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Abstract

To support multimedia applications in mobile environ-
ments, it will be necessary for applications to be aware
of the underlying environmental conditions, and also to be
able to adapt their behaviour and that of the underlying
platform as such conditions change. Many existing dis-
tributed systems platforms support such adaptation only in
a rather ad hoc manner. This paper presents a principled
approach to supporting adaptation through the use of reflec-
tion. More specifically, the paper introduces a language-
independent, component-based reflective architecture fea-
turing a per-component meta-space, the use of meta-models
to structure meta-space, and a consistent use of component
graphs to represent composite components. The paper also
reports on a quality of service management framework, pro-
viding sophisticated support for monitoring and adaptation
functions. Finally, the paper describes a prototype imple-
mentation of this architecture using the object-oriented pro-
gramming language Python.

1. Introduction

Future distributed systems will consist of a range of end-
systems, from PDAs through to workstations, which will
either be fully connected, weakly connected by low speed
wireless networks such as GSM, or indeed disconnected.
Furthermore, it can be anticipated that the precise level of
connectivity will vary over time as a consequence of the
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mobility of the future computer user. Other aspects can also
vary over time in such an environment including the cost
of the underlying connection, the availability of resources
(such as processor cycles), and the battery life. Given this, it
is well recognised that mobility requires support for adapta-
tion. Katz summarises this argument rather succinctly [19]:

”Mobility requires adaptability. By this we mean
that systems must be location- and situation-
aware, and must take advantage of this informa-
tion to dynamically configure themselves in a dis-
tributed fashion.”

In heterogeneous distributed environments, the other im-
portant factor is openness. In particular, it is crucial that
open systems standards are exploited wherever possible to
enable both interoperability and portability of (mobile) ap-
plications. In this paper, we are therefore concerned with
support for adaptation in open distributed systems. We
present a principled solution to this problem based on ideas
from the fields of open implementation and reflection. We
are particularly interested in supporting distributed multi-
media applications in such environments.

The paper is structured as follows. Section 2 takes a
closer look at adaptation, considering what parts of the sys-
tem require adaptation, how adaptation should be carried
out and where this adaptation should be placed in the over-
all architecture. It is argued that middleware is the right
place to support adaptation. Section 3 then considers the
potential role of reflection in supporting adaptation in mid-
dleware platforms. Following this, section 4 presents our
architecture for reflective middleware platforms. Section 5
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then extends this architecture with quality of service (QoS)
management capabilities. Our implementation of the re-
flective architecture (including QoS management) is then
briefly discussed in section 6; this implementation uses the
interpreted, object-oriented language Python. Sections 7
and 8 then evaluate the architecture and consider related
work respectively. Finally, section 9 presents some con-
cluding remarks.

2 A Closer Look at Adaptation

2.1 What do we Adapt?

Adaptation is required at various levels in a distributed
system. For example, at the network level, it might be nec-
essary to switch between available network links depend-
ing on the quality of service currently on offer. Higher up
the protocol stack a range of adaptations are also possible
such as switching to a different transport protocol (or set of
micro-protocols [14]), changing the parameters of a particu-
lar protocol element, or introducing new protocol elements.
It might also be useful to change the encoding of data, e.g.
by introducing compression and de-compression elements.
Crucially, many aspects of adaptation are also carried out
either in the application or with the involvement of the ap-
plication. For example, an application might choose to re-
structure its activity by off-loading some processing to a
fixed portion of the network.

More generally, adaptation applies to a wide range of
aspects at different levels of the system. These aspects in-
clude the communications aspects described above but also
include issues such as the resources allocated to an activity
and the set of external services currently being used. Fur-
thermore, this adaptation should be driven by awareness of
a wide range of issues including communications perfor-
mance, resource usage, location, cost, battery life and ap-
plication preference.

2.2 How do we Adapt?

Adaptation as described above (if it is not to be done on
a purely ad hoc basis) requires a sophisticated infrastructure
to expose and manage the various aspects described above.
In more detail, this requires:

� Open access to various components in the underly-
ing system, corresponding to the various aspects under
consideration;

� The ability to monitor the current environment (com-
munications subsystem, resources, battery life, etc)
and adapt the various components and configurations
of components to suit the characteristics of the current
environment.

