
1

Romain Quilici
www.objectweb.org/ProActive

ObjectWeb Architecture meeting
July 2nd 2003

ProActive
Architecture of an Open Middleware for

the Grid

2

– A uniform framework: An Active Object pattern
– A formal model behind: Prop. Determinism, insensitivity

to deploy.

Main features:
¾ Remotely accessible Objects (RMI, JINI, --> UDDI)
¾ Asynchronous Communications with synchro: automatic Futures
¾ Group Communications, Migration (mobile computations)
¾ XML Deployment Descriptors
¾ Interfaced with various protocols: rsh,ssh,LSF,Globus,--> SOAP
¾ Visualization and monitoring: IC2D

In the ObjectWeb Consortium
since April 2002 (LGPL License)

ProActive
A Java API + Tools for Parallel, Distributed Computing

3

Table of Contents

¾ ProActive Runtime

¾ Active Objects Model

¾ Future Objects and Automatic Continuation

¾ Groups Communication

¾ Active Objects Migration

¾ Abstract Deployment Model

¾ Components Infrastructure

¾ Security

4

ProActive Runtime

¾ Transparently created when using ProActive

¾ Only one by JVM -- Singleton pattern

¾ Offer basics services to create or receive Active Objects

¾ Accessible remotely

¾ Partially hidden from users --> Use of Nodes (look like
remote)

¾ ProActive Nodes are defined on PART --> possibly N
nodes by JVMs

¾ Use of patterns to improve integration

– Smart Proxy

– Adapter

– Factory ….

5

ProActive Runtime Architecture
50,�FDVH

PART
Smart
Proxy

PART

PART
Remote

Node1

PART Stub

Jvm1 Jvm2

Singleton

Adapter

Factory

Node1 properties

6

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾ Active Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾¾¾ Groups Communication Groups Communication Groups Communication

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾¾¾ SecuritySecuritySecurity

7

Active Object Model

¾ Active objects : coarse-grained structuring entities (subsystems)
¾ Each active object: - possibly owns many passive objects

 - has exactly one thread.
¾ No shared passive objects -- Parameters are passed by deep-copy
¾ Asynchronous Communication between active objects
¾ Future objects and wait-by-necessity.
¾ Full control to serve incoming requests (reification)

8

¾ Instantiation-based:

A a = (A)ProActive.newActive(«A», params, node);

To get a non-FIFO behavior (Class-based):

 class pA extends A implements RunActive { … }

¾Object-based:
A a = new A (obj, 7);

 ...
 ...

a = (A)ProActive.turnActive (a, node);

Creating active objects

9

"A"

"pA"

a
p_a

foo (A a)
{
 a.g (...);
 v = a.f (...);
 ...
 v.bar (...);
}

ProActive: Reuse and seamless
¾Two key features:
¾Polymorphism between standard and active objects

– Type compatibility for classes (and not only interfaces)
– Needed and done for the future objects also
– Dynamic mechanism (dynamically achieved if needed)

¾Wait-by-necessity: inter-object synchronization
– Systematic, implicit and transparent futures (“value to come”)

 Ease the programming of synchronizations, and the reuse of
routines

O.foo(a) : a.g()
and a.f() are
« local »

O.foo(p_a): a.g()
and a.f()are
remote + Async.»

10

Active Object Components

Body

Object

Proxy

Stub
Object

Caller

Components of an Active
Object

11

Active Object Architecture
RMI case

Jvm1 Jvm2
Caller

Stub
Object

Proxy

Body
Smart Proxy

Body Stub
 Remote

Body

Body

Object

RMI Specific

Byte code generation
with asm

12

Body

Request
Receiver

Reply
Receiver

Reply Sender

Service ObjectRequestLine

FuturePool

Body Architecture

13

1

1 - Call

2

2 - Reception of Request

3

3 - Selection of Request

4

4 - Execution

5

5 - Sending back the reply

Caller

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service Objet

Request to an Active Object

14

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾ Future Objects and Automatic Continuation

¾¾¾ Groups Communication Groups Communication Groups Communication

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾¾¾ SecuritySecuritySecurity

15

Future Objects

A res = ActiveObject.foo();

Future
Proxy

Stub_Ares

• The caller receives a Future : it continues its execution

• If it tries to access to the value or res, it is blocked in the future
proxy (Wait By Necessity), until this value is available

