
An Efficient Component Model for the Construction of 
Adaptive Middleware 

Michael Clarke1, Gordon S. Blair2, Geoff Coulson1 and Nikos Parlavantzas1 

1Distributed Multimedia Research Group, Computing Department, Lancaster University, 
Lancaster LA1 4YR, UK. 

{mwc,geoff,parlavan}@comp.lancs.ac.uk 
2Dept of Computer Science, University of Tromsø,  N-9037 Tromsø,  Norway. 

 (On leave from Lancaster University) 
gordon@cs.uit.no 

Abstract. Middleware has emerged as an important architectural component in 
modern distributed systems. Most recently, industry has witnessed the 
emergence of component-based middleware platforms, such as Enterprise 
JavaBeans and the CORBA Component Model, aimed at supporting third party 
development, configuration and subsequent deployment of software. The goal 
of our research is to extend this work in order to exploit the benefits of 
component-based approaches within the middleware platform as well as on top 
of the platform, the result being more configurable and reconfigurable 
middleware technologies. This is achieved through a marriage of components 
with reflection, the latter providing the necessary levels of openness to access 
the underlying component infrastructure. More specifically, the paper describes 
in detail the OpenCOM component model, a lightweight and efficient 
component model based on COM. The paper also describes how OpenCOM 
can be used to construct a full middleware platform, and also investigates the 
performance of both OpenCOM and this resultant platform. The main overall 
contribution of the paper is to demonstrate that flexible middleware 
technologies can be developed without an adverse effect on the performance of 
resultant systems. 

1. Introduction 

Middleware has emerged as an important architectural component in modern 
distributed systems. The role of middleware is to offer a high-level, platform-
independent programming model to users, and to mask out problems of distribution. 
Examples of key middleware platforms include CORBA, DCOM and the Java-based 
series of technologies (RMI, JINI, etc). These platforms generally provide an object-
oriented programming model for the development of distributed applications and 
services. More recently, however, the industry has witnessed the emergence of 
component-based approaches such as JavaBeans, Enterprise JavaBeans, .NET and 
the CORBA Component Model (contained in CORBA v3). Such platforms aim to 
provide underlying support for the third party development, composition and 
subsequent deployment of components, and also typically ease the task of the 



management of non-functional properties of applications (e.g. security). 
With the approaches described above, component-based models are offered on top 

of the middleware platform. We however believe that there are considerable 
advantages to also exploiting component-based techniques within the middleware 
platform. In other words, a middleware platform would then be one particular 
configuration of components, thus encouraging both configurability and 
reconfigurability of the platform. For example, this approach would enable the 
selection of a minimal middleware configuration for an embedded device, or indeed a 
richer configuration with additional quality of service management facilities to offer 
guaranteed multimedia services. More specifically, we advocate the use of 
component-based techniques together with reflection [7] for developing next 
generation middleware platforms. Middleware platforms traditionally have a black-
box architecture; in our approach, we exploit reflection to open up this black box and 
to encourage introspection and indeed adaptation of the underlying structure and 
behaviour of the platform [2]. The resultant platform exploits a (minimal) component 
model to construct the middleware platform, with the middleware platform then 
supporting an enhanced component model for the subsequent development of 
distributed applications. 

Previous papers have reported on the motivation and design of OpenORB, our 
component-based reflective middleware architecture [1] [2]. Prototypes of this 
architecture have also been developed using the Python language [4]. This paper 
reports on OpenCOM; an efficient, lightweight and reflective component model that 
we have used to efficiently re-engineer OpenORB. 

The specific goals of this paper are: 
• to provide a detailed introduction to OpenCOM in terms of both design and 

implementation, 
• to illustrate how OpenCOM can be used to construct a configurable and 

reconfigurable middleware platform, 
• to investigate the performance of the underlying OpenCOM component model, 

and also (briefly) the resultant middleware platform. 
The rest of the paper is structured as follows. Section 2 reports on the design of 

OpenCOM, highlighting the programming model offered by OpenCOM, and also the 
associated meta-interfaces. Section 3 then reports on the associated implementation of 
this component model. Following this, section 4 outlines the re-engineering of our 
OpenORB architecture using OpenCOM, while section 5 presents a performance 
evaluation of both the underlying component model and the resultant middleware 
platform. Section 6 contains some discussion of related work, and section 7 contains 
some concluding remarks. 

2. The Design of OpenCOM 

2.1 Background 

OpenCOM is a lightweight and efficient in-process component model1, built atop a 
                                                 
1  Meaning that all components in an OpenCOM based system exist in a single address space. 



subset of Microsoft’s COM. We chose COM as the basis of our component model for 
the following reasons: i) COM is standardised [10], well understood and widely-used, 
ii) it is inherently language independent, and iii) it is significantly more efficient than 
other component models (such as JavaBeans). 

In implementing OpenCOM we ignore higher-level features of COM, such as 
distribution, persistence, security and transactions, and rely only on certain low-level 
‘core’ aspects. This is because our approach, as mentioned above, is to implement 
higher-level features such as these in a middleware environment that is itself 
constructed from components. The core on which we implement OpenCOM consists 
of the following: i) the binary-level interoperability standard (i.e. the vtable data 
structure), ii) Microsoft’s Interface Definition Language (IDL), iii) COM’s globally 
unique identifiers (GUIDs), and iv) the IUnknown interface (for interface discovery 
and reference counting). A brief overview of COM, which explains these features, is 
given in Appendix A. 

