts/proactive-log4j"/>

</log4jpropertiesFile>
<!--<jvmParameters>

<parameter value="-Dproactive.communication.protocol=rmissh"/>
</jvmParameters>-->

</jvmProcess>
</processDefinition>
<processDefinition id="rsh_crusoe">

<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="crusoe.inria.fr">
<processReference refid="localJVM"></processReference>

</rshProcess>
</processDefinition>
<processDefinition id="rsh_waha">

<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="waha.inria.fr">
<processReference refid="localJVM"></processReference>

</rshProcess>
</processDefinition>
<processDefinition id="rsh_amstel">

<rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHProcess"
hostname="amstel.inria.fr">
<processReference refid="localJVM"></processReference>

</rshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.1. examples/RSH_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Part IX: Back matters Files of the ProActive source base cited in
the manual

514

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="matrixNode" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="matrixNode">
<jvmSet>

<vmName value="Jvm1" />
<vmName value="Jvm2" />

</jvmSet>
</map>

</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="ssh_crusoe" />
</creation>

</jvm>
<jvm name="Jvm2">
<creation>

<processReference refid="ssh_waha" />
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess" />
</processDefinition>
<processDefinition id="ssh_crusoe">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="crusoe.inria.fr">
<processReference refid="localJVM"></processReference>

</sshProcess>
</processDefinition>
<processDefinition id="ssh_waha">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="waha.inria.fr">
<processReference refid="localJVM"></processReference>

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.2. examples/SSH_Example.xml

<?xml version="1.0" encoding="UTF-8"?>

Part IX: Back matters Files of the ProActive source base cited in
the manual

515

<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME" value="/home/user/ProActive"/> <!--CHANGE

ME!!!! -->
<descriptorVariable name="JAVA_HOME"
value="/home1/rquilici/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest"/>

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="Jvm1"/>

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="ssh_list"/>

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM">

<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath value="${PROACTIVE_HOME}/lib/ProActive.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/javassist.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/bouncycastle.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/components/fractal.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/log4j.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/xercesImpl.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/jsch.jar"/>

</classpath>
<javaPath>
<absolutePath value="${JAVA_HOME}/bin/java"/>

</javaPath>
<policyFile>
<absolutePath value="${PROACTIVE_HOME}/scripts/proactive.java.policy"/>

</policyFile>
<log4jpropertiesFile>
<absolutePath value="${PROACTIVE_HOME}/scripts/proactive-log4j"/>

</log4jpropertiesFile>
<!--<jvmParameters>

<parameter value="-Dproactive.communication.protocol=rmissh"/>
</jvmParameters>-->

</jvmProcess>
</processDefinition>
<processDefinition id="ssh_list">

<processList class="org.objectweb.proactive.core.process.ssh.SSHProcessList" fixedName=
"125.110.118." list="[96-200]^[96,102,103,104,105,110,11,112]" domain="" username="rquilici">
<!--CHANGE ME!!!! -->

Part IX: Back matters Files of the ProActive source base cited in
the manual

516

<processReference refid="localJVM"></processReference>
</processList>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example C.3. examples/SSHList_example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="matrixNode" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="matrixNode">
<jvmSet>

<vmName value="Jvm1" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="ssh_list" />
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess" />
</processDefinition>
<processDefinition id="ssh_list">
<processListbyHost

class="org.objectweb.proactive.core.process.ssh.SSHProcessList"
hostlist="crusoe waha amstel"> <!--CHANGE ME!!!! -->
<processReference refid="localJVM"></processReference>

</processListbyHost>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.4. examples/SSHListbyHost_Example.xml

Part IX: Back matters Files of the ProActive source base cited in
the manual

517

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/net/home/plugtest/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" timeout="160000" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="Jvm1" />

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="sshInriaCluster" />

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM1">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>
<absolutePath
value="${JAVA_HOME}/bin/java" />

</javaPath>
<policyFile>
<absolutePath

Part IX: Back matters Files of the ProActive source base cited in
the manual

518

value="${PROACTIVE_HOME}/scripts/proactive.java.policy" />
</policyFile>
<log4jpropertiesFile>

<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
<jvmParameters>

<parameter
value="-Dproactive.communication.protocol=rmissh" />

</jvmParameters>
</jvmProcess>

</processDefinition>
<processDefinition id="bsubInriaCluster">
<bsubProcess

class="org.objectweb.proactive.core.process.lsf.LSFBSubProcess">
<processReference refid="localJVM1" />
<bsubOption>

<processor>60</processor>
<resourceRequirement value="span[ptile=2]" />
<scriptPath>
<absolutePath
value="${PROACTIVE_HOME}/scripts/unix/cluster/startRuntime.sh" />

</scriptPath>
</bsubOption>

</bsubProcess>
</processDefinition>
<processDefinition id="sshInriaCluster">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="frontend" username="plugtest">
<processReference refid="bsubInriaCluster" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.5. examples/SSH_LSF_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/home/plugtest/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" />

</virtualNodesDefinition>
</componentDefinition>

Part IX: Back matters Files of the ProActive source base cited in
the manual

519

<deployment>
<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="Jvm1" />

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="sshInriaCluster" />

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM1">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>
<absolutePath
value="${JAVA_HOME}/bin/java" />

</javaPath>
<policyFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
<jvmParameters>
<parameter
value="-Dproactive.communication.protocol=rmissh" />

</jvmParameters>
</jvmProcess>

</processDefinition>
<processDefinition id="pbsInriaCluster">

<pbsProcess
class="org.objectweb.proactive.core.process.pbs.PBSSubProcess">
<processReference refid="localJVM1" />
<commandPath value="/opt/torque/bin/qsub" />
<pbsOption>

Part IX: Back matters Files of the ProActive source base cited in
the manual

520

<hostsNumber>32</hostsNumber>
<processorPerNode>2</processorPerNode>
<bookingDuration>02:00:00</bookingDuration>
<scriptPath>
<!--absolutePath

value="/home/plugtest/ProActive/scripts/unix/cluster/pbsStartRuntime.sh"/-->
<absolutePath
value="${PROACTIVE_HOME}/scripts/unix/cluster/pbsStartRuntime.sh" />

</scriptPath>
</pbsOption>

</pbsProcess>
</processDefinition>
<processDefinition id="sshInriaCluster">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="frontend" username="plugtest">
<processReference refid="pbsInriaCluster" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.6. examples/SSH_PBS_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">
<jvmSet>

<vmName value="Jvm1" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="sshCluster" />
</creation>

</jvm>
</jvms>

</deployment>

Part IX: Back matters Files of the ProActive source base cited in
the manual

521

<infrastructure>
<processes>
<processDefinition id="internalJVM">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>
<absolutePath
value="/home/plugtest/j2sdk1.4.2_05/bin/java" /> <!--CHANGE ME!!!! -->

</javaPath>
<policyFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
<jvmParameters>
<parameter
value="-Dproactive.communication.protocol=rmissh" />

</jvmParameters>
</jvmProcess>

</processDefinition>
<processDefinition id="sgeprocess">

<gridEngineProcess
class="org.objectweb.proactive.core.process.gridengine.GridEngineSubProcess"
queue="normal">
<processReference refid="internalJVM" />
<commandPath
value="/opt/gridengine/bin/lx26-x86/qsub" />

<gridEngineOption>
<hostsNumber>10</hostsNumber>
<bookingDuration>3600</bookingDuration>
<scriptPath>
<absolutePath

value="${PROACTIVE_HOME}/scripts/unix/cluster/gridEngineStartRuntime.sh" />
</scriptPath>
<parallelEnvironment>mpi</parallelEnvironment>

</gridEngineOption>
</gridEngineProcess>

</processDefinition>
<processDefinition id="sshCluster">

<sshProcess
class="org.objectweb.proactive.core.process.ssh.SSHProcess"

Part IX: Back matters Files of the ProActive source base cited in
the manual

522

hostname="frontend" username="plugtest"> <!--CHANGE ME!!!! -->
<processReference refid="sgeprocess" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.7. examples/SSH_SGE_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/user/rquilici/home/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!!

-->
</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">
<jvmSet>

<vmName value="newJvm" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="newJvm">
<creation>

<processReference refid="sshProcess" />
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="linuxJVM1">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>

<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

Part IX: Back matters Files of the ProActive source base cited in
the manual

523

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>
<absolutePath
value="${JAVA_HOME}/bin/java" /> <!--CHANGE ME!!!! -->

</javaPath>
<policyFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/unix/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/unix/proactive-log4j" />

</log4jpropertiesFile>
</jvmProcess>

</processDefinition>
<processDefinition id="oarCluster">

<oarProcess
class="org.objectweb.proactive.core.process.oar.OARSubProcess"
bookedNodesAccess="ssh">
<processReference refid="linuxJVM1" />
<commandPath value="/usr/bin/oarsub" />
<oarOption>
<resources>nodes=2,weight=2</resources>
<scriptPath>
<absolutePath

value="${PROACTIVE_HOME}/scripts/unix/cluster/oarStartRuntime.sh" />
</scriptPath>

</oarOption>
</oarProcess>

</processDefinition>
<processDefinition id="sshProcess">

<sshProcess
class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="oar.sophia.grid5000.fr">
<processReference refid="oarCluster" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.8. examples/SSH_OAR_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.

Part IX: Back matters Files of the ProActive source base cited in
the manual

524

xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/user/home/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="Test" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="Test">
<jvmSet>

<vmName value="JvmSSH" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="JvmOARGrid">
<creation>

<processReference refid="oarGridProcess" />
</creation>

</jvm>
<jvm name="JvmSSH">
<creation>

<processReference refid="sshProcess" />
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="jvmProcess">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>

<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>

<absolutePath
value="${JAVA_HOME}/bin/java" />

</javaPath>
<policyFile>

<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive.java.policy" />

Part IX: Back matters Files of the ProActive source base cited in
the manual

525

</policyFile>
<log4jpropertiesFile>
<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
</jvmProcess>

</processDefinition>
<processDefinition id="oarGridProcess">

<oarGridProcess
class="org.objectweb.proactive.core.process.oar.OARGRIDSubProcess"
bookedNodesAccess="ssh" queue="default">
<processReference refid="jvmProcess" />
<commandPath value="/usr/local/bin/oargridsub" />
<oarGridOption>
<!--Available clusters are:

| idpot | caddo.imag.fr |
| gdx | devgdx002.orsay.grid5000.fr |
| toulouse | oar.toulouse.grid5000.fr |
| sophia | oar.sophia.grid5000.fr |
| lyon | oar.lyon.grid5000.fr |
| parasol | oar.rennes.grid5000.fr |
| tartopom | dev-powerpc.rennes.grid5000.fr |
| paraci | dev-xeon.rennes.grid5000.fr |
| icluster2 | ita101.imag.fr |

-->
<resources>
sophia:nodes=2,lyon:nodes=1

</resources>
<walltime>00:03:00</walltime><!-- hour:min:sec-->
<scriptPath>
<!--relativePath origin="user.home"

value="Proactive/scripts/unix/cluster/oarGridStartRuntime.sh"/-->
<absolutePath

value="${PROACTIVE_HOME}/scripts/unix/cluster/oarGridStartRuntime.sh" />
</scriptPath>

</oarGridOption>
</oarGridProcess>

</processDefinition>

<processDefinition id="sshProcess">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="oar.grenoble.grid5000.fr">
<processReference refid="oarGridProcess" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.9. examples/SSH_OARGRID_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

Part IX: Back matters Files of the ProActive source base cited in
the manual

526

"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME" value="/home/user/ProActive"/> <!--CHANGE

ME!!!! -->
<descriptorVariable name="JAVA_HOME"

value="/home1/rquilici/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->
</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" timeout="120000"/>

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">
<jvmSet>

<vmName value="Jvm1"/>
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="sshProcess"/>
</creation>

</jvm>
</jvms>

</deployment>
<infrastructure>

<processes>
<processDefinition id="linuxJVM1">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<classpath>
<absolutePath value="${PROACTIVE_HOME}/lib/ProActive.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/javassist.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/bouncycastle.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/components/fractal.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/log4j.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/xercesImpl.jar"/>
<absolutePath value="${PROACTIVE_HOME}/lib/jsch.jar"/>

</classpath>
<javaPath>

<absolutePath value="${JAVA_HOME}/bin/java"/>
</javaPath>
<policyFile>

<absolutePath value="${PROACTIVE_HOME}/scripts/proactive.java.policy"/>
</policyFile>
<log4jpropertiesFile>

<absolutePath value="${PROACTIVE_HOME}/scripts/proactive-log4j"/>
</log4jpropertiesFile>

</jvmProcess>
</processDefinition>
<processDefinition id="prunCluster">
<prunProcess class="org.objectweb.proactive.core.process.prun.PrunSubProcess" queue=

"plugtest">
<processReference refid="linuxJVM1"/>
<commandPath value="/usr/local/VU/reserve.sge/bin/prun"/>
<prunOption>

<hostsNumber>20</hostsNumber>
<processorPerNode>2</processorPerNode>

Part IX: Back matters Files of the ProActive source base cited in
the manual

527

<bookingDuration>02:00:00</bookingDuration>
</prunOption>

</prunProcess>
</processDefinition>
<processDefinition id="sshProcess">

<sshProcess class="org.objectweb.proactive.core.process.ssh.SSHProcess" hostname=
"frontend" username="rquilici"> <!--CHANGE ME!!!! -->

<processReference refid="prunCluster"/>
</sshProcess>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example C.10. examples/SSH_PRUN_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/nfs/software/java/j2sdk1.4.2_07" /><!-- Path of the remote JVM , CHANGE ME!!!! -->
<descriptorVariable name="GLOBUS_USER_HOME"
value="/nfs/home/rquilici"

/> <!--CHANGE ME!!!! -->
</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="Jvm1" />

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="globusProcess" />

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>

<processes>
<processDefinition id="localJVM1">

Part IX: Back matters Files of the ProActive source base cited in
the manual

528

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>

<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

</classpath>
<javaPath>

<absolutePath
value="${JAVA_HOME}/bin/java" />

</javaPath>
<policyFile>

<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>

<absolutePath
value="${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
<jvmParameters>

<parameter
value="-Dproactive.communication.protocol=http" />

<parameter value="-Dproactive.http.port=22500" />
</jvmParameters>

</jvmProcess>
</processDefinition>
<processDefinition id="globusProcess">
<globusProcess

class="org.objectweb.proactive.core.process.globus.GlobusProcess"
hostname="globus_frontend">
<processReference refid="localJVM1" />
<globusOption>

<count>8</count>
<maxTime>120</maxTime>
<errorFile>
${GLOBUS_USER_HOME}/error.txt

</errorFile>
</globusOption>

</globusProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.11. examples/Globus_Example.xml

<?xml version="1.0" encoding="UTF-8"?>

Part IX: Back matters Files of the ProActive source base cited in
the manual

529

<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">

<variables>
<descriptorVariable name="PROACTIVE_HOME"
value="/home/user/ProActive" /><!--CHANGE ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/opt/j2sdk1.4" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

</variables>

<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="plugtest" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="JvmTestSite" />

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="JvmTestSite">

<creation>
<processReference refid="unicoreProcessTestSite" />

</creation>
</jvm>

</jvms>
</deployment>
<fileTransferDefinitions>

<fileTransfer id="ProActiveLite">
<dir src="ProActive" />

</fileTransfer>
</fileTransferDefinitions>
<infrastructure>

<processes>
<processDefinition id="jvmTestSite">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath
value="${PROACTIVE_HOME}/lib/ProActive.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${PROACTIVE_HOME}/lib/jsch.jar" />

</classpath>
<javaPath>

Part IX: Back matters Files of the ProActive source base cited in
the manual

530

<absolutePath value="${JAVA_HOME}/bin/java" />
</javaPath>
<policyFile>

<absolutePath
value="${PROACTIVE_HOME}/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>

<absolutePath
value="${PROACTIVE_HOME}/proactive-log4j" />

</log4jpropertiesFile>
</jvmProcess>

</processDefinition>
<processDefinition id="unicoreProcessTestSite">
<unicoreProcess

class="org.objectweb.proactive.core.process.unicore.UnicoreProcess"
jobname="ProActivePlugtestJob" submitjob="true" savejob="false"
keypassword="x">
<processReference refid="jvmTestSite" />
<unicoreDirPath>

<relativePath origin="user.home"
value=".unicore" /> <!--CHANGE ME!!!! -->

<!--absolutePath value="/home/mleyton/.unicore"/-->
</unicoreDirPath>
<keyFilePath>

<relativePath origin="user.home"
value=".unicore/keystore" />

<!--absolutePath value="/home/mleyton/.unicore/keystore"/-->
</keyFilePath>
<unicoreOption>

<usite name="Gate Europe" type="CLASSIC"
url="http://testgrid.unicorepro.com:4000" />

<vsite name="SUPRENUM" nodes="1" processors="1"
memory="256" runtime="3600" priority="normal" />

</unicoreOption>
<fileTransferDeploy refid="ProActiveLite">

<copyProtocol>processDefault</copyProtocol>
<sourceInfo prefix="/0/plugtest/ProActiveLite" /> <!--CHANGE ME!!!! -->
<destinationInfo />

</fileTransferDeploy>
</unicoreProcess>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example C.12. examples/Unicore_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME" value="/home/user/ProActive"/> <!--CHANGE
ME!!!! -->

<descriptorVariable name="JAVA_HOME"
value="/home/rquilici/j2sdk1.4.2_05" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

Part IX: Back matters Files of the ProActive source base cited in
the manual

531

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" timeout="1200000"/>

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">

<jvmSet>
<vmName value="Jvm1"/>

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="ngProcess"/>

</creation>
</jvm>

</jvms>
</deployment>
<fileTransferDefinitions>
<fileTransfer id="ng_transfer">

<file src="http://grid.uio.no/runtime/j2re1.4.2_08.tar.gz" dest="j2re1.4.2_08.tar.gz" />
<file src="lib/ProActive.jar" dest="ProActive.jar" />
<file src="lib/javassist.jar" dest="javassist.jar" />
<file src="lib/components/fractal.jar" dest="fractal.jar" />
<file src="lib/bouncycastle.jar" dest="bouncycastle.jar" />
<file src="lib/log4j.jar" dest="log4j.jar" />
<file src="lib/xercesImpl.jar" dest="xercesImpl.jar" />
<file src="scripts/proactive-log4j" dest="proactive-log4j" />
<file src="scripts/proactive.java.policy" dest="proactive.java.policy" />

</fileTransfer>
</fileTransferDefinitions>

<infrastructure>
<processes>
<processDefinition id="localJVM1">

<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>
<absolutePath value="ProActive.jar"/>
<absolutePath value="javassist.jar"/>
<absolutePath value="fractal.jar"/>
<absolutePath value="bouncycastle.jar"/>
<absolutePath value="log4j.jar"/>
<absolutePath value="xercesImpl.jar"/>

</classpath>
<javaPath>
<absolutePath value="${JAVA_HOME}/bin/java"/>

</javaPath>
<policyFile>
<absolutePath value="proactive.java.policy"/>

</policyFile>
<log4jpropertiesFile>
<absolutePath value="proactive-log4j"/>

</log4jpropertiesFile>
</jvmProcess>

</processDefinition>
<processDefinition id="ngProcess">

Part IX: Back matters Files of the ProActive source base cited in
the manual

532

<ngProcess class="org.objectweb.proactive.core.process.nordugrid.NGProcess" hostname=
"ng_frontend">

<processReference refid="localJVM1"/>
<fileTransferDeploy refid="ng_transfer">

<copyProtocol>processDefault</copyProtocol>
<sourceInfo prefix="file://${PROACTIVE_HOME}" />

</fileTransferDeploy>
<ngOption>

<executable>
<absolutePath value="${PROACTIVE_HOME}/scripts/unix/cluster/ngStartRuntime.sh"/>

</executable>
<count>28</count>
<outputFile>hello.txt</outputFile>
<errorFile>hello1.txt</errorFile>

</ngOption>
</ngProcess>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example C.13. examples/NorduGrid_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="JAVA_HOME"
value="/usr/java/j2sdk1.4.2_08" /><!-- Path of the remote JVM , CHANGE ME!!!! -->

<descriptorVariable name="REMOTE_HOME"
value="/home/mozonne" /><!-- CHANGE ME!!!! -->

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="plugtest" property="multiple"
timeout="900000" waitForTimeout="false" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="plugtest">
<jvmSet>

<vmName value="Jvm1" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="sshProcess" />
</creation>

</jvm>
</jvms>

Part IX: Back matters Files of the ProActive source base cited in
the manual

533

</deployment>
<fileTransferDefinitions>

<fileTransfer id="transfer">
<file src="job.jdl" />

</fileTransfer>
</fileTransferDefinitions>
<infrastructure>

<processes>
<processDefinition id="localJVM">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<!--<classpath>

<absolutePath value="$CLASSPATH"/>
</classpath>-->

</jvmProcess>
</processDefinition>
<processDefinition id="gLiteProcess">

<gLiteProcess
class="org.objectweb.proactive.core.process.glite.GLiteProcess"
virtualOrganisation="gilda"
executable="/usr/java/j2sdk1.4.2_08/bin/java" JDLFileName="job.jdl"
Type="Job" stdError="error.log" stdOutput="stdout.log"
retryCount="3">
<processReference refid="localJVM" />
<!--<requirements>other.GlueCEStateStatus == "Production"</requirements>-->
<requirements>
other.GlueCEUniqueID ==
"grid010.ct.infn.it:2119/jobmanager-lcgpbs-infinite"

</requirements>
<rank>-other.GlueCEStateEstimatedResponseTime</rank>
<gLiteOptions>
<!--<configFile>

<relativePath origin="user.home" value="/public/JDL/voG.conf"/>
</configFile>-->

<JDLFilePath>
<relativePath origin="user.home"

value="/public/JDL" />
</JDLFilePath>
<JDLRemoteFilePath>
<absolutePath value="/home/mozonne/JDL" />

</JDLRemoteFilePath>
<outputSandbox>
error.log stdout.log

</outputSandbox>
</gLiteOptions>

</gLiteProcess>
</processDefinition>
<processDefinition id="sshProcess">

<sshProcess
class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="glite-tutor.ct.infn.it" username="mozonne">
<processReference refid="gLiteProcess" />
<fileTransferDeploy refid="transfer">
<copyProtocol>processDefault</copyProtocol>
<sourceInfo
prefix="/afs/cern.ch/user/m/mozonne/public/JDL" />

<destinationInfo prefix="/home/mozonne/JDL/" />
</fileTransferDeploy>

</sshProcess>
</processDefinition>

</processes>

Part IX: Back matters Files of the ProActive source base cited in
the manual

534

</infrastructure>
</ProActiveDescriptor>

Example C.14. examples/SSH_GLite_Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.
xsd">
<variables>

<descriptorVariable name="PROACTIVE_HOME" value="ProActive" />
<descriptorVariable name="REMOTE_HOME" value="/home/smariani" />
<descriptorVariable name="MPIRUN_PATH"

value="/usr/src/redhat/BUILD/mpich-1.2.6/bin/mpirun" />
<descriptorVariable name="QSUB_PATH"

value="/opt/torque/bin/qsub" />
<descriptorVariable name="USER_HOME"

value="/user/smariani/home" />
</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="CPI" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="CPI">
<jvmSet>

<vmName value="Jvm1" />
</jvmSet>

</map>
</mapping>
<jvms>

<jvm name="Jvm1">
<creation>

<processReference refid="sshProcess" />
</creation>

</jvm>
</jvms>

</deployment>
<fileTransferDefinitions>

<fileTransfer id="transfer">
<!-- Transfer mpi program on remote host -->
<file src="cpi" dest="cpi" />

</fileTransfer>
</fileTransferDefinitions>
<infrastructure>

<processes>

<processDefinition id="localJVM1">
<jvmProcess

class="org.objectweb.proactive.core.process.JVMNodeProcess">
<classpath>

<absolutePath

Part IX: Back matters Files of the ProActive source base cited in
the manual

535

value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/ProActive.jar" />
<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/log4j.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/components/fractal.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/xercesImpl.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/bouncycastle.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/jsch.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/javassist.jar" />

<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/classes" />

</classpath>
<javaPath>
<absolutePath
value="${REMOTE_HOME}/jdk1.5.0_05/bin/java" />