Open access is the cornerstone of adaptive systems.
However, existing distributed systems platforms often fail
to provide this level of openness, or, if they do provide open-
ness, it tends to be in an ad hoc manner. As will be seen in
section 4, our approach offers a principled means of achiev-
ing openness tackle through the application of reflection.

The second requirement implies dynamic quality of ser-
vice (QoS) management and should be addressed by a gen-
eral and sophisticated QoS management architecture sub-
suming QoS functions such as monitoring and adaptation.

2.3 Where do we Adapt?

As stated above, adaptation is required at all levels of a
system, from the application level potentially right down to
the operating system level. However, this immediately in-
troduces a number of problems. For example, adaptation at
the operating system level can be quite dangerous in terms
of affecting integrity and performance. In addition, the pro-
grammer would inevitably have to rely on operating sys-
tem specifics to achieve adaptation, thus compromising the
portability of applications. The opposite extreme of leaving
all adaptation to the application is also clearly unacceptable,
as this would introduce an unacceptable burden for the ap-
plication writer. Our solution is to introduce a framework
for managing adaptation at the middleware level of the sys-
tem.

In distributed systems, middleware is defined as a layer
of software residing on every machine and sitting be-
tween the underlying (heterogeneous) operating system
platforms and distributed applications/services, offering a
platform-independent programming model to programmers
(see figure 1). Examples of middleware platforms include
OMG CORBA, Microsoft’s DCOM, and the Open Group’s
DCE [4].

MIDDLEWARE

Platform Dependent I/F

Platform

n

Platform

1

Platform

2

...

Platform Independent I/F

Distributed Applications
and Services

Figure 1. The role of middleware.

Note that this approach is supported by recent research in
the operating systems community which advocates that op-
erating systems should be smaller and more policy free [12].
This implies that many functions initially contained in the
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operating system kernel will be available as open services
in user space accessible through a middleware platform.
Similar results have also emerged in the communications
community, most notably with the emergence of applica-
tion level framing [6]. Again, this implies that key func-
tions such as transport protocols may be available as open
services. The role of the middleware platform is then to
support the configuration (and possibly re-configuration) of
such services on behalf of the application.

3 The Role of Reflection

The concept of reflection was first introduced by Smith
in 1982 [35]. In this work, he introduced the reflection hy-
pothesis which states:

”In as much as a computational process can be
constructed to reason about an external world in
virtue of comprising an ingredient process (inter-
preter) formally manipulating representations of
that world, so too a computational process could
be made to reason about itself in virtue of com-
prising an ingredient process (interpreter) for-
mally manipulating representations of its own op-
erations and structures”.

The importance of this statement is that a program can
access, reason about and alter its own interpretation. Ac-
cess to the interpreter is provided through a meta-object
protocol (MOP) which defines the services available at the
meta-level. Examples of operations available at the meta-
level include altering the semantics of message passing and
inserting before or after actions around method invocations.
Access to the meta-level is provided through a process of
reification. Reification effectively makes some aspect of the
internal representation explicit and hence accessible from
the program. The opposite process is then absorption where
some aspect of meta-system is altered or overridden.

Smith’s insight has catalysed a large body of research
in the application of reflection. Initially, this work was re-
stricted to the field of programming language design [20,
37, 1]. More recently, the work has diversified with reflec-
tion being applied in operating systems [39] and, more re-
cently, distributed systems (see section 8).

The primary motivation of a reflective language or sys-
tem is to provide a principled (as opposed to ad hoc) means
of achieving open access. For example, reflection can be
used to inspect the internal behaviour of a language or
system. By exposing the underlying implementation, it
becomes straightforward to insert additional behaviour to
monitor the implementation, e.g. performance monitors,
quality of service monitors, or accounting systems. Re-
flection can also be used to adapt the internal behaviour

of a language or system. Examples include replacing the
implementation of message passing to operate more opti-
mally over a wireless link, introducing an additional level
of distribution transparency in a running computation (such
as migration transparency), or inserting a filter component
to reduce the bandwidth requirements of a communications
stream. Although reflection is a promising technique, there
are a number of potential drawbacks of this approach; in
particular, issues of performance and integrity must be care-
fully addressed (we return to these issues in section 7).

