
Denis Caromel 1

Denis Caromel,  et al.
www.inria.fr/oasis/ProActive

OASIS Team
INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF

Vers. Mai 12th 2003

• Remote Objects, Asynchronous Method Calls, Futures,
• Group Communications, Mobile Objects,
• Graphical Interface (IC2D), XML Deploiement,
• Interfaced with Globus, rsh, ssh, LSF, RMIregistry, Jini

ProActive:
Distributed and Mobile Objects for the GRID



Denis Caromel 2

Table of Contents
1. ProActive Basic Model, Features, Architecture, and Tools

• 1.1 Basic Model

– 1.1.1 Active Objects, Asynchronous Calls, Futures, Sharing

– 1.1.2 API for AO creation

– 1.1.3 Polymorphism and Wait-by-necessity

– 1.1.4 Intra-object synchronization

– 1.1.5 Optimization:  SharedOnRead

• 1.2 Collective Communications: Groups

• 1.3 Architecture: a simple MOP

• 1.4 Meta-Objects for Distribution

• 1.5 Abstract Deployment Model

• 1.6 IC2D: Interactive Control & Debug for Distribution

• 1.7 DEMO:  IC2D with C3D : Collaborative 3D renderer in //



Denis Caromel 3

Table of Contents (2)

2. Mobility
• 2.1 Principles:

Active Objects with: passive objects,  pending requests and futures

• 2.2 API and Abstraction for mobility

• 2.3 Optimizations

• 2.4 Performance Evaluation of  Mobile Agent

• 2.5 Automatic Continuations



Denis Caromel 4

•  A uniform framework:       An Active Object pattern

•  A formal model behind:      Prop. Determinism, insensitivity to deploy.

Main features:
• Remotely accessible Objects    (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications with synchro: automatic Futures
• Group Communications, Migration (mobile computations)
• XML Deployment Descriptors
• Interfaced with various protocols: rsh,ssh,LSF,Globus,Jini,RMIregistry
• Visualization and monitoring:  IC2D

 In the    www. ObjectWeb .org   Consortium (Open Source middleware)
since April 2002 (LGPL license)

ProActive:
A Java API + Tools for Parallel, Distributed Computing



Denis Caromel 5

ProActive PDC
Objectives and Rationale

• Most of the time, activities and distribution are not known at the
beginning, and change over time

• Seamless implies reuse, smooth and incremental transitions

Sequential Multithreaded Distributed

Seamless

Library !



Denis Caromel 6

ProActive : model
• Active objects : coarse-grained structuring entities (subsystems)

• Each active object: - possibly owns many passive objects

          - has exactly one thread.

• No shared passive objects -- Parameters are passed by deep-copy

• Asynchronous Communication between active objects

• Future objects and wait-by-necessity.

• Full control to serve incoming requests (reification)



Denis Caromel 7

Call between Objects

b->foo(x)
ba

x

Copy



Denis Caromel 8

Standard system at Runtime



Denis Caromel 9

ProActive :  Active object

3

Proxy

Body

Object

Active object

Objet

Standard object

An active object is composed of several
objects :

•  The object itself (1)

•  The body: handles synchronization and 
the service of requests (2)

•  The queue of pending requests (3) 2

1

1



Denis Caromel 10

An object created with A a = new A (obj, 7);

can be turned into an active and remote object:

• Instantiation-based:
A a = (A)ProActive.newActive(«A», params, node);

The most general case.

                   To get Class-based: a static method as a factory
To get a non-FIFO behavior (Class-based):

class pA extends A implements RunActive { … }

• Object-based:
A a = new A (obj, 7);

        ...
        ...

a = (A)ProActive.turnActive (a, node);

ProActive : Creating active objects



Denis Caromel 11

ProActive : Reuse and seamless
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures

    Ease the programming of synchronizations, and the reuse of routines

"A"

"pA"

a
p_a

foo (A a)
{
  a.g (...);
  v = a.f (...);
  ...
  v.bar (...);
}



Denis Caromel 12

ProActive : Reuse and seamless
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures (“value to come”)

    Ease the programming of synchronizations, and the reuse of routines

"A"

"pA"

a
p_a

foo (A a)
{
  a.g (...);
  v = a.f (...);
  ...
  v.bar (...);
}

O.foo(a) : a.g()
and a.f() are
« local »

O.foo(p_a): a.g()
and a.f()are
«remote + Async.»

