
A mobile-agent and SNMP based management platform built with the Java
ProActive library

Emmanuel Reuter, Françoise Baude
Oasis, INRIA - CNRS - I3S

2004 route des Lucioles, BP 93
06902 Sophia Antipolis cedex – France

First.Last@inria.fr

Abstract

This paper presents our research into determining an
adaptive and an up-to-date service developed for system
and network management. By using a discovery process,
the effective network topology is recorded and refreshed
as necessary. In that way, by mixing collected information
at each sub-network for example, an itinerary can be ob-
tained that spans the whole administrative domain. Based
on such possibility, we have developed a pre-programmed
library that can be easily used in order to obtain a
Mobile Agent for Network and System Management whose
itinerary is dynamic.

I. Introduction

For several years now, the applicability and usefulness
of mobile agent technologies for distributed System and
Network Management (SNM) have been recognized. One
of the main points is to delegate to autonomous and
possibly mobile agents the administration tasks, as such,
distributing the network and computation loads instead of
centralizing them towards and on the manager host [1]. For
a recent discussion of advantages of mobile agent based
approaches in SNM, refer to [2].

The Java programming language is today the most
adequate for building such SNM platforms, as it provides:
(1) a total portability on all kind of operating systems
(due to the Java Virtual Machine), (2) built-in distribution
and mobility management mechanisms (RMI – Remote
Method Invocation–, dynamic class loading, serialization,
etc.), (3) built-in security management mechanisms (per-
missions, security policies). Moreover, for this specific
application domain, SNMP operations can be invoked from
Java programs, in particular, using the AdventNet SNMP

package [3].
Several academic research platforms have been recently

built in order to prove the effectiveness of Java mobile-
agents based SNM: Mole [4], MAMAS [5], MAP [6],
just to mention a few. They all have as a prerequisite
the following: prior to the execution of any management
operation, the network and system elements must run a
daemon specific to the SNM platform, in order to be able
to host a mobile agent. The daemon’s role is to control the
arrival and departure of mobile agents that come in order
to execute their management operations locally, control
their life-cycle and the multi-agent coordination. This of
course requires that the system or the network element
be Java-compliant to run this specific platform daemon.
The management function is not mandatory pure JVM
operations because it can be mixed with SNMP operations
thanks to the Java/SNMP API.

However, in realistic infrastructures, network and sys-
tem elements that the supervisor must manage are het-
erogeneous in the sense that not all of them are Java
compliant (for instance, routers, printers are not currently
able to execute JVMs); nevertheless, one can assume
that they all run a standard SNMP agent, which can be
remotely monitored through the SNMP protocol. Also
in realistic infrastructures, the effective topology of the
interconnected network and system elements is dynamic,
as devices or computers may be up or down, devices or
laptops may be added or removed, etc. Those elements may
be part of different sub-networks (i.e., LANs), probably
interconnected by higher latency and slower bandwidth
links (i.e. WANs), as for instance in a multi-national or
multi-regional enterprise.

One of the most tedious day-to-day task for a network
and system manager is to keep the effective topology
he/she has the responsibility, in an up-to-date state, mainly
in order to execute health monitoring. Fault diagnosis and
network configuration are other important tasks which can



also have some effect of the effective topology of the
managed whole network.

Using any of the above mentioned mobile agent based
platform implies to first deploy the infrastructure (dae-
mons) and then to be able to tell a mobile agent which
system or network elements it must visit in order to
locally run the management function. As the topology may
dynamically change and as some of the elements that must
be managed can not be able to host a Java mobile agent,
we think that those platforms lack some functionalities in
order to be applicable for realistic infrastructures.

II. Approach

In order to solve those real-world problems, our ap-
proach takes the form of a mobile agent based SNM
platform which:

(1) automatically maintains an up-to-date effective
topology of the network under management, which is
composed of either SNMP compliant or Java-plus-SNMP
compliant elements, structured into several sub-networks.
In each sub-network, the communication bandwidth is
assumed to be high enough such as to avoid using one
mobile agent visiting each element in turn. Instead, one
mobile agent could be moved on any one of the possible
hosts running a platform specific daemon, and remotely
execute the function on every element of the sub-network
using the standard SNMP operations.

(2) provides to the mobile agent programmer, an API
for building various itineraries [7] for mobile agents that
reflect the up-to-date effective topology or part of it. Those
itineraries are built up with two types of destinations: a
destination type onto which the mobile agent can effec-
tively move to1 and then, if required, locally execute one
pure Java or SNMP-based management function; an other
“destination” type for which a SNMP-based management
function will be remotely triggered, as it is not possible to
host the mobile agent (either because the element is not
Java-compliant, or it is not running the platform specific
daemon). In this second type, the SNMP management
function is remotely triggered by the mobile agent, from
a destination of the first type it is currently located on.