In contrast, the standard approach to developing mid-
dleware platforms is generally to adopt a black box phi-
losophy, whereby implementation details are hidden from
the platform user (cf. distribution transparency). There is
increasing evidence though that the black box philosophy
is becoming untenable. For example, the OMG have re-
cently added internal interfaces to CORBA to support ser-
vices such as transactions and security. The recently de-
fined Portable Object Adapter is another attempt to intro-
duce more openness in their design. Nevertheless, their
overall approach can be criticised for being rather ad hoc
(as discussed above). Similarly, a number of ORB vendors
have felt obliged to expose selected aspects of the underly-
ing system (e.g. filters in Orbix or interceptors in COOL).
These are however non-standard and hence compromise the
portability of CORBA applications and services.

The authors believe that the solution is to provide flexible
middleware platforms through application of the principle
of reflection.

4 An Architecture for Reflective Middleware

4.1 General Principles

In our reflective architecture, we adopt a component-
based model of computation [36]. A middleware platform
is then viewed as a particular configuration of components,
which can be selected at build-time and re-configured at
run-time. We therefore provide an open and extensible li-
brary of components, and component factories, supporting
the construction of such platforms, e.g. protocol compo-
nents, schedulers, etc. The use of components is important
given the trend towards the application of this technology
in open distributed processing, e.g. CORBA v3 [30] and
Microsoft’s DCOM. Note however that these technologies
exploit component technology at the application level; we
extend this approach to the structuring of the middleware
platform itself. Our particular component model includes
features to support multimedia applications, and is derived
from previous work on the Computational Model from RM-
ODP. The main features of our component model are: i)
components are described in terms of a set of required and
provided interfaces, ii) interfaces for continuous media in-
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teraction are supported, iii) explicit bindings can be created
between compatible interfaces (the result being the creation
of a binding component), and iv) components offer a built-
in event notification service. The component model also
has a sophisticated model of quality of service including
QoS annotation on interfaces. Further details on the under-
lying RM-ODP Computational Model can be found in [4].
In contrast, with RM-ODP, however, we adopt a consistent
computational model throughout the design.

A second principle behind our design is to support per
interface (or sometimes per component) meta-spaces. This
is necessary in a heterogeneous environment where com-
ponents will have varying capacities for reflection. Such a
solution also provides a fine level of control over the sup-
port provided by the middleware platform; a corollary of
this is that problems of maintaining integrity are minimised
due to the limited scope of change. We look at the design
of meta-spaces in detail in the following sub-section.

4.2 A Multi-model Approach

In our design, every component has an associated meta-
space supporting inspection and adaptation of the underly-
ing infrastructure for the component. More precisely, be-
cause of the nature of our component model, a meta-space
is actually associated with each interface. Crucially, this
meta-space is organised as a number of closely related but
distinct meta-space models. This approach was first advo-
cated by the designers of AL-1/D [31]. The benefit of this
approach is to simplify the interface offered by meta-space
by maintaining a separation of concerns between different
system aspects. The four aspects currently employed are:
composition, encapsulation, environment and resource (see
figure 2).

We consider each model briefly in turn below. Fur-
ther details of this reflective architecture can be found in
the literature [3, 7], including detailed descriptions of the
meta-object protocols (MOP) offered by each of the meta-
models [7].

Firstly, the composition meta-model provides access to
the component in terms of its constituent (base-level) com-
ponents, represented as a component graph, in which the
constituent components are connected together by efficient
primitive bindings referred to as local bindings. This meta-
model is particularly useful when dealing with binding
components [13]. In this context, the composition meta-
model reifies the internal structure of the binding compo-
nent in terms of the components used to realise the end-
to-end communication path. For example the component
graph could feature an MPEG compressor and decompres-
sor and an RTP protocol component. The structure can
also be exposed recursively; for example, the composition
meta-model of the RTP protocol component might expose

threads
buffers

threads
buffersD

Selector

Selector

D

Encapsulation Resources

Encapsulation Resources

EnvironmentComposition

Composition Environment

m4 v6
v4

v5 m5 v7

m1 v3
v1

v2
m2 m3

Figure 2. Overall structure of meta-space.

the peer protocol entities for RTP and also the underlying
UDP/IP protocol.

Secondly, the environment meta-model represents the ex-
ecution environment for each interface as traditionally pro-
vided by the middleware platform. In a distributed environ-
ment, this corresponds to functions such as message arrival,
enqueing, selection, unmarshalling and dispatching (plus
the equivalent on the sending side) [37, 27]. As with the
composition meta-model, this activity is represented as a
component graph.