</javaPath>
<policyFile>
<absolutePath
value="${REMOTE_HOME}/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>
<absolutePath
value="${REMOTE_HOME}/${PROACTIVE_HOME}/scripts/proactive-log4j" />

</log4jpropertiesFile>
<jvmParameters>
<parameter
value="-Dproactive.useIPaddress=true" />

<parameter value="-Dproactive.rmi.port=6099" />
</jvmParameters>

</jvmProcess>
</processDefinition>

<!-- remote jvm Process -->
<processDefinition id="jvmProcess">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess">
<jvmParameters>
<parameter
value="-Dproactive.useIPaddress=true" />

<parameter value="-Dproactive.rmi.port=6099" />
</jvmParameters>

</jvmProcess>
</processDefinition>

<!-- pbs Process -->
<processDefinition id="pbsProcess">

<pbsProcess
class="org.objectweb.proactive.core.process.pbs.PBSSubProcess">
<processReference refid="localJVM1" />
<commandPath value="${QSUB_PATH}" />
<pbsOption>
<hostsNumber>3</hostsNumber>
<processorPerNode>1</processorPerNode>
<bookingDuration>00:02:00</bookingDuration>
<scriptPath>
<absolutePath

value="${REMOTE_HOME}/${PROACTIVE_HOME}/scripts/unix/cluster/pbsStartRuntime.sh" />

Part IX: Back matters Files of the ProActive source base cited in
the manual

536

</scriptPath>
</pbsOption>

</pbsProcess>
</processDefinition>

<!-- mpi Process -->
<processDefinition id="mpiCPI">
<mpiProcess

class="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"
mpiFileName="cpi">
<commandPath value="${MPIRUN_PATH}" />
<mpiOptions>

<processNumber>3</processNumber>
<localRelativePath>
<relativePath origin="user.home"
value="${PROACTIVE_HOME}/scripts/unix" />

</localRelativePath>
<remoteAbsolutePath>
<absolutePath value="${REMOTE_HOME}/MyApp" />

</remoteAbsolutePath>
</mpiOptions>

</mpiProcess>
</processDefinition>

<!-- dependent process -->
<processDefinition id="dpsCPI">
<dependentProcessSequence

class="org.objectweb.proactive.core.process.DependentListProcess">
<processReference refid="pbsProcess" />
<processReference refid="mpiCPI" />

</dependentProcessSequence>
</processDefinition>

<!-- ssh process -->
<processDefinition id="sshProcess">
<sshProcess

class="org.objectweb.proactive.core.process.ssh.SSHProcess"
hostname="nef.inria.fr" username="smariani">
<processReference refid="dpsCPI" />

</sshProcess>
</processDefinition>

</processes>
</infrastructure>

</ProActiveDescriptor>

Example C.15. examples/SSH_MPI_Example.xml

C.2. Java classes cited in the manual

public interface InitActive extends Active {

/**
* Initializes the activity of the active object.
* @param body the body of the active object being initialized
*/

Part IX: Back matters Files of the ProActive source base cited in
the manual

537

public void initActivity(Body body);
}

Example C.16. InitActive.java

public interface RunActive extends Active {

/**
* Runs the activity of the active object.
* @param body the body of the active object being started
*/
public void runActivity(Body body);

}

Example C.17. RunActive.java

public interface EndActive extends Active {

/**
* Finalized the active object after the activity has been stopped.
* @param body the body of the active object being finalized.
*/
public void endActivity(Body body);

}

Example C.18. EndActive.java

public interface MetaObjectFactory {

/**
* Creates or reuses a RequestFactory
* @return a new or existing RequestFactory
* @see RequestFactory
*/
public RequestFactory newRequestFactory();

/**
* Creates or reuses a ReplyReceiverFactory
* @return a new or existing ReplyReceiverFactory
* @see ReplyReceiverFactory
*/
public ReplyReceiverFactory newReplyReceiverFactory();

/**
* Creates or reuses a RequestReceiverFactory
* @return a new or existing RequestReceiverFactory
* @see RequestReceiverFactory

Part IX: Back matters Files of the ProActive source base cited in
the manual

538

*/
public RequestReceiverFactory newRequestReceiverFactory();

/**
* Creates or reuses a RequestQueueFactory
* @return a new or existing RequestQueueFactory
* @see RequestQueueFactory
*/
public RequestQueueFactory newRequestQueueFactory();

/**
* Creates or reuses a MigrationManagerFactory
* @return a new or existing MigrationManagerFactory
* @see MigrationManagerFactory
*/
public MigrationManagerFactory newMigrationManagerFactory();

/**
* Creates or reuses a RemoteBodyFactory
* @return a new or existing RemoteBodyFactory
* @see RemoteBodyFactory
*/
public RemoteBodyFactory newRemoteBodyFactory();

/**
* Creates or reuses a ThreadStoreFactory
* @return a new or existing ThreadStoreFactory
* @see ThreadStoreFactory
*/
public ThreadStoreFactory newThreadStoreFactory();

// GROUP

/**
* Creates or reuses a ProActiveGroupManagerFactory
* @return a new ProActiveGroupManagerFactory
*/
public ProActiveSPMDGroupManagerFactory newProActiveSPMDGroupManagerFactory();

/**
* creates a ProActiveComponentFactory
* @return a new ProActiveComponentFactory
*/

// COMPONENTS
public ProActiveComponentFactory newComponentFactory();

/**
* accessor to the parameters of the factory (object-based configurations)
* @return the parameters of the factory
*/

// COMPONENTS
public Map getParameters();

//SECURITY

/**
* Creates the ProActiveSecurityManager
* @return a new ProActiveSecurityManager
* @see ProActiveSecurityManager

Part IX: Back matters Files of the ProActive source base cited in
the manual

539

*/
public ProActiveSecurityManager getProActiveSecurityManager();

public void setProActiveSecurityManager(ProActiveSecurityManager psm);

public Object clone() throws CloneNotSupportedException;

// FAULT-TOLERANCE

/**
* Creates the fault-tolerance manager.
* @return the fault-tolerance manager.
*/
public FTManagerFactory newFTManagerFactory();

}

Example C.19. core/body/MetaObjectFactory.java

public class ProActiveMetaObjectFactory implements MetaObjectFactory,
java.io.Serializable, Cloneable {
public static final String COMPONENT_PARAMETERS_KEY = "component-parameters";
public static final String SYNCHRONOUS_COMPOSITE_COMPONENT_KEY = "synchronous-composite";
protected static Logger logger = ProActiveLogger.getLogger(Loggers.MOP);

//
// -- PRIVATE MEMBERS ---
//
// private static final MetaObjectFactory instance = new ProActiveMetaObjectFactory();
private static MetaObjectFactory instance = new ProActiveMetaObjectFactory();
public Map parameters = new HashMap();

//
// -- PROTECTED MEMBERS ---
//
protected RequestFactory requestFactoryInstance;
protected ReplyReceiverFactory replyReceiverFactoryInstance;
protected RequestReceiverFactory requestReceiverFactoryInstance;
protected RequestQueueFactory requestQueueFactoryInstance;
protected MigrationManagerFactory migrationManagerFactoryInstance;
protected RemoteBodyFactory remoteBodyFactoryInstance;
protected ThreadStoreFactory threadStoreFactoryInstance;
protected ProActiveSPMDGroupManagerFactory proActiveSPMDGroupManagerFactoryInstance;
protected ProActiveComponentFactory componentFactoryInstance;
protected ProActiveSecurityManager proActiveSecurityManager;
protected FTManagerFactory ftmanagerFactoryInstance;

//
// -- CONSTRUCTORS ---
//
protected ProActiveMetaObjectFactory() {

requestFactoryInstance = newRequestFactorySingleton();
replyReceiverFactoryInstance = newReplyReceiverFactorySingleton();
requestReceiverFactoryInstance = newRequestReceiverFactorySingleton();
requestQueueFactoryInstance = newRequestQueueFactorySingleton();
migrationManagerFactoryInstance = newMigrationManagerFactorySingleton();
remoteBodyFactoryInstance = newRemoteBodyFactorySingleton();

Part IX: Back matters Files of the ProActive source base cited in
the manual

540

threadStoreFactoryInstance = newThreadStoreFactorySingleton();
proActiveSPMDGroupManagerFactoryInstance = newProActiveSPMDGroupManagerFactorySingleton();
ftmanagerFactoryInstance = newFTManagerFactorySingleton();

}

/**
* Constructor with parameters
* It is used for per-active-object configurations of ProActive factories
* @param parameters the parameters of the factories; these parameters can be of any type
*/
public ProActiveMetaObjectFactory(Map parameters) {

this.parameters = parameters;
if (parameters.containsKey(COMPONENT_PARAMETERS_KEY)) {

ComponentParameters initialComponentParameters = (ComponentParameters)
parameters.get(COMPONENT_PARAMETERS_KEY);

componentFactoryInstance = newComponentFactorySingleton(initialComponentParameters);
requestFactoryInstance = newRequestFactorySingleton();
replyReceiverFactoryInstance = newReplyReceiverFactorySingleton();
requestReceiverFactoryInstance = newRequestReceiverFactorySingleton();
requestQueueFactoryInstance = newRequestQueueFactorySingleton();
migrationManagerFactoryInstance = newMigrationManagerFactorySingleton();
remoteBodyFactoryInstance = newRemoteBodyFactorySingleton();
threadStoreFactoryInstance = newThreadStoreFactorySingleton();
proActiveSPMDGroupManagerFactoryInstance =

newProActiveSPMDGroupManagerFactorySingleton();
ftmanagerFactoryInstance = newFTManagerFactorySingleton();

}
}

//
// -- PUBLICS METHODS ---
//
public static MetaObjectFactory newInstance() {

return instance;
}

public static void setNewInstance(MetaObjectFactory mo) {
instance = mo;

}

/**
* getter for the parameters of the factory (per-active-object config)
* @return the parameters of the factory
*/
public Map getParameters() {

return parameters;
}

//
// -- implements MetaObjectFactory ---
//
public RequestFactory newRequestFactory() {

return requestFactoryInstance;
}

public ReplyReceiverFactory newReplyReceiverFactory() {
return replyReceiverFactoryInstance;

}

public RequestReceiverFactory newRequestReceiverFactory() {
return requestReceiverFactoryInstance;

Part IX: Back matters Files of the ProActive source base cited in
the manual

541

}

public RequestQueueFactory newRequestQueueFactory() {
return requestQueueFactoryInstance;

}

public MigrationManagerFactory newMigrationManagerFactory() {
return migrationManagerFactoryInstance;

}

public RemoteBodyFactory newRemoteBodyFactory() {
return remoteBodyFactoryInstance;

}

public ThreadStoreFactory newThreadStoreFactory() {
return threadStoreFactoryInstance;

}

public ProActiveSPMDGroupManagerFactory newProActiveSPMDGroupManagerFactory() {
return proActiveSPMDGroupManagerFactoryInstance;

}

public ProActiveComponentFactory newComponentFactory() {
return componentFactoryInstance;

}

public FTManagerFactory newFTManagerFactory() {
return ftmanagerFactoryInstance;

}

//
// -- PROTECTED METHODS ---
//
protected RequestFactory newRequestFactorySingleton() {

return new RequestFactoryImpl();
}

protected ReplyReceiverFactory newReplyReceiverFactorySingleton() {
return new ReplyReceiverFactoryImpl();

}

protected RequestReceiverFactory newRequestReceiverFactorySingleton() {
return new RequestReceiverFactoryImpl();

}

protected RequestQueueFactory newRequestQueueFactorySingleton() {
return new RequestQueueFactoryImpl();

}

protected MigrationManagerFactory newMigrationManagerFactorySingleton() {
return new MigrationManagerFactoryImpl();

}

protected RemoteBodyFactory newRemoteBodyFactorySingleton() {
return new RemoteBodyFactoryImpl();

}

protected ThreadStoreFactory newThreadStoreFactorySingleton() {
return new ThreadStoreFactoryImpl();

}

Part IX: Back matters Files of the ProActive source base cited in
the manual

542

protected ProActiveSPMDGroupManagerFactory newProActiveSPMDGroupManagerFactorySingleton() {
return new ProActiveSPMDGroupManagerFactoryImpl();

}

protected ProActiveComponentFactory newComponentFactorySingleton(
ComponentParameters initialComponentParameters) {
return new ProActiveComponentFactoryImpl(initialComponentParameters);

}

protected FTManagerFactory newFTManagerFactorySingleton() {
return new FTManagerFactoryImpl();

}

// //
// // -- INNER CLASSES ---
// //
protected static class RequestFactoryImpl implements RequestFactory,

java.io.Serializable {
public Request newRequest(MethodCall methodCall,

UniversalBody sourceBody, boolean isOneWay, long sequenceID) {
//########### exemple de code pour les nouvelles factories
// if(System.getProperty("migration.stategy").equals("locationserver")){
// return new RequestWithLocationServer(methodCall, sourceBody,
// isOneWay, sequenceID, LocationServerFactory.getLocationServer());
// }else{
return new org.objectweb.proactive.core.body.request.RequestImpl(methodCall,

sourceBody, isOneWay, sequenceID);
//}

}
}

// end inner class RequestFactoryImpl
protected static class ReplyReceiverFactoryImpl

implements ReplyReceiverFactory, java.io.Serializable {
public ReplyReceiver newReplyReceiver() {

return new org.objectweb.proactive.core.body.reply.ReplyReceiverImpl();
}

}

// end inner class ReplyReceiverFactoryImpl
protected class RequestReceiverFactoryImpl implements RequestReceiverFactory,

java.io.Serializable {
public RequestReceiver newRequestReceiver() {

if (parameters.containsKey(SYNCHRONOUS_COMPOSITE_COMPONENT_KEY) &&
((Boolean) parameters.get(

ProActiveMetaObjectFactory.SYNCHRONOUS_COMPOSITE_COMPONENT_KEY)).booleanValue()) {
return new SynchronousComponentRequestReceiver();

}
return new org.objectweb.proactive.core.body.request.RequestReceiverImpl();

}
}

// end inner class RequestReceiverFactoryImpl
protected class RequestQueueFactoryImpl implements RequestQueueFactory,

java.io.Serializable {
public BlockingRequestQueue newRequestQueue(UniqueID ownerID) {

if ("true".equals(parameters.get(
SYNCHRONOUS_COMPOSITE_COMPONENT_KEY))) {

return null;
}

Part IX: Back matters Files of the ProActive source base cited in
the manual

543

//if (componentFactoryInstance != null) {
// COMPONENTS
// we need a request queue for components
//return new ComponentRequestQueueImpl(ownerID);
//} else {
return new org.objectweb.proactive.core.body.request.BlockingRequestQueueImpl(ownerID);
//}

}
}

// end inner class RequestQueueFactoryImpl
protected static class MigrationManagerFactoryImpl

implements MigrationManagerFactory, java.io.Serializable {
public MigrationManager newMigrationManager() {

//########### example de code pour les nouvelles factories
// if(System.getProperty("migration.stategy").equals("locationserver")){
// return new

MigrationManagerWithLocationServer(LocationServerFactory.getLocationServer());
// }else{
return new org.objectweb.proactive.core.body.migration.MigrationManagerImpl();
//}

}
}

// end inner class MigrationManagerFactoryImpl
protected static class RemoteBodyFactoryImpl implements RemoteBodyFactory,

java.io.Serializable {
public UniversalBody newRemoteBody(UniversalBody body) {

try {
if ("ibis".equals(System.getProperty(

"proactive.communication.protocol"))) {
if (logger.isDebugEnabled()) {

logger.debug(
"Using ibis factory for creating remote body");

}
return new org.objectweb.proactive.core.body.ibis.IbisBodyAdapter(body);

} else if ("http".equals(System.getProperty(
"proactive.communication.protocol"))) {

if (logger.isDebugEnabled()) {
logger.debug(

"Using http factory for creating remote body");
}

return new org.objectweb.proactive.core.body.http.HttpBodyAdapter(body);
} else if ("rmissh".equals(System.getProperty(

"proactive.communication.protocol"))) {
if (logger.isDebugEnabled()) {

logger.debug(
"Using rmissh factory for creating remote body");

}
return new org.objectweb.proactive.core.body.rmi.SshRmiBodyAdapter(body);

} else {
if (logger.isDebugEnabled()) {

logger.debug(
"Using rmi factory for creating remote body");

}
return new org.objectweb.proactive.core.body.rmi.RmiBodyAdapter(body);

}
} catch (ProActiveException e) {

throw new ProActiveRuntimeException("Cannot create Remote body adapter ",

Part IX: Back matters Files of the ProActive source base cited in
the manual

544

e);
}

}
}

// end inner class RemoteBodyFactoryImpl
protected static class ThreadStoreFactoryImpl implements ThreadStoreFactory,

java.io.Serializable {
public ThreadStore newThreadStore() {

return new org.objectweb.proactive.core.util.ThreadStoreImpl();
}

}

// end inner class ThreadStoreFactoryImpl
protected static class ProActiveSPMDGroupManagerFactoryImpl

implements ProActiveSPMDGroupManagerFactory, java.io.Serializable {
public ProActiveSPMDGroupManager newProActiveSPMDGroupManager() {

return new ProActiveSPMDGroupManager();
}

}

// end inner class ProActiveGroupManagerFactoryImpl
protected class ProActiveComponentFactoryImpl

implements ProActiveComponentFactory, java.io.Serializable {
// COMPONENTS
private ComponentParameters componentParameters;

public ProActiveComponentFactoryImpl(
ComponentParameters initialComponentParameters) {
this.componentParameters = initialComponentParameters;

}

public ProActiveComponent newProActiveComponent(Body myBody) {
return new ProActiveComponentImpl(componentParameters, myBody);

}
}

// FAULT-TOLERANCE
protected class FTManagerFactoryImpl implements FTManagerFactory,

Serializable {
public FTManager newFTManager(int protocolSelector) {

switch (protocolSelector) {
case FTManagerFactory.PROTO_CIC:

return new FTManagerCIC();
case FTManagerFactory.PROTO_PML:

return new FTManagerPMLRB();
default:

logger.error("Error while creating fault-tolerance manager : " +
"no protocol is associated to selector value " +
protocolSelector);

return null;
}

}

public FTManager newHalfFTManager(int protocolSelector) {
switch (protocolSelector) {
case FTManagerFactory.PROTO_CIC:

return new HalfFTManagerCIC();
case FTManagerFactory.PROTO_PML:

return new HalfFTManagerPMLRB();
default:

Part IX: Back matters Files of the ProActive source base cited in
the manual

545

logger.error("Error while creating fault-tolerance manager : " +
"no protocol is associated to selector value " +
protocolSelector);

return null;
}

}
}

// SECURITY
public void setProActiveSecurityManager(ProActiveSecurityManager psm) {

this.proActiveSecurityManager = psm;
}

public ProActiveSecurityManager getProActiveSecurityManager() {
return proActiveSecurityManager;

}

public Object clone() throws CloneNotSupportedException {
ProActiveMetaObjectFactory clone = null;

try {
ByteArrayOutputStream bout = new ByteArrayOutputStream();
ObjectOutputStream out = new ObjectOutputStream(bout);

out.writeObject(this);
out.flush();
bout.close();

bout.close();

ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(
bout.toByteArray()));

clone = (ProActiveMetaObjectFactory) ois.readObject();
} catch (IOException e) {

e.printStackTrace();
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

return clone;
}

}

Example C.20. core/body/ProActiveMetaObjectFactory.java

public class ProActive {
protected final static Logger logger = ProActiveLogger.getLogger(Loggers.CORE);
public final static Logger loggerGroup = ProActiveLogger.getLogger(Loggers.GROUPS);

/** Used for profiling */
private static CompositeAverageMicroTimer timer;

static {
ProActiveConfiguration.load();

Part IX: Back matters Files of the ProActive source base cited in
the manual

546

@SuppressWarnings("unused") // Execute RuntimeFactory's static blocks
Class c = org.objectweb.proactive.core.runtime.RuntimeFactory.class;

}

//
// -- CONSTRUCTORS ---
//
private ProActive() {
}

//
// -- PUBLIC METHODS ---
//

/**
*
* Launches the main method of the main class through the node node
* @param classname classname of the main method to launch
* @param mainParameters parameters
* @param node node in which launch the main method
* @throws ClassNotFoundException
* @throws NoSuchMethodException
* @throws ProActiveException
*/
public static void newMain(String classname, String[] mainParameters,

Node node)
throws ClassNotFoundException, NoSuchMethodException, ProActiveException {
ProActiveRuntime part = node.getProActiveRuntime();
part.launchMain(classname, mainParameters);

}

/**
* Creates an instance of the remote class. This instance is
* created with the default constructor
* @param classname
* @param node
* @throws ClassNotFoundException
* @throws ProActiveException
*/
public static void newRemote(String classname, Node node)

throws ClassNotFoundException, ProActiveException {
ProActiveRuntime part = node.getProActiveRuntime();
part.newRemote(classname);

}

/**
* Creates a new ActiveObject based on classname attached to a default node in the local JVM.
* @param classname the name of the class to instanciate as active
* @param constructorParameters the parameters of the constructor.
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the DefaultNode cannot be created
*/
public static Object newActive(String classname,

Object[] constructorParameters)
throws ActiveObjectCreationException, NodeException {
return newActive(classname, null, constructorParameters, (Node) null,

null, null);
}

Part IX: Back matters Files of the ProActive source base cited in
the manual

547

/**
* Creates a new ActiveObject based on classname attached to the node of the given URL.
* @param classname the name of the class to instanciate as active
* @param constructorParameters the parameters of the constructor.
* @param nodeURL the URL of the node where to create the active object. If null, the active

object
* is created localy on a default node
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node URL cannot be resolved as an existing Node
*/
public static Object newActive(String classname,

Object[] constructorParameters, String nodeURL)
throws ActiveObjectCreationException, NodeException {
if (nodeURL == null) {

return newActive(classname, null, constructorParameters,
(Node) null, null, null);

} else {
return newActive(classname, null, constructorParameters,

NodeFactory.getNode(nodeURL), null, null);
}

}

/**
* Creates a new ActiveObject based on classname attached to the given node or on
* a default node in the local JVM if the given node is null.
* @param classname the name of the class to instanciate as active
* @param constructorParameters the parameters of the constructor.
* @param node the possibly null node where to create the active object.
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object newActive(String classname,

Object[] constructorParameters, Node node)
throws ActiveObjectCreationException, NodeException {
return newActive(classname, null, constructorParameters, node, null,

null);
}

/**
* <p>Create a set of active objects with given construtor parameters.
* The object activation is optimized by a thread pool.</p>
* <p>The total of active objects created is equal to the number of nodes
* and to the total of constructor paramaters also.</p>
* <p>The condition to use this method is that:
* constructorParameters.length == nodes.length</p>
*
* @param className the name of the class to instanciate as active.
* @param constructorParameters the array that contains the parameters used
* to build the active objects. All active objects have the same constructor
* parameters.
* @param nodes the array of nodes where the active objects are created.
* @return an array of references (possibly remote) on Stubs of the newly
* created active objects.
* @throws ClassNotFoundException in the case of className is not a class.
*/
public static Object[] newActiveInParallel(String className,

Object[][] constructorParameters, Node[] nodes)

Part IX: Back matters Files of the ProActive source base cited in
the manual

548

throws ClassNotFoundException {
return newActiveInParallel(className, null, constructorParameters, nodes);

}

/**
* <p>Create a set of identical active objects on a given virtual node. The
* object activation is optimized by a thread pool.</p>
* <p>When the given virtual node is not previously activated, this method
* employ the node creation event producer/listerner mechanism joined to the
* thread pool. That aims to create an active object just after the node
* deploying.</p>
*
* @param className the name of the class to instanciate as active.
* @param constructorParameters the array that contains the parameters used
* to build the active objects. All active objects have the same constructor
* parameters.
* @param virtualNode the virtual node where the active objects are created.
* @return an array of references (possibly remote) on Stubs of the newly
* created active objects.
* @throws NodeException happens when the given virtualNode is already
* activated and throws an exception.
* @throws ClassNotFoundException in the case of className is not a class.
*/
public static Object[] newActiveInParallel(String className,

Object[] constructorParameters, VirtualNode virtualNode)
throws NodeException, ClassNotFoundException {
return newActiveInParallel(className, null, constructorParameters,

virtualNode);
}

/**
* Creates a new group of Active Objects. The type of the group and the type of the active

objects it contains
* correspond to the classname parameter.
* This group will contain one active object per node mapped onto the virtual node
* given as a parameter.
* @param classname classname the name of the class to instanciate as active
* @param constructorParameters constructorParameters the parameters of the constructor.
* @param virtualnode The virtualnode where to create active objects. Active objects will be

created
* on each node mapped to the given virtualnode in XML deployment descriptor.
* @return Object a Group of references (possibly remote) on Stub of newly created active

objects
* @throws ActiveObjectCreationException if a problem occur while creating the stub or the body
* @throws NodeException if the virtualnode was null
*/
public static Object newActiveAsGroup(String classname,

Object[] constructorParameters, VirtualNode virtualnode)
throws ActiveObjectCreationException, NodeException {
return ProActive.newActiveAsGroup(classname, null,

constructorParameters, virtualnode, null, null);
}

/**
* Creates a new group of Active Objects. The type of the group and the type of the active

objects it contains
* correspond to the classname parameter.
* This group will contain one active object per node mapped onto the virtual node
* given as a parameter.
* @param className classname the name of the class to instanciate as active
* @param constructorParameters constructorParameters the parameters of the constructor.

