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Abstract 
 
One of the most significant limitations of current 
middleware platforms, both commercial and research, is 
that they typically support only a small, pre-defined, set 
of fundamental binding types (e.g., remote method 
invocation). This restriction limits the scope of platforms 
in that they cannot easily accommodate, or easily be 
extended to accommodate, richer or more specialised 
forms of interaction (e.g. events, media streaming, 
multicast, and many others discussed in the paper). This 
paper describes a highly extensible, component-oriented 
framework for the definition and implementation of such 
binding types. We motivate and specify the framework in 
detail and evaluate it by providing examples of its use. 

 
 
 
1. Introduction  

 
A primary function of middleware is to interconnect 

application components. To this end, middleware 
platforms offer interaction abstractions called bindings. 
However, one of the most significant limitations of 
current middleware platforms, both commercial and 
research, is that they typically support only a small, pre-
defined, set of fundamental binding types (e.g., remote 
method invocation). This restriction limits the scope of 
platforms in that they cannot easily accommodate, or 
easily be extended to accommodate, richer or more 
specialised forms of interaction (e.g. events, media 
streaming, or message queuing). Furthermore, when 
multiple binding types are indeed supported, they tend to 
be implemented in an ad-hoc way and to rely on distinct 
infrastructures. For example, CORBA events [16] and 
media streams [17] have completely separate APIs and 
implementations and, moreover, these are completely 
distinct from the API/ implementation of the core remote 
method invocation binding type. Such a lack of 
integration leads to missed opportunities for design and 
code reuse, increases the cognitive load on middleware 
users, who have to deal with multiple different APIs, and 

leads to problems in realising globally-coordinated QoS 
across binding types.  

To address these concerns, this paper describes a 
highly extensible and flexible component-based 
framework for the design, development, deployment and 
use of binding types. By capturing diverse forms of 
interaction as binding types (hereafter, ‘BTs’ ) within the 
framework, we argue that our approach can significantly 
simplify application development, increase the 
interoperability options available to developers, and 
promote the reuse of recurring interaction patterns and 
mechanisms.  

Here are some examples of BTs that we would like to 
be able to support: (1) remote method invocation (RMI) 
in its numerous variants, (2) messaging and eventing in 
their numerous variants, such as asynchronous method 
invocation, message queuing and publish/subscribe 
models, (3) continuous media streaming, (4) group 
communication in its numerous variants, (5) shared data 
spaces for communication such as tuple spaces, 
blackboard systems, or mailboxes, (6) SQL links between 
applications and databases, (7) FTP links, (8) Unix-like 
pipes, (9) BTs that encapsulate voting protocols, auction 
protocols, (10) distributed resource allocation protocols, 
(11) BTs that execute a workflow process involving 
multiple processing entities, (12) BTs that encapsulate 
common interactions in e-Science GRIDs, (13) drag-and-
drop protocols between GUI components, (14) Model-
View-Controller collaborations, or (15) multi-player 
game protocols. 

Such communication (and, indeed, coordination) 
services are needed in many different contexts by a 
variety of applications. Therefore, providing these 
services as part of the middleware is highly 
advantageous. Of course, it is always possible to 
implement such facilities in terms of the small, fixed set 
of BTs offered by current platforms. But the purpose of 
middleware is not to provide a theoretically minimum set 
of communication primitives; rather, it should facilitate 
the development of enterprise applications by raising the 
level of abstraction over interaction mechanisms. 
Platforms should therefore offer an (extensible) range of 



BTs, while ensuring that BT APIs are consistent and that 
their implementations are efficiently integrated within 
the platform.  

The specific goals of this paper are: 

• to provide a detailed overview of our extensible 
binding framework in terms of the design, 
development, deployment and use of BTs 

• to illustrate how the binding framework can be 
used to define three representative BTs. 

The paper is structured as follows. First, section 2 
provides context for the framework in terms of the 
OpenCOM/ OpenORB middleware technology on which 
it is founded, the assumed conceptual binding model, and 
the way in which binding types are specified abstractly. 
Then, sections 3, 4, and 5 present the binding framework 
in detail, and section 6 illustrates how it can be used to 
construct three representative BTs. Finally, section 7 
reviews related work and section 8 evaluates the 
framework and draws conclusions. 