O



Denis Caromel 13

ProActive : Intra-object synchronization
Explicit control:
Library of service routines:

• Non-blocking services,...
• serveOldest ();
• serveOldest (f);

• Blocking services, timed, etc.
• serveOldestBl ();
• serveOldestTm (ms);

• Waiting primitives
• waitARequest();
• etc.

class BoundedBuffer extends FixedBuffer
implements Active

{

  live (ExplicitBody myBody)

  {

    while (...)

    {

      if (this.isFull())

        myBody.serveOldest("get");

      else if (this.isEmpty())

        myBody.serveOldest ("put");

      else myBody.serveOldest ();

      // Non-active wait

      myBody.waitARequest (); 

}}}

Implicit (declarative) control: library classes
e.g. : myBody.forbid ("put", "isFull");



Denis Caromel 14

SharedOnRead
Call between Objects

b.foo(x)
ba

x

Copy



Denis Caromel 15

Standard system at Runtime



Denis Caromel 16

Optimization:
SharedOnRead

• Share a passive object if same address space

• Automatic copy if required

• Implementation: Use of the  Mop

• Help from the user:
•  Point out functions that make read access

•  Write access by default



Denis Caromel 17

SharedOnRead (2)

Algorithm

• If a SharedOnRead Object is send during a method call:
If within the same VM:
•  send a reference instead of the real object

•  (reference counter)+1

• After that:
•  Read access can be freely achieved

•  Write access triggers an object copy



Denis Caromel 18

SharedOnRead (3)



Denis Caromel 19

1.2. Collective Communications: Groups

Typed and polymorphic Groups of active and remote objects
Dynamic generation of group of results
Language centric, Dot notation

•  Manipulate groups of Active Objects, in a simple and typed manner:

•  Be able to express high-level collective communications (like in MPI):

•  broadcast, 

•  scatter, gather, 

•  all to all

A ag=(A)ProActiveGroup.newActiveGroup(«A»,{{p1},...},{Nodes,..});
V v = ag.foo(param); 
v.bar();



Denis Caromel 20

Group Communications

• Method Call on a typed group

• Avoid network latency

• Based on the ProActive communication mechanism
• Replication of  N ‘ single ’ communications

• each communication is « adapted »

• preserve the « rendez-vous »



Denis Caromel 21

Construction of a Result Group

Typed Group Java or Active Object

A ag = newActiveGroup (…)
V v = ag.foo(param); 
v.bar();

V

A



Denis Caromel 22

Collective Operations : Example
class A {…

 V foo(P p){...}

}

class B extends A
{ ...}

A a1=PA.newAct(A,);

A a2=PA.newAct(A,);

B b1=PA.newAct(B,);

// Build a group of « A »

A ag = (A)ProActiveGroup.newGroup(« A »,
{a1,a2,b1})

V v = ag.foo(param); // foo(param) invoked
 // on each member

// A group v of result of type V is created

v.bar();

// starts bar() on
each member of
the result group
upon arrival

ProActiveGroup.waitForAll
(v); //bloking -> all

v.bar();//Group call

V vi =
ProActiveGroup.getOne(v);

//bloking -> on
vi.bar(); //a single call

A a3=PA.newAct(A,);

// => modif. of
group ag :

Group ga =
ProActiveGroup.
getGroup(ag);

ga.add(a3);

//ag is updated



Denis Caromel 23

Group as
 Result of Group Communication

Dynamicaly built and updated
B groupB = groupA.foo();

Ranking oder property

Synchronization primitive
ProActiveGroup.waitOne(groupB);

ProActiveGroup.waitAll(groupB);

... waitForAll, ...

Predicates:
noneArrived, kArrived, allArrived, ...