Part IX: Back matters Files of the ProActive source base cited in
the manual

549

* @param virtualNode The virtualnode where to create active objects. Active objects will be
created

* on each node mapped to the given virtualnode in XML deployment descriptor.
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return Object a Group of references (possibly remote) on Stubs of newly created active

objects
* @throws ActiveObjectCreationException if a problem occur while creating the stub or the body
* @throws NodeException if the virtualnode was null
*
*/
public static Object newActiveAsGroup(String className,

Object[] constructorParameters, VirtualNode virtualNode,
Active activity, MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
return newActiveAsGroup(className, null, constructorParameters,

virtualNode, activity, factory);
}

/**
* Creates a new ProActive component over the specified base class, according to the
* given component parameters, and returns a reference on the component of type Component.
* A reference on the active object base class can be retreived through the component

parameters controller's
* method "getStubOnReifiedObject".
*
* @param className the name of the base class. "Composite" if the component is a composite,
* "ParallelComposite" if the component is a parallel composite component
* @param constructorParameters the parameters of the constructor of the object
* to instantiate as active. If some parameters are primitive types, the wrapper
* class types should be given here. null can be used to specify that no parameter
* are passed to the constructor.
* @param node the possibly null node where to create the active object. If null, the active

object
* is created localy on a default node
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory should be null for components (automatically created)
* @param componentParameters the parameters of the component
* @return a component representative of type Component
* @exception ActiveObjectCreationException if a problem occurs while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Component newActiveComponent(String className,

Object[] constructorParameters, Node node, Active activity,
MetaObjectFactory factory, ComponentParameters componentParameters)
throws ActiveObjectCreationException, NodeException {
return newActiveComponent(className, null, constructorParameters, node,

activity, factory, componentParameters);
}

/**

Part IX: Back matters Files of the ProActive source base cited in
the manual

550

* Creates a new ProActive component over the specified base class, according to the
* given component parameters, and returns a reference on the component of type Component.
*
* This method allows automatic of primitive components on Virtual Nodes. In that case, the

appendix
* -cyclicInstanceNumber-<i>number</i> is added to the name of each of these

components.
* If the component is not a primitive, only one instance of the component is created, on the

first node
* retreived from the specified virtual node.
*
* A reference on the active object base class can be retreived through the component

parameters controller's
* method "getStubOnReifiedObject".
*
* @param className the name of the base class. "Composite" if the component is a composite,
* "ParallelComposite" if the component is a parallel composite component
* @param constructorParameters the parameters of the constructor of the object
* to instantiate as active. If some parameters are primitive types, the wrapper
* class types should be given here. null can be used to specify that no parameter
* are passed to the constructor.
* @param vn the possibly null node where to create the active object. If null, the active

object
* is created localy on a default node
* @param componentParameters the parameters of the component
* @return a typed group of component representative elements, of type Component
* @exception ActiveObjectCreationException if a problem occurs while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Component newActiveComponent(String className,

Object[] constructorParameters, VirtualNode vn,
ComponentParameters componentParameters)
throws ActiveObjectCreationException, NodeException {
return newActiveComponent(className, null, constructorParameters, vn,

componentParameters);
}

/**
* Turns the target object into an ActiveObject attached to a default node in the local JVM.
* The type of the stub is is the type of the existing object.
* @param target The object to turn active
* @return a reference (possibly remote) on a Stub of the existing object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the DefaultNode cannot be created
*/
public static Object turnActive(Object target)

throws ActiveObjectCreationException, NodeException {
return turnActive(target, (Class[]) null, (Node) null);

}

/**
* Turns the target object into an Active Object and send it to the Node
* identified by the given url.
* The type of the stub is is the type of the existing object.
* @param target The object to turn active
* @param nodeURL the URL of the node where to create the active object on. If null, the active

object
* is created localy on a default node
* @return a reference (possibly remote) on a Stub of the existing object

Part IX: Back matters Files of the ProActive source base cited in
the manual

551

* @exception ActiveObjectCreationException if a problem occur while creating the stub or the
body

* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, String nodeURL)

throws ActiveObjectCreationException, NodeException {
if (nodeURL == null) {

return turnActive(target, null, target.getClass().getName(), null,
null, null);

} else {
return turnActive(target, null, target.getClass().getName(),

NodeFactory.getNode(nodeURL), null, null);
}

}

/**
* Turns the target object into an Active Object and send it to the given Node
* or to a default node in the local JVM if the given node is null.
* The type of the stub is is the type of the target object.
* @param target The object to turn active
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Node node)

throws ActiveObjectCreationException, NodeException {
return turnActive(target, null, target.getClass().getName(), node,

null, null);
}

/**
* Turns the target object into an Active Object and send it to the given Node
* or to a default node in the local JVM if the given node is null.
* The type of the stub is is the type of the target object.
* @param target The object to turn active
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Node node, Active activity,

MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
return turnActive(target, null, target.getClass().getName(), node,

activity, factory);
}

/**

Part IX: Back matters Files of the ProActive source base cited in
the manual

552

* Turns a Java object into an Active Object and send it to a remote Node or to a
* local node if the given node is null.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* @param target The object to turn active
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, String nameOfTargetType,

Node node) throws ActiveObjectCreationException, NodeException {
return turnActive(target, null, nameOfTargetType, node, null, null);

}

/**
* Turns a Java object into an Active Object and send it to a remote Node or to a
* local node if the given node is null.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* A Stub is dynamically generated for the existing object. The result of the call
* will be an instance of the Stub class pointing to the proxy object pointing
* to the body object pointing to the existing object. The body can be remote
* or local depending if the existing is sent remotely or not.
* @param target The object to turn active
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, String nameOfTargetType,

Node node, Active activity, MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
return turnActive(target, null, nameOfTargetType, node, activity,

factory);
}

/**
* Turns a Java object into a group of Active Objects and sends the elements of the group
* to remote Nodes mapped to the given virtualnode in the XML deployment descriptor.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* @param target The object to turn active
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param virtualnode The VirtualNode where the target object will be turn into an Active

Object
* Target object will be turned into an Active Object on each node mapped to the given

Part IX: Back matters Files of the ProActive source base cited in
the manual

553

virtualnode in XML deployment descriptor.
* @return an array of references (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActiveAsGroup(Object target,

String nameOfTargetType, VirtualNode virtualnode)
throws ActiveObjectCreationException, NodeException {
return turnActiveAsGroup(target, null, nameOfTargetType, virtualnode);

}

//
/////// constructors with generic types //

/**
* Creates a new ActiveObject based on classname attached to a default node in the local JVM.
* @param classname the name of the class to instanciate as active
* @param genericParameters parameterizing types (of class @param classname)
* @param constructorParameters the parameters of the constructor.
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the DefaultNode cannot be created
*/
public static Object newActive(String classname, Class[] genericParameters,

Object[] constructorParameters)
throws ActiveObjectCreationException, NodeException {
// avoid ambiguity for method parameters types
Node nullNode = null;
return newActive(classname, genericParameters, constructorParameters,

nullNode, null, null);
}

/**
* Creates a new ActiveObject based on classname attached to the node of the given URL.
* @param classname the name of the class to instanciate as active
* @param genericParameters parameterizing types (of class @param classname)
* @param constructorParameters the parameters of the constructor.
* @param nodeURL the URL of the node where to create the active object. If null, the active

object
* is created localy on a default node
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node URL cannot be resolved as an existing Node
*/
public static Object newActive(String classname, Class[] genericParameters,

Object[] constructorParameters, String nodeURL)
throws ActiveObjectCreationException, NodeException {
if (nodeURL == null) {

// avoid ambiguity for method parameters types
Node nullNode = null;
return newActive(classname, genericParameters,

constructorParameters, nullNode, null, null);
} else {

return newActive(classname, genericParameters,
constructorParameters, NodeFactory.getNode(nodeURL), null, null);

}
}

Part IX: Back matters Files of the ProActive source base cited in
the manual

554

/**
* Creates a new ActiveObject based on classname attached to the given node or on
* a default node in the local JVM if the given node is null.
* @param classname the name of the class to instanciate as active
* @param genericParameters parameterizing types (of class @param classname)
* @param constructorParameters the parameters of the constructor.
* @param node the possibly null node where to create the active object.
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object newActive(String classname, Class[] genericParameters,

Object[] constructorParameters, Node node)
throws ActiveObjectCreationException, NodeException {
return newActive(classname, genericParameters, constructorParameters,

node, null, null);
}

/**
* Creates a new ActiveObject based on classname attached to the given node or on
* a default node in the local JVM if the given node is null.
* The object returned is a stub class that extends the target class and that is automatically
* generated on the fly. The Stub class reference a the proxy object that reference the body
* of the active object. The body referenced by the proxy can either be local of remote,
* depending or the respective location of the object calling the newActive and the active

object
* itself.
* @param classname the name of the class to instanciate as active
* @param genericParameters parameterizing types (of class @param classname)
* @param constructorParameters the parameters of the constructor of the object
* to instantiate as active. If some parameters are primitive types, the wrapper
* class types should be given here. null can be used to specify that no parameter
* are passed to the constructor.
* @param node the possibly null node where to create the active object. If null, the active

object
* is created localy on a default node
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MetaObject factory is used.
* @return a reference (possibly remote) on a Stub of the newly created active object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object newActive(String classname, Class[] genericParameters,

Object[] constructorParameters, Node node, Active activity,
MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
//using default proactive node
if (node == null) {

node = NodeFactory.getDefaultNode();
}

if (factory == null) {
factory = ProActiveMetaObjectFactory.newInstance();

Part IX: Back matters Files of the ProActive source base cited in
the manual

555

}

if (Profiling.SECURITY) {
if (timer == null) {

timer = new CompositeAverageMicroTimer("newActiveSecurityTimer");
PAProfilerEngine.registerTimer(timer);

}
timer.setTimer("constructing certificate");
timer.start();

}

MetaObjectFactory clonedFactory = factory;

ProActiveSecurityManager factorySM = factory.getProActiveSecurityManager();
if (factorySM != null) {

try {
clonedFactory = (MetaObjectFactory) factory.clone();

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}

ProActiveSecurityManager psm = clonedFactory.getProActiveSecurityManager();
psm = psm.generateSiblingCertificate(classname);
clonedFactory.setProActiveSecurityManager(psm);

}
if (Profiling.SECURITY) {

timer.stop();
}

try {
// create stub object
Object stub = createStubObject(classname, genericParameters,

constructorParameters, node, activity, clonedFactory);

return stub;
} catch (MOPException e) {

Throwable t = e;

if (e.getTargetException() != null) {
t = e.getTargetException();

}

throw new ActiveObjectCreationException(t);
}

}

/**
* <p>Create a set of active objects with given construtor parameters.
* The object activation is optimized by a thread pool.</p>
* <p>The total of active objects created is equal to the number of nodes
* and to the total of constructor paramaters also.</p>
* <p>The condition to use this method is that:
* constructorParameters.length == nodes.length</p>
*
* @param className the name of the class to instanciate as active.
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters the array that contains the parameters used
* to build the active objects. All active objects have the same constructor
* parameters.
* @param nodes the array of nodes where the active objects are created.
* @return an array of references (possibly remote) on Stubs of the newly

Part IX: Back matters Files of the ProActive source base cited in
the manual

556

* created active objects.
* @throws ClassNotFoundException in the case of className is not a class.
*/
public static Object[] newActiveInParallel(String className,

Class[] genericParameters, Object[][] constructorParameters,
Node[] nodes) throws ClassNotFoundException {
if (constructorParameters.length != nodes.length) {

throw new ProActiveRuntimeException(
"The total of constructors must" +
" be equal to the total of nodes");

}

ExecutorService threadPool = Executors.newCachedThreadPool();

Vector result = new Vector();

// TODO execute tasks
// The Virtual Node is already activate
for (int i = 0; i < constructorParameters.length; i++) {

threadPool.execute(new ProcessForAoCreation(result, className,
genericParameters, constructorParameters[i],
nodes[i % nodes.length]));

}

threadPool.shutdown();
try {

threadPool.awaitTermination(new Integer(System.getProperty(
"components.creation.timeout")), TimeUnit.SECONDS);

} catch (InterruptedException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();

}

Class classForResult = Class.forName(className);
return result.toArray((Object[]) Array.newInstance(classForResult,

result.size()));
}

/**
* <p>Create a set of identical active objects on a given virtual node. The
* object activation is optimized by a thread pool.</p>
*
* @param className the name of the class to instanciate as active.
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters the array that contains the parameters used
* to build the active objects. All active objects have the same constructor
* parameters.
* @param virtualNode the virtual node where the active objects are created.
* @return an array of references (possibly remote) on Stubs of the newly
* created active objects.
* @throws NodeException happens when the given virtualNode is already
* activated and throws an exception.
* @throws ClassNotFoundException in the case of className is not a class.
*/
public static Object[] newActiveInParallel(String className,

Class[] genericParameters, Object[] constructorParameters,
VirtualNode virtualNode) throws NodeException, ClassNotFoundException {
// Creation of the thread pool
ExecutorService threadPool = Executors.newCachedThreadPool();

Vector result = new Vector();

Part IX: Back matters Files of the ProActive source base cited in
the manual

557

if (virtualNode.isActivated()) {
// The Virtual Node is already activate
Node[] nodes = virtualNode.getNodes();
for (int i = 0; i < nodes.length; i++) {

threadPool.execute(new ProcessForAoCreation(result, className,
genericParameters, constructorParameters, nodes[i]));

}
} else {

// Use the node creation event mechanism
((NodeCreationEventProducerImpl) virtualNode).addNodeCreationEventListener(new

NodeCreationListenerForAoCreation(
result, className, genericParameters,
constructorParameters, threadPool));

virtualNode.activate();
((VirtualNodeImpl) virtualNode).waitForAllNodesCreation();

}
threadPool.shutdown();
try {

threadPool.awaitTermination(new Integer(System.getProperty(
"components.creation.timeout")), TimeUnit.SECONDS);

} catch (InterruptedException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();

}

Class classForResult = Class.forName(className);
return result.toArray((Object[]) Array.newInstance(classForResult,

result.size()));
}

/**
* Creates a new group of Active Objects. The type of the group and the type of the active

objects it contains
* correspond to the classname parameter.
* This group will contain one active object per node mapped onto the virtual node
* given as a parameter.
* @param classname classname the name of the class to instanciate as active
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters constructorParameters the parameters of the constructor.
* @param virtualnode The virtualnode where to create active objects. Active objects will be

created
* on each node mapped to the given virtualnode in XML deployment descriptor.
* @return Object a Group of references (possibly remote) on Stub of newly created active

objects
* @throws ActiveObjectCreationException if a problem occur while creating the stub or the body
* @throws NodeException if the virtualnode was null
*/
public static Object newActiveAsGroup(String classname,

Class[] genericParameters, Object[] constructorParameters,
VirtualNode virtualnode)
throws ActiveObjectCreationException, NodeException {
return ProActive.newActiveAsGroup(classname, genericParameters,

constructorParameters, virtualnode, null, null);
}

/**
* Creates a new group of Active Objects. The type of the group and the type of the active

objects it contains
* correspond to the classname parameter.
* This group will contain one active object per node mapped onto the virtual node
* given as a parameter.

Part IX: Back matters Files of the ProActive source base cited in
the manual

558

* @param classname classname the name of the class to instanciate as active
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters constructorParameters the parameters of the constructor.
* @param virtualnode The virtualnode where to create active objects. Active objects will be

created
* on each node mapped to the given virtualnode in XML deployment descriptor.
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return Object a Group of references (possibly remote) on Stubs of newly created active

objects
* @throws ActiveObjectCreationException if a problem occur while creating the stub or the body
* @throws NodeException if the virtualnode was null
*
*/
public static Object newActiveAsGroup(String classname,

Class[] genericParameters, Object[] constructorParameters,
VirtualNode virtualnode, Active activity, MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
if (virtualnode != null) {

if (!virtualnode.isActivated()) {
virtualnode.activate();

}
Node[] nodeTab = virtualnode.getNodes();
Group aoGroup = null;
try {

aoGroup = ProActiveGroup.getGroup(ProActiveGroup.newGroup(
classname, genericParameters));

} catch (ClassNotFoundException e) {
throw new ActiveObjectCreationException(

"Cannot create group of active objects" + e);
} catch (ClassNotReifiableException e) {

throw new ActiveObjectCreationException(
"Cannot create group of active objects" + e);

}
for (int i = 0; i < nodeTab.length; i++) {

Object tmp = newActive(classname, null, constructorParameters,
(Node) nodeTab[i], activity, factory);

aoGroup.add(tmp);
}

return aoGroup.getGroupByType();
} else {

throw new NodeException(
"VirtualNode is null, unable to activate the object");

}
}

/**
* Turns a Java object into an Active Object and send it to a remote Node or to a
* local node if the given node is null.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* A Stub is dynamically generated for the existing object. The result of the call
* will be an instance of the Stub class pointing to the proxy object pointing
* to the body object pointing to the existing object. The body can be remote
* or local depending if the existing is sent remotely or not.

Part IX: Back matters Files of the ProActive source base cited in
the manual

559

* @param target The object to turn active
* @param genericParameters parameterizing types (of class @param classname)
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, String nameOfTargetType,

Class[] genericParameters, Node node, Active activity,
MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
if (node == null) {

//using default proactive node
node = NodeFactory.getDefaultNode();

}

if (factory == null) {
factory = ProActiveMetaObjectFactory.newInstance();

}

ProActiveSecurityManager factorySM = factory.getProActiveSecurityManager();

MetaObjectFactory clonedFactory = factory;

if (factorySM != null) {
try {

clonedFactory = (MetaObjectFactory) factory.clone();
} catch (CloneNotSupportedException e) {

e.printStackTrace();
}

clonedFactory.setProActiveSecurityManager(factory.getProActiveSecurityManager()

.generateSiblingCertificate(nameOfTargetType));

ProActiveLogger.getLogger(Loggers.SECURITY)
.debug("new active object with security manager");

}

try {
return createStubObject(target, nameOfTargetType,

genericParameters, node, activity, clonedFactory);
} catch (MOPException e) {

Throwable t = e;

if (e.getTargetException() != null) {
t = e.getTargetException();

}

Part IX: Back matters Files of the ProActive source base cited in
the manual

560

throw new ActiveObjectCreationException(t);
}

}

/**
* Creates a new ProActive component over the specified base class, according to the
* given component parameters, and returns a reference on the component of type Component.
* A reference on the active object base class can be retreived through the component

parameters controller's
* method "getStubOnReifiedObject".
*
* @param classname the name of the base class. "Composite" if the component is a composite,
* "ParallelComposite" if the component is a parallel composite component
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters the parameters of the constructor of the object
* to instantiate as active. If some parameters are primitive types, the wrapper
* class types should be given here. null can be used to specify that no parameter
* are passed to the constructor.
* @param node the possibly null node where to create the active object. If null, the active

object
* is created localy on a default node
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory should be null for components (automatically created)
* @param componentParameters the parameters of the component
* @return a component representative of type Component
* @exception ActiveObjectCreationException if a problem occurs while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Component newActiveComponent(String classname,

Class[] genericParameters, Object[] constructorParameters, Node node,
Active activity, MetaObjectFactory factory,
ComponentParameters componentParameters)
throws ActiveObjectCreationException, NodeException {
try {

Component boot = Fractal.getBootstrapComponent();
GenericFactory cf = Fractal.getGenericFactory(boot);
return cf.newFcInstance(componentParameters.getComponentType(),

new ControllerDescription(componentParameters.getName(),
componentParameters.getHierarchicalType()),

new ContentDescription(classname, constructorParameters,
activity, factory));

} catch (NoSuchInterfaceException e) {
throw new ActiveObjectCreationException(e);

} catch (InstantiationException e) {
if (e.getCause() instanceof NodeException) {

throw new NodeException(e);
} else {

throw new ActiveObjectCreationException(e);
}

}
}

/**
* Creates a new ProActive component over the specified base class, according to the
* given component parameters, and returns a reference on the component of type Component.
*
* This method allows automatic of primitive components on Virtual Nodes. In that case, the

Part IX: Back matters Files of the ProActive source base cited in
the manual

561

appendix
* -cyclicInstanceNumber-<i>number</i> is added to the name of each of these

components.
* If the component is not a primitive, only one instance of the component is created, on the

first node
* retreived from the specified virtual node.
*
* A reference on the active object base class can be retreived through the component

parameters controller's
* method "getStubOnReifiedObject".
*
* @param className the name of the base class. "Composite" if the component is a composite,
* "ParallelComposite" if the component is a parallel composite component
* @param genericParameters genericParameters parameterizing types
* @param constructorParameters the parameters of the constructor of the object
* to instantiate as active. If some parameters are primitive types, the wrapper
* class types should be given here. null can be used to specify that no parameter
* are passed to the constructor.
* @param vn the possibly null node where to create the active object. If null, the active

object
* is created localy on a default node
* @param componentParameters the parameters of the component
* @return a typed group of component representative elements, of type Component
* @exception ActiveObjectCreationException if a problem occurs while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Component newActiveComponent(String className,

Class[] genericParameters, Object[] constructorParameters,
VirtualNode vn, ComponentParameters componentParameters)
throws ActiveObjectCreationException, NodeException {
try {

Component boot = Fractal.getBootstrapComponent();
ProActiveGenericFactory cf = (ProActiveGenericFactory) Fractal.getGenericFactory(boot);
return cf.newFcInstance(componentParameters.getComponentType(),

new ControllerDescription(componentParameters.getName(),
componentParameters.getHierarchicalType()),

new ContentDescription(className, constructorParameters));
} catch (NoSuchInterfaceException e) {

throw new ActiveObjectCreationException(e);
} catch (InstantiationException e) {

if (e.getCause() instanceof NodeException) {
throw new NodeException(e);

} else {
throw new ActiveObjectCreationException(e);

}
}

}

/**
* Turns the target object into an ActiveObject attached to a default node in the local JVM.
* The type of the stub is is the type of the existing object.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @return a reference (possibly remote) on a Stub of the existing object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters)

throws ActiveObjectCreationException, NodeException {

Part IX: Back matters Files of the ProActive source base cited in
the manual

562

return turnActive(target, genericParameters, (Node) null,
(Active) null, (MetaObjectFactory) null);

}

/**
* Turns the target object into an Active Object and send it to the Node
* identified by the given url.
* The type of the stub is is the type of the existing object.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @param nodeURL the URL of the node where to create the active object on. If null, the active

object
* is created localy on a default node
* @return a reference (possibly remote) on a Stub of the existing object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters,

String nodeURL) throws ActiveObjectCreationException, NodeException {
if (nodeURL == null) {

return turnActive(target, genericParameters,
target.getClass().getName(), null, null, null);

} else {
return turnActive(target, genericParameters,

target.getClass().getName(), NodeFactory.getNode(nodeURL),
null, null);

}
}

/**
* Turns the target object into an Active Object and send it to the given Node
* or to a default node in the local JVM if the given node is null.
* The type of the stub is is the type of the target object.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters,

Node node) throws ActiveObjectCreationException, NodeException {
return turnActive(target, genericParameters,

target.getClass().getName(), node, null, null);
}

/**
* Turns the target object into an Active Object and send it to the given Node
* or to a default node in the local JVM if the given node is null.
* The type of the stub is is the type of the target object.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.