 
2. Context 

 
2.1. OpenCOM and OpenORB  

 
The binding framework builds on our previous work 

on the OpenCOM [4] component model and the 
OpenORB component-based middleware architecture 
[5,19]. OpenCOM is a lightweight, non-distributed 
component model inspired by Microsoft COM [14]. It is 
designed to include only aspects that are essential in 
supporting the notion of a component and can be used for 
composing both applications and middleware. The 
OpenORB architecture supports the development of 
highly configurable and dynamically reconfigurable 
reflective middleware platforms and is structured in 
terms of component frameworks [24]. Essentially, 
component frameworks are reusable architectures that 
apply to specific domains and are designed to be 
instantiated in terms of components. The binding 
framework that is the subject of this paper is specified 
and implemented as such a component framework. In 
general, the role of component frameworks (hereafter 
‘CFs’) is to provide rules for structuring localised 
domains of middleware functionality (e.g. concurrency 
support, buffer management, message demultiplexing, or 
pluggable protocols). Typically, CFs include software 
that supports the rules at runtime and helps maintain 
integrity in the face of dynamic reconfiguration. For 
example, the pluggable protocols CF defines rules for 
composing “plugged-in”  protocol components and 
manages their dynamic reconfiguration.   

 The CF-based structure of OpenORB, complete with 
the binding framework (labelled ‘Binding CF’), is 
il lustrated in Fig. 1. As implied by Fig. 1, the binding 
framework has access, in the ‘communications layer’ , to 
an extensible range of CFs—the diagram shows a 
pluggable protocols CF and a media streaming CF. In 
addition, it has access to a range of ‘ resources layer’  
CFs—either indirectly, via communications layer 
intermediaries, or directly if desired. Note also that the 
three layers are themselves encapsulated by an overall 
top-level CF called ‘Middleware Top CF’ . This is 
responsible for managing the lifecycle of its encapsulated 
CFs, for enforcing policies concerning dynamic changes 
in layer composition, and for supporting service 
discovery to resolve dynamic dependencies between 
layers [5]. Moreover, it imposes that the encapsulated 
CFs conform to a ‘ resources framework’  (not discussed in 
this paper) that allows fine-grained control over, and 
accounting for, middleware-managed resources like 
threads, buffers and network bandwidth (e.g. to simplify 
QoS management) [20]. 
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Figure 1. The OpenORB architecture 
 

2.2. Conceptual Binding Model 
 

The binding framework is based on a conceptual 
binding model, influenced by RM-ODP [13], which 
describes what bindings are, how they are established and 
controlled, what entities are involved, and how those 
entities interact. The key properties of this model, which 
are mainly determined by the fact that it must be very 
generally applicable, are as follows: First, the model 
encompasses both local bindings which are primitively 
realised within a single address space, and distributed 
bindings, which can span address spaces and machines. 
Second, the model assumes multi-party bindings—i.e., 
bindings between any number of participants (an RMI 
binding involving two participants is merely a special 
case of this more general case). Third, the model 



supports explicit binding—i.e., bindings are created 
explicitly by application code and are themselves 
represented as components. This ‘ reification’  of bindings 
allows applications to select from a possible range of 
binding types, and opens the possibility of controlling, 
managing and adapting bindings at runtime (via 
interfaces on the binding components). Finally, the 
model supports third-party binding. This means that the 
party that initiates binding establishment may or may not 
itself be a communicating participant in the binding. 
Aside from reasons of generality, third-party binding is 
particularly beneficial because it isolates the component 
interconnection logic, thus making it easier to change.  