Denis Caromel 24

Two Representation Scheme

Group of objects
gA

Typed group
groupA

getGroupByType
static method of class ProActive

getGroup
method of class Group

Management

of the group

Fonctional use

of the group



Denis Caromel 25

Two Representations (2)

• Management operations add, remove, size, …

• 2 possibility : static methods, second representation

• 2 representations of a same group : Typed Group / Group of objects

• ability to switch between those 2 representations

Group gA = ProActiveGroup.getGroup(groupA);

gA.add(new A());

gA.add(new B()); //B herits from A

A groupA = (A) gA.getGroupeByType();



Denis Caromel 26

Broadcast or Scatter for Parameters

• Broadcast is the default behavior
• Scatter is also possible
groupA.bar(groupC);   // broadcast groupC

ProActiveGroup.setScatterGroup(groupC);

groupA.bar(groupC);   // scatter groupC

A A

1

2

C

1 2

C

C

1

1

2

2

C

1 2

broadcast scatter



Denis Caromel 27

Hierarchical Groups

• Add a typed group into a typed group

• Benefit of the network structure

A

A



Denis Caromel 28

Implementation

MOP generates Stub

Stub inherits from the
class of object

Stub connects a proxy

special proxy for group

result is stub+proxy

groupA.foo();

Stub A

Proxy for

group

groupA

Stub B

Proxy for

group

groupB

B groupB =



Denis Caromel 29

Example : Matrix multiplication
Matrix code : Broadcast to Broadcast approach
• more than 20 lines of Java code

A(0,0)

B(0,0)

A(1,0)

A(2,0)

B(0,1) B(0,2)

A(0,0)

B(0,0) B(0,2)B(0,2)

A(0,0)

A(0,0)

...

for (int i = 0 ; i<P ; i++)

  A.grouprow(i).multiply(B.groupcolumn(i));

•    2 lines with ProActive groups

Step 1 Step 2 Step 3



Denis Caromel 30

Measurement : Matrix Multiplication

0

20000

40000

60000

80000

100000

100

300

500

700

900

1100

1300

1500

size of one side of a sqaure matrix

tim
e 

in
 m

illi
se

co
nd

es

with groups no group centralized



Denis Caromel 31

Measurement : Method Call

0
100
200
300
400
500
600
700
800
900

5 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

number of members

ti
m

e 
in

 m
il

li
se

co
n

d
es

with group without group



Denis Caromel 32

Other features for Groups
Optimization

• Parallel calls within a group (latency hiding)

• Treatment in the result order (if needed)

• Scatter (a group as a parameter to be dispatched in Group. Com.)

• A single serialization of parameters

Conceptuel : Active Group
• A group becomes remotely accessible  so: updatable and consistent

---> migration

---> Dynamic changes

Perspective: using network multicast



Denis Caromel 33

1.3. ProActive architecture: a simple MOP

ProActive

MOP

• MOP (Meta-Object Protocol)
• Runtime reflection (for dynamicity)
• New semantics for method and constructor calls
• Uses the Java Reflection API

• ProActive
• Implemented on top of the MOP
• Other models can be built on top of ProActive or on top of the

MOP



Denis Caromel 34

MOP principles
Static or dynamic generation of stubs:

• Take place of a reified object

• Reification of all method calls

• Sub-class of the reified object: type compatible

• Stub only depends of the reified object type,

not of the proxy

• Any call will trigger the creation of an object
Call that  represents the invocation.

• It will be passed to the proxy: has the semantics
to achieve

Objet
réifié

Stub

Proxy

Objet réifié



Denis Caromel 35

The MOP - principle

Call
- Object[] effarray

- String methodname

- Object res

Reflect

Futur Active Remote

Objet futur

Proxy Proxy Body

Objet distant

Objet
classique

Proxy

Objet
réifié

Proxy - Object reify (Call c)

PROXY_CLASS_NAME = null

All interfaces that inherit Reflect 

are marker interfaces for reflexion

Echo



Denis Caromel 36

Instantiation of reified objects with static method newInstance of the MOP class

• Programming class par class with interfaces deriving from Reflect
Vector v = (Vector) MOP.newInstance ( <name of reified class (impl. Reflect)>,