OpenCOM builds on this core subset of COM as follows: 
• it makes explicit the dependencies of each component on its environment, i.e., 

on other components (this is an essential requirement for run-time 
reconfiguration as it is not otherwise possible to determine the implications of 
removing or replacing a component [9]); 

• it adds mechanism-level functionality for reconfiguration, such as mutual 
exclusion locks to serialise modifications of inter-component connections; 

• it adds support for pre- and post- method call interception, enabling us to inject 
monitoring code (e.g. to drive reconfiguration policies), and offering a 
lightweight means of adding new behaviours that do not require a 
reconfiguration of existing components (e.g. security checks on method calls). 

Essentially, OpenCOM reinterprets, in an efficient and standards based 
environment, the reflective introspection and adaptation capabilities we have 
identified as useful in our earlier work [1]. 

2.2 Functionality 

The fundamental concepts in OpenCOM are interfaces, receptacles1 and connections. 
Whereas an interface expresses a unit of service provision, a receptacle expresses a 
unit of service requirement and is used to make explicit the dependency of one 
interface on another (and hence one component on another). For example, if a 
component requires a service S, it would declare a receptacle of type S which would 
be connected at run-time to an external interface instance of type S (which would be 
provided by some other component). Thus, as well as declaring interfaces in the usual 
way, components that depend on services offered by other components must 
additionally declare a set of receptacles. In our current design, each component can 
only support a single receptacle of any given type. However, we also support so-called 
multi-pointer receptacles which can be connected to more than one interface instance 
(see section 3.1 for more detail). 

                                                 
1  The term ‘receptacle’ is also employed by the CORBA Components Model [14]. The concept itself 

appears in various other models under various names. 



OpenCOM deploys a standard run-time substrate that is available in every 
OpenCOM address space (it is implemented as a singleton component called 
“OpenCOM” and exports an interface called IOpenCOM). The primary role of the 
run-time is to manage a repository of available component types and thus support the 
creation and deletion of components; this builds on underlying COM facilities. In 
addition, the IOpenCOM interface serves as a central point for the submission of all 
requests to connect/ disconnect receptacles and interfaces in its address space. 
Furthermore, to facilitate reconfiguration, the run-time records every creation/ 
deletion of each component/ connection in a per-address space meta-structure called 
the system graph. This enables it to support queries (again, on the IOpenCOM 
interface) which, given a connection identifier (see IMetaArchitecture below), yield 
details of the receptacle and interface(s) participating in the given connection, together 
with details of their hosting components.  

Each OpenCOM enabled component must implement the following pair of 
component management interfaces. These are called by the runtime and assist it in, 
respectively, creating/ deleting connections and in creating/ deleting components:  

• IReceptacles offers operations to alter the interface(s) currently associated 
with (i.e., connected to) each of the host components’ receptacles. These 
operations are only ever called by the run-time’s connection management 
operations.  

• ILifeCycle offers operations to be called by the run-time when an instance of 
the host component is created or destroyed. This interface essentially fulfils 
the role of constructors and destructors in an object-oriented language (we 
cannot rely on the availability of such facilities in our language independent 
environment).  

Furthermore, each OpenCOM enabled component must inherit the implementation 
(through containment [17]) of three standard sub-components (called 
MetaInterception, MetaArchitecture and MetaInterface). These implement the 
reflective facilities identified in our previous work [1] and (respectively) export the 
following meta-interfaces from the host component: 

• IMetaInterception enables the programmer to associate (dissociate) 
interceptor components with (from) some particular interface. Interceptors 
implement interfaces that contain interceptor methods; these are invoked 
before or after (or both before and after) every method invocation on the 
specified interface. Multiple interceptors can be added/ removed at run-time 
and reordered as desired. 

• IMetaArchitecture enables the programmer to obtain the identifiers of all 
current connections between the host components’ receptacles and external 
interfaces. These identifiers can then be submitted to the above-mentioned 
IOpenCOM interface which returns information on the receptacle/ interface/ 
components involved in the connection.  

• IMetaInterface supports inspection of the types of all interfaces and 
receptacles declared by the host component. 

Figure 1 visualises the component model. It shows the OpenCOM run-time 
component (below) and an OpenCOM enabled component (above). The components’ 
management and meta- interfaces are shown on its left hand side. The three meta-
interfaces are linked to the embedded sub-components that implement OpenCOM’s 



reflective capability. Of these, MetaArchitecture and MetaInterface are further linked 
to corresponding private interfaces in the run-time. Also associated with the illustrated 
component are a component specific interface (labeled “custom interface”) and two 
receptacles. Components can export any number of component specific interfaces and 
receptacles. The OpenCOM runtime component is shown encapsulating the system 
graph and type libraries, and exporting the IOpenCOM interface. 

 

IMetaArchitecture

Receptacles

Custom Service
Implementation

IMetaInterception

An OpenCOM enabled componentIUnknown

Pointer variables

IMetaArchitecture2

Custom Interface

IReceptacles

ILifeCycle

IMetaInterface

IUnknown The OpenCOM component

OpenCOM

System Graph

Type Libraries

IOpenCOM

IMetaInterface2

MetaInterception

IUnknown

IMetaInterception

MetaArchitecture

IUnknown

MetaInterface

IUnknown

IMetaArchitecture

Receptacle variables

IMetaInterface

 
 

 
Fig. 1. The Architecture of OpenCOM. 

2.3 Reconfiguration Support 

The ability to dynamically reconfigure a system is most useful when these 
reconfigurations can occur arbitrarily and from any point within the system (not just 
from within the participating members of the reconfiguration). This is known as third 
party dynamic reconfiguration. However, any system that proposes to allow this type 
of reconfiguration must consider the implications for its own stability and integrity in 
the face of such operations. For instance, deleting a component while it is still being 
used will cause the results to be at best unpredictable and at worst lead to a crash. 