Caller

16

Object

• When the called object finish the computation of res, the value
is returned to the caller

• Future is updated transparently

Future
Proxy

Stub_Ares
Caller

Future Objects

A res = ActiveObject.foo();

17

Automatic Continuation

Caller

b

a

18

Caller

b

a

r1=a.foo()

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

19

Caller

b

a

Future_r1

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

20

Caller

b

a

Future_r1

r2=b.bar(r1)

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

r2=b.bar(r1)

21

Caller

b

a

Future_r1

Future_r1
Future_r2

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

r2=b.bar(r1)

22

Caller

b

a

Future_r1

Future_r1
Future_r2

Value_r1

UPDATE

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

r2=b.bar(r1)

23

Caller

b

a

Future_r1

Future_r1
Future_r2

Value_r1

UPDATE

Value_r1

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

r2=b.bar(r1)

24

Caller

b

a

Future_r1

Future_r1
Future_r2

Value_r1

UPDATE

Value_r1

Value_r2

Automatic Continuation
A Future can be passed by parameter or by result: chains of
futures will be updated by Automatic Continuation.

…

r1=a.foo()

…

r2=b.bar(r1)

25

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾ Groups Communication

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾¾¾ SecuritySecuritySecurity

26

Group Communication

¾ Manipulate groups of Active Objects in a simple and
typed manner
– Typed groups of active and remote objects.
– Maintain the ‘dot ’ notation, language property
– Dynamic generation of groups of results

¾ Be able to express high-level collective communication
– broadcast
– scatter, gather

¾ Based on the ProActive communication mechanism
– Replication of N ‘ single ’ communications
– Preservation of the « rendez-vous »
– Asynchronous

27

Group Structure

Proxy for
Group

Remote
OA

Stub
Jvm1 Jvm2

Jvm3

Stub Proxy

Stub Proxy

Remote
OA

28

A

Construction of a Result Group

Typed Group Java or Active Object

A ag = newActiveGroup (…)
V v = ag.foo(param);
v.bar();

V

29

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾¾¾ Groups Communication Groups Communication Groups Communication

¾ Active Objects Migration

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾¾¾ SecuritySecuritySecurity

30

Migration of Active Objects

Migration is initiated by the active object itself through a primitive:
migrateTo

Can be initiated from outside through any public method

The active object migrates with:
• all pending requests
• all its passive objects
• all its future objects

Automatic and transparent forwarding of:
• requests (remote references remain valid)
• replies (its previous queries will be fullfilled)

31

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

32

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

33

direct

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

34

direct

direct

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

35

direct

direct

forwarder

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

36

direct

direct

forwarder

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

37

direct

direct

forwarder

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

38

direct

direct

forwarder

Characteristics and optimizations

¾ Same semantics guaranteed (RDV, FIFO order point to point,
asynchronous)

¾ Safe migration (no agent in the air!)

¾ Local references if possible when arriving within a VM

¾ Tensionning (removal of forwarder)

39

API for Mobile Agents
¾ Basic primitive: migrateTo

• public static void migrateTo (String u)

• public static void migrateTo (Node n)

// String or ProActive node (VM)

• public static void migrateTo (Object o)

// joinning another active object

¾ Primitive to automatically execute action upon migration

• public static void onArrival (String r)
 // execute r upong arrival on a new Node

• public static void onDeparture (String r)

40

Migration

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service ObjectRequestLine

FuturePool

Migration
Manager

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service ObjectRequestLine

FuturePool

Migration
Manager

Caller

41

Body

Request
Receiver

Reply
Receiver

Body

Request
Receiver

Reply
Receiver

Reply
Sender

Service ObjectRequestLine

FuturePool

Migration
Manager

Caller

Forwarder

Migration

42

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾¾¾ Groups Communication Groups Communication Groups Communication

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾ Abstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾¾¾ SecuritySecuritySecurity

43

Abstract Deployment Model
 Objectives

¾ Problem:

– Difficulties and lack of flexibility in deployment

– Avoid scripting for: configuration, getting nodes,
connecting, etc.