                                      <parameters passed to proxy>,

                                      < parameters of reified object constructor > );

• Or instance per instance :

Vector v = (Vector) MOP.newInstance ( <name of class standard>,

                                      <class proxy name to use>,

                                      <parameters given to proxy>,

                                      <parameters of reified object constructor > );

• Or object per object :

Vector v = (Vector) MOP.turnReified  ( <objet standard>,

                                       <class proxy name to use>,

                                       <parameters given to proxy> );

User Interface of the MOP



Denis Caromel 37

Example : EchoProxy

public class EchoProxy implements Proxy {

// Attributes

  Object myobject;

// Constructor

  public EchoProxy (Call c, Object[] p) {

     this.myobject = c.execute();

  }

// Method of the Proxy interface

  public Object reify (Call c) {

     System.out.println ("Echo->"+c.methodname+");

     return result = c.execute (myobject);

  }

}

public interface Echo_A extends Reflect {
  PROXY_CLASS_NAME = "EchoProxy"; }

Reflect

Echo
A

Echo_A

EchoProxy

Objet réifié

A a =(A)newInstance ("Echo_A",null,null);
A a =(A)newInstance ("A","EchoP.",null,null);
A a =(A)turnReified ( a, "EchoP.", null);



Denis Caromel 38

ProActive : implementation principle

Proxy Body

Objet distant

Reflect

Active

A

PA
- live (Body)

- PROXY_CLASS_NAME = ProxyForBody

- BODY_CLASS_NAME = Body

ProxyForBody

Body
live FIFO

MOP

ProActive

Application

PROXY_CLASS_NAME = null

2 aspects of 

distribution

Proxy
Call



Denis Caromel 39

Proxy and Body

Originalities:
• Extensions through inheritance of the Reflect interface
• 3 ways to turn a standard object into a reified one
• Reuse of existing classes, polymorphism between standard and reified objects

Based on interface Active and class ProActive

Reflect

Active Future ...

MOP

ProActive

p.foo (params)

Proxy

ObjectStandard

Reified

network

Body

A proxy / body model



Denis Caromel 40

1.4 Meta-Objects for Distribution
An Active Object

Body

Request
Receiver

Reply Receiver

Reply Sender

Service ObjectRequestLine

FuturePool



Denis Caromel 41

Composition d’un objet actif

Multiples Objets

• RequestSender: Send requests (proxy + body)

• RequestReceiver: Receve the requests

• ReplySender: Send back the result to the caller

• ReplyReceiver: Receive the future updates

• Service: Chose (select) and executes the requests

• RequestLine: Pending Requests

• FuturePool: Pending Futures



Denis Caromel 42

Request to an Active Object

1

1 - Call

2

2 - Reception of Request    

3

3 - Selection of Request

4

4 - Execution

5

5 - Sending back the reply

Appelant

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service Objet



Denis Caromel 43

Listener

• Pattern Event Listener

• Events are (if needed) generated for each important step

• If asked for, sent to the listeners

• These Listeners can be added/suppressed  dynamically



Denis Caromel 44

Event Types (1)
3 main categories

Active Object:
• Creation

• Migration                          (activation, Inactivation :      Cycle de vie)

Communications:
Requests:

• RequestSent

• RequestReceived

Reply:

• ReplySent

• ReplyReceived

Service (activity of an AO):
• WaitForRequest

• WaitByNecessity



Denis Caromel 45

Listener - Modifier

Idem  Listener    +     modification of the  AO execution:

• At creation: change the VM of creation

• At migration: changer the destination VM

• Step-by-step on communications

• etc.

Application: debugging, monitoring, interactif Control of execution



Denis Caromel 46

Localization of listeners

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service Objet
RequestLine

FuturePool

Reply
Sender
Listener

Reply
Receiver
Listener

Request
Receiver
Listener

Service
Listener



Denis Caromel 47

Request Reception with a Listener

1

1 - Caller

5

5 - Request Selection

6

6 - Execution

7

7 - Sending back the reply 

Caller

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service Objet

Request
Receiver
Listener

3
3 - Insertion in the request Queue

2 - RequestReceived

2

4 - RequestAccepted

4



Denis Caromel 48

1.5 : Abstract Deployment Model
 Objectives

Problem:
• Difficulties and lack of flexibility in deployment

• Avoid scripting for:   configuration,  getting nodes,  connecting,  etc.