COM supports the dynamic configuration of components and can also guarantee to 
delete components when they are no longer in use (assuming that strict reference 
counting guidelines have been followed). In addition, components can also be 
dynamically reconfigured (but with no support for ensuring the resultant system’s 
integrity) in the sense that they may have their raw interface pointers resolved against 
new interfaces. However, this can only be achieved from a first party point of view, 
i.e. only the component hosting the interface pointer can attach to a new interface. 
This is because interface pointers are simple variables that are not known to the 
runtime and therefore cannot be arbitrarily reconfigured by a third party. 

In contrast, OpenCOM supports arbitrary, third party dynamic reconfiguration of 
both components and their connections. This is achieved through a combination of the 
first class status we place on receptacles (thus allowing component interdependencies 
to remain explicit and be managed at runtime) and the system graph (to allow access 
to the current runtime status of these interdependencies). OpenCOM makes dynamic 
reconfiguration safe by associating a lock with each receptacle. This lock is asserted 
whenever the first of an arbitrary number of simultaneous invocations takes place on 
the receptacle and is reset when the last invocation completes. During this time, any 
reconfiguration operations1 involving the associated connection are blocked. 
However, before such a reconfiguration operation actually blocks, it is able to ensure 
that any new invocations are aborted (guaranteeing that it will acquire the lock when 
the current batch of invocations complete). Once the lock is acquired, all future 
invocations continue to be aborted until the lock is reset by higher level software 
(presumably after the receptacle has been successfully connected elsewhere). 

3. The Implementation of OpenCOM 

In this section we present the implementation of OpenCOM focusing mainly on the 
concepts introduced in the previous design section. Although our current 
implementation is in C++ and the material below occasionally refers to C++ specific 
concepts, the design is sufficiently generic to be implemented in any language 
compatible with COM. 

3.1 Receptacle Implementation 

Developers declare receptacles as a templated class (templated by its interface type) 
within the body of the implementation of their OpenCOM enabled components. A 
receptacle contains (among other things as discussed in section 3.1.2 below) an 
interface pointer and the supported interface type (expressed as a COM IID). When a 
receptacle is invoked, the interface pointer is used to invoke methods on the currently 
associated interface. The stored IID allows the component developer to differentiate 
between the various receptacles that their component implements and is used in the 
                                                 
1  By reconfiguration operation we mean the disconnection of a connection either directly or as a 

consequence of a component deletion (which causes all of the components’ connections to be 
disconnected). This is followed by a reconnection to a new interface implementation to complete the 
reconfiguration. 



implementation of the IReceptacles interface (see section 2.2). The developer must 
ensure that the correct receptacle is used to store an interface pointer passed in by the 
run-time at connection time and, conversely, that the correct receptacle has its 
interface pointer set to NULL at disconnection time. 

In general, we have found three styles of receptacle useful in our implementation: 
• the single pointer receptacle contains a single pointer to an interface. It is the 

most common form and represents a simple requirement to utilise a given type 
of interface, 

• the multi-pointer-with-context receptacle contains multiple pointers to 
implementations of the same type of interface. The pointers are discriminated by 
passing in contextual information when invoking a method on the receptacle. 
This style is used heavily when there is a need to select one of a number of 
plug-ins in a Component Framework (CF), see section 4.1, 

• the multi-pointer receptacle contains multiple pointers to implementations of the 
same interface type but does not discriminate between them. It is useful for 
event notification where a callback is invoked on all the interfaces connected to 
the receptacle. 

3.1.1 Locking and Non-Locking Receptacles. OpenCOM offers mechanism-level 
support for the maintenance of system integrity in the presence of dynamic 
reconfiguration through the provision of per-receptacle locks. However, OpenCOM 
can be built with or without these locks and this does not affect the way in which 
receptacles are invoked or manipulated from their users point of view.  

Without locking, invocations on receptacles do not incur locking overhead, but 
reconfiguration operations are potentially unsafe because they may disturb currently 
executing invocations. In this case, it is assumed that higher level software is 
constructed in such a way as to make reconfiguration safe at its own level (see section 
4.1). In contrast, when locking is used, higher level software can rely on OpenCOM to 
make reconfiguration safe but must incur an invocation overhead (see section 5). 

Invoking a receptacle is achieved by calling its overridden de-reference operator 
(i.e. ->() in C++) along with the desired method, c.f. smart pointer classes. In the 
non-locking case, this simply returns the stored interface pointer and the compiler then 
generates code to invoke the supplied method on the pointed-to interface. In contrast, 
the sequence of events that occur after an invocation of a method on a locking 
receptacle are more complex and are examined in detail below. 

 
3.1.2 Invocation of Locking Receptacles. To understand the implementation of 
locking receptacles, one must first be aware of the layout of a COM component in 
memory. Essentially, each component instance contains a sequence of pointers to 
vtables (each known as an lpvtbl – long pointer to vtable) for each interface it 
implements (see ‘the component’ in figure 2). Given a pointer to an interface, i.e. a 
pointer to an lptvbl, and a method to invoke on that interface, the compiler generates 
code to follow the pointers to arrive at the vtable and add an offset corresponding to 
the offset of the method in the interface’s IDL specification. The slot at the calculated 
offset into the vtable points to the method’s implementation, which is then called. 