Part IX: Back matters Files of the ProActive source base cited in
the manual

563

* @param factory the possibly null meta factory giving all factories for creating the
meta-objects part of the

* body associated to the reified object. If null the default ProActive
MataObject factory is used.

* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters,

Node node, Active activity, MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
return turnActive(target, genericParameters,

target.getClass().getName(), node, activity, factory);
}

/**
* Turns a Java object into an Active Object and send it to a remote Node or to a
* local node if the given node is null.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @return a reference (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters,

String nameOfTargetType, Node node)
throws ActiveObjectCreationException, NodeException {
return turnActive(target, genericParameters, nameOfTargetType, node,

null, null);
}

/**
* Turns a Java object into an Active Object and send it to a remote Node or to a
* local node if the given node is null.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* A Stub is dynamically generated for the existing object. The result of the call
* will be an instance of the Stub class pointing to the proxy object pointing
* to the body object pointing to the existing object. The body can be remote
* or local depending if the existing is sent remotely or not.
* @param target The object to turn active
* @param genericParameters genericParameters parameterizing types
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param node The Node the object should be sent to or null to create the active
* object in the local JVM
* @param activity the possibly null activity object defining the different step in the

activity of the object.
* see the definition of the activity in the javadoc of this classe for more

information.
* @param factory the possibly null meta factory giving all factories for creating the

meta-objects part of the
* body associated to the reified object. If null the default ProActive

MataObject factory is used.
* @return a reference (possibly remote) on a Stub of the target object

Part IX: Back matters Files of the ProActive source base cited in
the manual

564

* @exception ActiveObjectCreationException if a problem occur while creating the stub or the
body

* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActive(Object target, Class[] genericParameters,

String nameOfTargetType, Node node, Active activity,
MetaObjectFactory factory)
throws ActiveObjectCreationException, NodeException {
if (node == null) {

//using default proactive node
node = NodeFactory.getDefaultNode();

}

if (factory == null) {
factory = ProActiveMetaObjectFactory.newInstance();

}

ProActiveSecurityManager factorySM = factory.getProActiveSecurityManager();

MetaObjectFactory clonedFactory = factory;

if (factorySM != null) {
try {

clonedFactory = (MetaObjectFactory) factory.clone();
} catch (CloneNotSupportedException e) {

e.printStackTrace();
}

clonedFactory.setProActiveSecurityManager(factory.getProActiveSecurityManager()

.generateSiblingCertificate(nameOfTargetType));

ProActiveLogger.getLogger(Loggers.SECURITY)
.debug("new active object with security manager");

}

try {
return createStubObject(target, nameOfTargetType,

genericParameters, node, activity, clonedFactory);
} catch (MOPException e) {

Throwable t = e;

if (e.getTargetException() != null) {
t = e.getTargetException();

}

throw new ActiveObjectCreationException(t);
}

}

/**
* Turns a Java object into a group of Active Objects and sends the elements of the group
* to remote Nodes mapped to the given virtualnode in the XML deployment descriptor.
* The type of the stub is given by the parameter <code>nameOfTargetType</code>.
* @param target The object to turn active
* @param genericParameters parameterizing types (of class @param classname)
* @param nameOfTargetType the fully qualified name of the type the stub class should
* inherit from. That type can be less specific than the type of the target object.
* @param virtualnode The VirtualNode where the target object will be turn into an Active

Object
* Target object will be turned into an Active Object on each node mapped to the given

Part IX: Back matters Files of the ProActive source base cited in
the manual

565

virtualnode in XML deployment descriptor.
* @return an array of references (possibly remote) on a Stub of the target object
* @exception ActiveObjectCreationException if a problem occur while creating the stub or the

body
* @exception NodeException if the node was null and that the DefaultNode cannot be created
*/
public static Object turnActiveAsGroup(Object target,

Class[] genericParameters, String nameOfTargetType,
VirtualNode virtualnode)
throws ActiveObjectCreationException, NodeException {
if (virtualnode != null) {

Node[] nodeTab = virtualnode.getNodes();
Group aoGroup = null;
try {

aoGroup = ProActiveGroup.getGroup(ProActiveGroup.newGroup(
target.getClass().getName(), genericParameters));

} catch (ClassNotFoundException e) {
throw new ActiveObjectCreationException(

"Cannot create group of active objects" + e);
} catch (ClassNotReifiableException e) {

throw new ActiveObjectCreationException(
"Cannot create group of active objects" + e);

}

for (int i = 0; i < nodeTab.length; i++) {
Object tmp = turnActive(target, genericParameters,

nameOfTargetType, (Node) nodeTab[i], null, null);
aoGroup.add(tmp);

}

return aoGroup;
} else {

throw new NodeException(
"VirtualNode is null, unable to active the object");

}
}

/**
* Registers an active object into a registry(RMI or IBIS or HTTP, default is RMI).
* In fact it is the remote version of the body of the active object that is registered
* into the registry under the given URL. According to the type of the associated body(default

is Rmi),
* the registry in which to register is automatically found.
* @param obj the active object to register.
* @param url the url under which the remote body is registered. The url must point to the

localhost
* since registering is always a local action. The url can take the

form:protocol://localhost:port/nam
* or //localhost:port/name if protocol is RMI or //localhost/name if port is 1099 or only the

name.
* The registered object will be reachable with the following url:

protocol://machine_name:port/name
* using lookupActive method. Protocol and port can be removed if default
* @exception java.io.IOException if the remote body cannot be registered
*/
public static void register(Object obj, String url)

throws java.io.IOException {
BodyAdapter body = getRemoteBody(obj);
body.register(url);
if (logger.isInfoEnabled()) {

logger.info("Success at binding url " + url);

Part IX: Back matters Files of the ProActive source base cited in
the manual

566

}
}

/**
* Unregisters an active object previously registered into a registry.
* @param url the url under which the active object is registered.
* @exception java.io.IOException if the remote object cannot be removed from the registry
*/
public static void unregister(String url) throws java.io.IOException {

String protocol = UrlBuilder.getProtocol(url);

// First step towards Body factory, will be introduced after the release
if (protocol.equals("rmi:")) {

new RmiBodyAdapter().unregister(url);
} else if (protocol.equals("rmissh:")) {

new SshRmiBodyAdapter().unregister(url);
} else if (protocol.equals("http:")) {

new HttpBodyAdapter().unregister(url);
} else if (protocol.equals("ibis:")) {

new IbisBodyAdapter().unregister(url);
} else {

throw new IOException("Protocol " + protocol + " not defined");
}
if (logger.isDebugEnabled()) {

logger.debug("Success at unbinding url " + url);
}

}

/**
* Looks-up an active object previously registered in a registry(RMI, IBIS, HTTP). In fact it

is the
* remote version of the body of an active object that can be registered into the Registry
* under a given URL. If the lookup is successful, the method reconstructs a Stub-Proxy couple

and
* point it to the RmiRemoteBody found.
* The registry where to look for is fully determined with the protocol included in the url
* @param classname the fully qualified name of the class the stub should inherit from.
* @param url the url under which the remote body is registered. The url takes the following

form:
* protocol://machine_name:port/name. Protocol and port can be ommited if respectively RMI and

1099:
* //machine_name/name
* @return a remote reference on a Stub of type <code>classname</code> pointing to the
* remote body found
* @exception java.io.IOException if the remote body cannot be found under the given url
* or if the object found is not of type RmiRemoteBody
* @exception ActiveObjectCreationException if the stub-proxy couple cannot be created
*/
public static Object lookupActive(String classname, String url)

throws ActiveObjectCreationException, java.io.IOException {
// try {
// // this ensures the class server is initialized,
// // which ensures that the java.rmi.server.codebase property is initialized,
// // which ensures parameters are annotated with the correct codebase in RMI

communications
// RuntimeFactory.getDefaultRuntime();
// } catch (ProActiveException e1) {
// throw new ActiveObjectCreationException("Exception occured when trying to get default

runtime",e1);
// }
UniversalBody b = null;

Part IX: Back matters Files of the ProActive source base cited in
the manual

567

String protocol = UrlBuilder.getProtocol(url);

// First step towards Body factory, will be introduced after the release
if (protocol.equals("rmi:")) {

b = new RmiBodyAdapter().lookup(url);
} else if (protocol.equals("rmissh:")) {

b = new SshRmiBodyAdapter().lookup(url);
} else if (protocol.equals("http:")) {

b = new HttpBodyAdapter().lookup(url);
} else if (protocol.equals("ibis:")) {

b = new IbisBodyAdapter().lookup(url);
} else {

throw new IOException("Protocol " + protocol + " not defined");
}

try {
return createStubObject(classname, b);

} catch (MOPException e) {
Throwable t = e;

if (e.getTargetException() != null) {
t = e.getTargetException();

}

throw new ActiveObjectCreationException("Exception occured when trying to create
stub-proxy",

t);
}

}

/**
* Looks-up all Active Objects registered on a host, using a registry(RMI or JINI or HTTP or

IBIS)
* The registry where to look for is fully determined with the protocol included in the url.
* @param url The url where to perform the lookup. The url takes the following form:
* protocol://machine_name:port. Protocol and port can be ommited if respectively RMI and 1099:
* //machine_name
* @return String [] the list of names registered on the host; if no Registry found, returns {}
* @throws IOException If the given url does not map to a physical host, or if the connection

is refused.
*/
public static String[] listActive(String url) throws java.io.IOException {

String[] activeNames = null;

String protocol = UrlBuilder.getProtocol(url);

// First step towards Body factory, will be introduced after the release
if (protocol.equals("rmi:")) {

activeNames = new RmiBodyAdapter().list(url);
} else if (protocol.equals("rmissh:")) {

activeNames = new SshRmiBodyAdapter().list(url);
} else if (protocol.equals("http:")) {

activeNames = new HttpBodyAdapter().list(url);
} else if (protocol.equals("ibis:")) {

activeNames = new IbisBodyAdapter().list(url);
} else {

throw new IOException("Protocol " + protocol + " not defined");
}

return activeNames;

Part IX: Back matters Files of the ProActive source base cited in
the manual

568

}

/**
* Return the URL of the remote <code>activeObject</code>.
* @param activeObject the remote active object.
* @return the URL of <code>activeObject</code>.
*/
public static String getActiveObjectNodeUrl(Object activeObject) {

UniversalBody body = getRemoteBody(activeObject);
return body.getNodeURL();

}

/**
* Find out if the object contains an exception that should be thrown
* @param future the future object that is examinated
* @return true iff an exception should be thrown when accessing the object
*/
public static boolean isException(Object future) {

// If the object is not reified, it cannot be a future
if ((MOP.isReifiedObject(future)) == false) {

return false;
} else {

org.objectweb.proactive.core.mop.Proxy theProxy = ((StubObject) future).getProxy();

// If it is reified but its proxy is not of type future it's not an exception
if (!(theProxy instanceof Future)) {

return false;
} else {

return ((Future) theProxy).getRaisedException() != null;
}

}
}

/**
* Blocks the calling thread until the object <code>future</code>
* is available. <code>future</code> must be the result object of an
* asynchronous call. Usually the the wait by necessity model take care
* of blocking the caller thread asking for a result not yet available.
* This method allows to block before the result is first used.
* @param future object to wait for
*/
public static void waitFor(Object future) {

// If the object is not reified, it cannot be a future
if ((MOP.isReifiedObject(future)) == false) {

return;
} else {

org.objectweb.proactive.core.mop.Proxy theProxy = ((StubObject) future).getProxy();

// If it is reified but its proxy is not of type future, we cannot wait
if (!(theProxy instanceof Future)) {

return;
} else {

((Future) theProxy).waitFor();
}

}
}

/**
* Blocks the calling thread until the object <code>future</code>
* is available or until the timeout expires. <code>future</code> must be the result

object of an

Part IX: Back matters Files of the ProActive source base cited in
the manual

569

* asynchronous call. Usually the the wait by necessity model take care
* of blocking the caller thread asking for a result not yet available.
* This method allows to block before the result is first used.
* @param future object to wait for
* @param timeout to wait in ms
* @throws ProActiveException if the timeout expire
*/
public static void waitFor(Object future, long timeout)

throws ProActiveException {
// If the object is not reified, it cannot be a future
if ((MOP.isReifiedObject(future)) == false) {

return;
} else {

org.objectweb.proactive.core.mop.Proxy theProxy = ((StubObject) future).getProxy();

// If it is reified but its proxy is not of type future, we cannot wait
if (!(theProxy instanceof Future)) {

return;
} else {

((Future) theProxy).waitFor(timeout);
}

}
}

/**
* Returns a <code>ProActiveDescriptor</code> that gives an object representation
* of the XML document located at the url given by proactive.pad system's property.
* @return the pad located at the url given by proactive.pad system's property
* @throws ProActiveException
* @throws RemoteException
*/
public static ProActiveDescriptor getProactiveDescriptor()

throws ProActiveException, IOException {
String padURL = System.getProperty("proactive.pad");

//System.out.println("pad propertie : " + padURL) ;
if (padURL == null) {

//System.out.println("pad null");
return null;

} else {
return getProActiveDescriptor(padURL, new VariableContract(), true);

}
}

/**
* Returns a <code>ProActiveDescriptor</code> that gives an object representation
* of the XML document located at the given url.
* @param xmlDescriptorUrl The url of the XML document
* @return ProActiveDescriptor. The object representation of the XML document
* @throws ProActiveException if a problem occurs during the creation of the object
* @see org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor
* @see org.objectweb.proactive.core.descriptor.data.VirtualNode
* @see org.objectweb.proactive.core.descriptor.data.VirtualMachine
*/
public static ProActiveDescriptor getProactiveDescriptor(

String xmlDescriptorUrl) throws ProActiveException {
return getProActiveDescriptor(xmlDescriptorUrl, new VariableContract(),

false);
}

/**

Part IX: Back matters Files of the ProActive source base cited in
the manual

570

* Returns a <code>ProActiveDescriptor</code> that gives an object representation
* of the XML document located at the given url, and uses the given Variable Contract.
* @param xmlDescriptorUrl The url of the XML document
* @return ProActiveDescriptor. The object representation of the XML document
* @throws ProActiveException if a problem occurs during the creation of the object
* @see org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor
* @see org.objectweb.proactive.core.descriptor.data.VirtualNode
* @see org.objectweb.proactive.core.descriptor.data.VirtualMachine
*/
public static ProActiveDescriptor getProactiveDescriptor(

String xmlDescriptorUrl, VariableContract variableContract)
throws ProActiveException {
if (variableContract == null) {

throw new NullPointerException(
"Argument variableContract can not be null");

}

return getProActiveDescriptor(xmlDescriptorUrl, variableContract, false);
}

private static ProActiveDescriptor getProActiveDescriptor(
String xmlDescriptorUrl, VariableContract variableContract,
boolean hierarchicalSearch) throws ProActiveException {
//Get lock on XMLProperties global static variable
org.objectweb.proactive.core.xml.VariableContract.lock.aquire();
org.objectweb.proactive.core.xml.VariableContract.xmlproperties = variableContract;

//Get the pad
ProActiveDescriptor pad;
try {

pad = internalGetProActiveDescriptor(xmlDescriptorUrl,
variableContract, hierarchicalSearch);

} catch (ProActiveException e) {
org.objectweb.proactive.core.xml.VariableContract.lock.release();
throw e;

}

//No further modifications can be donde on the xmlproperties, thus we close the contract
variableContract.close();

//Check the contract (proposed optimization: Do this when parsing </variable> tag
instead of here!)

if (!variableContract.checkContract()) {
logger.error(variableContract.toString());
org.objectweb.proactive.core.xml.VariableContract.lock.release();
throw new ProActiveException("Variable Contract has not been met!");

}

//Release lock on static global variable XMLProperties
VariableContract.xmlproperties = new VariableContract();
org.objectweb.proactive.core.xml.VariableContract.lock.release();

return pad;
//return getProactiveDescriptor(xmlDescriptorUrl, false);

}

/**
* return the pad matching with the given url or parse it from the file system
* @param xmlDescriptorUrl url of the pad
* @param hierarchicalSearch must search in hierarchy ?
* @return the pad found or a new pad parsed from xmlDescriptorUrl

Part IX: Back matters Files of the ProActive source base cited in
the manual

571

* @throws ProActiveException
* @throws RemoteException
*/
private static ProActiveDescriptor internalGetProActiveDescriptor(

String xmlDescriptorUrl, VariableContract variableContract,
boolean hierarchicalSearch) throws ProActiveException {
RuntimeFactory.getDefaultRuntime();
if (xmlDescriptorUrl.indexOf(':') == -1) {

xmlDescriptorUrl = "file:" + xmlDescriptorUrl;
}
ProActiveRuntimeImpl part = (ProActiveRuntimeImpl)

ProActiveRuntimeImpl.getProActiveRuntime();
ProActiveDescriptor pad;
try {

if (!hierarchicalSearch) {
//if not hierarchical search, we assume that the descriptor might has been
//register with the default jobID
pad = part.getDescriptor(xmlDescriptorUrl +

ProActive.getJobId(), hierarchicalSearch);
} else {

pad = part.getDescriptor(xmlDescriptorUrl, hierarchicalSearch);
}

} catch (Exception e) {
throw new ProActiveException(e);

}

// if pad found, returns it
if (pad != null) {

return pad;
}

// else parses it
try {

if (logger.isInfoEnabled()) {
logger.info("************* Reading deployment descriptor: " +

xmlDescriptorUrl + " ********************");
}
ProActiveDescriptorHandler proActiveDescriptorHandler =

ProActiveDescriptorHandler.createProActiveDescriptor(xmlDescriptorUrl,
variableContract);

pad = (ProActiveDescriptor) proActiveDescriptorHandler.getResultObject();
part.registerDescriptor(pad.getUrl(), pad);
return pad;

} catch (org.xml.sax.SAXException e) {
//e.printStackTrace(); hides errors when testing parameters in xml descriptors
logger.fatal(

"A problem occured when getting the proActiveDescriptor at location \""
+xmlDescriptorUrl+"\".");

throw new ProActiveException("A problem occured when getting the proActiveDescriptor at
location \""+xmlDescriptorUrl+"\"."+e);

} catch (java.io.IOException e) {
//e.printStackTrace(); hides errors when testing parameters in xml descriptors
logger.fatal(

"A problem occured when getting the proActiveDescriptor at location \""
+xmlDescriptorUrl+"\".");

throw new ProActiveException(e);
}

}

/**
* Registers locally the given VirtualNode in a registry such RMIRegistry or JINI Lookup

Part IX: Back matters Files of the ProActive source base cited in
the manual

572

Service or HTTP registry.
* The VirtualNode to register must exist on the local runtime. This is done when using XML

Deployment Descriptors
* @param virtualNode the VirtualNode to register.
* @param registrationProtocol The protocol used for registration or null in order to use the

protocol used to start the jvm.
* At this time RMI, JINI, HTTP, IBIS are supported. If set to null, the registration protocol

will be set to the system property:
* proactive.communication.protocol
* @param replacePreviousBinding
* @throws ProActiveException If the VirtualNode with the given name has not been yet activated

or does not exist on the local runtime
*/
public static void registerVirtualNode(VirtualNode virtualNode,

String registrationProtocol, boolean replacePreviousBinding)
throws ProActiveException, AlreadyBoundException {
if (!(virtualNode instanceof VirtualNodeImpl)) {

throw new ProActiveException(
"Cannot register such virtualNode since it results from a lookup!");

}
if (registrationProtocol == null) {

registrationProtocol = System.getProperty(
"proactive.communication.protocol");

}
String virtualnodeName = virtualNode.getName();
ProActiveRuntime part = RuntimeFactory.getProtocolSpecificRuntime(registrationProtocol);
VirtualNode vn = part.getVirtualNode(virtualnodeName);
if (vn == null) {

throw new ProActiveException("VirtualNode " + virtualnodeName +
" has not been yet activated or does not exist! Try to activate it first !");

}
part.registerVirtualNode(UrlBuilder.appendVnSuffix(virtualnodeName),

replacePreviousBinding);
}

/**
* Looks-up a VirtualNode previously registered in a registry(RMI or JINI or HTTP or IBIS)
* The registry where to look for is fully determined with the protocol included in the url
* @param url The url where to perform the lookup. The url takes the following form:
* protocol://machine_name:port/name. Protocol and port can be ommited if respectively RMI and

1099:
* //machine_name/name
* @return VirtualNode The virtualNode returned by the lookup
* @throws ProActiveException If no objects are bound with the given url
*/
public static VirtualNode lookupVirtualNode(String url)

throws ProActiveException {
ProActiveRuntime remoteProActiveRuntime = null;
try {

remoteProActiveRuntime = RuntimeFactory.getRuntime(UrlBuilder.buildVirtualNodeUrl(
url), UrlBuilder.getProtocol(url));

} catch (UnknownHostException ex) {
throw new ProActiveException(ex);

}
return remoteProActiveRuntime.getVirtualNode(UrlBuilder.getNameFromUrl(

url));
}

/**
* Unregisters the virtualNode previoulsy registered in a registry such as JINI or RMI.
* Calling this method removes the VirtualNode from the local runtime.