Our SNM platform is built with ProActive, a 100% pure
Java library for mobile and distributed computing based on
active objects (www.inria.fr/oasis/ProActive)
[8]. As ProActive’s aim is to ease distributed programming
(for instance, by abstracting away from synchronization
and management of method invocations among remote
active objects), extending the SNM platform with new
management functions should be readily affordable to sys-
tem and network managers and end-users of the platform.

1this is the usual sense of what is a destination in a mobile-agent
itinerary

This paper will not specifically focus on the programming
methodology, but instead, we will explain in section III
how we build and maintain the effective topology, and in
section IV, how itineraries are built in relation with the ef-
fective topology and transparently used by a mobile agent
which “moves” from destination to destination in such
itineraries. Section V studies some performance tradeoffs
between pure SNMP remote management compared with
this mixing of mobile agent and SNMP based management,
on a real test bed. Section VI concludes while comparing
with related works.

III. Building and maintaining the effective
topology of the network

The purpose is to dynamically discover all system or
network elements that are reachable on the network, gather
some information on each element, and register all this
in a specific server where this will be used for building
itineraries for mobile agents. Such a server is called an
ItineraryServer. This discovery process is then periodically
re-executed in background, in order to have an up-to-date
vision of the effective topology of the network.

A. Implementation

In the following, we consider a network as an IP subnet.
Of course, the administrative domain of the managed
enterprise may be composed of several networks,

A DiscoveryAgent programmed as a ProActive active
and mobile object is in charge of the discovery of elements
of a network, using only SNMP queries. The first and only
element that needs to be queried in order to discover all
other elements in the network is a piece of active equip-
ment such as a seed router or a switch with a SNMP agent.
Indeed, as such an active equipment systematically records
all Ethernet addresses of the alive hosts on the network,
it is enough to read and to correlate the corresponding
SNMP MIB variables (e.g. ip.ipNetToMediaTable,
dot1dtBridge) in order to build the topology of the
network (the list of elements and the way they are inter-
connected). Nevertheless, it is necessary to filter those data
(pairs IP/Ethernet addresses) such as to avoid to scan an IP
subnet different as the current one. For each element that is
discovered, the following kind of information is recorded
in the ItineraryServer associated to each DiscoveryAgent:
the state (alive or not); network parameters (IP and Ether-
net addresses); interface types; if this element executes an
SNMP agent; if this element currently executes a ProActive
node, that is a specific daemon of our platform that could
host a ProActive mobile object dedicated to a SNM task.

The DiscoveryAgent executing the discovery process
must run on a ProActive node that may be local to the



Fig. 1. Discovery of the topology of network B,
by remote SNMP investigation from network A
(step 1), or by local SNMP investigation after
the DiscoveryAgent was able to migrate from
network A to network B (step 2).

current network or not. For instance, this ProActive node
may be the one which hosts the GUI (also a ProActive
active object), but it is not mandatory. However, if during
the discovery process of a remote network, the Discov-
eryAgent locates a ProActive node, it migrates (and its
associated ItineraryServer also) onto this node. As such,
the discovery process of the network executes locally and
so ends up faster (figure 1). On the contrary to some other
SNM platforms, we do not need to make the assumption
that prior to use2 we already have at least one daemon
specific to the platform running on each network.

IV. Building and using itineraries for man-
agement tasks by mobile agents

A. General idea and principles

An itinerary is a mixing of destinations onto which a
SNM agent will effectively migrate and execute some Java
or SNMP code on arrival, and of destinations that only
represent elements for which the SNM task must take
place without a move of the mobile agent (this requires
the presence of an SNMP agent on those elements).
Instructions for an SNMP agent will be triggered through a

2use in the broad sense, including the discovery process

classical SNMP client-server interaction, originating from
the mobile SNM agent, wherever the host it is actually
located (it can be running on the same host, or it can be
running on a host on the same network or even be located
on a different network).

ItineraryServers are able to cooperate on demand in
order to build itineraries that span several networks. Of
course, elements belonging to the same network will
appear close in an itinerary in order for a SNM mobile
agent to avoid migrating more than once towards a given
network.