Our locking scheme requires the insertion of reference counting code to record the 



number of in-progress invocations on a receptacle (the run-time can only obtain a 
receptacle’s lock if this count is zero) and lock status checking code that must be 
executed on each receptacle invocation. The latter code is implemented as follows: 
Each receptacle contains a ‘fake’ lpvtbl field pointing to a fake vtable also embedded 
within the receptacle. The overridden de-reference operator returns a pointer to the 
receptacle’s fake lpvtbl thus ensuring that subsequent invocations pass through the 
locking code (see figure 2 – in the ‘before’ interception state). Each slot in the fake 
vtable points to hand-crafted assembly code that calculates the offset of the compiler’s 
call into the fake vtable, checks to see if the receptacle has been locked by the run-
time (if so, the invocation is aborted with an error code1), increments the reference 
count, calls the intended method (by forming an address from the calculated offset and 
the stored interface pointers lpvtbl), decrements the reference count and returns the 
result to the invoker. 

Note that it is not viable to simply set a receptacle’s interface pointer to NULL and 
catch the ensuing exceptions that this would cause. This is partly because many COM 
compliant languages do not support exceptions. In addition, reference counting of in-
progress invocations would still required be make component instances deletion-safe. 
Finally, our invocation abort code is far more efficient than generating and handling 
an exception. 

3.2 Meta-Space Implementation 

This section details the realisation of the standard components that implement each 
of OpenCOMs’ meta-spaces and which must be inherited by every OpenCOM enabled 
component. 

3.2.1 MetaArchitecture. The meta-architecture meta-space component leverages 
support from the OpenCOM runtime (in terms of accessing a private interface) in 
order to access the system graph. The graph stores numerous pieces of information 
about each component when they are created and updates this information as and 
when the components are involved in reconfigurations. Most importantly, the graph 
maintains two lists for each component representing the identities of the components 
connected to their interfaces and connected from their receptacles respectively. This 
information allows the meta-architecture component to isolate all the connections that 
the current component is involved in. 

3.2.2 MetaInterface. COM supports interfaces as first class entities and provides a 
convenient way to query a component for them, namely the Type Library facility. 

                                                 
1  As COM uses the _stdcall calling convention, aborting a method call presents the difficulty of having 

to clean the stack as part of the abort. This is achieved by maintaining a table inside each receptacle 
that indicates the number of parameter bytes for each method in the interface of the receptacle’s type. 
This information is gleaned from the interface’s type library (see section 3.2.2) and is filled in when the 
receptacle is first connected to an interface. We define macros for receptacle invocation that embody 
different behaviour to cope with aborted calls. The most widely used is a macro that simply ‘spins’ on 
an invocation that is aborted until it succeeds, i.e. when the receptacle is (re)connected to an interface. 
Using macros avoids intrusion on the application code. 



These are binary files generated at the same time that the component’s IDL files are 
compiled and contain many type details about a component’s implementation that 
would otherwise be lost when its source files are compiled. The meta-interface meta-
space component uses the COM system ITypeLibrary interface to query a 
component’s type library file and return the IID’s of the interfaces it implements. 

Ideally, we would like to extend Microsoft’s IDL to allow receptacles (i.e. required 
interfaces) to have the same status as interfaces, i.e. to be emitted as part of a type 
library and made accessible through the ITypeLibrary interface. Currently, however, 
we tie the publication of a components’ receptacles into its implementation (i.e. part 
of the declaration of its receptacles) and have our runtime extract them from the 
component’s host Dynamic Link Library (DLL) using a pattern. 

3.2.3 MetaInterception. The implementation of our per-interface interception 
architecture (embodied by the meta-interface meta-space component) is based on a 
marshal-by-value delegation architecture proposed by Brown [3], but extended with 
dynamic instantiation capabilities. In our architecture, we can dynamically attach and 
detach lists of pre- and post-processing methods over any interface. All clients of that 
interface transparently execute these methods before and/ or after any call to a method 
on that interface. 

The method interception mechanism is very similar to the one used by locking 
receptacles. In fact, receptacles can be viewed as specialised interceptors, i.e. 
interceptors that have specific and fixed pre- and post-method processing routines 
(i.e., for reference counting, lock checking and call abortion). However, a fundamental 
difference lies in the way that the interception code is entered. A receptacle relates 
only to a single connection, whereas an interceptor needs to be present in every 
connection that the intercepted interface is participating in. For this reason it is not 
possible to simply integrate an interceptor with every receptacle instance because 
interception over the target interface would occur only on that connection to the 
interface. To resolve this issue, instantiation of an interceptor over an interface causes 
the real lpvtbl in the component instance hosting the interface to be overwritten with a 
pointer to a fake vtable inside the interceptor. All invocations on the interface are now 
directed to the interception code. When deleting an interceptor, the component 
instance’s lpvtbl to the intercepted interface is restored. Note that this mechanism is 
completely separate to that used by the receptacles; when a receptacle’s interception 
code invokes a real interface method, the invocation is transparently intercepted by 
any attached interceptor. 

Figure 2 shows receptacle based invocation and interface interception working 
together according to the descriptions above. In this diagram, the receptacle (left) is of 
interface type IY and contains a pointer to the IY interface of the component (middle). 
This interface is intercepted by the interceptor (right) in order to add pre and post 
processing routines over all the implementations of the methods in interface IY. 



op->() {return
fake_lpvtbl}

lpvtbl IX

lpvtbl IY

lpvtbl IZ

Member data

Fake lpvtbl

Fake vtable

lpvtbl IReceptacle

Interface ptr to IY

IID_IY

...

...

lpvtbl IInterceptor

Interface ptr to IY

...

...

Fake vtable

Real vtable

Before
interceptor

created

After
interceptor

created

this of receptacle this of component this of interceptor

lpvtbl IY

Receptacle
code

IY method
code

Interceptor
code

 
Fig. 2. Receptacles and Interceptors in OpenCOM. 