Part IX: Back matters Files of the ProActive source base cited in
the manual

573

* @param virtualNode The VirtualNode to unregister
* @throws ProActiveException if a problem occurs whle unregistering the VirtualNode
*/
public static void unregisterVirtualNode(VirtualNode virtualNode)

throws ProActiveException {
//VirtualNode vn = ((VirtualNodeStrategy)virtualNode).getVirtualNode();
if (!(virtualNode instanceof VirtualNodeImpl)) {

throw new ProActiveException(
"Cannot unregister such virtualNode since it results from a lookup!");

}
String virtualNodeName = virtualNode.getName();
ProActiveRuntime part = RuntimeFactory.getProtocolSpecificRuntime(((VirtualNodeImpl)

virtualNode).getRegistrationProtocol());
part.unregisterVirtualNode(UrlBuilder.appendVnSuffix(

virtualNode.getName()));
if (logger.isInfoEnabled()) {

logger.info("Success at unbinding " + virtualNodeName);
}

}

/**
* When an active object is created, it is associated with a Body that takes care
* of all non fonctionnal properties. Assuming that the active object is only
* accessed by the different Stub objects, all method calls end-up as Requests sent
* to this Body. Therefore the only thread calling the method of the active object
* is the active thread managed by the body. There is an unique mapping between the
* active thread and the body responsible for it. From any method in the active object
* the current thread caller of the method is the active thread. When a reified method wants
* to get a reference to the Body associated to the active object, it can invoke this
* method. Assuming that the current thread is the active thread, the associated body
* is returned.
* @return the body associated to the active object whose active thread is calling
* this method.
*/
public static Body getBodyOnThis() {

return LocalBodyStore.getInstance().getCurrentThreadBody();
}

/**
* Returns a Stub-Proxy couple pointing to the local body associated to the active
* object whose active thread is calling this method.
* @return a Stub-Proxy couple pointing to the local body.
* @see #getBodyOnThis
*/
public static StubObject getStubOnThis() {

Body body = getBodyOnThis();

if (logger.isDebugEnabled()) {
//logger.debug("ProActive: getStubOnThis() returns " + body);

}
if (body == null) {

return null;
}

return getStubForBody(body);
}

/**
* Migrates the active object whose active thread is calling this method to the
* same location as the active object given in parameter.
* This method must be called from an active object using the active thread as the

Part IX: Back matters Files of the ProActive source base cited in
the manual

574

* current thread will be used to find which active object is calling the method.
* The object given as destination must be an active object.
* @param activeObject the active object indicating the destination of the migration.
* @exception MigrationException if the migration fails
* @see #getBodyOnThis
*/
public static void migrateTo(Object activeObject) throws MigrationException {

migrateTo(getNodeFromURL(getNodeURLFromActiveObject(activeObject)));
}

/**
* Migrates the active object whose active thread is calling this method to the
* node caracterized by the given url.
* This method must be called from an active object using the active thread as the
* current thread will be used to find which active object is calling the method.
* The url must be the url of an existing node.
* @param nodeURL the url of an existing where to migrate to.
* @exception MigrationException if the migration fails
* @see #getBodyOnThis
*/
public static void migrateTo(String nodeURL) throws MigrationException {

if (logger.isDebugEnabled()) {
logger.debug("migrateTo " + nodeURL);

}
ProActive.migrateTo(getNodeFromURL(nodeURL));

}

/**
* Migrates the active object whose active thread is calling this method to the
* given node.
* This method must be called from an active object using the active thread as the
* current thread will be used to find which active object is calling the method.
* @param node an existing node where to migrate to.
* @exception MigrationException if the migration fails
* @see #getBodyOnThis
*/
public static void migrateTo(Node node) throws MigrationException {

if (logger.isDebugEnabled()) {
logger.debug("migrateTo " + node);

}
Body bodyToMigrate = getBodyOnThis();
if (!(bodyToMigrate instanceof Migratable)) {

throw new MigrationException(
"This body cannot migrate. It doesn't implement Migratable interface");

}

((Migratable) bodyToMigrate).migrateTo(node);
}

/**
* Migrates the given body to the same location as the active object given in parameter.
* This method can be called from any object and does not perform the migration.
* Instead it generates a migration request that is sent to the targeted body.
* The object given as destination must be an active object.
* @param bodyToMigrate the body to migrate.
* @param activeObject the active object indicating the destination of the migration.
* @param isNFRequest a boolean indicating that the request is not functional i.e it does not

modify the application's computation
* @exception MigrationException if the migration fails
*/
public static void migrateTo(Body bodyToMigrate, Object activeObject,

Part IX: Back matters Files of the ProActive source base cited in
the manual

575

boolean isNFRequest) throws MigrationException {
ProActive.migrateTo(bodyToMigrate,

getNodeFromURL(getNodeURLFromActiveObject(activeObject)),
isNFRequest);

}

/**
* Migrates the given body to the node caracterized by the given url.
* This method can be called from any object and does not perform the migration.
* Instead it generates a migration request that is sent to the targeted body.
* The object given as destination must be an active object.
* @param bodyToMigrate the body to migrate.
* @param nodeURL the url of an existing where to migrate to.
* @param isNFRequest a boolean indicating that the request is not functional i.e it does not

modify the application's computation
* @exception MigrationException if the migration fails
*/
public static void migrateTo(Body bodyToMigrate, String nodeURL,

boolean isNFRequest) throws MigrationException {
ProActive.migrateTo(bodyToMigrate, getNodeFromURL(nodeURL), isNFRequest);

}

/**
* Migrates the body <code>bodyToMigrate</code> to the given node.
* This method can be called from any object and does not perform the migration.
* Instead it generates a migration request that is sent to the targeted body.
* The object given as destination must be an active object.
* @param bodyToMigrate the body to migrate.
* @param node an existing node where to migrate to.
* @param isNFRequest a boolean indicating that the request is not functional i.e it does not

modify the application's computation
* @exception MigrationException if the migration fails
*/
public static void migrateTo(Body bodyToMigrate, Node node,

boolean isNFRequest) throws MigrationException {
//In the context of ProActive, migration of an active object is considered as a non

functional request.
//That's why "true" is set by default for the "isNFRequest" parameter.
ProActive.migrateTo(bodyToMigrate, node, true,

org.objectweb.proactive.core.body.request.Request.NFREQUEST_IMMEDIATE_PRIORITY);
}

/**
* Migrates the body <code>bodyToMigrate</code> to the given node.
* This method can be called from any object and does not perform the migration.
* Instead it generates a migration request that is sent to the targeted body.
* The object given as destination must be an active object.
* @param bodyToMigrate the body to migrate.
* @param node an existing node where to migrate to.
* @param isNFRequest a boolean indicating that the request is not functional i.e it does not

modify the application's computation
* @param priority the level of priority of the non functional request. Levels are defined in

Request interface of ProActive.
* @exception MigrationException if the migration fails
*/
public static void migrateTo(Body bodyToMigrate, Node node,

boolean isNFRequest, int priority) throws MigrationException {
if (!(bodyToMigrate instanceof Migratable)) {

throw new MigrationException(
"This body cannot migrate. It doesn't implement Migratable interface");

}

Part IX: Back matters Files of the ProActive source base cited in
the manual

576

Object[] arguments = { node };

try {
BodyRequest request = new BodyRequest(bodyToMigrate, "migrateTo",

new Class[] { Node.class }, arguments, isNFRequest, priority);
request.send(bodyToMigrate);

} catch (NoSuchMethodException e) {
throw new MigrationException("Cannot find method migrateTo this body. Non sense since

the body is instance of Migratable",
e);

} catch (java.io.IOException e) {
throw new MigrationException("Cannot send the request to migrate", e);

}
}

/**
* Blocks the calling thread until one of the futures in the vector is available.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
* @return index of the available future in the vector
*/
public static int waitForAny(java.util.Vector futures) {

try {
return waitForAny(futures, 0);

} catch (ProActiveException e) {
//Exception above should never be thrown since timeout=0 means no timeout
e.printStackTrace();
return -1;

}
}

/**
* Blocks the calling thread until one of the futures in the vector is available
* or until the timeout expires.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
* @param timeout to wait in ms
* @return index of the available future in the vector
* @throws ProActiveException if the timeout expires
*/
public static int waitForAny(java.util.Vector futures, long timeout)

throws ProActiveException {
FuturePool fp = getBodyOnThis().getFuturePool();

synchronized (fp) {
while (true) {

java.util.Iterator it = futures.iterator();
int index = 0;

while (it.hasNext()) {
Object current = it.next();

if (!isAwaited(current)) {
return index;

}

index++;
}
fp.waitForReply(timeout);

}

Part IX: Back matters Files of the ProActive source base cited in
the manual

577

}
}

/**
* Blocks the calling thread until all futures in the vector are available.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
*/
public static void waitForAll(java.util.Vector futures) {

try {
ProActive.waitForAll(futures, 0);

} catch (ProActiveException e) {
//Exception above should never be thrown since timeout=0 means no timeout
e.printStackTrace();

}
}

/**
* Blocks the calling thread until all futures in the vector are available or until
* the timeout expires.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
* @param timeout to wait in ms
* @throws ProActiveException if the timeout expires
*/
public static void waitForAll(java.util.Vector futures, long timeout)

throws ProActiveException {
FuturePool fp = getBodyOnThis().getFuturePool();

synchronized (fp) {
boolean oneIsMissing = true;

while (oneIsMissing) {
oneIsMissing = false;

java.util.Iterator it = futures.iterator();

while (it.hasNext()) {
Object current = it.next();

if (isAwaited(current)) {
oneIsMissing = true;

}
}

if (oneIsMissing) {
fp.waitForReply(timeout);

}
}

}
}

/**
* Blocks the calling thread until the N-th of the futures in the vector is available.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
*/
public static void waitForTheNth(java.util.Vector futures, int n) {

FuturePool fp = getBodyOnThis().getFuturePool();

synchronized (fp) {

Part IX: Back matters Files of the ProActive source base cited in
the manual

578

Object current = futures.get(n);

if (isAwaited(current)) {
waitFor(current);

}
}

}

/**
* Blocks the calling thread until the N-th of the futures in the vector is available.
* THIS METHOD MUST BE CALLED FROM AN ACTIVE OBJECT.
* @param futures vector of futures
* @param n
* @param timeout to wait in ms
* @throws ProActiveException if the timeout expires
*/
public static void waitForTheNth(java.util.Vector futures, int n,

long timeout) throws ProActiveException {
FuturePool fp = getBodyOnThis().getFuturePool();

synchronized (fp) {
Object current = futures.get(n);

if (isAwaited(current)) {
waitFor(current, timeout);

}
}

}

/**
* Return <code>false</code> if one object of <code>futures</code> is
* available.
* @param futures a table with futures.
* @return <code>true</code> if all futures are awaited, else <code>false
* </code>.
*/
public static boolean allAwaited(java.util.Vector futures) {

FuturePool fp = getBodyOnThis().getFuturePool();

synchronized (fp) {
java.util.Iterator it = futures.iterator();

while (it.hasNext()) {
Object current = it.next();

if (!isAwaited(current)) {
return false;

}
}
return true;

}
}

/**
* Return false if the object <code>future</code> is available.
* This method is recursive, i.e. if result of future is a future too,
* <CODE>isAwaited</CODE> is called again on this result, and so on.
*/
public static boolean isAwaited(Object future) {

// If the object is not reified, it cannot be a future
if ((MOP.isReifiedObject(future)) == false) {

Part IX: Back matters Files of the ProActive source base cited in
the manual

579

return false;
} else {

org.objectweb.proactive.core.mop.Proxy theProxy = ((StubObject) future).getProxy();

// If it is reified but its proxy is not of type future, we cannot wait
if (!(theProxy instanceof Future)) {

return false;
} else {

if (((Future) theProxy).isAwaited()) {
return true;

} else {
return isAwaited(((Future) theProxy).getResult());

}
}

}
}

/**
* Return the object contains by the future (ie its target).
* If parameter is not a future, it is returned.
* A wait-by-necessity occurs if future is not available.
* This method is recursive, i.e. if result of future is a future too,
* <CODE>getFutureValue</CODE> is called again on this result, and so on.
*/
public static Object getFutureValue(Object future) {

// If the object is not reified, it cannot be a future
if ((MOP.isReifiedObject(future)) == false) {

return future;
} else {

org.objectweb.proactive.core.mop.Proxy theProxy = ((StubObject) future).getProxy();

// If it is reified but its proxy is not of type future, we cannot wait
if (!(theProxy instanceof Future)) {

return future;
} else {

Object o = ((Future) theProxy).getResult();

return getFutureValue(o);
}

}
}

/**
* Enable the automatic continuation mechanism for this active object.
*/
public static void enableAC(Object obj) throws java.io.IOException {

UniversalBody body = getRemoteBody(obj);
body.enableAC();

}

/**
* Disable the automatic continuation mechanism for this active object.
*/
public static void disableAC(Object obj) throws java.io.IOException {

UniversalBody body = getRemoteBody(obj);
body.disableAC();

}

/**
* Kill an Active Object while calling terminate() method on its body.
* @param ao the active object to kill

Part IX: Back matters Files of the ProActive source base cited in
the manual

580

* @param immediate if this boolean is true, this method is served as an immediate service.
* The active object dies immediatly. Else, the kill request is served as a normal request, it
* is put on the request queue.
*/
public static void terminateActiveObject(Object ao, boolean immediate) {

Proxy proxy = ((StubObject) ao).getProxy();
try {

if (immediate) {
NonFunctionalServices.terminateAOImmediately(proxy);

} else {
NonFunctionalServices.terminateAO(proxy);

}
} catch (Throwable e) {

e.printStackTrace();
}

}

/**
* Set an immediate execution for the target active object obj of the method String,
* ie request of name methodName will be executed right away upon arrival at the target
* AO context.
* Warning: the execution of an Immediate Service method is achieved in parallel of the
* current services, so it is the programmer responsibility to ensure that Immediate Services
* do not interfere with any other methods.
* @param obj the object on which to set this immediate service
* @param methodName the name of the method
* @throws IOException
*/
public static void setImmediateService(Object obj, String methodName)

throws java.io.IOException {
UniversalBody body = getRemoteBody(obj);
body.setImmediateService(methodName);

}

/**
* Set an immediate execution for the target active object obj of the method String,
* ie request of name methodName will be executed right away upon arrival at the target
* AO context.
* Warning: the execution of an Immediate Service method is achieved in parallel of the
* current services, so it is the programmer responsibility to ensure that Immediate Services
* do not interfere with any other methods.
* @param obj the object on which to set this immediate service
* @param methodName the name of the method
* @param parametersTypes the types of the parameters of the method
* @throws IOException
*/
public static void setImmediateService(Object obj, String methodName,

Class[] parametersTypes) throws IOException {
UniversalBody body = getRemoteBody(obj);
body.setImmediateService(methodName, parametersTypes);

}

/**
* Removes an immmediate execution for the active object obj, i.e. requests corresponding to

the name and types of parameters
* will be executed by the calling thread, and not added in the request queue.
* BE CAREFUL : for the first release of this method, do not make use of getCurrentThreadBody

nor
* getStubOnThis in the method defined by methodName !!
*
* @param obj the object from which to remove this immediate service

Part IX: Back matters Files of the ProActive source base cited in
the manual

581

* @param methodName the name of the method
* @param parametersTypes the types of the parameters of the method
* @throws IOException
*/
public static void removeImmediateService(Object obj, String methodName,

Class[] parametersTypes) throws IOException {
UniversalBody body = getRemoteBody(obj);
body.removeImmediateService(methodName, parametersTypes);

}

/**
* @param obj
* @return
*/
private static BodyAdapter getRemoteBody(Object obj) {

// Check if obj is really a reified object
if (!(MOP.isReifiedObject(obj))) {

throw new ProActiveRuntimeException("The given object " + obj +
" is not a reified object");

}

// Find the appropriate remoteBody
org.objectweb.proactive.core.mop.Proxy myProxy = ((StubObject) obj).getProxy();

if (myProxy == null) {
throw new ProActiveRuntimeException(

"Cannot find a Proxy on the stub object: " + obj);
}

BodyProxy myBodyProxy = (BodyProxy) myProxy;
BodyAdapter body = myBodyProxy.getBody().getRemoteAdapter();
return body;

}

/**
* @return the jobId associated with the object calling this method
*/
public static String getJobId() {

return ProActive.getBodyOnThis().getJobID();
}

/**
* Expose an active object as a web service
* @param o The object to expose as a web service
* @param url The url of the host where the object will be seployed (typically

http://localhost:8080)
* @param urn The name of the object
* @param methods The methods that will be exposed as web services functionnalities
*/
public static void exposeAsWebService(Object o, String url, String urn,

String[] methods) {
ProActiveDeployer.deploy(urn, url, o, methods);

}

/**
* Delete the service on a web server
* @param urn The name of the object
* @param url The url of the web server
*/
public static void unExposeAsWebService(String urn, String url) {

ProActiveDeployer.undeploy(urn, url);

Part IX: Back matters Files of the ProActive source base cited in
the manual

582

}

/**
* Deploy a component as a webservice. Each interface of the component will be accessible by
* the urn [componentName]_[interfaceName]in order to identify the component an interface

belongs to.
* All the interfaces public methods will be exposed.
* @param componentName The name of the component
* @param url The web server url where to deploy the service - typically

"http://localhost:8080"
* @param component The component owning the interfaces that will be deployed as web services.
*/
public static void exposeComponentAsWebService(Component component,

String url, String componentName) {
ProActiveDeployer.deployComponent(componentName, url, component);

}

/**
* Undeploy component interfaces on a web server
* @param componentName The name of the component
* @param url The url of the web server
* @param component The component owning the services interfaces
*/
public static void unExposeComponentAsWebService(String componentName,

String url, Component component) {
ProActiveDeployer.undeployComponent(componentName, url, component);

}

//
// -- PRIVATE METHODS ---
//
private static String getNodeURLFromActiveObject(Object o)

throws MigrationException {
//first we check if the parameter is an active object,
if (!org.objectweb.proactive.core.mop.MOP.isReifiedObject(o)) {

throw new MigrationException(
"The parameter is not an active object");

}

//now we get a reference on the remoteBody of this guy
BodyProxy destProxy = (BodyProxy) ((org.objectweb.proactive.core.mop.StubObject)

o).getProxy();

return destProxy.getBody().getNodeURL();
}

private static Node getNodeFromURL(String url) throws MigrationException {
try {

return NodeFactory.getNode(url);
} catch (NodeException e) {

throw new MigrationException("The node of given URL " + url +
" cannot be localized", e);

}
}

// ---
//
// STUB CREATION
//
// ---
private static StubObject getStubForBody(Body body) {

Part IX: Back matters Files of the ProActive source base cited in
the manual

583

try {
return createStubObject(body.getReifiedObject(),

new Object[] { body },
body.getReifiedObject().getClass().getName(), null);

} catch (MOPException e) {
throw new ProActiveRuntimeException(

"Cannot create Stub for this Body e=" + e);
}

}

public static Object createStubObject(String className, UniversalBody body)
throws MOPException {
return createStubObject(className, null, null, new Object[] { body });

}

private static Object createStubObject(String className,
Class[] genericParameters, Object[] constructorParameters, Node node,
Active activity, MetaObjectFactory factory) throws MOPException {
return createStubObject(className, genericParameters,

constructorParameters,
new Object[] { node, activity, factory, ProActive.getJobId() });

}

private static Object createStubObject(String className,
Class[] genericParameters, Object[] constructorParameters,
Object[] proxyParameters) throws MOPException {
try {

return MOP.newInstance(className, genericParameters,
constructorParameters, Constants.DEFAULT_BODY_PROXY_CLASS_NAME,
proxyParameters);

} catch (ClassNotFoundException e) {
throw new ConstructionOfProxyObjectFailedException(

"Class can't be found e=" + e);
}

}

private static Object createStubObject(Object target,
String nameOfTargetType, Class[] genericParameters, Node node,
Active activity, MetaObjectFactory factory) throws MOPException {
return createStubObject(target,

new Object[] { node, activity, factory, ProActive.getJobId() },
nameOfTargetType, genericParameters);

}

private static StubObject createStubObject(Object object,
Object[] proxyParameters, String nameOfTargetType,
Class[] genericParameters) throws MOPException {
try {

return (StubObject) MOP.turnReified(nameOfTargetType,
Constants.DEFAULT_BODY_PROXY_CLASS_NAME, proxyParameters,
object, genericParameters);

} catch (ClassNotFoundException e) {
throw new ConstructionOfProxyObjectFailedException(

"Class can't be found e=" + e);
}

}

/*** <Exceptions> See ExceptionHandler.java for the documentation ***/
/**
* This has to be called just before a try block for a single exception.
*

Part IX: Back matters Files of the ProActive source base cited in
the manual

584

* @param c the caught exception type in the catch block
*/
public static void tryWithCatch(Class c) {

tryWithCatch(new Class[] { c });
}

/**
* This has to be called just before a try block for many exceptions.
*
* @param c the caught exception types in the catch block
*/
public static void tryWithCatch(Class[] c) {

ExceptionHandler.tryWithCatch(c);
}

/**
* This has to be called at the end of the try block.
*/
public static void endTryWithCatch() {

ExceptionHandler.endTryWithCatch();
}

/**
* This has to be called at the beginning of the finally block, so
* it requires one.
*/
public static void removeTryWithCatch() {

ExceptionHandler.removeTryWithCatch();
}

/**
* This can be used to query a potential returned exception, and
* throw it if it exists.
*/
public static void throwArrivedException() {

ExceptionHandler.throwArrivedException();
}

/**
* This is used to wait for the return of every call, so that we know
* the execution can continue safely with no pending exception.
*/
public static void waitForPotentialException() {

ExceptionHandler.waitForPotentialException();
}

/**
* Add a listener for NFE reaching the local JVM
*
* @param listener The listener to add
*/
public static void addNFEListenerOnJVM(NFEListener listener) {

NFEManager.addNFEListener(listener);
}

/**
* Remove a listener for NFE reaching the local JVM
*
* @param listener The listener to remove
*/
public static void removeNFEListenerOnJVM(NFEListener listener) {

Part IX: Back matters Files of the ProActive source base cited in
the manual

585

NFEManager.removeNFEListener(listener);
}

/**
* Add a listener for NFE reaching a given active object
*
* @param ao The active object receiving the NFE
* @param listener The listener to add
*/
public static void addNFEListenerOnAO(Object ao, NFEListener listener) {

/* Security hazard: arbitrary code execution by the ao... */
BodyAdapter body = getRemoteBody(ao);
body.addNFEListener(listener);

}

/**
* Remove a listener for NFE reaching a given active object
*
* @param ao The active object receiving the NFE
* @param listener The listener to remove
*/
public static void removeNFEListenerOnAO(Object ao, NFEListener listener) {

BodyAdapter body = getRemoteBody(ao);
body.removeNFEListener(listener);

}

/**
* Add a listener for NFE reaching the client side of a given active object
*
* @param ao The active object receiving the NFE
* @param listener The listener to add
*/
public static void addNFEListenerOnProxy(Object ao, NFEListener listener) {

try {
((AbstractProxy) ao).addNFEListener(listener);

} catch (ClassCastException cce) {
throw new IllegalArgumentException(

"The object must be a proxy to an active object");
}

}

/**
* Remove a listener for NFE reaching the client side of a given active object
*
* @param ao The active object receiving the NFE
* @param listener The listener to remove
*/
public static void removeNFEListenerOnProxy(Object ao, NFEListener listener) {

try {
((AbstractProxy) ao).removeNFEListener(listener);

} catch (ClassCastException cce) {
throw new IllegalArgumentException(

"The object must be a proxy to an active object");
}

}

private static ProxyForGroup getGroupProxy(Object group) {
ProxyForGroup pfg;

try {

Part IX: Back matters Files of the ProActive source base cited in
the manual

586

pfg = (ProxyForGroup) ProActiveGroup.getGroup(group);
} catch (ClassCastException cce) {

pfg = null;
}

if (pfg == null) {
throw new IllegalArgumentException("The argument must be a group");

}

return pfg;
}

/**
* Add a listener for NFE regarding a group.
*
* @param group The group receiving the NFE
* @param listener The listener to add
*/
public static void addNFEListenerOnGroup(Object group, NFEListener listener) {

getGroupProxy(group).addNFEListener(listener);
}

/**
* Remove a listener for NFE regarding a group.
*
* @param group The group receiving the NFE
* @param listener The listener to remove
*/
public static void removeNFEListenerOnGroup(Object group,

NFEListener listener) {
getGroupProxy(group).removeNFEListener(listener);

}

/**
* Get the exceptions that have been caught in the current
* ProActive.tryWithCatch()/ProActive.removeTryWithCatch()
* block. This waits for every call in this block to return.
*
* @return a collection of these exceptions
*/
public static Collection getAllExceptions() {

return ExceptionHandler.getAllExceptions();
}

/**
* @return The node of the current active object.
* @throws NodeException problem with the node.
*/
public static Node getNode() throws NodeException {

BodyProxy destProxy = (BodyProxy) ((StubObject) getStubOnThis()).getProxy();

return NodeFactory.getNode(destProxy.getBody().getNodeURL());
}

/**
* Call this method at the end of the application if it completed
* successfully, for the launcher to be aware of it.
*/
public static void exitSuccess() {

System.exit(0);
}

Part IX: Back matters Files of the ProActive source base cited in
the manual

587

/**
* Call this method at the end of the application if it did not complete
* successfully, for the launcher to be aware of it.
*/
public static void exitFailure() {

System.exit(1);
}

/**
* After this call, when the JVM has no more active objects
* it will be killed.
*
*/
public void enableExitOnEmpty() {

LocalBodyStore.getInstance().enableExitOnEmpty();
}

/**
* Returns the number of this version
* @return String
*/
public static String getProActiveVersion() {

return "3.2.1";
}

}

Example C.21. ProActive.java

public class SSHProcessList extends AbstractListProcessDecorator {

/**
*
*/
public SSHProcessList() {

super();
}

/**
* @see org.objectweb.proactive.core.process.AbstractListProcessDecorator#createProcess()
*/
protected ExternalProcessDecorator createProcess() {

return new SSHProcess();
}

}

Example C.22. core/process/ssh/SSHProcessList.java

public class RSHProcessList extends AbstractListProcessDecorator {

/**
*

Part IX: Back matters Files of the ProActive source base cited in
the manual

588

*/
public RSHProcessList() {

super();
}

/**
* @see org.objectweb.proactive.core.process.AbstractListProcessDecorator#createProcess()
*/
protected ExternalProcessDecorator createProcess() {

return new RSHProcess();
}

}

Example C.23. core/process/rsh/RSHProcessList.java

public class RLoginProcessList extends AbstractListProcessDecorator {

/**
*
*/
public RLoginProcessList() {

super();
}

/**
* @see org.objectweb.proactive.core.process.AbstractListProcessDecorator#createProcess()
*/
protected ExternalProcessDecorator createProcess() {

return new RLoginProcess();
}

}

Example C.24. core/process/rlogin/RLoginProcessList.java

public interface ProActiveDescriptor extends java.io.Serializable {

/**
* Returns the Url of the pad
* @return String in fact it is an identifire for the pad that is returned.
* This identifier is build from the pad url appended with the pad's jobId.
*/
public String getUrl();

/**
* Returns the descriptor's location
* @return the location of the xml proactive descriptor file used.
*/
public String getProActiveDescriptorURL();

public void setMainDefined(boolean mainDefined);

/**

Part IX: Back matters Files of the ProActive source base cited in
the manual

589

* Creates a new MainDefinition object and add it to the map
*
*/
public void createMainDefinition(String id);