A key principle:
• Abstract Away from source code:

• Machines

• Creation Protocols

• Lookup and Registry Protocols

Context:
• Distributed Objects, Java

• Not legacy-code driven, but adaptable to it



Denis Caromel 49

 Descriptors: based on  Virtual Nodes
Virtual Node (VN):

• Identified as a string name

• Used in program source

• Configured (mapped) in an XML descriptor file --> Nodes

Operations specified in descriptors:

• Mapping of VN to JVMs (leads to Node in a JVM on Host)

• Register or Lookup VNs

• Create or Acquire JVMs

        Program Source                    Descriptor   (RunTime)
|----------------------------------|  |-------------------------------------------|
Activities (AO)    -->   VN                VN   -->   JVMs    -->   Hosts

Runtime structured entities:  1 VN --> n Nodes in n JVMs



Denis Caromel 50

 Descriptors: Mapping Virtual Nodes
Component Dependencies:

   Provides: …  Uses: ...

VirtualNodes:

   Dispatcher  <RegisterIn RMIregistry, Globus, Grid Service, … >

   RendererSet

Mapping:

   Dispatcher --> DispatcherJVM

   RendererSet --> JVMset

JVMs:

   DispatcherJVM = Current  // (the current JVM)

   JVMset=//ClusterSophia.inria.fr/ <Protocol GlobusGram … 10 >

...

Example of 

an XML file

descriptor:



Denis Caromel 51

Descriptors: Virtual Nodes in Programs

       Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");

       VirtualNode vn = pad.activateMapping ("Dispatcher");  // Triggers the JVMs

       Node node = vn.getNode();
       ...
       C3D c3d = ProActive.newActive("C3D", param, node);

                             log (  ... "created at:  " + node.name() + node.JVM() + node.host() );



Denis Caromel 52

Descriptors: Virtual Nodes in Programs

       Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");

       VirtualNode vn = pad.activateMapping ("Dispatcher");  // Triggers the JVMs

       Node node = vn.getNode();
       ...
       C3D c3d = ProActive.newActive("C3D", param, node);

                             log (  ... "created at:  " + node.name() + node.JVM() + node.host() );

                               // Cyclic mapping: set of nodes
       VirtualNode vn = pad.activateMapping ("RendererSet");

       while  (  …  vn.getNbNodes …  ) {

             Node node = vn.getNode();

             Renderer  re = ProActive.newActive(”Renderer", param, node);



Denis Caromel 53

1.6     IC2D

Interactive Control & Debug for Distribution

Features:

•  Graphical visualization

•  Textual visualization

•  Monitoring and Control



Denis Caromel 54

IC2D: Interactive Control and Debugging of
Distribution

Main Features:

- Hosts, JVM,

- Nodes

- Active Objects

- Topology

- Migration

- Logical Clock



Denis Caromel 55

IC2D: Basic features
Graphical Visualisation:

• Hosts, Java Virtual Machines, Nodes, Active Objects
• Topology: reference and communications
• Status of active objects (executing, waiting, etc.)
• Migration of activities

Textual Visualisation:
• Ordered list of messages
• Status: waiting for a request or for a data
• Causal dependencies between messages
• Related events (corresponding send and receive, etc.)

Control and Monitoring:
• Drag and Drop migration of executing tasks
• Creation of additional JVMs and nodes



Denis Caromel 56

IC2D: Related Events

Events:
• Textual and ordered list of events for each Active Object

• Logical clock: related events, ==> Gives a Partial Order



Denis Caromel 57

IC2D: Dynamic change of Deployment
New JVMs

Creation,

Acquisition

of

new JVMs,

and Nodes

Protocols:

rsh, ssh

Globus,

LSF



Denis Caromel 58

IC2D: Dynamic change of Deployment
Drag-n-Drop Migration

Drag-n-Drop

tasks

around the

 world



Denis Caromel 59

IC2D: Cluster Visualization

Visualization

of 2 clusters

(1Gbits links)