4. OpenORB v2: an OpenCOM Case Study 

Our ultimate purpose in designing and implementing the OpenCOM component 
model is to experiment with the construction of adaptive middleware platforms. This 
section details our experiences in implementing such a platform which we have named 
OpenORB v2 in reference to our previous implementation of reflective middleware 
[4]. 

4.1 Design 

Although OpenCOM allows the construction of lightweight, efficient and 
reconfigurable components it does not directly support their sub-composition, c.f. 
nested components that can be treated as an individual unit through a unified API. 
This was a deliberate design decision; we do not wish to enforce any particular 
system-wide nesting model upon the platforms built from OpenCOM. We envisage 
that different domains within these platforms would have different nesting 
requirements and it is therefore the responsibility of the platform builder to specify 
appropriate support for nesting within the components that populate each of these 
domains. 

In particular in the design of OpenORB v2, we have instantiated the notion of 
Component Frameworks (CFs) [18]) to support the nesting of components. CFs refer 
to “collections of rules and interfaces (contracts) that govern the interaction of a set of 



components plugged into them”. OpenORB v2’s CFs each define an abstract interface 
and manage different implementations of this interface embodied by and plugged in as 
separate components1 (see figure 3). CFs are targeted at a specific domain and 
embody rules and interfaces that make sense in that domain. The idea is that users of 
CFs interact with them for services through well defined APIs that encompass the 
services of the CF’s constituent components. Additionally, these APIs include 
operations for the constrained (re)configuration of the CF. This implies that in 
OpenORB v2, it is only the CFs themselves that use OpenCOM’s runtime support for 
reconfiguration (IOpenCOM); external entities use the CF’s own API. For instance, 
the communications domain of a middleware platform may mandate that it will only 
accept reconfiguration operations on sub-components that support a specific interface, 
e.g. IProtocol, so that it can constrain its own reconfiguration to units of 
communication protocols (rather than allowing the replacement of the whole domain). 

Note that the design of our CFs does not mandate whether they must be supported 
by a locking or non-locking OpenCOM substrate. Although using locking receptacles 
makes reconfiguration trivially safe it does incur overhead (see section 5). 
Alternatively, a CF may be able to avoid the need to use locking receptacles through 
other techniques, e.g. the checkpointing of safe reconfiguration points. This becomes 
plausible if the CF restricts the reconfiguration options for its sub-components. 

4.2 Structure 

OpenORB v2 is structured as a top-level CF that is composed of three layers of 
further CFs (see figure 3). The top level CF enforces the three layer structure by 
ensuring that each component/CF only has access to interfaces offered by 
components/CFs in the same or lower layers. The second level CFs address more 
focused sub-domains of middleware functionality (e.g., binding establishment and 
thread management) and enforce appropriate sub-domain specific policies.  

The resources layer currently contains buffer, transport, and thread management 
CFs which respectively manage buffer allocation policies, transport protocols and 
thread schedulers. Next, the communication layer contains protocol and multimedia 
streaming CFs. The former accepts plug-in protocol components and the latter accepts 
filter components. Finally, the binding layer contains the binding CF that accepts 
binding type implementations. This is a crucial part of the platform’s architecture 
because it determines the programming model offered to its users. 

 

                                                 
1  The CFs employ a multi-pointer-with-context receptacle to select between multiple managed 

components at run-time.  



7UDQVSRUW�SOXJ�LQV

%LQGLQJ
/D\HU

&RPPV
/D\HU

5HVRXUFH
/D\HU

%LQGLQJ
&)

3URWRFRO
&)

%XIIHU
0JW��&)

%7�LPSOHPHQWDWLRQV

3URWRFROV )LOWHUV

%XIIHU�SROLFLHV

7UDQVSRUW
0JW��&)

7KUHDG
0JW��&)

6FKHGXOHUV

0XOWLPHGLD
6WUHDPLQJ
&)

���

0LGGOHZDUH�7RS�&)
 

 

Fig. 3. Top level architecture of OpenORB v2. 

4.3 Implementation 

OpenORB v2 consists of approximately 50,000 lines of C++ (including 10,000 lines 
for the OpenCOM runtime and support components) divided into 30 components and 
six CFs1. The bulk of the OpenORB v2 code is derived from GOPI, a CORBA 
compliant, multimedia capable, middleware platform that we have developed 
previously [5]. We chose to reuse an existing middleware platform’s code base in 
order to reduce the development effort needed to produce an OpenCOM enabled 
ORB. It has allowed us to rapidly experiment with aspects of dynamic reconfiguration 
within the ORB rather than be side-tracked by the development of its services. 

GOPI was originally written in C for Unix platforms and consists of a single library 
statically linked to its applications. In reusing GOPI’s code base within an OpenCOM 
environment we had to undertake a number of tasks, including i) the porting of GOPI 
to Win32 (as COM and its tools are only faithfully implemented on this platform), ii) 
the conversion of GOPI to C++ (as COM components are most conveniently 
implemented in C++), and iii) the conversion from C++ to OpenCOM (i.e. the 
breaking down of the static GOPI library into dynamically loadable components). 

Particularly problematic experiences during this process were:  
• the re-implementation of a number of Unix style services under Win32 

including; the signal abstraction used heavily in GOPI timing code (re-
implemented using events and some undocumented Win32 Structured 

                                                 
1  Note that not all of the components belong to a second level CF. Some exist purely as independent 

services and are therefore not exposed for semantically managed reconfiguration (though they could 
still be reconfigured through direct access to the IOpenCOM runtime interface if desired). 