/**
* Sets the mainClass attribute of the last defined mainDefinition
* @param mainClass fully qualified name of the mainclass
*/
public void mainDefinitionSetMainClass(String mainClass);

/**
* Adds the parameter parameter to the parameters of the last
* defined mainDefinition
* @param parameter parameter to add
*/
public void mainDefinitionAddParameter(String parameter);

/**
* Adds a VirtualNode virtualNode to the last defined mainDefinition
* @param virtualNode VirtualNode to add
*/
public void mainDefinitionAddVirtualNode(VirtualNode virtualNode);

/**
* return true if at least one mainDefinition is defined
* @return true if at least one mainDefinition is defined
*/
public boolean isMainDefined();

/**
* Activates all mains of mainDefinitions defined
*
*/
public void activateMains();

/**
* Activates the main of the id-th mainDefinition
* @param mainDefinitionId key identifying a mainDefinition
*/
public void activateMain(String mainDefinitionId);

/**
* Returns a table containing all the parameters of the last
* defined mainDefinition
* @param mainDefinitionId key identifying a mainDefinition
* @return a table of String containing all the parameters of the mainDefinition
*/
public String[] mainDefinitionGetParameters(String mainDefinitionId);

/**
* Returns the main definitions mapping
* @return Map
*/
public Map getMainDefinitionMapping();

/**
* Returns the virtual nodes mapping
* @return Map
*/
public Map getVirtualNodeMapping();

Part IX: Back matters Files of the ProActive source base cited in
the manual

590

public void setMainDefinitionMapping(HashMap<String, MainDefinition> newMapping);

public void setVirtualNodeMapping(HashMap<String, VirtualNode> newMapping);

/**
* Returns a table containing all mainDefinitions conserving order
* @return a table containing all mainDefinitions conserving order
*/
public MainDefinition[] getMainDefinitions();

/**
* Returns all VirtualNodes described in the XML Descriptor
* @return VirtualNode[] all the VirtualNodes described in the XML Descriptor
*/
public VirtualNode[] getVirtualNodes();

/**
* Returns the specified VirtualNode
* @param name name of the VirtualNode
* @return VirtualNode VirtualNode of the given name
*/
public VirtualNode getVirtualNode(String name);

/**
* Returns the VitualMachine of the given name
* @param name
* @return VirtualMachine
*/
public VirtualMachine getVirtualMachine(String name);

/**
* Returns the Process of the given name
* @param name
* @return ExternalProcess
*/
public ExternalProcess getProcess(String name);

/**
* Returns the process to deploy hierarchically
* @param vmname
* @return the process to deploy hierarchically
*/
public ExternalProcess getHierarchicalProcess(String vmname);

/**
* Returns the Service of the given name
* @param serviceID
* @return an UniversalService
*/
public UniversalService getService(String serviceID);

/**
* Creates a VirtualNode with the given name
* If the VirtualNode with the given name has previously been created, this method returns it.
* @param vnName
* @param lookup if true, at creation time the VirtualNode will be a VirtualNodeLookup.
* If false the created VirtualNode is a VirtualNodeImpl. Once the VirtualNode created this

field
* has no more influence when calling this method
* @return VirtualNode

Part IX: Back matters Files of the ProActive source base cited in
the manual

591

*/
public VirtualNode createVirtualNode(String vnName, boolean lookup);

/**
* Creates a VirtualNode with the given name
* If the VirtualNode with the given name has previously been created, this method returns it.
* @param vnName
* @param lookup if true, at creation time the VirtualNode will be a VirtualNodeLookup.
* @param isMainVN true if the virtual node is linked to a main definition
* @return VirtualNode
*/
public VirtualNode createVirtualNode(String vnName, boolean lookup,

boolean isMainVN);

/**
* Creates a VirtualMachine of the given name
* @param vmName
* @return VirtualMachine
*/
public VirtualMachine createVirtualMachine(String vmName);

/**
* Creates an ExternalProcess of the given className with the specified ProcessID
* @param processID
* @param processClassName
* @throws ProActiveException if a problem occurs during process creation
*/
public ExternalProcess createProcess(String processID,

String processClassName) throws ProActiveException;

/**
* Gets an instance of the FileTransfer description. If
* an instance for this ID was already exists inside the pad
* then this one is returned, else a new one is created.
* @param fileTransferID The ID of the filetransfer
* @return New or existing instance for the ID
*/
public FileTransferDefinition getFileTransfer(String fileTransferID);

/**
* Updates with the effective service, all objects that are mapped with the serviceID.
* It updates the table where is stored the mapping serviceID/service and link the
* VirtualMachine that references the serviceID with the effective service
* @param serviceID
* @param service
*/
public void addService(String serviceID, UniversalService service);

/**
* Returns a new instance of ExternalProcess from processClassName
* @param processClassName
* @throws ProActiveException if a problem occurs during process creation
*/
public ExternalProcess createProcess(String processClassName)

throws ProActiveException;

/**
* Maps the process given by the specified processID with the specified virtualMachine.
* @param virtualMachine
* @param processID
*/

Part IX: Back matters Files of the ProActive source base cited in
the manual

592

public void registerProcess(VirtualMachine virtualMachine, String processID);

/**
* Registers the specified composite process with the specified processID.
* @param compositeProcess
* @param processID
*/
public void registerProcess(ExternalProcessDecorator compositeProcess,

String processID);

/**
* Registers the specified hierarchical process with the specified processID.
* @param hp
* @param processID
*/
public void registerHierarchicalProcess(HierarchicalProcess hp,

String processID);

/**
* Maps the given jvmProcess with the extended JVMProcess defined with processID.
* @param jvmProcess the jvm defined in the descriptor that contains the extendedJvm clause
* @param processID id of the extended jvm
* @throws ProActiveException if the jvm with the given id does not exist.
* In fact, it means that if the extended jvm is defined later on in the descriptor the

exception
* is thrown. The extended jvm must be defined before every other jvms that extend it.
*/
public void mapToExtendedJVM(JVMProcess jvmProcess, String processID)

throws ProActiveException;

/**
* Maps the service given by the specified serviceID with the specified virtualMachine.
* @param serviceUser
* @param serviceId
*/
public void registerService(ServiceUser serviceUser, String serviceId);

/**
* Activates all VirtualNodes defined in the XML Descriptor.
*/
public void activateMappings();

/**
* Activates the specified VirtualNode defined in the XML Descriptor
* @param virtualNodeName name of the VirtulNode to be activated
*/
public void activateMapping(String virtualNodeName);

/**
* Kills all Nodes and JVMs(local or remote) created when activating the descriptor
* @param softly if false, all jvms created when activating the descriptor are killed abruptely
* if true a jvm that originates the creation of a rmi registry waits until registry is empty

before
* dying. To be more precise a thread is created to ask periodically the registry if objects

are still
* registered.
* @throws ProActiveException if a problem occurs when terminating all jvms
*/
public void killall(boolean softly) throws ProActiveException;

// /**

Part IX: Back matters Files of the ProActive source base cited in
the manual

593

// * Kills all Nodes mapped to VirtualNodes in the XML Descriptor
// * This method kills also the jvm on which
// */
// public void desactivateMapping();
//
//
// /**
// * Kills all Nodes mapped to the specified VirtualNode in the XML Descriptor
// * @param vitualNodeName name of the virtualNode to be desactivated
// */
// public void desactivateMapping(String virtualNodeName);
public int getVirtualNodeMappingSize();

// SECURITY

/**
* Creates the initial Security Manager associated to an application
* @param file contains all related security information for the application :
* certificate, policy rules, ...
*/
public void createProActiveSecurityManager(String file);

public PolicyServer getPolicyServer();

public String getSecurityFilePath();

/**
* Keeps a reference to the Variable Contract passed as parameter
* @param properties The Variable Contract (ex XMLProperties)
*/
public void setVariableContract(VariableContract properties);

/**
*
* @return The current variable contract, or null.
*/
public VariableContract getVariableContract();

/**
* Add the process given by the specified processID in the list of sequential processes.
* @param sequentialListProcess
* @param string a processID
*/
public void addProcessToSequenceList(

AbstractSequentialListProcessDecorator sequentialListProcess,
String string);

/**
* Add the service given by the specified processID in the list of sequential services.
* @param sequentialListProcess
* @param string a processID
*/
public void addServiceToSequenceList(

AbstractSequentialListProcessDecorator sequentialListProcess,
String string);

/**
* Add a technical service.
* @param tsParsed id, class, and args.
*/
public void addTechnicalService(TechnicalServiceXmlType tsParsed)

Part IX: Back matters Files of the ProActive source base cited in
the manual

594

throws Exception;

public TechnicalService getTechnicalService(
String technicalServiceId);

}

Example C.25. core/descriptor/data/ProActiveDescriptor.java

public interface Body extends LocalBodyStrategy, UniversalBody,
MessageEventProducer {

/**
* Returns whether the body is alive or not.
* The body is alive as long as it is processing request and reply
* @return whether the body is alive or not.
*/
public boolean isAlive();

/**
* Returns whether the body is active or not.
* The body is active as long as it has an associated thread running
* to serve the requests by calling methods on the active object.
* @return whether the body is active or not.
*/
public boolean isActive();

/**
* blocks all incoming communications. After this call, the body cannot
* receive any request or reply.
*/
public void blockCommunication();

/**
* Signals the body to accept all incoming communications. This call undo
* a previous call to blockCommunication.
*/
public void acceptCommunication();

/**
* Allows the calling thread to enter in the ThreadStore of this body.
*/
public void enterInThreadStore();

/**
* Allows the calling thread to exit from the ThreadStore of this body.
*/
public void exitFromThreadStore();

/**
* Tries to find a local version of the body of id uniqueID. If a local version
* is found it is returned. If not, tries to find the body of id uniqueID in the
* known body of this body. If a body is found it is returned, else null is returned.
* @param uniqueID the id of the body to lookup
* @return the last known version of the body of id uniqueID or null if not known
*/
public UniversalBody checkNewLocation(UniqueID uniqueID);

Part IX: Back matters Files of the ProActive source base cited in
the manual

595

/**
* Returns the body that is the target of this shortcut for this component interface
* @param functionalItfID the id of the interface on which the shortcut is available
* @return the body that is the target of this shortcut for this interface
*/
public UniversalBody getShortcutTargetBody(

ItfID functionalItfID);

/**
* set the policy server of the active object
* @param server the policy server
*/
public void setPolicyServer(PolicyServer server);

/**
* Set the nodeURL of this body
* @param newNodeURL the new URL of the node
*/
public void updateNodeURL(String newNodeURL);

}

Example C.26. Body.java

public interface UniversalBody extends NFEProducer, Job, Serializable,
SecurityEntity {
public static Logger bodyLogger = ProActiveLogger.getLogger(Loggers.BODY);

/**
* Receives a request for later processing. The call to this method is non blocking
* unless the body cannot temporary receive the request.
* @param request the request to process
* @exception java.io.IOException if the request cannot be accepted
* @return value for fault-tolerance protocol
*/
public int receiveRequest(Request request)

throws java.io.IOException, RenegotiateSessionException;

/**
* Receives a reply in response to a former request.
* @param r the reply received
* @exception java.io.IOException if the reply cannot be accepted
* @return value for fault-tolerance procotol
*/
public int receiveReply(Reply r) throws java.io.IOException;

/**
* Returns the url of the node this body is associated to
* The url of the node can change if the active object migrates
* @return the url of the node this body is associated to
*/
public String getNodeURL();

/**
* Returns the UniqueID of this body
* This identifier is unique accross all JVMs

Part IX: Back matters Files of the ProActive source base cited in
the manual

596

* @return the UniqueID of this body
*/
public UniqueID getID();

/**
* Signals to this body that the body identified by id is now to a new
* remote location. The body given in parameter is a new stub pointing
* to this new location. This call is a way for a body to signal to his
* peer that it has migrated to a new location
* @param id the id of the body
* @param body the stub to the new location
* @exception java.io.IOException if a pb occurs during this method call
*/
public void updateLocation(UniqueID id, UniversalBody body)

throws java.io.IOException;

/**
* similar to the {@link UniversalBody#updateLocation(org.objectweb.proactive.core.UniqueID,

UniversalBody)} method,
* it allows direct communication to the target of a functional call, accross membranes of

composite components.
* @param shortcut the shortcut to create
* @exception java.io.IOException if a pb occurs during this method call
*/
public void createShortcut(Shortcut shortcut) throws java.io.IOException;

/**
* Returns the remote friendly version of this body
* @return the remote friendly version of this body
*/
public BodyAdapter getRemoteAdapter();

/**
* Terminate the body. After this call the body is no more alive and no more active
* although the active thread is not interrupted. The body is unuseable after this call.
* @exception java.io.IOException if a pb occurs during this method call
*/
public void terminate() throws java.io.IOException;

/**
* Enables automatic continuation mechanism for this body
* @exception java.io.IOException if a pb occurs during this method call
*/
public void enableAC() throws java.io.IOException;

/**
* Disables automatic continuation mechanism for this body
* @exception java.io.IOException if a pb occurs during this method call
*/
public void disableAC() throws java.io.IOException;

/**
* For setting an immediate service for this body.
* An immediate service is a method that will bw excecuted by the calling thread.
* @exception java.io.IOException if a pb occurs during this method call
*/
public void setImmediateService(String methodName)

throws IOException;

/**
* Adds an immediate service for this body

Part IX: Back matters Files of the ProActive source base cited in
the manual

597

* An immediate service is a method that will bw excecuted by the calling thread.
* @param methodName the name of the method
* @param parametersTypes the types of the parameters of the method
* @exception java.io.IOException if a pb occurs during this method call
*/
public void setImmediateService(String methodName, Class[] parametersTypes)

throws IOException;

/**
* Removes an immediate service for this body
* An immediate service is a method that will bw excecuted by the calling thread.
* @param methodName the name of the method
* @param parametersTypes the types of the parameters of the method
* @exception java.io.IOException if a pb occurs during this method call
*/
public void removeImmediateService(String methodName,

Class[] parametersTypes) throws IOException;

// FAULT TOLERANCE

/**
* For sending a non fonctional message to the FTManager linked to this object.
* @param ev the message to send
* @return depends on the message meaning
* @exception java.io.IOException if a pb occurs during this method call
*/
public Object receiveFTMessage(FTMessage ev) throws IOException;

}

Example C.27. core/body/UniversalBody.java

C.3. Tutorial files : Adding activities and migration to HelloWorld

The following files illustrate the tutorial. They are the results of the addition of

• migration capabilities
• init and end activities

to the helloworld example of Section 13.10, “The Hello world example”.

import org.objectweb.proactive.Body;
import org.objectweb.proactive.EndActive;
import org.objectweb.proactive.InitActive;
import org.objectweb.proactive.ProActive;

public class InitializedHello extends Hello implements InitActive, EndActive {
/** Constructor for InitializedHello. */
public InitializedHello() {
}

/** Constructor for InitializedHello.
* @param name */
public InitializedHello(String name) {

super(name);
}

Part IX: Back matters Files of the ProActive source base cited in
the manual

598

/** @see org.objectweb.proactive.InitActive#initActivity(Body)
* This is the place where to make initialization before the object
* starts its activity */
public void initActivity(Body body) {

System.out.println("I am about to start my activity");
}

/** @see org.objectweb.proactive.EndActive#endActivity(Body)
* This is the place where to clean up or terminate things after the
* object has finished its activity */
public void endActivity(Body body) {

System.out.println("I have finished my activity");
}

/** This method will end the activity of the active object */
public void terminate() {

// the termination of the activity is done through a call on the
// terminate method of the body associated to the current active object
ProActive.getBodyOnThis().terminate();

}

public static void main(String[] args) {
// Registers it with an URL
try {

// Creates an active instance of class HelloServer on the local node
InitializedHello hello = (InitializedHello)

org.objectweb.proactive.ProActive.newActive(InitializedHello.class.getName(),
new Object[] { "remote" });

java.net.InetAddress localhost = java.net.InetAddress.getLocalHost();
org.objectweb.proactive.ProActive.register(hello,

"//" + localhost.getHostName() + "/Hello");
} catch (Exception e) {

System.err.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

Example C.28. InitializedHello.java

public class InitializedHelloClient {
public static void main(String[] args) {

InitializedHello myServer;
String message;

try {
// checks for the server's URL
if (args.length == 0) {

// There is no url to the server, so create an active server within this VM
myServer = (InitializedHello) org.objectweb.proactive.ProActive.newActive(

InitializedHello.class.getName(),
new Object[] { "local" });

} else {

Part IX: Back matters Files of the ProActive source base cited in
the manual

599

// Lookups the server object
System.out.println("Using server located on " + args[0]);
myServer = (InitializedHello) org.objectweb.proactive.ProActive.lookupActive(

InitializedHello.class.getName(),
args[0]);

}

// Invokes a remote method on this object to get the message
message = myServer.sayHello();
// Prints out the message
System.out.println("The message is : " + message);
myServer.terminate();

} catch (Exception e) {
System.err.println("Could not reach/create server object");
e.printStackTrace();
System.exit(1);

}
}

}

Example C.29. InitializedHelloClient.java

import org.objectweb.proactive.ActiveObjectCreationException;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.body.migration.MigrationException;
import org.objectweb.proactive.core.node.NodeException;

import java.io.Serializable;

// the object that will be migrated active has to be Serializable
public class MigratableHello extends InitializedHello implements Serializable {

/** Creates a new MigratableHello object. */
public MigratableHello() {
}

/** Creates a new MigratableHello object.
* @param name the name of the agent */
// ProActive requires the active object to explicitely define (or redefine)
// the constructors, so that they can be reified
public MigratableHello(String name) {

super(name);
}

/** Factory for local creation of the active object
* @param name the name of the agent
* @return an instance of a ProActive active object of type MigratableHello */
public static MigratableHello createMigratableHello(String name) {

try {
return (MigratableHello) ProActive.newActive(MigratableHello.class.getName(),

new Object[] { name });
} catch (ActiveObjectCreationException aoce) {

System.out.println("creation of the active object failed");
aoce.printStackTrace();

Part IX: Back matters Files of the ProActive source base cited in
the manual

600

return null;
} catch (NodeException ne) {

System.out.println("creation of default node failed");
ne.printStackTrace();

return null;
}

}

/** method for migrating
* @param destination_node destination node */
public void moveTo(String destination_node) {

System.out.println("\n-----------------------------");
System.out.println("starting migration to node : " + destination_node);
System.out.println("...");

try {
// THIS MUST BE THE LAST CALL OF THE METHOD
ProActive.migrateTo(destination_node);

} catch (MigrationException me) {
System.out.println("migration failed : " + me.toString());

}
}

}

Example C.30. MigratableHello.java

public class MigratableHelloClient {
/** entry point for the program
* @param args destination nodes
* for example :
* rmi://localhost/node1 jini://localhost/node2*/
public static void main(String[] args) { // instanciation-based creation of the active object

MigratableHello migratable_hello = MigratableHello.createMigratableHello("agent1");

// check if the migratable_hello has been created
if (migratable_hello != null) {

// say hello
System.out.println(migratable_hello.sayHello());

// start moving the object around
for (int i = 0; i < args.length; i++) {

migratable_hello.moveTo(args[i]);
System.out.println("received message : " +

migratable_hello.sayHello());
}

// possibly terminate the activity of the active object ...
migratable_hello.terminate();

} else {
System.out.println("creation of the active object failed");

}

Part IX: Back matters Files of the ProActive source base cited in
the manual

601

}
}

Example C.31. MigratableHelloClient.java

package org.objectweb.proactive.examples.hello;

import org.objectweb.proactive.ActiveObjectCreationException;
import org.objectweb.proactive.Body;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.body.migration.Migratable;
import org.objectweb.proactive.core.node.NodeException;
import org.objectweb.proactive.ext.migration.MigrationStrategyManager;
import org.objectweb.proactive.ext.migration.MigrationStrategyManagerImpl;

/** This class allows the "migration" of a graphical interface. A gui object is attached
* to the current class, and the gui is removed before migration, thanks to the use
* of a MigrationStrategyManager */

public class HelloFrameController extends MigratableHello {
HelloFrame helloFrame;
MigrationStrategyManager migrationStrategyManager;

/**required empty constructor */
public HelloFrameController() {
}

/**constructor */
public HelloFrameController(String name) {

super(name);
}

/** This method attaches a migration strategy manager to the current active object.
* The migration strategy manager will help to define which actions to take before
* and after migrating */
public void initActivity(Body body) {

// add a migration strategy manager on the current active object
migrationStrategyManager = new MigrationStrategyManagerImpl((Migratable)

ProActive.getBodyOnThis());
// specify what to do when the active object is about to migrate
// the specified method is then invoked by reflection
migrationStrategyManager.onDeparture("clean");

}

/** Factory for local creation of the active object
* @param name the name of the agent
* @return an instance of a ProActive active object of type HelloFrameController */
public static HelloFrameController createHelloFrameController(String name) {

try {
// creates (and initialize) the active object
HelloFrameController obj = (HelloFrameController) ProActive.newActive(

HelloFrameController.class.getName(),
new Object[] { name });

Part IX: Back matters Files of the ProActive source base cited in
the manual

602

return obj;
} catch (ActiveObjectCreationException aoce) {

System.out.println("creation of the active object failed");
aoce.printStackTrace();

return null;
} catch (NodeException ne) {

System.out.println("creation of default node failed");
ne.printStackTrace();

return null;
}

}

public String sayHello() {
if (helloFrame == null) {

helloFrame = new HelloFrame("Hello from " +
ProActive.getBodyOnThis().getNodeURL());

helloFrame.show();
}

return "Hello from " + ProActive.getBodyOnThis().getNodeURL();
}

public void clean() {
System.out.println("killing frame");
helloFrame.dispose();
helloFrame = null;
System.out.println("frame is killed");

}
}

Example C.32. HelloFrameController.java

package org.objectweb.proactive.examples.hello;

/** This class allows the creation of a graphical window
* with a text field */
public class HelloFrame extends javax.swing.JFrame {

private javax.swing.JLabel jLabel1;

/** Creates new form HelloFrame */
public HelloFrame(String text) {

initComponents();
setText(text);

}

/** This method is called from within the constructor to
* initialize the form.
* It will perform the initialization of the frame */
private void initComponents() {

jLabel1 = new javax.swing.JLabel();
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {

Part IX: Back matters Files of the ProActive source base cited in
the manual

603

exitForm(evt);
}

});

jLabel1.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
getContentPane().add(jLabel1, java.awt.BorderLayout.CENTER);

}

/** Kill the frame */
private void exitForm(java.awt.event.WindowEvent evt) {

// System.exit(0); would kill the VM !
dispose(); // this way, the active object agentFrameController stays alive

}

/** Sets the text of the label inside the frame */
private void setText(String text) {

jLabel1.setText(text);
}

}

Example C.33. HelloFrame.java

C.4. Other files cited in the manual

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="configFile">

<xs:complexType>
<xs:sequence>

<xs:element name="p2pconfig" type="p2pconfig"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="p2pconfig">

<xs:sequence>
<xs:element name="loadconfig" type="file" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="host" type="host" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="configForHost" type="config" minOccurs="0"

maxOccurs="1"/>
<xs:element name="default" type="config" minOccurs="0"

maxOccurs="1"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="file">

<xs:attribute name="path" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="host">

<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="config">

Part IX: Back matters Files of the ProActive source base cited in
the manual

604

<xs:sequence>
<xs:element name="periods" type="periods"/>
<xs:element name="register" type="register" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="periods">

<xs:sequence>
<xs:element name="period" type="period" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="period">

<xs:sequence>
<xs:element name="start" type="moment"/>
<xs:element name="end" type="moment"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="moment">

<xs:attribute name="day" type="day" use="required"/>
<xs:attribute name="hour" type="hour" use="required"/>
<xs:attribute name="minute" type="minute" use="required"/>

</xs:complexType>
<xs:simpleType name="day">

<xs:restriction base="xs:string">
<xs:enumeration value="monday"/>
<xs:enumeration value="tuesday"/>
<xs:enumeration value="wednesday"/>
<xs:enumeration value="thursday"/>
<xs:enumeration value="friday"/>
<xs:enumeration value="saturday"/>
<xs:enumeration value="sunday"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="hour">

<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="23"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="minute">

<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="59"/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name="register">

<xs:sequence>
<xs:element name="registry" type="registry" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="registry">