Featuring

the current

communications

(proportional)



Denis Caromel 60

IC2D     on several machines (2)



Denis Caromel 61

IC2D     on several machines (1)



Denis Caromel 62

Monitoring of RMI, Globus, Jini, LSF cluster
Nice -- Baltimore at SC’02

Width of links

proportional 

to the number

of com-

munications



Denis Caromel 63

1.7 DEMO:  Applis with the IC2D monitor

• 1. C3D : Collaborative 3D renderer in //
a standard ProActive application

• 2. Penguin
a mobile agent application

IC2D:   Interactive Control & Debug for Distribution
work with any ProActive application

Features:
 Graphical and Textual visualization

 Monitoring and Control



Denis Caromel 64

C3D: distributed-//-collaborative



Denis Caromel 65

Object Diagram for C3D



Denis Caromel 66

Monitoring: graphical and textual com.



Denis Caromel 67

Mobile Application executing on 7 JVMs



Denis Caromel 68

IC2D: Cluster Visualization

Visualization

of 2 clusters

(1Gbits links)

Featuring

the current

communications

(proportional)



Denis Caromel 69



Denis Caromel 70

2. ProActive : Migration of active objects

Migration is initiated by the active object itself through a primitive: migrateTo

Can be initiated from outside through any public method

The active object migrates with:
•  all pending requests
•  all its passive objects 
•  all its future objects

Automatic and transparent forwarding of:
•  requests (remote references remain valid)
•  replies (its previous queries will be fullfilled)



Denis Caromel 71

ProActive : Migration of active objects

Proxy
Body

Object

Migration is initiated by the active object through a request

The active object migrates with
- its passive objects - the queue of pending requests - its future objects

2 Techniques : Forwarders or Centralized server

Calling
Object F

o
r
w
a
r
d
e
r



Denis Caromel 72

Principles

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)



Denis Caromel 73

Principles

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)



Denis Caromel 74

ProActive : API for Mobile Agents

• Mobile agents (active objects) that communicate

• Basic primitive: migrateTo

• public static void migrateTo (String u)
// string to specify the node (VM)

• public static void migrateTo (Object o)
// joinning another active object

• public static void migrateTo (Node n)
// ProActive node (VM)

• public static void migrateTo (JiniNode n)
// ProActive node (VM)



Denis Caromel 75

ProActive : API for Mobile Agents
• Mobile agents (active objects) that communicate
// A simple agent

class SimpleAgent implements Active, Serializable {

  public SimpleAgent () {}

  public void moveTo (String t){ // Move upon request

ProActive.migrateTo (t)

}

public String whereAreYou (){ // Repplies to queries

return (“I am at ” + InetAddress.getLocalHost ());

}

public Live(Body myBody){

    while (… not end of iterator …){

res = myFriend.whatDidYouFind () // Query other agents

  …

}

myBody.fifoPolicy(); // Serves request, potentially moveTo

}

 }



Denis Caromel 76

ProActive : API for Mobile Agents
• Mobile agents that communicate

• Primitive to automatically execute action upon migration

• public static void onArrival (String r)
// Automatically executes the routine r upon arrival

// in a new VM after migration

• public static void onDeparture (String r)
// Automatically executes the routine r upon migration

// to a new VM, guaranted safe arrival

• public static void beforeDeparture (String r)
// Automatically executes the routine r before trying a migration

// to a new VM



Denis Caromel 77

ProActive : API for Mobile Agents
 Itinerary abstraction

Itinerary : VMs to visit
• specification of an itinerary as a list of (site, method)

• automatic migration from one to another

• dynamic itinerary management (start, pause, resume, stop, modification, … )

API:
• myItinerary.add (“machine1’’, “routineX”); ...