¾ A key principle:

– Abstract Away from source code:
• Machines

• Creation Protocols

• Lookup and Registry Protocols
¾ Context:

– Grid

– Distributed Objects, Java

– Not legacy-code driven, but adaptable to it

44

�Descriptors: based on Virtual Nodes

¾ Virtual Node (VN):
• Identified as a string name

• Used in program source

• Configured (mapped) in an XML descriptor file --> Nodes

¾ Operations specified in descriptors:
• Mapping of VN to JVMs (leads to Node in a JVM on Host)

• Register or Lookup VNs, Create or Acquire JVMs

• Components Definition, Security Settings

Program Source Descriptor (RunTime)
|----------------------------------| |--------------------------------------|
Activities (AO) --> VN VN --> JVMs --> Hosts

Runtime structured entities: 1 VN --> n Nodes in n JVMs

45

<virtualNodesDefinition>

<virtualNode name="Dispatcher"/>

</virtualNodesDefinition>

<map virtualNode="Dispatcher">

<jvmSet>

<vmName value="Jvm1"/>

</jvmSet>

</map>

<jvm name="Jvm1">

<acquisition method="rmi"/>

<creation>

<processReference refid="jvmProcess"/>

</creation>

</jvm>

Definitions

and mapping

Definition of
Virtual Nodes

Mapping of
Virtual Nodes

Mapping Virtual Nodes: example

46

Mapping Virtual Nodes: example
<processDefinition id="jvmProcess">

<jvmProcess
class="org.objectweb.proactive.core.process.JVMNodeProcess"/>

</processDefinition>

<processDefinition id="rshProcess">

 <rshProcess
class="org.objectweb.proactive.core.process.rsh.RSHJVMProcess"

 hostname="sea.inria.fr">

<processReference refid="jvmProcess"/>

</rshProcess>

</processDefinition>

Infrastructure

informations

JVM on the current
Host

JVM started using RSH

47

Virtual Nodes in Programs
1. Load the descriptor file

 Descriptor pad = ProActive.getDescriptor
("file://ProActiveDescriptor.xml");

2. Activate the mapping

 VirtualNode vn = pad.activateMapping ("Dispatcher"); //
Triggers the JVMs

 3. Use nodes

 Node node = vn.getNode();
 ...
 C3D c3d = ProActive.newActive("C3D", param, node);

 log (... "created at: " + node.name() + node.JVM()
+ node.host());

48

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾¾¾ Groups Communication Groups Communication Groups Communication

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾ Components Infrastructure

¾¾¾ SecuritySecuritySecurity

49

D

C

Components based on Fractal Model

50

Distributed and Parallel Components

Group proxy

A

B

C

D

A

A

B

C

P

Group proxy

51

ab

body

mobility

asynchronism

Stub_a

proxy

JVM1 JVM2

component
meta - objects

component
representative

Components Infrastructure

52

Components Infrastructure

ab

body

mobility

asynchronism

proxy

JVM1 JVM2

component
meta - objects

component
representative

53

Components Request

ab

bodyproxy

component
meta - objects

component
representative

method calls are reified

54

Table of Contents

¾¾¾ ProActive RuntimeProActive RuntimeProActive Runtime

¾¾¾ Active Objects ModelActive Objects ModelActive Objects Model

¾¾¾ Future Objects and Automatic ContinuationFuture Objects and Automatic ContinuationFuture Objects and Automatic Continuation

¾¾¾ Active Objects MigrationActive Objects MigrationActive Objects Migration

¾¾¾ Groups Communication Groups Communication Groups Communication

¾¾¾ Abstract Deployment ModelAbstract Deployment ModelAbstract Deployment Model

¾¾¾ Components InfrastructureComponents InfrastructureComponents Infrastructure

¾ Security

55

Security

¾ Non-functionnal security
– located inside the meta-level, transparent for applications.

¾ Hierarchical domains
¾ Dynamic policy negotiation
¾ Certification chain to identify users, JVMs, objects

– User certificate => Application certificate => active object
certificate

– User private key used only once for generating application
certificate

¾ Security policies set by deployment descriptors

56

Request to an Active Object

Body

Request
Receiver

Reply
Receiver

Service

Object

Security
Manager

Reply
Sender

Body

Request
Receiver

Reply
Receiver

Service
Object

Security
Manager

Reply
Sender

Proxy

Request
Sender

Request
Sender

•Policy computation

• Keys exchange

Request path Security mechanims

encrypt decrypt