<xs:attribute type="xs:string" use="required" name="url"/>
</xs:complexType>

</xs:schema>

Example C.34. P2P configuration: proactivep2p.xsd

Part IX: Back matters Files of the ProActive source base cited in
the manual

605

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.

xsd">
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="p2pvn" property="multiple" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="p2pvn">

<jvmSet>
<vmName value="Jvm1"/>
<vmName value="Jvm2"/>

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<acquisition>
<serviceReference refid="p2plookup"/>

</acquisition>
</jvm>
<jvm name="Jvm2">

<creation>
<processReference refid="localJVM"></processReference>

</creation>
</jvm>

</jvms>
</deployment>
<infrastructure>
<processes>

<processDefinition id="localJVM">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

</jvmProcess>
</processDefinition>
</processes>

<services>
<serviceDefinition id="p2plookup">

<P2PService nodesAsked="2" acq="rmi" port="2410" NOA="10" TTU="60000" TTL="10">
<peerSet>
<peer>rmi://localhost:3000</peer>

</peerSet>
</P2PService>

</serviceDefinition>
</services>

</infrastructure>
</ProActiveDescriptor>

Example C.35. P2P configuration: sample_p2p.xml

Part IX: Back matters Files of the ProActive source base cited in
the manual

606

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>Apache-SOAP</display-name>
<description>no description</description>
<servlet>

<servlet-name>rpcrouter</servlet-name>
<display-name>Apache-SOAP RPC Router</display-name>
<description>no description</description>
<servlet-class>org.apache.soap.server.http.RPCRouterServlet</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>messagerouter</servlet-name>
<display-name>Apache-SOAP Message Router</display-name>
<servlet-class>org.apache.soap.server.http.MessageRouterServlet</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>wsdlServlet</servlet-name>
<display-name>ProActive WSDL Servlet</display-name>
<servlet-class>org.objectweb.proactive.ext.webservices.soap.WsdlServlet</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>rpcrouter</servlet-name>
<url-pattern>/servlet/rpcrouter</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>messagerouter</servlet-name>
<url-pattern>/servlet/messagerouter</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>wsdlServlet</servlet-name>
<url-pattern>/servlet/wsdl</url-pattern>

</servlet-mapping>
</web-app>

Example C.36. SOAP configuration: webservices/web.xml

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Part IX: Back matters Files of the ProActive source base cited in
the manual

607

xsi:noNamespaceSchemaLocation=
"http://www-sop.inria.fr/oasis/proactive/schema/3.2/DescriptorSchema.xsd">

<variables>
<DescriptorVariable name="PROACTIVE_HOME" value="ProActive"/>
<DescriptorVariable name="REMOTE_HOME" value="/home/smariani"/>
<DescriptorVariable name="HOSTS_NUMBER" value="3"/>
<DescriptorVariable name="MPIRUN_PATH" value="/usr/src/redhat/BUILD/mpich-1.2.6/bin/mpirun"

/>
<DescriptorVariable name="QSUB_PATH" value="/opt/torque/bin/qsub"/>
<JavaPropertyVariable name="USER_HOME" value="java.home"/>

</variables>
<componentDefinition>

<virtualNodesDefinition>
<virtualNode name="JACOBIVN" />

</virtualNodesDefinition>
</componentDefinition>
<deployment>

<mapping>
<map virtualNode="JACOBIVN">

<jvmSet>
<vmName value="Jvm1" />

</jvmSet>
</map>

</mapping>
<jvms>
<jvm name="Jvm1">

<creation>
<processReference refid="sshProcess" />

</creation>
</jvm>

</jvms>
</deployment>
<FileTransferDefinitions>

<FileTransfer id="transfer">
<!-- Transfer mpi program on remote host -->
<file src="jacobi" dest="jacobi" />

</FileTransfer>
</FileTransferDefinitions>
<infrastructure>

<processes>

<processDefinition id="localJVM1">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<classpath>
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/ProActive.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/asm.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/log4j.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/components/fractal.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/xercesImpl.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/bouncycastle.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/jsch.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/lib/javassist.jar" />
<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/classes" />

</classpath>
<javaPath>
<absolutePath value="${REMOTE_HOME}/jdk1.5.0_05/bin/java" />

</javaPath>
<policyFile>
<absolutePath value="${REMOTE_HOME}/proactive.java.policy" />

</policyFile>
<log4jpropertiesFile>

Part IX: Back matters Files of the ProActive source base cited in
the manual

608

<absolutePath value="${REMOTE_HOME}/${PROACTIVE_HOME}/compile/proactive-log4j" />
</log4jpropertiesFile>
<jvmParameters>

<parameter value="-Dproactive.useIPaddress=true" />
<parameter value="-Dproactive.rmi.port=6099" />

</jvmParameters>
</jvmProcess>

</processDefinition>

<!-- remote jvm Process -->
<processDefinition id="jvmProcess">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess">

<jvmParameters>
<parameter value="-Dproactive.useIPaddress=true" />
<parameter value="-Dproactive.rmi.port=6099" />

</jvmParameters>
</jvmProcess>

</processDefinition>

<!-- pbs Process -->
<processDefinition id="pbsProcess">
<pbsProcess class="org.objectweb.proactive.core.process.pbs.PBSSubProcess">

<processReference refid="localJVM1" />
<commandPath value=${QSUB_PATH} />
<pbsOption>

<hostsNumber>${HOSTS_NUMBER}</hostsNumber>
<processorPerNode>1</processorPerNode>
<bookingDuration>00:02:00</bookingDuration>
<scriptPath>
<absolutePath value="${REMOTE_HOME}/pbsStartRuntime.sh" />

</scriptPath>
</pbsOption>

</pbsProcess>
</processDefinition>

<!-- mpi Process -->
<processDefinition id="mpiJACOBI">
<mpiProcess class="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"

mpiFileName="jacobi">
<commandPath value=${MPIRUN_PATH} />
<mpiOptions>

<processNumber>${HOSTS_NUMBER}</processNumber>
<localRelativePath>
<relativePath origin="user.home" value="${PROACTIVE_HOME}/scripts/unix" />

</localRelativePath>
<remoteAbsolutePath>
<absolutePath value="${REMOTE_HOME}/MyApp" />

</remoteAbsolutePath>
</mpiOptions>

</mpiProcess>
</processDefinition>

<!-- dependent process -->
<processDefinition id="dpsJACOBI">
<dependentProcessSequence class=

"org.objectweb.proactive.core.process.DependentListProcess">
<processReference refid="pbsProcess" />
<processReference refid="mpiJACOBI" />

</dependentProcessSequence>
</processDefinition>

Part IX: Back matters Files of the ProActive source base cited in
the manual

609

<!-- ssh process -->
<processDefinition id="sshProcess">

<sshProcess class="org.objectweb.proactive.core.process.ssh.SSHProcess" hostname=
"nef.inria.fr" username="smariani">

<processReference refid="dpsJACOBI" />
<FileTransferDeploy refid="transfer">
<copyProtocol>scp</copyProtocol>
<!-- local host path -->
<sourceInfo prefix=

"${USER_HOME}/${PROACTIVE_HOME}/src/org/objectweb/proactive/examples/mpi" />
<!-- remote host path -->
<destinationInfo prefix="${REMOTE_HOME}/MyApp" />

</FileTransferDeploy>
</sshProcess>

</processDefinition>
</processes>

</infrastructure>
</ProActiveDescriptor>

Example C.37. MPI Wrapping: mpi_files/MPIRemote-descriptor.xml

Part IX: Back matters Files of the ProActive source base cited in
the manual

610

Bibliography
[ACC05] Isabelle Attali, Denis Caromel, and Arnaud Contes. Deployment-based security for grid applications. The International

Conference on Computational Science (ICCS 2005), Atlanta, USA, May 22-25. . LNCS. 2005. Springer Verlag.

[BBC02] Laurent Baduel, Francoise Baude, and Denis Caromel. Efficient, Flexible, and Typed Group Communications in Java.
28--36. Joint ACM Java Grande - ISCOPE 2002 Conference. Seattle. . 2002. ACM Press. ISBN 1-58113-559-8.

[BBC05] Laurent Baduel, Francoise Baude, and Denis Caromel. Object-Oriented SPMD. Proceedings of Cluster Computing and
Grid. Cardiff, United Kingdom. . May 2005.

[BCDH05] Francoise Baude, Denis Caromel, Christian Delbe, and Ludovic Henrio. A hybrid message logging-cic protocol for
constrained checkpointability. 644--653. Proceedings of EuroPar2005. Lisbon, Portugal. . LNCS. August-September
2005. Springer Verlag.

[BCHV00] Francoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayssiere. Communicating mobile active objects in java.
633--643. http://www-sop.inria.fr/oasis/Julien.Vayssiere/publications/18230633.pdf. Proceedings of HPCN Europe 2000.
. LNCS 1823. May 2000. Springer Verlag.

[BCM+02] Francoise Baude, Denis Caromel, Lionel Mestre, Fabrice Huet, and Julien Vayssiere. Interactive and descriptor-based
deployment of object-oriented grid applications. 93--102. ht-
tp://www-sop.inria.fr/oasis/Julien.Vayssiere/publications/hpdc2002vayssiere.pdf. Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing. Edinburgh, Scotland. . July 2002. IEEE Computer Soci-
ety.

[BCM03] Francoise Baude, Denis Caromel, and Matthieu Morel. From distributed objects to hierarchical grid components. ht-
tp://www-sop.inria.fr/oasis/ProActive/doc/HierarchicalGridComponents.pdf. International Symposium on Distributed Ob-
jects and Applications (DOA), Catania, Sicily, Italy, 3-7 November. Springer Verlag. . 2003. Lecture Notes in Computer
Science, LNCS. ISBN ??.

[Car93] Denis Caromel. Toward a method of object-oriented concurrent programming. 90--102. citeseer.nj.nec.com/300829.html.
Communications of the ACM. 36. 9. 1993.

[CH05] Denis Caromel and Ludovic Henrio. A Theory of Distributed Object. Springer Verlag. 2005.

[CHS04] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and deterministic objects. 123--134. ht-
tp://doi.acm.org/10.1145/964001.964012. Proceedings of the 31st ACM Symposium on Principles of Programming Lan-
guages. . 2004. ACM Press.

[CKV98a] Denis Caromel, W. Klauser, and Julien Vayssiere. Towards seamless computing and metacomputing in java.
1043--1061. http://www-sop.inria.fr/oasis/proactive/doc/javallCPE.ps. Concurrency Practice and Experience. . Geoffrey
C. Fox. 10, (11--13). September-November 1998. Wiley and Sons, Ltd..

[HCB04] Fabrice Huet, Denis Caromel, and Henri E. Bal. A High Performance Java Middleware with a Real Application. ht-
tp://www-sop.inria.fr/oasis/proactive/doc/sc2004.pdf. Proceedings of the Supercomputing conference. Pittsburgh,
Pensylvania, USA. . November 2004.

[BCDH04] F. Baude, D. Caromel, C. Delbe, and L. Henrio. A fault tolerance protocol for asp calculus : Design and proof. ht-
tp://www-sop.inria.fr/oasis/personnel/Christian.Delbe/publis/rr5246.pdf. Technical ReportRR-5246. INRIA. 2004.

[FKTT98] Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architecture for computational grids.
83--92. citeseer.ist.psu.edu/foster98security.html. ACM Conference on Computer and Communications Security. . 1998.

[CDD06c] Denis Caromel, Christian Delbe, and Alexandre di Costanzo. Peer-to-Peer and Fault-Tolerance: Towards Deployment
Based Technical Services . Second CoreGRID Workshop on Grid and Peer to Peer Systems Architecture . Paris, France. .
January 2006.

[CCDMCompFrame06] Denis Caromel, Alexandre di Costanzo, Christian Delbe, and Matthieu Morel. Dynamically-Fulfilled Ap-
plication Constraints through Technical Services - Towards Flexible Component Deployments . Proceedings of HPC-
GECO/CompFrame 2006, HPC Grid programming Environments and COmponents - Component and Framework Tech-
nology in High-Performance and Scientific Computing . Paris, France. . June 2006. IEEE.

Part IX: Back matters Bibliography

611

[CCMPARCO07] Denis Caromel, Alexandre di Costanzo, and Clement Mathieu. Peer-to-Peer for Computational Grids: Mixing
Clusters and Desktop Machines. Parallel Computing Journal on Large Scale Grid. 2007.

[PhD-Morel] Matthieu Morel. Components for Grid Computing . ht-
tp://www-sop.inria.fr/oasis/personnel/Matthieu.Morel/publis/phd_thesis_matthieu_morel.pdf. PhD thesis. University of
Nice Sophia-Antipolis. 2006.

Part IX: Back matters Bibliography

612

Index
, 145

A
Acquaintance

definition, 268
List of, 269

Acquisition
JVM, 163
VirtualNode, 161

Active Object, 3
definition, 497

Activity
definition, 497
FIFO, 99

ADL, 503
definition, 249
example, 259

asynchronous method calls, 3
Automatic Continuation, 113, 114

definition, 497
proactive.future.ac, 154

B
Barriers

definition, 127
Binding

adl, 249
Collective, 229
controller, 255

Body, 103
Bundles

OSGI, 309

C
CLASSPATH

configuration, 9
deployment descriptor, 166
missing, 489, 489
to run ProActive, 11

Cluster, 170, 172, 172, 173, 174
Component, 225

definition, 497
Constructor

empty no-args, 97
newActive Arguments, 97

CopyProtocol, 187

D
Deployment descriptor

definition, 497
Descriptors

definition, 157
Descriptor Variables, 182

E

EndActive
interface, 99

Exceptions, 135

F
Fault-Tolerance, 195
Flowshop, 142
Future, 3

definition, 497

G
GLITE

XML Descriptor, 175
Globus

XML Descriptor, 157, 174
GlobusProcess, 174

Group
Creation, 123
definition, 497

H
Http

port, 155

I
IC2D

example usage, 34, 56
InitActive

interface, 99

J
JINI

P2P, 268

K
Kill

bundles, 310
Nodes, 180
P2P deamon, 281

L
Lifeycle

Components, 236
LoadBalancing, 285
LocalJVM, 165
Log4j

command argument, 11
configuration, 11

M
Microsoft Windows

Running ProActive, 486
scripts, 9

Migration, 43, 131
definition, 497
drag-and-drop, 27
example, 38
security, 291, 293

Part IX: Back matters Index

613

N
newActive, 97
NOA, 269
Node

definition, 497

O
OOSPMD

definition, 127
groups, 127

P
P2P, 267

Q
Queue

Task Queue, 140

R
Reply

definition, 497
Request

definition, 497
Request Queue, 4, 97, 236
RunActive

interface, 99

S
Service

definition, 497
SOAP, 301
Stub, 105

T
Technical Service, 203
TimIt, 387
TTL, 271
TTU, 270

V
Virtual Node

definition, 497

W
Wait-by-necessity

definition, 497
Wrappers

Asynchronism, 112

Part IX: Back matters Index

614

	ProActive v3.2.1 Documentation
	Table of Contents
	Part I. Introduction
	Chapter 1. Principles
	1.1. Seamless sequential, multithreaded and distributed
	1.2. Active objects: Unifying threads and remote objects
	1.3. Model of Computation
	1.4. Reusablilty and Seamless interface: why and how do we achieve it?
	1.5. Hello world ! (tiny example)
	1.5.1. The TinyHello class
	1.5.2. Implement the required functionality
	1.5.3. Creating the Hello Active Object
	1.5.4. Invoking a method on a remote object and printing out the message
	1.5.5. Launching
	1.5.5.1. The output

	Chapter 2. ProActive Installation
	2.1. Quick Start
	2.1.1. To Test ProActive with the examples
	2.1.2. To develop with ProActive

	2.2. Download and expand the archive
	2.3. Run a few examples for testing
	2.3.1. Local Example 1: Hello world !
	2.3.2. Local Example 2: Reader/Writer
	2.3.3. Local Example 3: The Dining Philosophers
	2.3.4. Local Example 4: The N-Body Simulation

	2.4. CLASSPATH to set when writing application using ProActive
	2.5. Create a java.policy file to set permissions
	2.6. Create a log4j configuration file
	2.7. ProActive and IDEs (Eclipse, ...)
	2.8. Troubleshooting and support

	Chapter 3. ProActive Trouble Shooting
	3.1. Enabling the loggers
	3.2. Hostname and IP Address
	3.3. Domaine name resolution problems
	3.4. RMI Tunneling
	3.5. Public remote method calls

	Part II. Guided Tour and Tutorial
	Chapter 4. Introduction to the Guided Tour and Tutorial
	4.1. Overview
	4.2. Installation and setup

	Chapter 5. Introduction to ProActive Features
	5.1. Parallel processing and collaborative application with ProActive
	5.2. C3D: a parallel, distributed and collaborative 3D renderer
	5.2.1. Start C3D
	5.2.2. Start a user
	5.2.3. Start a user from another machine
	5.2.4. Start IC2D to visualize the topology
	5.2.5. Drag-and-drop migration
	5.2.6. Start a new JVM in a computation
	5.2.7. Wrapping Active Objects in Components
	5.2.8. Look at the source code for the main classes

	5.3. Synchronization with ProActive
	5.3.1. The readers-writers
	5.3.1.1. Start the application
	5.3.1.2. Check the effect of different policies: even, writer priority, reader priority
	5.3.1.3. Look at the code for programming such policies
	5.3.1.4. Introduce a bug in the Writer Priority policy

	5.3.2. The dining philosophers
	5.3.2.1. Start the philosophers application
	5.3.2.2. Understand the color codes
	5.3.2.3. Test the autopilot mode
	5.3.2.4. Test the manual mode
	5.3.2.5. Start the IC2D application

	5.4. Migration of active objects
	5.4.1. Start the penguin application
	5.4.2. Start IC2D to see what is going on
	5.4.3. Add an agent
	5.4.4. Add several agents
	5.4.5. Move the control window to another user

	Chapter 6. Hands-on programming
	6.1. The client - server example
	6.2. Initialization of the activity
	6.2.1. Design of the application with Init activity
	6.2.2. Programming
	6.2.2.1. InitializedHello

	6.2.3. Execution
	6.2.3.1. Starting the server
	6.2.3.2. Launching the client

	6.3. A simple migration example
	6.3.1. Required conditions
	6.3.2. Design
	6.3.3. Programming
	6.3.3.1. a) the MigratableHello class
	6.3.3.2. c) the client class

	6.3.4. Execution

	6.4. migration of graphical interfaces
	6.4.1. Design of the migratable application
	6.4.2. Programming
	6.4.2.1. HelloFrameController
	6.4.2.2. HelloFrame

	6.4.3. Execution

	Chapter 7. PI (3.14...) - Step By Step
	7.1. Software Installation
	7.1.1. Installing the Java Virtual Machine
	7.1.2. Download and install ProActive

	7.2. Implementation
	7.2.1. MyPi.java
	7.2.2. Add the Deployment Descriptor
	7.2.3. Instantiate The Remote Objects
	7.2.4. Divide, Compute and Conquer
	7.2.5. Clean up
	7.2.6. Executing the application

	7.3. Putting it all together

	Chapter 8. SPMD PROGRAMMING
	8.1. OO SPMD on a Jacobi example
	8.1.1. Execution and first glance at the Jacobi code
	8.1.1.1. Source files: ProActive/src/org/objectweb/proactive/examples/jacobi
	8.1.1.2. Execution

	8.1.2. Modification and compilation
	8.1.2.1. Source modification
	8.1.2.2. Compilation

	8.1.3. Detailed understanding of the OO SPMD Jacobi
	8.1.3.1. Structure of the code
	8.1.3.2. OO SPMD behavior
	8.1.3.3. Adding a method barrier for a step by step execution
	8.1.3.4. Undestanding various different kind of barriers

	8.1.4. Virtual Nodes and Deployment descriptors
	8.1.4.1. Virtual Nodes
	8.1.4.2. XML Descriptors
	8.1.4.3. Changing the descriptor

	8.1.5. Execution on several machines and Clusters
	8.1.5.1. Execution on several machines in the room
	8.1.5.2. Execution on Clusters

	8.2. OO SPMD on a Integral Pi example MPI to ProActive adaptation
	8.2.1. Introduction
	8.2.2. Initialization
	8.2.2.1. MPI Initalization primitives
	8.2.2.2. ProActive Initialization primitives

	8.2.3. Communication primitives
	8.2.3.1. Communication pattern
	8.2.3.2. MPI Approach
	8.2.3.3. ProActive Approach
	8.2.3.4. MPI to ProActive Summary

	8.2.4. Running ProActive example
	8.2.4.1. Compilation
	8.2.4.2. Running ProActive example

	Chapter 9. The nbody example
	9.1. Using facilities provided by ProActive on a complete example
	9.1.1. Rationale and overview
	9.1.2. Usage
	9.1.3. Source files: ProActive/src/org/objectweb/proactive/examples/nbody
	9.1.4. Common files
	9.1.5. Simple Active Objects
	9.1.6. Groups of Active objects
	9.1.7. groupdistrib
	9.1.8. Object Oriented SPMD Groups
	9.1.9. Barnes-Hut
	9.1.10. Conclusion

	Chapter 10. C3D - from Active Objects to Components
	10.1. Reason for this example
	10.2. Using working C3D code with components
	10.3. How the application is written
	10.3.1. Creating the interfaces
	10.3.2. Creating the Component Wrappers
	10.3.3. Discarding direct reference acknowledgment

	10.4. The C3D ADL
	10.5. Advanced component highlights
	10.5.1. Renaming Virtual Nodes
	10.5.2. Component lookup and registration

	10.6. How to run this example
	10.7. Source Code

	Chapter 11. Guided Tour Conclusion

	Part III. Programming
	Chapter 12. ProActive Basis, Active Object Definition
	12.1. Active objects basis
	12.2. What is an active object

	Chapter 13. Active Objects: creation and advanced concepts
	13.1. Instantiation-Based Creation
	13.1.1. Possible ambiguities on the constructor
	13.1.2. Using a Node

	13.2. Object-Based Creation
	13.3. Specifying the activity of an active object
	13.3.1. Algorithms deciding which activity to invoke
	13.3.2. Implementing the interfaces directly in the class
	13.3.3. Passing an object implementing the interfaces at creation-time

	13.4. Restrictions on reifiable objects
	13.5. Using the Factory Method Design Pattern
	13.6. Advanced: Customizing the Body of an Active Object
	13.6.1. Motivations
	13.6.2. How to do it

	13.7. Advanced: Role of the elements of an active object
	13.7.1. Role of the stub
	13.7.2. Role of the proxy
	13.7.3. Role of the body
	13.7.4. Role of the instance of class B

	13.8. Asynchronous calls and futures
	13.8.1. Creation of a Future Object
	13.8.1.1. HashCode and equals
	13.8.1.2. hashCode()
	13.8.1.3. equals()
	13.8.1.4. toString()

	13.8.2. Asynchronous calls in details
	13.8.2.1. The setup
	13.8.2.2. What would have happened in a sequential world
	13.8.2.3. Visualizing the graph of objects
	13.8.2.4. Sequence Diagram

	13.8.3. Important Notes: Errors to avoid

	13.9. Automatic Continuation in ProActive
	13.9.1. Objectives
	13.9.2. Principles
	13.9.3. Example
	13.9.4. Illustration of an Automatic Continuation

	13.10. The Hello world example
	13.10.1. The two classes
	13.10.1.1. The Hello class
	13.10.1.1.1. Implement the required functionalities
	13.10.1.1.2. Why an empty no-arg constructor?
	13.10.1.1.3. Creating the remote Hello object

	13.10.1.2. The HelloClient Class
	13.10.1.2.1. Looking up a remote object
	13.10.1.2.2. Invoking a method on a remote object
	13.10.1.2.3. Printing out the message

	13.10.2. Hello World within the same VM
	13.10.3. Hello World from another VM on the same host
	13.10.3.1. Starting the server
	13.10.3.2. Launching the client

	13.10.4. Hello World from abroad: another VM on a different host
	13.10.4.1. Starting the server
	13.10.4.2. Launching the client

	Chapter 14. Typed Group Communication
	14.1. Overview
	14.2. Creation of a Group
	14.3. Group representation and manipulation
	14.4. Group as result of group communications
	14.5. Broadcast vs Dispatching

	Chapter 15. OOSPMD
	15.1. OOSPMD: Introduction
	15.2. SPMD Groups
	15.3. Barrier: Introduction
	15.4. Total Barrier
	15.5. Neighbor barrier
	15.6. Method Barrier
	15.7. When does a barrier get triggered?