At a more detailed level, the conceptual binding 
model defines a number of basic entities: viz. 
participants, binders, bindingCtls, generators, reps, 
irefs, resolvers, and APUs. These entities, together with 
their inter-relationships, are illustrated in Fig. 2. In brief, 
bindings are established between binding participants 
and the responsibility for binding establishment is 
assigned to binders. Binders take as input a number of 
components representing participants, together with 
related information such as QoS specifications. They then 
verify that the supplied participant components conform 
to appropriate participant roles, which are defined in the 
associated BT specification (see section 2.3). 
Subsequently, binders invoke appropriate operations on 
the participant components and establish the binding 
with the aid of services offered by the underlying 
platform. If binding establishment succeeds, the binder 
returns a component (bindingCtl) through which the 
binding can be controlled and managed.  
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Figure 2. The binding model entities 

 
Participants that are remote with respect to a binder’s 

location are represented by reps (‘ remote participant 
representatives’ ). The process of creating a rep falls into 
two stages as follows. First, a generator is used at the 
participant’s (remote) site to generate both an iref and an 

associated communication infrastructure. An iref is a 
value that represents a participant and can be passed 
around the distributed system. Second, the iref is 
transferred to the binder’s site (by some means or other) 
at which it is passed to a resolver that is responsible for 
creating a corresponding rep. This whole process is 
referred to as participant remoting.  

A very common special case, which is specifically 
accommodated by the framework, involves first-party 
bindings that are initiated by an anonymous participant 
(e.g., the ‘client’  in traditional RMI bindings). The 
essence of such bindings is that one participant, the 
binding initiator, is not explicitly represented; its 
properties are implied because it is collocated with the 
binder. In this case, when the binding is established, the 
binder returns a so-called APU (“anonymous participant 
use”) component (e.g., the ‘proxy’  in traditional RMI 
bindings). Essentially, the need for APUs is a 
consequence of the asymmetric nature of object 
interfaces. 

Finally, it is important to note that all of the above 
defined entities (resolvers, binders, etc.) are in fact roles, 
and that individual components can play more than one 
role at a time (e.g., a resolver component can also serve 
as a binder). A corollary of this is that a single 
component can take part (i.e., play the participant role) 
in many different bindings of different types. This 
reduces the coupling of interacting components to the 
used BTs, which increases the reusability of components 
and allows the system to be easily adapted by evolving or 
replacing BTs.   

 
2.3. Specifying Binding Types  
 

The framework defines BTs as systems that enable 
components to cooperate in specific ways. Since the goal 
of BTs is to support and mediate a given scope of 
interactions, a BT specification can most naturally be 
expressed using collaborations as defined in UML [18]. 
More specifically, a BT specification can be decomposed 
into four types of collaborations between the BT and two 
types of external role: binding participants and binding 
managers. Binding participants are components that 
interact through BT-provided bindings and binding 
managers are components that establish and control 
bindings. The collaborations are characterised as follows: 

• Binding Participation describes the interaction 
among binding participants that is supported by 
and embodies the purpose of the BT. 

• Iref Generation and Iref Resolution describe the 
process of managing irefs, which is a prerequisite 
to establishing bindings with remote participants. 



• Binding Establishment describes the required 
sequence of actions (initiated by the binding 
manager role) to set-up a binding between some 
number of participants. 

• Binding Control describes the process of 
managing (again, by the binding manager role) an 
already-established binding, involving tasks such 
as, e.g. monitoring and adaptation, controlling 
and changing the QoS, adding/ removing 
participants, and binding destruction. 

Whereas the first collaboration, binding participation, 
is unspecified by the binding framework and can take any 
required form, the remainder are all constrained by the 
need to conform to the Binding API contract described in 
section 4. These properties together facilitate the creation 
of new BT specifications, while minimizing any 
restrictions on the range of BT-supported interactions. 
From a practical point of view, we use UML tools and 
techniques to specify both functional and extra-functional 
properties of the BT collaborations. Of course, 
specialized QoS modelling languages expressed as UML 
extensions could also be applied if needed (e.g., [1]). 

 
3. Overall Architecture of the Binding CF 
 

The Binding CF provides abstractions and rules that 
support both the specification (according to the scheme 
outlined in section 2.3) and the implementation of BTs. 
These abstractions and rules are designed to be highly 
generic to maximise the diversity of useful 
communication and coordination mechanisms that can be 
captured as BTs.  