By requesting the up-to-date information recorded in
the local ItineraryServer (which itself queries the others
ItineraryServers if required), any mobile agent can be
provided with an itinerary that will enable to apply the
SNM function to a set of elements, for instance:

� in an SNMP way only, inside the current network or
among several networks (without any migration),

� in a mixed SNMP-Java way inside the same network
(without any migration, except one in order to reach
a ProActive node in the target network),

� in a mixed SNMP-Java way among several networks
(with at least one migration for reaching every net-
work in turn).

B. Structure and usage of an itinerary

An itinerary is a list of Destinations, which can
either be a NodeDestination or a SNMPDestination.
Each destination must provide the following informa-
tion: an identifier of the destination, and an identifier of
a method name that must be executed on arrival. For
instance: <’’//koumac/node/’’, ’’echo’’> for
a NodeDestination, <’’Bourail’’, ’’public’’,
’’snmpOnArrival’’> for a SNMPDestination (see
Code in figure 2). As the SNM itineraries are built upon
the basic ProActive mobile object itineraries, we were
constrained by the fact that the method to execute on
arrival can not contain any parameter. But, it is not very
restrictive as while executing this method, the active object
can locally trigger the execution of an other method with
parameters (when an active object migrates, all its state is
preserved).

An ItineraryManager is a class that provides some
programming functions and as such serves as an interface
between the SNM agent and the ItineraryServer. Upon
creation, the agent provides some information regarding
the type of itinerary it will need for visiting the system
or network elements (e.g. MIX in the code in figure 2).
Then, in order to effectively obtain the itinerary it must
follow, it just calls one specific method defined in the
ItineraryManager class (i.e. setItinerary which is in charge
of querying myLocalItineraryServer), after that, it



only has to initiate the start of its ”visit” of all elements
in the itinerary.

At any time, thanks to a method call originating for
instance from an other mobile agent or from the GUI
running on the host manager, the SNM agent (its Itinerary-
Manager) may be told to insert into its itinerary a new
Destination, possibly in front of the itinerary. This is an
easy way of forcing an agent to go back home for instance,
or to urgently manage an element.

public class MyAgent implements java.io.serializable {
// Triggered for a NodeDestination
public void echo() {
System.out.println("MyAgent.echo()");

}
// Triggered for a SNMPDestination
public void snmpOnArrival() {
// Gets SNMP parameters from ItineraryManager
SNMPDestination snmpDest = (SNMPDestination)

itiManager.getCurrentDestination();
// do your SNM job !

}
// Prepare and start to follow an Itinerary
public void start(String myLocalItineraryServer) {

// Create an ItineraryManager
itiManager = new ItineraryManager(MIX);
// Set the home for locating our local
// network ItineraryServer
// and prepare for our test an itinerary
// in order to ’visit’ all the networks
itiManager.setItinerary(myLocalItineraryServer);
// Ask the ItineraryManager to start the migration
itiManager.startItinerary();

}
public static void main(String args[]) {

try {
// Create an Active Object
MyAgent myAgent = (MyAgent)
ProActive.newActive("mgt.agents.MyAgent", null);

// prepare the itinerary and go !
myAgent.start(args[0]);

} catch (Exception e) { e.printStackTrace(); }
} // main

}// end of class MyAgent

Fig. 2. Code Example of a mobile agent and a
transparent itinerary usage

V. Performance Evaluation

As itineraries built with our platform can mix remote
SNMP management or local SNMP management after a
migration on the host, we have studied tradeoffs of such
mixing. The tradeoffs depend on the bandwidth of the links
that connect networks (in our case, 2 networks), on the size
of the mobile agent when it must cross this link in order to
reach some other network, on the size of the data collected
by the SNMP management function (either a fix number of
SNMP variables, or a variable number as when collecting a
routing table for instance). Moreover, the purpose of those
evaluations is to check that our SNM platform behaves
correctly and yields reasonable performances for realistic
infrastructures.

A. Benchmark Configuration

In our test-bed, there are two networks (see figure 3).
In network A, two computers (Yate and Bourail) and
in the other, eleven computers of different power and
capabilities. Those machines are PCs (running Win95,
Linux, WinNT, Sco OpenServer, WinNT Terminal Server),
Network Printers (HP 4100 and HP 2100) all executing an
SNMP agent. In order to make the network bandwidth
between the two local LANs varies, we have used a
Pentium at 133Mhz (Bourail) running a Free BSD op-
erating system with ip dummynet (a bandwidth limiter)
[9] (fig 3). As such, we could simulate a 50Kbps up to
a 10Mbps link connecting both LANs. Each network is a
100Mbps switched Ethernet LAN.