	Chapter 16. Active Object Migration
	16.1. Migration Primitive
	16.2. Using migration
	16.3. Complete example
	16.4. Dealing with non-serializable attributes
	16.5. Mixed Location Migration
	16.5.1. Principles
	16.5.1.1. Time To Live Forwarder
	16.5.1.2. Updating forwarder
	16.5.1.3. Time To Update Agent
	16.5.1.4. Dual TTU
	16.5.1.5. Conclusion

	16.5.2. How to configure
	16.5.2.1. Properties
	16.5.2.2. Location Server

	Chapter 17. Exception Handling
	17.1. Exceptions and Asynchrony
	17.1.1. Barriers around try blocks
	17.1.2. TryWithCatch Annotator
	17.1.3. Additional API

	17.2. Non-Functional Exceptions
	17.2.1. Overview
	17.2.2. Exception types
	17.2.3. Exception handlers
	17.2.3.1. Association

	Chapter 18. Branch and Bound API
	18.1. Overview
	18.2. The Model Architecture
	18.3. The API Details
	18.3.1. The Task Description
	18.3.1.1. public Result execute()
	18.3.1.2. public Vector split()
	18.3.1.3. public void initLowerBound()
	18.3.1.4. public void initUpperBound()
	18.3.1.5. public Result gather(Result[] results)

	18.3.2. The Task Queue Description
	18.3.3. The ProActiveBranchNBound Description

	18.4. An Example: FlowShop
	18.5. Future Work

	Chapter 19. High Level Patterns -- The Calcium Skeleton Framework
	19.1. Introduction
	19.1.1. About Calcium
	19.1.2. The Big Picture

	19.2. Quick Example
	19.2.1. Define the skeleton structure
	19.2.2. Implementing the Muscle
	19.2.2.1. Divide
	19.2.2.2. Condition
	19.2.2.3. Skeleton
	19.2.2.4. Conquer

	19.2.3. Create a new Calcium Instance
	19.2.4. Provide an input of problems to be solved by the framework
	19.2.5. Collect the results
	19.2.6. View the performance statistics

	19.3. Supported Patterns
	19.4. Choosing a Resource Manager
	19.5. Performance Statistics
	19.5.1. Global Statistics
	19.5.2. Result Statistics

	19.6. Future Work

	Part IV. Deploying
	Chapter 20. ProActive Basic Configuration
	20.1. Overview
	20.2. How does it work?
	20.3. Where to access this file?
	20.4. ProActive properties
	20.4.1. Required
	20.4.2. Fault-tolerance properties
	20.4.3. Peer-to-Peer properties
	20.4.4. rmi ssh properties
	20.4.5. Other properties

	20.5. Configuration file example

	Chapter 21. XML Deployment Descriptors
	21.1. Objectives
	21.2. Principles
	21.3. Different types of VirtualNodes
	21.3.1. VirtualNodes Definition
	21.3.2. VirtualNodes Acquisition

	21.4. Different types of JVMs
	21.4.1. Creation
	21.4.2. Acquisition

	21.5. Validation against XML Schema
	21.6. Complete description and examples
	21.7. Infrastructure and processes
	21.7.1. Local JVMs
	21.7.2. Remote JVMs
	21.7.3. DependentListProcessDecorator

	21.8. Infrastructure and services
	21.9. Killing the application
	21.10. Processes

	Chapter 22. Variable Contracts for Descriptors
	22.1. Variable Contracts for Descriptors
	22.1.1. Principle
	22.1.2. Variable Types
	22.1.3. Variable Types User Guide
	22.1.4. Variables Example
	22.1.4.1. Descriptor Variables
	22.1.4.2. Program Variables

	22.1.5. External Variable Definitions Files
	22.1.5.1. XML Files
	22.1.5.2. Properties Files

	22.1.6. Program Variable API
	22.1.6.1. Relevant import packages
	22.1.6.2. Available Variable Types
	22.1.6.3. API

	Chapter 23. ProActive File Transfer Model
	23.1. Introduction and Concepts
	23.2. File Transfer API
	23.2.1. API Definition
	23.2.2. How to use the API

	23.3. Descriptor File Transfer
	23.3.1. XML Descriptor File Transfer Tags
	23.3.1.1. Currently supported protocols for file transfer deployment
	23.3.1.2. Triggering File Transfer Deploy
	23.3.1.3. Triggering File Transfer Retrieve

	23.4. Advanced: FileTransfer Design
	23.4.1. Abstract Definition (High level)
	23.4.2. Concrete Definition (Low level)
	23.4.3. How Deployment File Transfer Works
	23.4.4. How File Transfer API Works
	23.4.5. How Retrieve File Transfer Works

	Chapter 24. Using SSH tunneling for RMI or HTTP communications
	24.1. Overview
	24.2. Configuration of the network
	24.3. ProActive runtime communication patterns
	24.4. ProActive application communication patterns.
	24.5. ProActive communication protocols
	24.6. The rmissh communication protocol.

	Chapter 25. Fault-Tolerance
	25.1. Overview
	25.1.1. Communication Induced Checkpointing (CIC)
	25.1.2. Pessimistic message logging (PML)

	25.2. Making a ProActive application fault-tolerant
	25.2.1. Resource Server
	25.2.2. Fault-Tolerance servers
	25.2.3. Configure fault-tolerance for a ProActive application
	25.2.4. A deployment descriptor example

	25.3. Programming rules
	25.3.1. Serializable
	25.3.2. Standard Java main method
	25.3.3. Checkpointing occurrence
	25.3.4. Activity Determinism
	25.3.5. Limitations

	25.4. A complete example
	25.4.1. Description
	25.4.2. Running NBody example

	Chapter 26. Technical Service
	26.1. Context
	26.2. Overview
	26.3. Progamming Guide
	26.3.1. A full XML Descriptor File
	26.3.2. Nodes Properties

	26.4. Further Information

	Chapter 27. ProActive Grid Scheduler
	27.1. The scheduler design:
	27.2. The scheduler manual:
	27.2.1. Job creation
	27.2.2. Interaction with the scheduler

	27.3. The Scheduler API
	27.3.1. Classes
	27.3.1.1. The jobs
	27.3.1.1.1. GenericJob
	27.3.1.1.2. JobNoDescriptor
	27.3.1.1.3. DeployedTask

	27.3.1.2. The queue
	27.3.1.3. The Job Manager
	27.3.1.4. The Ressource Manager
	27.3.1.5. The Scheduler
	27.3.1.6. The Scheduler Lookup Service
	27.3.1.7. The ProActiveJobHandler
	27.3.1.8. Communicator

	27.3.2. How to extend the scheduler
	27.3.2.1. How to change the ressource acquisition mode
	27.3.2.2. How to change or add a new description for the job
	27.3.2.3. How to add a new policy
	27.3.2.3.1. Adding a simple policy
	27.3.2.3.2. Adding a mixed policy

	27.3.2.4. How to add a new command.

	Part V. Composing
	Chapter 28. Components introduction
	Chapter 29. An implementation of the Fractal component model geared at Grid Computing
	29.1. Specific features
	29.1.1. Distribution
	29.1.2. Deployment framework
	29.1.3. Activities
	29.1.4. Asynchronous method calls with futures
	29.1.5. Collective interactions
	29.1.6. Conformance

	29.2. Implementation specific API
	29.2.1. fractal.provider
	29.2.2. Content and controller descriptions
	29.2.3. Collective interactions
	29.2.4. Requirements

	29.3. Architecture and design
	29.3.1. Meta-object protocol
	29.3.2. Components vs active objects
	29.3.3. Method invocations on components interfaces

	Chapter 30. Configuration
	30.1. Controllers and interceptors
	30.1.1. Configuration of controllers
	30.1.2. Writing a custom controller
	30.1.3. Configuration of interceptors
	30.1.4. Writing a custom interceptor

	30.2. Lifecycle: encapsulation of functional activity in component lifecycle
	30.3. Short cuts
	30.3.1. Principles
	30.3.2. Configuration

	Chapter 31. Collective interfaces
	31.1. Motivations
	31.2. Multicast interfaces
	31.2.1. Definition
	31.2.2. Data distribution
	31.2.2.1. Invocation parameters distribution modes
	31.2.2.2. Results

	31.2.3. Configuration through annotations
	31.2.3.1. Interface annotations
	31.2.3.2. Method annotations
	31.2.3.3. Parameter annotations
	31.2.3.4. Automatic type conversion

	31.2.4. Binding compatibility

	31.3. Gathercast interfaces
	31.3.1. Definition
	31.3.2. Data distribution
	31.3.2.1. Gathering of invocation parameters
	31.3.2.2. Redistribution of results

	31.3.3. Process synchronization
	31.3.4. Binding compatibility

	Chapter 32. Architecture Description Language
	32.1. Overview
	32.2. Example
	32.3. Exportation and composition of virtual nodes
	32.4. Usage

	Chapter 33. Component examples
	33.1. From objects to active objects to distributed components
	33.1.1. Type
	33.1.2. Description of the content
	33.1.3. Description of the controller
	33.1.4. From attributes to client interfaces

	33.2. The HelloWorld example
	33.2.1. Set-up
	33.2.2. Architecture
	33.2.3. Distributed deployment
	33.2.4. Execution
	33.2.5. The HelloWorld ADL files

	33.3. The Comanche example
	33.4. The C3D component example

	Chapter 34. Component perspectives: a support for our research work
	34.1. Dynamic reconfiguration
	34.2. Model-checking
	34.3. Pattern-based deployment
	34.4. Graphical user interface
	34.4.1. Howto use it

	34.5. Other
	34.6. Limitations

	Part VI. Advanced
	Chapter 35. ProActive Peer-to-Peer Infrastructure
	35.1. Overview
	35.2. The P2P Infrastructure Model
	35.2.1. What is Peer-to-Peer?
	35.2.2. The P2P Infrastructure in short
	35.2.2.1. Bootstrapping: First Contact
	35.2.2.2. Discovering and Self-Organizing in Continue
	35.2.2.3. Asking Computational Nodes

	35.3. The P2P Infrastructure Implementation
	35.3.1. Peers Implementation
	35.3.2. Dynamic Shared ProActive Group
	35.3.3. Sharing Node Mechanism
	35.3.4. Monitoring: IC2D

	35.4. Installing and Using the P2P Infrastructure
	35.4.1. Create your P2P Network
	35.4.1.1. Quick Start Peer
	35.4.1.2. Usage Example
	35.4.1.3. The P2P Daemon
	35.4.1.3.1. Installation
	35.4.1.3.2. Configuration
	35.4.1.3.3. Control

	35.4.2. Example of Acquiring Nodes by ProActive XML Deployment Descriptors
	35.4.3. The P2P Infrastructure API Usage Example

	35.5. Future Work
	35.6. Research Work

	Chapter 36. Load Balancing
	36.1. Overview
	36.2. Metrics
	36.2.1. MetricFactory and Metric classes
	36.2.1.1. MetricFactory
	36.2.1.2. Metric

	36.3. Using Load Balancing
	36.3.1. In the application code
	36.3.2. Technical Service

	36.4. Non Migratable Objects

	Chapter 37. ProActive Security Mechanism
	37.1. Overview
	37.2. Security Architecture
	37.2.1. Base model
	37.2.2. Security is expressed at different levels

	37.3. Detailed Security Architecture
	37.3.1. Nodes and Virtual Nodes
	37.3.2. Hierarchical Security Entities
	37.3.3. Resource provider security features
	37.3.4. Interactions, Security Attributes
	37.3.5. Combining Policies
	37.3.6. Dynamic Policy Negotiation
	37.3.7. Migration and Negotiation

	37.4. Activating security mechanism
	37.4.1. Construction of an XML policy:

	37.5. How to quickly generate certificate?

	Chapter 38. Exporting Active Objects and components as Web Services
	38.1. Overview
	38.2. Principles
	38.3. Pre-requisite: Installing the Web Server and the SOAP engine
	38.4. Steps to expose an active object or a component as a web services
	38.5. Undeploy the services
	38.6. Accessing the services
	38.7. Limitations
	38.8. A simple example: Hello World
	38.8.1. Hello World web service code
	38.8.2. Access with Visual Studio

	38.9. C# interoperability: an example with C3D
	38.9.1. Overview
	38.9.2. Access with a C# client
	38.9.3. Dispatcher methods calls and callbacks
	38.9.4. Download the C# example

	Chapter 39. ProActive on top of OSGi
	39.1. Overview of OSGi -- Open Services Gateway initiative
	39.2. ProActive bundle and service
	39.3. Yet another Hello World
	39.4. Current and Future works

	Chapter 40. An extended ProActive JMX Connector
	40.1. Overview of JMX - Java Management eXtention
	40.2. Asynchronous ProActive JMX connector
	40.3. How to use the connector ?
	40.4. Notifications JMX via ProActive
	40.5. Example : a simple textual JMX Console

	Chapter 41. Wrapping MPI Legacy code
	41.1. Simple Wrapping
	41.1.1. Principles
	41.1.2. API For Deploying MPI Codes
	41.1.2.1. API Definition

	41.1.3. How to write an application with the XML and the API
	41.1.4. Using the Infrastructure
	41.1.5. Example with several codes

	41.2. Wrapping with control
	41.2.1. One Active Object per MPI process
	41.2.1.1. Java API
	41.2.1.2. Example

	41.2.2. MPI to ProActive Communications
	41.2.2.1. MPI API
	41.2.2.2. ProActiveMPIData Object
	41.2.2.3. ProActiveMPIUtil Class
	41.2.2.4. Example

	41.2.3. ProActive to MPI Communications
	41.2.3.1. ProActive API
	41.2.3.2. MPI API
	41.2.3.3. Example

	41.2.4. MPI to MPI Communications through ProActive
	41.2.4.1. MPI API
	41.2.4.2. Example

	41.2.5. USER STEPS - The Jacobi Relaxation example
	41.2.5.1. Compiling the ProActiveMPI package
	41.2.5.2. Defining the infrastructure
	41.2.5.3. Writing the MPI source code
	41.2.5.4. Compiling the MPI source code
	41.2.5.5. Writing the ProActive Main program
	41.2.5.6. Executing application
	41.2.5.7. The Output

	41.3. Design and Implementation
	41.3.1. Simple wrapping
	41.3.1.1. Structural Design
	41.3.1.2. Infrastructure of processes

	41.4. Summary of the API
	41.4.1. Simple Wrapping and Deployment of MPI Code
	41.4.2. Wrapping with Control
	41.4.2.1. One Active Object per MPI process
	41.4.2.2. MPI to ProActive Communications
	41.4.2.3. ProActive to MPI Communications
	41.4.2.4. MPI to MPI Communications through ProActive

	Part VII. Graphical User Interface (GUI) and tools
	Chapter 42. IC2D: Interactive Control and Debugging of Distribution and Eclipse plugin
	42.1. Monitoring and Control
	42.1.1. The Monitoring plugin
	42.1.1.1. The Monitoring perspective
	42.1.1.2. Monitor a new host
	42.1.1.3. The Monitoring buttons
	42.1.1.4. The Virtual Nodes list
	42.1.1.5. Management of the communications display
	42.1.1.6. Example

	42.1.2. The Job Monitoring plugin

	42.2. Launcher and Scheduler
	42.2.1. The Launcher plug-in
	42.2.1.1. First possibility
	42.2.1.2. Second possibility
	42.2.1.3. The Launcher perspective

	42.2.2. The Scheduler plug-in

	42.3. Programming Tools
	42.3.1. ProActive Wizards
	42.3.2. The ProActive Editor

	42.4. The Guided Tour as Plugin

	Chapter 43. Interface with Scilab
	43.1. Presentation
	43.2. Scilab Interface Architecture
	43.3. Graphical User Interface (Scilab Grid ToolBox)
	43.3.1. Launching Scilab Grid ToolBox
	43.3.2. Deployment of the application
	43.3.3. Task launching
	43.3.4. Display of results
	43.3.5. Task monitoring
	43.3.6. Engine monitoring

	Chapter 44. TimIt API
	44.1. Overview
	44.2. Quick start
	44.2.1. Define your TimIt configuration file
	44.2.1.1. Global variables definition
	44.2.1.2. Serie
	44.2.1.3. Chart definition
	44.2.1.4. Benchmark suite definition

	44.2.2. Add time counters and event observers in your source files

	44.3. Usage
	44.3.1. Timer counters
	44.3.2. Event observers

	44.4. TimIt extension
	44.4.1. Configuration file
	44.4.2. Timer counters
	44.4.3. Event observers
	44.4.4. Chart generation

	Part VIII. Extending ProActive
	Chapter 45. How to write ProActive documentation
	45.1. Aim of this chapter
	45.2. Getting a quick start into writing ProActive doc
	45.3. Example use of tags
	45.3.1. Summary of the useful tags
	45.3.2. Figures
	45.3.3. Bullets
	45.3.4. Code
	45.3.5. Links
	45.3.6. Tables

	45.4. DocBok limitations imposed
	45.5. Stylesheet Customization
	45.5.1. File hierarchy
	45.5.2. What you can change
	45.5.3. The Bible
	45.5.4. Profiling
	45.5.5. The XSL debugging nightmare
	45.5.6. DocBook subset: the dtd
	45.5.7. Todo list, provided by Denis

	Chapter 46. Adding Grahical User Interfaces and Eclipse Plugins
	46.1. Architecture and documentation
	46.1.1. org.objectweb.proactive.ic2d.monitoring
	46.1.1.1. Class Diagrams
	46.1.1.2. Monitoring in detail
	46.1.1.3. Model View Controller (MVC) -- The Graphical Editing Framework (GEF)
	46.1.1.4. Links
	46.1.1.5. Observer/Observable
	46.1.1.6. The espionage of the active objects
	46.1.1.7. How an event of a proactive object arrive to the monitoring plugin?
	46.1.1.8. When a new Spy is created?
	46.1.1.9. How a new Spy is created?
	46.1.1.10. How an active object is added to the objects to monitor?
	46.1.1.11. How to create and use filters

	46.1.2. org.objectweb.proactive.ic2d.console
	46.1.3. org.objectweb.proactive.ic2d.lib

	46.2. Extending IC2D
	46.2.1. How to checkout IC2D
	46.2.2. How to implement a plug-in for IC2D
	46.2.2.1. Create a project with the plug-in project wizard
	46.2.2.2. The plug-in structure
	46.2.2.3. Plug-in manifest
	46.2.2.4. Plug-in class
	46.2.2.5. Build properties
	46.2.2.6. How to add your plugin to IC2D
	46.2.2.7. Perspectives, views and editors
	46.2.2.8. Perspectives
	46.2.2.9. Views
	46.2.2.10. Editors
	46.2.2.11. Useful links

	Chapter 47. Developing Conventions
	47.1. Code logging conventions
	47.1.1. Declaring loggers name
	47.1.2. Using declared loggers in your classes
	47.1.3. Managing loggers
	47.1.4. Logging output
	47.1.5. More information about log4j

	47.2. Regression Tests Writing
	47.3. Committing modifications in the SVN

	Chapter 48. ProActive Test Suite API
	48.1. Structure of the API
	48.1.1. Goals of the API
	48.1.2. Functional Tests & Benchmarks
	48.1.2.1. Test definition
	48.1.2.2. Benchmark definition
	48.1.2.3. Interlinked Functional Tests

	48.1.3. Group
	48.1.4. Manager

	48.2. Timer for the Benchmarks
	48.2.1. The solution
	48.2.2. How to use Timer in Benchmarck?
	48.2.3. How to configure the Manager with your Timer?

	48.3. Results
	48.3.1. What is a Result?
	48.3.2. What we don't use a real logger API?
	48.3.3. Structure of Results classes in TestSuite
	48.3.4. How to export results
	48.3.4.1. About the Manager Verbatim option
	48.3.4.2. By the file configurator

	48.3.5. Format Results like you want

	48.4. Logs
	48.4.1. Which logger?
	48.4.2. How it works in TestSuite API?
	48.4.3. How to use it?
	48.4.3.1. Log your code
	48.4.3.2. Configure the logger

	48.5. Configuration File
	48.5.1. How many configuration files you need?
	48.5.2. A simple Java Properties file
	48.5.2.1. How to use it?

	48.5.3. A XML properties file
	48.5.3.1. The structure of the XML document
	48.5.3.2. Add a simple group of tests
	48.5.3.3. Add a group from a Java package
	48.5.3.4. Add a group of InterLinked Tests
	48.5.3.5. How to configure log4j
	48.5.3.6. How to configure results output?
	48.5.3.7. Configure properties

	48.6. Extends the API
	48.7. Your first Test
	48.7.1. Description
	48.7.2. First step: write the Test
	48.7.2.1. Implementing initTest() and endTest()
	48.7.2.2. Implementing preConditions()
	48.7.2.3. Implementing action()
	48.7.2.4. Implementing postConditions()
	48.7.2.5. The complete code of the test

	48.7.3. Second step: write a manager
	48.7.3.1. Override initManager()
	48.7.3.2. The attribute file

	48.7.4. Now launch the test ...
	48.7.5. Get the results
	48.7.5.1. An example of results for this test with verbatim option

	48.7.6. All the code

	48.8. Your first Benchmark
	48.8.1. Description
	48.8.2. First step: write the Benchmark
	48.8.2.1. Implementing initTest() and endTest()
	48.8.2.2. Implementing preConditions()
	48.8.2.3. Implementing action()
	48.8.2.4. Implementing postConditions()

	48.8.3. Second step: write a manager
	48.8.3.1. Override initManager() and endManager()
	48.8.3.2. The attribute file

	48.8.4. Now launch the benchmark ...
	48.8.4.1. Get the results

	48.8.5. All the Code

	48.9. How to create a Test Suite with interlinked Tests
	48.9.1. Description of our Test
	48.9.2. Root Test: ProActive Group Creation
	48.9.2.1. A simply ProActiveTest
	48.9.2.2. Action method for interlinked mode

	48.9.3. An independant Test: A Group migration
	48.9.3.1. The default action method
	48.9.3.2. The action method for interlinked tests

	48.9.4. Run your tests
	48.9.4.1. An example of results for this test with verbatim option

	48.9.5. All the code

	48.10. Conclusion

	Chapter 49. Adding a Deployment Protocol
	49.1. Objectives
	49.2. Overview
	49.3. Java Process Class
	49.3.1. Process Package Arquitecture
	49.3.2. The New Process Class
	49.3.3. The StartRuntime.sh script

	49.4. XML Descriptor Process
	49.4.1. Schema Modifications
	49.4.2. XML Parsing Handler
	49.4.2.1. ProActiveDescriptorConstants.java:
	49.4.2.2. ProcessDefinitinonHandler.java:

	Chapter 50. How to add a new FileTransfer CopyProtocol
	50.1. Adding external FileTransfer CopyProtocol
	50.2. Adding internal FileTransfer CopyProtocol

	Chapter 51. Adding a Fault-Tolerance Protocol
	51.1. Overview
	51.1.1. Active Object side
	51.1.2. Server side

	Chapter 52. MOP: Metaobject Protocol
	52.1. Implementation: a Meta-Object Protocol
	52.2. Principles
	52.3. Example of a different metabehavior: EchoProxy
	52.3.1. Instantiating with the metabehavior

	52.4. The Reflect interface
	52.5. Limitations

	Part IX. Back matters
	Appendix A. Frequently Asked Questions
	Appendix B. Reference Card
	B.1. Main concepts and definitions
	B.2. Main principles: asynchronous method calls and implicit futures
	B.3. Explicit Synchronization
	B.4. Programming AO Activity and services
	B.5. Reactive Active Object
	B.6. Service methods
	B.7. Active Object Creation:
	B.8. Groups:
	B.9. Explicit Group Synchronizations
	B.10. OO SPMD
	B.11. Migration
	B.12. Components
	B.13. Security:
	B.14. Deployment
	B.15. Exceptions
	B.16. Export Active Objects as Web services
	B.17. Deploying a fault-tolerant application
	B.18. Peer-to-Peer Infrastructure
	B.19. Branch and Bound API
	B.20. File Transfer Deployment

	Appendix C. Files of the ProActive source base cited in the manual
	C.1. XML descriptors cited in the manual
	C.2. Java classes cited in the manual
	C.3. Tutorial files : Adding activities and migration to HelloWorld
	C.4. Other files cited in the manual

	Bibliography
	Index