Exception Handling code) and pipes (re-implemented using shared memory 
through memory mapped files), 

• the identification of discrete services and their publicly available methods from 
the C code in order to guide their C++ re-implementation in terms of classes 
(the basis of COM components) and pure virtual classes (the basis of COM 
interfaces), 

• the use of C++ class and pure virtual class definitions in the reverse engineering 
of IDL component and interface specifications respectively when migrating the 
C++ code to the OpenCOM environment, 

• the identification of the interdependencies between OpenORB v2 components 
to facilitate the declaration of their receptacles, and 

• the isolation of dependency interactions (i.e. invocations on dependent 
interfaces) within each OpenORB v2 component, which were then replaced by 
receptacle based invocations. 

Our experience with this sizeable implementation effort has alleviated concerns we 
had about the explicit identification of component inter-dependencies; we feared that 
this may lead to a combinatorial explosion in the higher layers such that every 
component would begin to directly depend upon every other. This would make it 
difficult to code such components and make the system graph extremely complicated. 
However, we found that the maximum number of direct dependencies was seven (on 
the IIOP component) while the average was just three. 

5. Performance Evaluation 

In this section, we investigate the performance of OpenCOM and the overhead of its 
deployment within OpenORB v2. To provide meaning for the figures, we also 
compare against relevant baseline and equivalent technologies. All tests in the 
subsequent sections were performed on a Dell Precision 410MT workstation equipped 
with 256Mb RAM and an Intel Pentium III processor rated at 550Mhz. The operating 
system used was Microsoft’s Windows2000 and the compiler was Microsoft’s cl.exe 
version 12.00.8804 with flags /MD /W3 /GX /FD /O2. 

5.1 Performance of OpenCOM 

In evaluating the performance of OpenCOM we are primarily interested in the 
additional overhead of its augmentations over COM on the functional control path, 
i.e. the overhead that OpenCOM introduces into a platforms’ services. Specifically, 
we do not try to measure the overhead of non-functional OpenCOM characteristics 
(i.e. reconfiguration and architectural and interface reflection) because such 
operations are relatively rare and are executed off the functional control path, e.g. by 
third parties monitoring the functional aspects of the system.. 

The primary mechanisms of OpenCOM that affect the performance of a systems 



functional control path are receptacle based invocations and intercepted invocations1 
(i.e. intercepting reflection). Figure 4 presents the raw performance of these 
mechanisms in terms of maximum calls/sec throughput on a method with a NULL 
body. We compare against C based invocations (the basis for method calls in GOPI) 
and COM invocations (the baseline). In addition, we provide figures for the various 
combinations of locking / non-locking receptacles and interception in OpenCOM. 

 
Performance of NULL Method Invocations

30.87057

26.027495

14.149943

0.780059

0.81317

0.746815

0.353751

0 10 20 30 40

calls/sec (x 1 million)

OpenCOM (locking and
intercepted)

OpenCOM (non-locking and
intercepted)

COM (intercepted)

OpenCOM (locking)

OpenCOM (non-locking)

COM

C

 
Fig. 4. Performance comparison of NULL method invocations. 

 
The figures demonstrate a marked difference in the processing needed to execute 

simple method calls compared to the complex interactions embodied by OpenCOM 
based invocations. The C based invocation simply loads an immediate register and 
executes a machine level CALL through that register. A COM based invocation (i.e. a 
C++ virtual method call) must traverse lpvtbl and vtable pointers (through memory 
accesses) before performing the method CALL. A non-locking receptacle based 
invocation must execute the code for the overridden de-reference operator (to access 
the receptacle’s interface pointer) before performing a virtual method call on that 
pointer. Section’s 3.1.2 and 3.2.3 discuss the considerable processing involved in 
locking receptacle based and intercepted invocations respectively. As expected, there 
is slightly more overhead involved in locking than interception (see the intercepted 
COM and locking OpenCOM figures) despite both using similar techniques. This is 
because locking requires synchronisation to protect its lock variable. We use a Win32 
CRITICAL_SECTION object to minimise this overhead as it spins at user level for a 
pre-determined time before blocking in the kernel. 

Although the difference in raw invocation throughput between COM and 
OpenCOM is considerable (especially when using locking and intercepted 
invocations) it does not represent the actual effect of OpenCOM on a real system. 
This is because it is expected that the time taken to invoke a method is far smaller than 
the time taken to actually execute the method’s body. Figure 5 demonstrates the effect 
of replacing the empty method body used in figure 4 with a relatively busy method 
body (implementing a 1000 iteration empty loop). It clearly shows that as the 
complexity of the method itself grows, the overhead of its invocation becomes less 
significant and the various invocation techniques begin to converge in terms of call 
throughput. 
                                                 
1  The interceptors used in these tests had a single pre and post method attached, each with a NULL 

body. 



Performance of 1000 Iteration Loop Method Invocations

77721

77305

75781

68814

69782

70040

64510

0 20000 40000 60000 80000 100000

calls/sec

OpenCOM (locking and
intercepted)

OpenCOM (non-locking and
intercepted)

COM (intercepted)

OpenCOM (locking)

OpenCOM (non-locking)

COM

C

 
Fig. 5. Performance comparison of complex method invocations. 

5.2 Performance of OpenORB v2 

Given that receptacle and interceptor based invocations should not overly affect the 
performance of a realistic system, i.e. one that performs significant amounts of 
processing within its methods, then we would expect that OpenORB v2 will perform 
on a par with an equivalently coded system without OpenCOM. To test this theory, we 
compared the performance of OpenORB v2 with that of two other ORBs: GOPI v1.2 
and Orbacus 3.3.4. As stated, GOPI provided much of the source code for OpenORB 
v2 (i.e. is an equivalent system) but is written in C and implemented in a single 
library. Orbacus is well known as one of the fastest and most mature CORBA-
compliant (i.e. equivalent to OpenORB v2 in this sense) commercial ORBs available. 