In order to simulate a bigger configuration, longer
itineraries are obtained by increasing the number of round
trips. In the case of the itinerary using mobility, each round
trip is as follows: one migration at the start to go from
the workstation Yate to Koumac and one at the end to
go back to the initial ProActive node on Yate. Notice
that we do not empty the agent when it comes back on
Yate, because the purpose is to simulate an itinerary that
spans a whole administrative domain compound of several
networks interconnected by low bandwidth links. As such,
its size will grow. Of course, previous work has already
pointed out a possible improvement: empty (or temporarily
store) the data the mobile agent is carrying out with
it before migrating again [10]. Alternatively, provide an
itinerary whose pattern is a star-shape route [11], where the
mobile agent migrates back and forth between the central
node and the other nodes, just to deliver its results3. In our
framework, we also might program a remote method call
between the agent and the source node, such as to transmit
the results before migrating to the next network. However,
it is not the purpose here to evaluate those optimizations or
alternative traveling patterns. In the case of the itinerary not
using mobility, each round trip is as follows: each element
mentioned in the itinerary is a SNMPDestination, and as
such, all SNMP read operations have to be executed from
Yate, whatever be the number of networks.

B. Comparison between remote SNMP function
and mobile agent plus local SNMP function

The first SNMP function we have programmed is to
read onto each element mentioned in the itinerary, a fixed
number of SNMP variables that lie in the System MIB-II
branch (e.g. system.sysDescr).

When the link bandwidth is equal to 50Kbps, as when
for instance the host manager is running on a laptop

3Such an itinerary type can easily be provided by extending the
ItineraryManager class



Fig. 3. Network diagram

connected to the network with such a very low bandwidth
connection, figure 4 proves that classical SNMP monitor-
ing shows better performances. Indeed, in the mobile agent
based experiment, the performance is constrained by the
migration performance: the mobile agent migrates twice
at each round trip and its size grows with the number
of visited hosts. As such, its migration is especially time
consuming on a low bandwidth link. The same behaviour
can be observed as when the link bandwidth is equal to
100Kbps. However, as soon as the link bandwidth exceeds
1Mbps (as for 5Mbps as shown on figure 4) both kinds
of experiments have the same duration: the growing size
of the agent is no more a bottleneck for the usage of
mobility in the itinerary. If the total amount of information
read in the SNMP MIBs increases (e.g. ip.ipRouteTable
and ip.ipNetToMediaTable), then the link bandwidth might
be the limiting factor even for the pure SNMP-based
experiment (see figure 5): in this case, the experiment does
not not take advantage of the effect of proximity (proximity
means that the read operations in the MIBs of network
elements are triggered locally from a host located in the
same network instead of remotely, from the initial host for
instance).

0

50000

100000

150000

200000

250000

300000

350000

400000

0 20 40 60 80 100 120

T
im

e 
T

ak
en

 (
in

 M
ill

is
ec

s)

Number of hosts

Client Server at 5Mbps
M.A. at 5Mbps

Client Server at 50kbps
M.A. at 50Kbps

Fig. 4. Retrieval of a small number of SNMP
variables per element

40

60

80

100

120

140

160

180

200

220

240

0 500 1000 1500 2000

T
im

e 
T

ak
en

 (
in

 s
ec

s)

Bandiwdth in Kbit/s

Client Server for 26 hosts
Mobile Agent for 26 hosts

Fig. 5. 26 Destinations in the itinerary; re-
trieval of more than 7 SNMP variables for each

VI. Discussion and conclusions

Distributed SNM platforms using mobile agents are
useful and even efficient in a wide range of hardware
configurations, especially when the links interconnecting
networks are of low bandwidth, and the output data size
of SNM tasks are huge: it is then possible to aggregate
and maybe compress and filter those data at the place
or in the same network where they have been collected,
before sending them back to the manager host. Such
considerations and conlusions had already been made for
instance in [12], [13], [14] but we had to check that the
same behaviour occurs within our SNM platform. Many
models have been defined in [14] in order to characterize



SNM applications: the itinerary pattern mixing migration
and SNMP retrieval of information we have introduced
could correspond to a new model combining the Static
Centralized (SC) and Migratory (MG) ones, taking ad-
vantage of proximity and locality. Nevertheless, we have
not yet studied the usage and effect of distribution in
our SNM platform, as evaluated in [14]. However, as the
ProActive library does provide the notion of groups of
mobile active objects [15], it should be feasible to create
a group and to dynamically provide to each peer one
itinerary that spans a given part of the network. Then,
each peer would independently follow its own itinerary,
and peers might also be able to communicate in order
to aggregate, correlate and exchange the collected data.
This pattern of SNM can be modeled by an extension of
the Static Delegated (SD) model [14], in which an agent
collecting information is not static but can migrate towards
an other network or towards the manager host, or even
within its assigned network if necessary.