Thirdly, the encapsulation meta-model provides access
to the representation of a particular interface in terms of its
set of methods and associated attributes, together with key
properties of the interface including its inheritance struc-
ture. This is equivalent to the introspection facilities avail-
able, for example, in the Java language.

Finally, the resources meta-model provides access to the
underlying resources and resource management subsystems
provided by the middleware platform. For example, this
meta-model can be used to discover the allocation of threads
or memory to a particular task or to alter the allocation of
such resources. In addition, it is possible to change the man-
agement policies for particular resources, e.g. to change the
scheduling of threads from fixed priority to earliest deadline
first [8].

Note that there is a high level of recursion in the
above definition. In particular, the meta-level is re-
alised using component-based techniques. Hence, compo-
nents/interfaces at the meta-level are also open to reflec-
tion and have an associated meta-meta-space. As above,
this meta-meta-space is represented by three (meta-meta-)
models. Similarly, components/interfaces at the meta-meta-
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level have an associated meta-meta-meta-space. As in
ABCL/R, this is realised in our design by allowing such
an infinite structure to exist in theory but only to instantiate
a given level on demand, i.e. when it is reified [37]. This
provides a finite representation of an infinite structure.

4.3 Examples

In order to illustrate how adaptation takes place using
the meta-models, we present an example scenario. Figure
3 shows a two-level binding component which provides the
simple service of connecting the interfaces of two applica-
tion components. The purpose of such a binding may be, for
example, to transfer a continuous stream of media from one
component to the other. At run-time, some external moni-
toring mechanism notices a drop in the network throughput,
demanding a reconfiguration of the binding component in
order to support the negotiated quality of service. This re-
configuration may be in terms of inserting compression and
decompression filters at both sides of the binding, hence re-
ducing the actual amount of data to be transfered.

Application
Object

Application
Object

Control
Interface

(1)Start
(2)Stop

Stub1 Stub2

Primitive
Binding

Capsule
Manager

Capsule
Manager

Filter2Filter1

Meta-
Interface

Figure 3. Adaptation using the meta-models

As the picture shows, the compositional meta-object
maintains a representation of the binding configuration (the
component graph mentioned in section 4.2). The compo-
sitional MOP provides operations to manipulate this repre-
sentation, and any results are reflected in the actual config-
uration of components in the binding component.

A QoS control mechanism would call methods to add
new components (Filter1 and Filter2 in the figure)
to the binding. The effect produced by each call is:

1. the previously existing local bindings between the stub
(Stub1) and the primitive binding is broken;

2. a new filter component is created (Filter1);

3. new local bindings are established to connect the inter-
faces of the filter to the interfaces of the stub and the
primitive binding.

Now, consider a binding component used for the transfer
of audio between two stream interfaces. In order to provide
a better control of the jitter in the flow of audio data, the in-
terface of the binding connected to the sink component can
be reified according to the environment meta-model. The
environment meta-object can then be used to introduce a be-
fore computation that implements a queue and a dispatching
mechanism in order to buffer audio frames and deliver them
at the appropriate time, respecting the jitter requirement.

5 Introducing QoS Management

As implied in section 2, we are largely concerned with
the dynamic aspects of QoS management, namely QoS
monitoring and adaptation. In terms of our architecture, this
equates to inspecting and adapting the corresponding com-
ponent graphs depending on the actual QoS attained and
the actual QoS offered by the environment (which might of
course change in a mobile environment).

Dynamic QoS management is achieved by introducing
management components into the component graph struc-
ture (accessed via meta-space). To maintain a clean sepa-
ration of concerns between management components and
components being managed, communication between the
two is achieved by using the event notification mechanism
included as part of our component model (see section 4.1).
Separation is achieved because components do not need to
know in advance if they are to be managed. In other words,
managers can be introduced at any time and can then regis-
ter for events of interest (and then receive call-backs when
the specific events occur).

Different styles of management component are identified
in our architecture (see table 1).

Table 1. Different styles of management com-
ponent.

Monitors Controllers
Strategy Selectors Strategy Activators

Collect statistics

on QoS achieved

and report ab-

normal events to

interested parties.

Select an appropriate

adaptation strategy de-

pending on feedback

from monitors.

Implement a particular

strategy, e.g. by ma-

nipulating an compo-

nent graph.