Our tests compared raw RPC method invocations per second over the loopback 
interface on the reference machine for each ORB. An IDL interface was employed 
that supported a single operation that took as its argument an array of octets of varying 
size and returned a different array of the same size. The implementation of this 
method at the server side was null. OpenORB v2 was tested with both a locking and 
non-locking OpenCOM substrate and each of it’s RPCs involved 67 receptacle based 
invocations on the control path (32 on the client side and 35 on the server side). The 
results are shown below in figure 6. It can be seen that for packets of less that 1024 
octets, non-locking OpenORB v2 performs about the same as Orbacus, with GOPI 
running around 10% faster. Locking OpenORB v2 runs around 15% slower than 
GOPI, i.e. only 5% slower than non-locking OpenORB v2. Both GOPI and OpenORB 
v2 fair slightly better than Orbacus as packet size goes beyond 1024 octets; we believe 
this is due to the buddy memory allocation scheme [8] that they use (which performs 
better for larger buffer allocations). As might be expected, there is a diminishing 
difference between all three systems as packet size increases further; this is 
presumably because the overhead of data copying begins to outweigh the cost of call 
processing. 

Despite the additional work involved in carrying out receptacle based invocations, 
it can be seen that the performance of OpenORB v2 is entirely comparable to the non-
componentised ORBs in both non-locking and locking configurations. 



Performance of RPCs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 32 64 256 1024 2048 4096 8192 16384

Packet Size (bytes)

R
PC

s/
se

c

Orbacus

GOPI

OpenORB (non-locking receptacles)

OpenORB (locking receptacles)

 
Fig.6. Performance of OpenORB v2 versus GOPI and Orbacus. 

6. Related Work 

COM+ [11], Enterprise JavaBeans [19] and CORBA Components [14] are heavy-
weight component models for building transactional distributed applications. They all 
employ a similar architecture providing a separation between the functional aspects of 
the application, which are captured by the components, and the non-functional, 
technical concerns, which are captured by the container. In  contrast, OpenCOM is a 
lightweight, minimal component model which can be used uniformly throughout the 
system. Container-based component models can be built on top of OpenCOM if 
required. .Net [12], the new component model from Microsoft, is a major 
improvement over COM/COM+ in terms of introspection and dynamic type 
generation facilities. However, it still follows the same heavy-weight, container-based 
philosophy, whereby infrastructure services such as remoting (remote method 
invocation) are inseparable parts of the .Net runtime. 

XPCOM [13] is a lightweight component model that, similarly to OpenCOM, is 
built on top of the core subset of COM. However, it does not provide any special 
support for dynamic reconfiguration. Knit [15] is a component model for building 
systems software. However, the model is specifically designed for statically 
composing systems; the components and their interconnections do not change after the 
system is configured and initialised. The component interfaces are not object-based 
and the model mainly targets low-level, C code. MMLite [6] is an operating system 
built using COM components. It provides limited support for dynamic reconfiguration 
through the “mutation” mechanism, which enables the replacement of a component 
implementation at run-time.  

DynamicTAO [9] and LegORB [16] are flexible ORBs that employ a dependency 



management architecture. This relies on a set of configurators that maintain 
dependencies among components and provide a set of hooks at which components can 
be attached or detached dynamically. OpenCOM supports a similar capability but it is 
an integrated part of the component model. 

7. Conclusions 

This paper has considered the design and implementation of OpenCOM, a 
lightweight and efficient reflective component model designed specifically for the 
development of middleware platforms. In other words, we exploit a component model 
for the construction of the middleware platform itself, which in turn provides an 
enhanced component model (for example, with intrinsic support for distribution) to 
application developers. The resultant middleware is more open and flexible, in terms 
of both configurability and reconfigurability. 

Key features of OpenCOM include: 
• the use of various styles of receptacles (single pointer, multi-pointer-with-

context, multi-pointer) to make explicit the dependencies of components on 
their environment, 

• the use of reflection to enable introspection of interfaces and receptacles and 
the associated component graph, as well as the dynamic insertion or deletion 
of interceptors, and 

• backwards compatibility with the COM standard. 
We have also demonstrated how OpenCOM can be used to construct a middleware 

platform, based on the related OpenORB architecture. In addition, it has been shown 
that the performance of the resultant system is on a par with established monolithic 
middleware platforms while simultaneously offering the benefits of componentisation 
and reflection introduced through the use of OpenCOM. 

Acknowledgements 

The research described in this paper is partly funded by the EPSRC together with 
BT Labs (through grant GR/M04242). The research is also partly financed by France 
Telecom R&D (CNET grant 96-1B-239). Finally, we would like to acknowledge the 
contributions of our partners on the CORBAng project (next generation CORBA) at 
UniK, and the Universities of Oslo and Tromsø (all in Norway). 

References 

[1] Blair G.S., Coulson G., Robin P. and Papathomas M., “An Architecture for Next Generation 
Middleware”, Proceedings of the IFIP International Conference on Distributed Systems Platforms and 
Open Distributed Processing (Middleware'98), Davies N.A.J., Raymond K. & Seitz J. (Eds.), The 
Lake District, UK, pp. 191-206, 15-18 September 1998. 

[2] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H., Fitzpatrick, 



T., Johnston, L.,  Moreira, R., Parlavantzas, N.,  Saikoski, K., “The Design and Implementation of 
OpenORB v2”, To appear in  IEEE DS Online, Special Issue on Reflective Middleware, 2001. 

[3] Brown, K., “Building a Lightweight COM Interception Framework Part 1: The Universal Delegator”, 
Microsoft Systems Journal, January 1999. 