Architecturally, the Binding CF defines three roles 
that are played by participating components: i) the 
binding user role (this combines the binding manager/ 
participant roles specified in section 2.3, ii) the BT 
implementation role, and iii) the Binding CF 
implementation role. The CF itself is decomposed into 
two contracts which structure the cooperation between 
the three roles (see Fig. 3):  
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Figure 3. The two binding CF contracts 

• The Binding API defines the view of BTs seen by 
binding users and provides the programming 
model for handling bindings. 

• The BT Contract defines the collaboration 
between BT implementations and the Binding CF 
implementation, which has the goals of (1) 
facilitating the development of BT 
implementations, and (2) supporting their 
dynamic configuration.  

All of these issues are dealt with in detail in sections 4 
and 5 below. 

 
4. The Binding API 

 

The Binding API provides generic interfaces 
corresponding to the conceptual binding model entities 
that were described in section 2.2, together with rules 
governing their BT-specific extension. All BT 
specifications (and thus implementations) must conform 
to the Binding API contract—i.e. they can extend the 
contract as required but must include the generic 
interfaces discussed in this section. 
 
4.1. Realising the Basic Binding Model Entities 
 
4.1.1. Preamble. BTs are identified by globally unique 
names, BT identifiers, that are mapped to deployable 
(sets of) components by the Binding CF. This separation 
of BT specification from implementation, coupled with 
the fact that BT specifications are assumed to be 
immutable, enables BT implementations to be upgraded 
without affecting binding users. 

The BindingCFI component, which represents the 
Binding CF implementation, provides the initial access 
point for BT-provided facilities. It offers the interface 
IBTAccess that provides three operations which 
respectively resolve BT identifiers to binders, resolvers 
and generators (see below1). 
 

interface IBTAccess : IUnknown { 
 HRESULT GetBinderForBT ([in] OLECHAR* BTid, 

[in] REFIID riid,  
 [out] IUnknown**); 

 HRESULT GetResolverForBT ([in] OLECHAR* 
BTid,[out]IResolver**); 

 HRESULT GetGeneratorForBT ([in] OLECHAR* 
BTid,[in] REFIID riid,  

                                                        
1 IUnknown, as defined by Microsoft’ s COM, is a special interface 

supported by all components. It includes an operation, QueryInterface(), that 

allows one to dynamically discover other interfaces supported by the 

component. REFIID represents an interface type and is typically used to 
request a specific interface on a component in a single step. 

 



  [out] IUnknown**); 
} 
 

4.1.2. Binder. The Binding API mandates that there is a 
single binder per supported BT at runtime. The 
component type (i.e., set of supported interfaces) of 
binders is highly dependent on the associated BT. The 
Binding API itself requires only that a single, generic 
interface, IGenericBinder, must be minimally offered. 
The API further recommends that other BT-specific 
interfaces follow the general form of IGenericBinder for 
consistency reasons (where possible).  
 

interface IGenericBinder : IUnknown { 
 HRESULT Bind ([in] IUnknown* participants, 
  [in] long participantCount, 
  [in] VARIANT bindContext,  
  [out] BindingCtl** ppBindingCtl,  
  [out] IAPU** ppAPU); 
} 

The Bind() operation takes as arguments a set of 
participants (represented as IUnknown pointers) and a 
bindContext value (of VARIANT type) that holds generic 
context information. Using this information, Bind() 
attempts to establish a binding, and, on success, it returns 
a bindingCtl and (optionally) an APU. The interpretation 
of the bindContext parameter is BT-specific; for example, 
it can be used to pass a QoS specification in an agreed 
textual format, or a reference to a QoS negotiator 
component.  

Despite its flexibility, IGenericBinder cannot possibly 
capture all the potential binding establishment scenarios, 
which means that additional, BT-specific binder 
interfaces will normally be required. However, the benefit 
of generic interfaces, such as IGenericBinder, is twofold. 
First, they largely increase the scope of binding scenarios 
that can be accommodated, while minimally impacting 
ease of use. Second, they act as uniform interfaces, which 
promotes composability. For instance, they could be used 
by an automated, metadata-driven tool that receives as 
input an architectural description of a system in terms of 
components and connectors and instantiates the system. 
 