The role of monitors is to collect statistics on the level
of QoS attained by the running system and to raise events
when problems occur, e.g. to collect information on the
latency and throughput of a video presentation and raise
exceptions should they fall outside given thresholds. Con-
trollers are then responsible for implementing adaptation
policies in response to such events. We distinguish between
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strategy selectors and strategy activators (which together re-
alise the adaptation policy). Strategy selectors decide on
which approach should be taken in response to QoS degra-
dation, e.g. degrading the quality of the video presenta-
tion or providing additional resources. In contrast, strategy
activators are responsible for the detailed implementation
of this strategy, typically by manipulating the component
graph, e.g. video compression/ decompression components
might be introduced. The rationale for this division is to
provide a cleaner architecture and to promote re-use of man-
agement components. In addition, selectors and activators
can be written in different languages. It should be stressed
though that, in implementation, the different functions may
well be composed together.

At a first glance, this might appear to be a fairly tra-
ditional approach to QoS management. However, when
combined with the capabilities of a reflective architecture,
some interesting properties emerge. Firstly, the approach
is completely dynamic. New management components can
be introduced at any time and at any place in the under-
lying configuration. Similarly, they can be removed when
no longer needed. Both these actions are initiated by re-
configuring the component graph. Secondly, the QoS man-
agement functions can operate over any of the meta-spaces.
For example, it is possible to monitor both the composi-
tion of an open binding and also its associated resource us-
age and hence make adaptation decisions based on resource
availability. Similarly, it is possible to carry out adaptations
both in terms of manipulating the component graph of an
open binding and also in terms of allocating additional re-
sources. Thirdly, the policy for management is itself open
to inspection and adaptation through reification of manage-
ment components. To enable this, we assume that man-
agement components consist of a policy written in an ap-
propriate scripting language, together with an in-built inter-
preter for that scripting language. Reflection can then be
used to access or modify this policy, e.g. by downloading a
new management script or altering some parameters for the
script. More specifically, we can introduce meta-managers
(consisting of monitors and controllers) to effectively man-
age the management structure. Whereas managers imple-
ment policy, meta-managers implement meta-policy. As an
example, consider the use of header compression in a low
bandwidth environment. A manager could have the role of
switching header compression on or off based on a given
bandwidth threshold (an attribute of the manager compo-
nent). A meta-manager would then be able to alter this
threshold depending on the current processor load. We ar-
gue that this is a useful facility to have in highly dynamic
environments.

The architecture is open in that any scripting language
can be used, although we do provide support for one par-
ticular style of language (i.e. timed automata). We believe

that timed automata provide a concise and natural means of
expressing QoS management policies. As an illustration, a
simple timed automaton is shown in figure 4.

Monitor

t<1, get, x:=x+1

[false]
[t<1]

t 1�

m-5� �x m+5, t:=0

x<m-5
too_few!, t:=0

x>m+5

too_many!, t:=0

s0

s1
s1 s2

t:=0,
x:=0,

m:=25

Key
t: clock to count (approx) 1 second
x: count of no. of packets received
m: average throughput expected
get: input event representing arrival of pkt
too few/many!: output events to denote QoS viola-
tions
[t<1]: state invariant(time must be less than 1 to stay
in this state)
[false]: state invariant (can never stay in this state -
must return to s1)

Figure 4. Monitor for throughput/quality man-
agement.

This automaton monitors a video stream for throughput
(expected to be 25 frames per second). If the actual through-
put, differs from this ideal by � a given threshold (5), the
quality of service of each frame may need to be increased
or lowered accordingly. It is assumed in this example that
a strategy selector (and subsequently an activator) will re-
spond to the too_few and too_many events in an appro-
priate manner.

By using timed automata, we have the added advantage
that we can formally verify QoS management subsystems.
Indeed, through the use of a multi-paradigm specification
technique we can specify QoS management subsystems in
timed automata and the rest of the system in an alternative
formal notation (or notations), and can then verify global
properties of the complete system. We have developed a
tool suite to support this process. Further description of this
work is beyond the scope of this paper; the interested reader
is referred to [5] for more details.
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6 Implementation

A prototype implementation [7] of the reflective middle-
ware architecture has been developed in Python 1.5 [38],
an object-oriented interpreted language that provides sev-
eral reflective features, including the ability to inspect and
alter the set of methods associated with an object. The aims
of this prototype are firstly, to investigate the practicality of
the reflective architecture and, secondly, to investigate the
(meta-) interfaces to be offered to the programmer. Perfor-
mance is not a prime concern at this stage in the research
(as witnessed by the choice of an interpreted language).
Ongoing research is however investigating the efficient im-
plementation of our reflective architecture using lightweight
(reflective) components in a COM/ C++ environment.