• itinerarySetCurrent, itineraryTravel, itineraryStop, itineraryResume, …

Still communicating, serving requests:
• itineraryMigrationFirst ();

// Do all migration first, then services, Default behavior

• itineraryRequestFirst ();

// Serving the pending requests upon arrival before migrating again



Denis Caromel 78

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)



Denis Caromel 79

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)



Denis Caromel 80

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct



Denis Caromel 81

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct

direct



Denis Caromel 82

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct

direct

forwarder



Denis Caromel 83

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct

direct

forwarder



Denis Caromel 84

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct

direct

forwarder



Denis Caromel 85

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

direct

direct

forwarder



Denis Caromel 86

Performance Evaluation of
Mobile Agent

Together with Fabrice Huet and Mistral Team

Objectives:

• Formally study the performance of Mobile Agent
localization mechanism

• Investigate various strategies (forwarder, server, etc.)

• Define adaptative strategies



Denis Caromel 87

1-



Denis Caromel 88

2-



Denis Caromel 89

3 -



Denis Caromel 90

4 -



Denis Caromel 91

5 -



Denis Caromel 92

6 -



Denis Caromel 93

7 -



Denis Caromel 94

8 -



Denis Caromel 95

Automatic Continuations

Transparent Future transmissions (Request,Reply)



Denis Caromel 96

ProActive Non Functional Properties
Currently in ProActive:
• Remotely accessible Objects

(Classes, not only Interfaces, Dynamic)

• Asynchronous Communications, Futures
• Group Communications (worked on)
• Migration
• Visualization and monitoring (IC2D)
• Non-Functional Exceptions: Handler reification for mobility
Others:
• Security (prototype)
• Components (prototype)
• Communications with disconnected mode (exp. Going on)



Denis Caromel 97

Some Perspectives

Non-functional Exceptions:
– Exception handler (object) attached to Future, Proxy, AO, JVM, middleware

– Dynamic transmission of handler

– Use to managed Disconnected Mode (e.g. wireless PDA)

ProActive Components:
– CCM model (component car { provides … ; uses … ; emits … ; attributes … }

– Fractal (object web model for implementation)

– Hierarchical components

Checkpointing:
– Communication induced checkpoints

– Message logging

              --> Components and Deployment Descriptors integration



Denis Caromel 98

Conclusion
• A library: ProActive 100% Java

• Parallelism, Distribution, Synchronization (CSCW), Group and Mobility

• Reuse -- seamless
• Polymorphism with existing class types

• Asynchrony -- Wait-by-necessity

• An interactive tool towards GRID:    IC2D

• A calculus: ASP: Asynchronous Sequential Processes
• Capture the semantics, and demonstrates the independence of activities

• First results on Confluence and Determinism

• Mobility to be added

 

ProActive vs. RMI alone : - 30% of code www.inria.fr/oasis/ProActive



Denis Caromel 99

www.inria.fr/oasis/ProActive



Denis Caromel 100

DIVA: Distributed Int. Virtual World in Java



Denis Caromel 101

 Extra Material



Denis Caromel 102

An Object-Oriented Application for 3D
Electromagnetism

Together with:

Francoise Baude, Roland Bertuli, Christian Delbe (OASIS),

Said El Kasmi, Stéphane Lanteri (CAIMAN)

3D Electromagnetism Applications:
• Visualize the radar reflection of a plane

Goals:
• Sequential object-oriented design, modular and extensible

• Designed to allow both Element and Volume type methods

--> currently 3D Maxwell equations, towards CFD

•  Valid on structured, unstructured, or hybrid meshes.

• Sequential version can be smoothly distributed,

--> keeping structuring and object abstractions



Denis Caromel 103

Avion Furtif F117



Denis Caromel 104

Airbus A318
Meshing, 1 color par  processor, 9 here



Denis Caromel 105

Geometry definition

Meshes: Vertices, and Elements

Numerical Method: Finite Volume Methods (vs. Finite Element Methods)
• a very general method

Computation of a flux balance through the boundary of Control Volume
• the calculation support of  FVM (vs. Vertices of the mesh)

Example, and experimentation:
• Control Volume = Tetrahedron

• Facet = Triangle

                         ----> Picture



Denis Caromel 106

Control Volume in 2D and 3D



Denis Caromel 107

Facets in 2D and 3D



Denis Caromel 108

Architecture of the sequential version



Denis Caromel 109

Architecture of the distributed version