4.1.3. Generator. Generators are responsible for creating 
irefs and their associated communication infrastructure. 
There is a single generator per BT, and the component 
type of the generator is specific to that BT. The API 
defines only a single, generic interface, 
IGenericGenerator, which must be minimally offered. 
This provides an operation Generate() that takes as 
arguments a participant, an interface type and a BT-
specific generateContext value (of VARIANT type); it 
returns an iref.  

The StdGenerator component is a special generator 
implementation, provided by the framework by default, 

that is used to marshal arbitrary component references 
(i.e., pointers to component instances). Built-in support 
for marshalling component references is necessary 
because the component model presumes object-oriented 
interfaces, which means that component references may 
need to be passed as arguments over already established 
bindings. The StdGenerator  is accessed via BindingCFI  
by using a well-known BT identifier. It offers the 
IGenericGenerator interface and implements it by 
selecting the target BT (see below), finding the 
corresponding BT-specific generator (via the 
BindingCFI) and delegating the generation request to it. 
The BT selection step gives an opportunity for the 
component to itself decide a preferred BT for iref 
generation (marshalling). Specifically, if the component 
implements the IStdMarshal interface, BindingCFI 
invokes it to retrieve a BT identifier; otherwise a default 
BT is used. 
 

4.1.4. Resolver. Resolvers offer the interface 
IResolver which has a single operation Resolve() that 
takes as arguments an iref and an interface type, and 
returns a reference of the requested type. There is a single 
resolver per BT. 

The StdResolver component is a special resolver 
implementation, provided by the framework as default, 
that can resolve arbitrary irefs. StdResolver implements 
the interface IResolver and is accessed through the 
BindingCFI via a well-known BT identifier. It works by 
extracting the BT identifier from the iref (exploiting the 
standardised iref format—see below), finding the 
associated resolver (via the BindingCFI), invoking the 
resolver and returning the resulting reference.  
 
4.1.5. Representations of the other Basic Entities. 
Participants are represented in the Binding API as 
components that are able to conform to some participant 
role defined by the associated BT specification. Binders 
and generators are expected to dynamically verify that 
participant components conform to the expected role by 
using IUnknown.QueryInterface() and/or extended meta-
information provided by the component model. For 
example, a binder (or generator) can check that a 
participant offers and uses a given set of interfaces. 
Alternatively, it can check that an offered interface is 
‘one-way’  (i.e., its operations have only input 
parameters). This dynamic verification allows 
components to participate in various BTs—even BTs that 
did not exist when the components were implemented—
and play various roles. Moreover, components can be 
upgraded without affecting their BT participation.  

Irefs are represented as strings of a standardised 
format. Each iref is associated with a single BT and 



contains a BT identifier together with BT-specific data. 
Reps are represented as components that support 
interfaces used by binders for the purpose of binding 
establishment. A rep is associated with a single BT, 
which defines its component type. At a minimum, reps 
must offer the interface IRep which defines a single 
operation to return the rep’s associated BT identifier.  

APUs are represented as components that minimally 
offer the interface IAPU, which defines an operation to 
return the associated bindingCtl. Finally, bindingCtls are 
represented as components that minimally offer the 
generic interface IBindingCtl with operations to destroy 
the binding, get/set the QoS of the binding (represented 
generically as a string) and subscribe/unsubscribe to 
events generated by the binding. BindingCtl components 
will normally offer additional, more sophisticated and 
strongly-typed interfaces. 
 
4.2. Collaborations specified by the Binding API  
 

We are now in a position to illustrate the use of the 
Binding API by describing the interactional view of the 
generic collaborations discussed in section 2.3.  

Binding Establishment. The steps for establishing a 
binding are: 

1. The binding user selects a BT and invokes 
BindingCFI::IBTAccess to retrieve a binder 
interface (e.g., IGenericBinder). 