The platform implements the distributed programming
model described in section 4.1 above, i.e. components with
multiple interfaces connected by explicit bindings. Cru-
cially, the platform supports a set of operations to reify each
of the meta-space models supported by a particular inter-
face. These are encapsulation(),composition(),
environment() and resource(). These operations
can also be combined, e.g. to enter meta-meta-space. For
example, iref.environment().composition()
provides access to the component graph structure of the
environmental meta-model associated with the interface
iref (see the discussion in section 4.2). This set of opera-
tions provides language-independent access to meta-space
(although as discussed above the level of access to each
model may be dependent on the particular language in use).

To support QoS management, we have introduced man-
agement components into our prototype. Management com-
ponents are interpreters for timed automata which interact
with their environment using asynchronous events. For gen-
erality, timed automata are specified using the interoperable
FC2 format [23]. They can be generated using a range of
automata based tools such as Autograph and Eucalyptus. In
addition, our own tool-suite supports FC2. Thus QoS man-
agement components can initially be verified using the tool
suite and then down-loaded into the running system using
the available reflective facilities.

To evaluate the approach, we have implemented a sim-
ple adaptive QoS management strategy for the transmission
of audio over an unpredictable network (such as a wireless
network). A monitor component observes the occupancy of
the buffer. It then flags if it detects that the buffer appears
to be “full too often” or “empty too often”. Depending on
the circumstances, the corresponding controller automaton
then can increase or decrease the size of the buffer, or can
alter the quality of service transmitted by the source. A full
description of this example can be found in the literature [2].

7 Evaluation

In our opinion, the reflective architecture described
above provides a strong basis for the design of future mid-
dleware platforms to operate in mobile environments, and
overcomes the inherent limitations of technologies such as
CORBA (as discussed in section 3). In particular, the ar-
chitecture offers principled and comprehensive access to
the engineering of a middleware platform. This compares
favourably with CORBA which, as stated earlier, generally
follows a black box philosophy with minimal, ad hoc ac-
cess to internal details. More generally, we are proposing
a concept of middleware as a customisable set of compo-
nents which can be tailored to the needs of an application.
Furthermore, the configuration can be adapted at run-time,
should the initial environmental assumptions change.

We also believe that the reflective approach generalises
the viewpoints approach to structuring advocated by RM-
ODP. As stated above, RM-ODP distinguishes between
the Computational Viewpoint (focusing on application-
level components and their interaction) and the Engineering
Viewpoint (which considers their implementation in a dis-
tributed environment). Crucially, each viewpoint also has
its own set of object modelling concepts (for example, the
Computational Viewpoint features objects, interfaces and
bindings, whereas the Engineering Viewpoint has basic en-
gineering objects, capsules and protocol objects). Conse-
quently, as the models are different, the mapping between
the two viewpoints is not always clear. In addition, this
approach enforces a two-level structure, i.e. it is not possi-
ble to analyse engineering objects in terms of their internal
structure or behaviour. Our approach overcomes these lim-
itations by offering a consistent component model through-
out, supporting arbitrary levels of openness.

Another benefit of our approach is that it minimises
problems of maintaining integrity. This is due to our ap-
proach to scoping whereby every component/interface has
its own meta-space. Thus changes to a meta-space can only
affect a single component. Furthermore, the meta-space is
highly structured, again minimising the scope of changes.
An additional level of safety is provided by the strongly
typed component model. In contrast, the issue of perfor-
mance remains a matter for further research. This issue will
be resolved once we have completed our re-implementation
of the reflective architecture using lightweight components.

