
Performance and Integrity in the OpenORB Reflective
Middleware

Gordon S. Blair1,2, Geoff Coulson2, Michael Clarke2 and Nikos Parlavantzas2
1Dept. of Computer Science, University of Tromsø, N-9037 Tromsø, Norway.

2Distributed Multimedia Research Group, Dept. of Computing, Lancaster University, LA1 4YR, U.K.
E-mail: gordon@cs.uit.no, {geoff, mwc, parlavan}@comp.lancs.ac.uk

Middleware is playing an increasingly central role in the design of modern

computer systems and will, we believe, continue to enjoy this prominence in the
future. There is, however, a demonstrable need for more openness and flexibility in
middleware [1]. We believe strongly that reflective middleware is the right
technology to meet these demands. Indeed, there is strong evidence that such
platforms are not only significantly more configurable and reconfigurable than
conventional platforms, but that they offer better support for software evolution
generally [2]. The main goals of OpenORB v2, the system discussed in this extended
abstract, are to address what we perceive as the most pressing shortcomings of
current reflective middleware platforms. First, performance: in the worst case, this
needs to be on a par with that of conventional platforms, and in the best case (e.g. in
cut-down configurations) it should be significantly better. Second, integrity: while
permitting maximal reconfigurability, it should be possible to control and constrain
reconfigurations so that damaging changes are discouraged and/ or disallowed.

The OpenORB v2 architecture is built in terms of a reflective component model.
More specifically, we deploy this component model [3] not just at the application
level, but also for the construction of the middleware platform itself. The component
model is language independent, lightweight and efficient, and forms the basis of our
goal of high performance. In addition, to address the issue of integrity, we rely
heavily on the concept of component frameworks (see below). Thus, an instance of
OpenORB v2 is some particular configuration of component frameworks/
components; these are selectable at build-time and reconfigurable at run-time (via
reflection).

Our component model, called OpenCOM [2], is based on the core of Microsoft’s
COM (it avoids dependencies on non-core features of COM such as distribution,
persistence, security and transactions), but it enhances COM with richer reflective
facilities. Most fundamentally, OpenCOM offers a mechanism for run-time
dependency tracking between components. To this end, we introduce the notion of
‘required’ interfaces to express the dependency of a component on an external
interface, and then define receptacles as first class run-time entities that maintain
pointer and type information to represent an explicit connection between a
component and a ‘required’ interface. We also deploy a standard run-time, available
in every OpenCOM address space, that maintains a system graph of current
connections in the address space.

In addition, OpenCOM offers support for introspection and adaptation of
component internals through a number of low-level meta-interfaces supported by
each component:

1. The IMetaArchitecture interface provides access to the component’s structure in
terms of its internally nested components and their connections (assuming the
target component is not primitive);

2. The IMetaInterface interface provides meta-information relating to the interface
and receptacle types of the component (this can also be used to support dynamic
invocation; cf. Java core reflection);

3. The IMetaInterception interface enables the dynamic attachment or detachment of
interceptors.
The second key technology underpinning OpenORB is an instantiation of the

concept of component frameworks (CFs) [3]. Each CF focuses on a particular area of
functionality; e.g., there are CFs for protocol composition, CFs for thread schedulers
and for binding types, and takes responsibility for the maintenance of the integrity of
that area of the system. CFs exploit domain-specific knowledge and built-in
constraints to enforce a desired level of integrity across reconfiguration operations (in
terms of both functional and non-functional concerns), and also perform domain
specific trade-offs between flexibility and consistency. In OpenORB, CFs are not
merely a design concept; rather, they are reified as run-time software entities
(packages of components) that support and police components ‘plugged into’ the CF
to ensure that they conform to CF-specific rules and contracts.
 In our implementation work, we have confirmed that OpenCOM-plus-CFs
supports the construction of ORB functionality that is at least as efficient as
conventional object-based ORBs. For example, [2] shows that an OpenORB v2
configuration featuring a CORBA based binding type implementation performs on a
par with the popular Orbacus ORB. Furthermore, we have confirmed that the
component model scales well in terms of its explicit enumeration of per-component
dependencies. This is primarily due to the use of CFs that reduce dependencies by
forbidding connections between plug-in components and components outside the CF.
In our current implementation, the maximum number of dependencies in any single
component is just seven and the average figure is just four. This leaves considerable
scope for further reducing the granularity of componentisation that, if carried out with
care, should correspondingly increase the ORB’s potential for reconfigurability.
 In conclusion, we believe that the combination of a reflective component model
and the CF-based structuring principle represents a highly promising basis for the
construction of configurable and reconfigurable ORBs. While a reflective component
model provides a powerful basis for maximal flexibility and reconfigurability, its
unconstrained use can easily lead to chaos. The presence of CF-based structuring
tempers this expressiveness by imposing domain specific constraints on the
reconfiguration process.

References
1. Roman, M., Kon, F., Campbell, R.H., “Reflective Middleware: From the Desk to your Hand”, To

appear in IEEE DS Online, Special Issue on Reflective Middleware, 2001.
2. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H., Fitzpatrick,

T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and Implementation of
OpenORB v2”, To appear in IEEE DS Online, Special Issue on Reflective Middleware, 2001.

3. Szyperski, C., “Component Software: Beyond Object-Oriented Programming”, Addison-Wesley, 1998.