[4] Costa, F., Duran, H., Parlavantzas, N., Saikoski, K., Blair, G.S., and Coulson, G., “The Role of 
Reflective Middleware in Supporting the Engineering of Dynamic Applications”. In Walter Cazzola, 
Robert J. Stroud and Francesco Tisato, editors, Reflection and Software Engineering, Lecture Notes 
in Computer Science 1826. Springer-Verlag, 2000 

[5] Coulson, G., “A Configurable Multimedia Middleware Platform”, IEEE Multimedia, Vol 6, pp 62-76, 
No 1, January - March 1999. 

[6] J. Helander and A. Forin. “ MMLite: A Highly Componentized System Architecture”. In Proc. of the 
Eighth ACM SIGOPS European Workshop, pp 96-103, Sintra, Portugal, September 1998. 

[7] Kiczales, G., des Rivières, J., and Bobrow, D.G., “The Art of the Metaobject Protocol”, MIT Press, 
1991. 

[8] Knuth, D.E., “The Art of Computer Programming, Volume 1: Fundamental Algorithms”, Second 
Edition, Reading, Massachusetts, USA, Addison Wesley, 1973. 

[9] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., and Campbell, R.H., 
“Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB”. IFIP 
International Conference on Distributed Systems Platforms and Open Distributed Processing 
(Middleware'2000). New York. April 3-7, 2000.  

[10] Microsoft, “The Component Object Model Specification”, 
http://www.microsoft.com/com/resources/comdocs.asp. Last updated: 15/04/1999.  

[11] Microsoft, COM Home Page, http://www.microsoft.com/com/default.asp. Last updated: 01/06/2000. 
[12] Microsoft, .Net Home Page, http://www.microsoft.com/net. Last updated: 01/02/2001. 
[13] Mozilla Organization, XPCOM project, 2001, http://www.mozilla.org/projects/xpcom 
[14] Object Management Group, “CORBA Components” Final Submission, OMG Document orbos/99-

02-05. 
[15] A. Reid, M. Flatt, L. Stoller, J. Lepreau, E. Eide “Knit: Component Composition for Systems 

Software”. In proceedings of 4th Symposium on Operating Systems Design and Implementation 
(OSDI 2000), Usenix Association, pp. 347-360, October 2000. 

[16] Roman, M., Mickunas, D., Kon, F., and Campbell, R.H., IFIP/ACM Middleware'2000 Workshop on 
Reflective Middleware. IBM Palisades Executive Conference Center, NY, April 2000. 

[17] Rogerson, D., “Inside COM”, Microsoft Press, Redmond, WA, 1997. 
[18] Szyperski, C., “Component Software: Beyond Object-Oriented Programming”, Addison-Wesley, 

1998. 
[19] Sun Microsystems, “Enterprise JavaBeans Specification Version 1.1”, 

http://java.sun.com/products/ejb/index.html. 
 



Appendix A: Essentials of Microsoft’s Component Object Model 

This appendix offers a brief overview of Microsoft’s Component Object Model 
(COM) [Microsoft,99] that relates to its use in OpenCOM, i.e. using it’s in-process 
server model (where components reside in the same address space). It is not intended 
to provide an exhaustive overview of the technology. In particular, we do not discuss 
aspects of COM’s distribution mechanisms, i.e. its local server model (where 
components reside in different address spaces but on the same machine) and its 
latterly introduced remote server model extension (where components reside on 
different machines) known as DCOM. 

COM is underpinned by three fundamental concepts: i) uniquely identified and 
immutable interface specifications, ii) uniquely identified components that can 
implement multiple interfaces, and iii) a dynamic interface discovery mechanism. 
COM supports uniqueness through the use of 128 bit globally unique identifiers 
known as GUIDs, these are generated through the use of platform specific tools. The 
interface discovery mechanism is implemented through the notion of a special 
interface called IUnknown that must be implemented by every COM component. The 
purpose of IUnknown is actually twofold: i) it allows the dynamic querying of a 
component (QueryInterface() operation) to find out if it supports a given interface (in 
which case, a pointer to that interface is returned), and ii) it implements reference 
counting in terms of the number of clients using a components’ interfaces. Reference 
counting is used to garbage collect components when they no longer have any clients. 

Component and interface definitions are specified in Microsoft’s language 
independent Interface Definition Language (MIDL) and then a tool (midl) is used to 
automatically generate language specific templates of these specifications for 
programmers to complete. Midl also generates files known as type libraries that 
efficiently embody all manner of type information related to components and their 
interfaces. Though initially intended to support dynamic method dispatch through late 
binding, these files include meta-information describing components and their 
interfaces that would otherwise not be available to a compiled language at runtime. 

Importantly, the COM standard also defines the way in which components 
interoperate at the binary level. Primarily, this means in terms of the vtable; a C++ 
native data structure that mandates the way in which access to a components’ 
interfaces is achieved. The vtable is effectively a per-component table of function 
pointers and any language that can support function pointers may natively interoperate 
with components written in C++. In addition, languages that do not support function 
pointers can still implement COM components if their support environments can be 
modified to export their functionality through function pointers. For instance, Java can 
implement COM components if the Java Virtual Machine (JVM) is modified to make 
its hosted Java classes available through a vtable. In addition to the use of the vtable 
to support binary compatibility, COM also mandates that all components must be 
compiled using the _stdcall calling convention (which essentially defines that each 
component method should clean the stack of its parameters before returning). This has 
important implications for our receptacle locking and interface interception 
architectures (see sections 3.1.2 and 3.2.3 respectively). 

Finally, COM employs a system-wide repository known as the registry for locating 
component object files, type libraries, interface definitions etc. based on their GUIDs. 