8 Related Work

There is growing interest in the use of reflection in dis-
tributed systems. Pioneering work in this area was car-
ried out by McAffer [27]. With respect to middleware,
researchers at Illinois have carried out initial experiments
on reflection in Object Request Brokers (ORBs) [34]. The
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level of reflection however is coarse-grained and restricted
to invocation, marshalling and dispatching. In addition, the
work does not consider key areas such as support for groups
or, more generally, bindings. Researchers at APM have de-
veloped an experimental middleware platform called Flex-
iNet [15]. This platform allows the programmer to tai-
lor the underlying communications infrastructure by insert-
ing/ removing layers. Their solution is, however, language-
specific, i.e. applications must be written in Java. Manola
has carried out work in the design of a “RISC” object model
for distributed computing [25], i.e. a minimal object model
which can be specialised through reflection. Researchers at
the Ecole des Mines de Nante are also investigating the use
of reflection in proxy mechanisms for ORBs [21].

Our design has been influenced by a number of specific
reflective languages. As stated above, the concept of multi-
models was derived from AL/1-D. The underlying mod-
els of AL/1-D are however quite different; the language
supports six models, namely operation, resource, statis-
tics, migration, distributed environment and system [31].
From this list, it can be seen that AL/1-D does however
support a resources model. This resource model supports
reification of scheduling and garbage collection of objects
(but in a relatively limited way compared to our approach).
Our ongoing research on the environment and encapsula-
tion meta-models is also heavily influenced by the designs
of ABCL/R [37] and CodA [27]. Both these systems feature
decompositions of meta-space in terms of the acceptance
of messages, placing the message in a queue, their selec-
tion, and the subsequent dispatching. Finally, the design of
ABCL/R2 includes the concept of groups [26]. However,
groups in ABCL/R2 are more prescriptive in that they en-
force a particular construction and interpretation on an ob-
ject. The groups themselves are also primitive, and are not
susceptible to reflective access.

Our use of component graphs is inspired by researchers
at JAIST in Japan [16]. In their system, adaptation is han-
dled through the use of control scripts written in TCL. Al-
though similar to our proposals, the JAIST work does not
provide access to the internal details of communication ob-
jects. Furthermore, the work is not integrated into a mid-
dleware platform. Similar approaches are advocated by the
designers of the VuSystem [22] and Mash [28]. The same
criticisms however also apply to these designs. Microsoft’s
ActiveX software also uses component graphs. This soft-
ware, however, does not address distribution of component
graphs. In addition, the graph is not re-configurable at run-
time.

Finally, a number of researchers have considered the im-
pact of emerging application areas on middleware. For ex-
ample, a number of middleware platforms have been devel-
oped to support multimedia [9, 17, 18, 29]. Most notably,
researchers at CNET have developed an extended CORBA

platform to support multimedia [4]; this platform features
the concept of recursive bindings and has been highly in-
fluential in our research (a related platform is also reported
in [11]). Studies have also been carried out in the areas
of mobility [10, 32], real-time [33] and group support [24].
While many of these designs support a level of configura-
bility, they do not offer the level of openness and adaptivity
that we seek in our research.

9 Concluding Remarks

This paper has addressed the issue of distributed systems
support for mobile applications. It is now well recognised
that this equates to support for adaptation. However, in
our opinion, many current solutions address adaptation in
a rather ad hoc manner; we believe a more principled ap-
proach is required in terms of i) open access to underly-
ing systems components, and ii) QoS management of such
components. We also believe that middleware is the right
place to place such functionality. The paper has presented
the design and implementation of a reflective middleware
architecture that, we argue, provides such principled sup-
port for mobile applications1. The most important features
of this architecture are i) the ability to associate a meta-
space with every component/interface, ii) the sub-division
of meta-spaces into four orthogonal models, and iii) the
consistent use of component graphs to represent composite
components in the architecture. Crucially, the architecture
also provides a language-independent model of reflection
(as required by the field of open distributed processing).

The architecture is supported by a component framework
featuring an open and extensible set of primitive and com-
posite components. In addition, our approach to QoS man-
agement has a number of interesting properties in terms of i)
offering support for the dynamic insertion and adaptation of
QoS management components, ii) allowing policies to op-
erate over all meta-models (including crucially the resource
meta-model), and iii) enabling the creation of sophisticated
management structures featuring, for example, policies and
meta-policies.

We now have considerable experience in construct-
ing configurable and open middleware platforms based on
our architecture and feel that this is a highly promising
approach. Ongoing research is now addressing the re-
engineering of the architecture in terms of a lightweight
(reflective) component model in order to address issues of
performance in reflective middleware platforms.

1Given the degree of openness and extensibility inherent in the design,
we also believe the architecture can support a diverse range of application
requirements
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