Another important focus of our SNM platform is the
ease of deployment of the support infrastructure for mobile
agents. Indeed, it is very constraining if the requirement
is to install and run a mobile agent support for every
managed element prior executing any SNM task4. Thanks
to the itinerary pattern we have introduced, it is not manda-
tory to meet this requirement. As the dynamic discovery
of the topology of the administrative domain executes,
running ProActive nodes will be located and registered
into ItineraryServers so as to subsequently be included as
NodeDestinations into mobile agent itineraries. However,
if no ProActive node is found on a given network, then,
all its elements can still be managed using a classical SC
model.

Arguments for isolating the behavioral logic part from
the itinerary part of mobile agents, as done here, include
the one mentioned in [11]: building an efficient itinerary
customized for each different network is a time-consuming
and difficult operation without any knowledge of the
network. We can add the following argument: traveling
along an itinerary that reflects an up-to-date topology is
impossible if the itinerary is statically embedded in the
agent at programming time or at the time of the SNM
platform deployment. Solutions to both problems rely on
mobile agents dynamically retrieving their itinerary from
some predefined entities (AgentPools and NavigatorAgents
in [11], ItineraryServers in the present work), whose task
is to manage and combine information about the network.
It would be possible to implement the first of the above
mentioned arguments by adequate computations within
ItineraryServers at the end of each new topology discovery
process execution.

4However, we must assume that every managed element runs an SNMP
agent, if it does not run a ProActive node

References

[1] A. Bieszczad, B. Pagurek, and T. White., “Mobile Agents for
Network Management,” IEEE Communications Surveys 1, 1, 1998.

[2] G. M. Gavalas D., Greenwood D. and O. M, “Advanced network
monitoring applications based on obile/intelligent agent technol-
ogy,” Computer Communications Journal, vol. 23, no. 8, pp. 720–
730, April 2000.

[3] “AdventNet SNMP tools,” http://www.adventnet.net, 1998.
[4] J. Baumann, F. Hohl, M. Straber, and K. Rothermel, “Mole –

Concepts of a Mobile Agent System,” World Wide Web 1, 3, 1998.
[5] P. Bellavista, A. Corradi, and C. Stefanelli, “An Open Secure

Mobile Agent Framework for Systems Management,” Journal of
Network and Systems Management, vol. 7, no. 3, 1999.

[6] A. Puliafito and O. Tomarchio, “Using Mobile Agents to implement
flexible Network Management strategies,” Computer Communica-
tion Journal, vol. 23, no. 8, 2000.

[7] E. Reuter and F. Baude, “System and network management
itineraries for mobile agents,” in 4th International Workshop on
Mobile Agents for Telecommunications Applications, MATA, 2002.

[8] D. Caromel, W. Klauser, and J. Vayssière, “Towards Seamless Com-
puting and Metacomputing in Java,” pp. 1043–1061 in Concurrency
Practice and Experience, 10(11–13), 1998.

[9] L. Rizzo, “Ip dummynet,” Dip. di Ingegneria dell’Informazione,
Univ. di Pisa, http://info.iet.unipi.it/˜luigi/ipdummynet.

[10] Y. Aridor and D. Lange, “Agent Design Patterns: Elements of
Agent Application Design,” in Second International Conference on
Autonomous Agents (Agents’98). ACM Press, pp. 108–115.

[11] I. Satoh, “A Framework for Building Reusable Mobile Agents for
Network Management,” in Network Operations and Managements
Symposium (NOMS’2002). IEEE Communication Society.

[12] M. Rubinstein and O. Duarte., “Evaluating tradeoffs of mobile
agents in network management,” Networking and Information Sys-
tems Journal, vol. 2, 1999.

[13] A. Sahai and C. Morin, Software Agents for Future Communications
Systems. A.L.G.Hayzelden and J. Bigham (Eds), Springer Verlag,
1999, ch. Mobile Agents for Managing Networks : MAGENTA
perspective.

[14] P. Sim
�� es, J. Rogrigues, L. Silva, and F. Boavida, “Distributed

Retrieval of Management Information: Is It About Mobility, Lo-
cality or Distribution ?” in Network Operations and Managements
Symposium (NOMS’2002). IEEE Communication Society.

[15] L. Baduel, F. Baude, and D. Caromel, “Efficient, Flexible, and
Typed Group Communications in Java,” in Joint ACM Java Grande
- ISCOPE 2002 Conference.