2. The binding user invokes the binder interface, 
passing the participant components and other 
required information as arguments.  

3. The binder establishes the binding, and returns a 
bindingCtl and (optionally) an APU. 

Iref Generation. The steps for generating an iref are: 
1. The binding user selects a BT and invokes 

BindingCFI::IBTAccess to retrieve a generator 
interface. The BT must support participant 
remoting. 

2. The binding user invokes the generator interface, 
passing as arguments a participant component 
and other information. 

3. The generator generates an iref and associated 
infrastructure (e.g., stub, protocols) and returns 
the iref to the binding user. 

4. The binding user exports the iref (e.g., to a 
naming service, a trader, a web page). 

The API recognises a specialisation of this 
collaboration that applies when the binding user has no 
context in which to base a selection of BT. This situation 
typically arises when a component reference must be 
passed through an already established binding. In this 
case, the binding user (e.g., the part of the already 

established binding that performs marshaling) invokes 
the  IGenericGenerator interface on the default 
StdGenerator component, which in turn selects a more 
specific generator and delegates the invocation to it, as 
seen in section 4.1.3. 

Iref Resolution. An iref may arrive through an already 
established binding or be obtained from a file, the GUI 
etc. The steps for resolving an iref are: 

1. The binding user selects the StdResolver BT 
identifier and retrieves the IResolver interface 
(using BindingCFI::IBTAccess). 

2. The binding user invokes 
StdResolver::IResolver.Resolve(), passing the 
iref as the argument. 

3. StdResolver extracts the BT from the iref, 
retrieves the IResolver on the corresponding 
resolver (using BindingCFI::IBTAccess), 
invokes it, and returns the result to the binding 
user. 

There are two possible BT-dependent variations 
regarding the resulting component: i) the resulting 
component is a rep, which can subsequently participate 
in binding establishment, and ii) the resulting component 
is an APU that is associated with a bindingCtl. In the 
second variation, the resolver implementation also plays 
the role of the binder and completes the binding between 
the participant corresponding to the iref and an 
anonymous participant. 

Binding Control. The binding user controls a binding 
through the bindingCtl that is obtained as a result from 
either binding establishment or iref resolution, as 
described above.  
 
5. The BT Contract 
 

The BT Contract defines the collaboration between BT 
implementation components and the Binding CF 
implementation itself. A structural view of the 
collaboration is shown in Fig. 4. The interfaces and 
constraints pertaining to each party are summarized next.  

 



 

Figure 4. Structure diagram for BT contract 
 
5.1. BT implementations 
 

The BT Contract specifies that the implementation of 
a BT is packaged into two separate singleton 
components: a BinderProvider component and a 
GeneratorProvider component. The former supplies 
implementations for the binder and resolver roles of the 
BT; the latter supplies the generator role. The motivation 
for separating the BT implementation into two 
distinguished components is that the two parts are largely 
self-contained and frequently only a single part needs to 
be used within a process (e.g., an RMI generator would 
not be useful in the client tier of typical enterprise 
applications). The separation means that the two parts 
can be deployed and replaced independently. Of course, 
the BT components can make use of, and be composed 
of, further components; the BinderProvider and 
GeneratorProvider are simply the components that are 
recognised by the BT Contract. 

The two mandatory BT implementations, StdResolver 
and StdGenerator  (see section 4.1), are packaged as 
normal BT components and thus they are replaceable. 
For example, StdResolver can be replaced to modify the 
standardised iref format, and StdGenerator  can be 
replaced to modify the BT selection process. 

Both types of BT component offer an 
IBTImplementation interface which defines operations for 
lifecycle management (i.e., initialisation and termination) 
and for retrieving the ‘state’  of the component. A BT 
component may be in one of two states: i) READY, 
which indicates that the component is not currently being 
used by any clients, and ii) ACTIVE, which means that 
the component is currently in use (i.e. clients hold 
references to it). The component moves between the 
ACTIVE and READY states autonomously (exploiting 

reference counting) and can be terminated only when it is 
in the READY state. Moreover, the component is 
responsible for notifying the Binding CF implementation 
about its state changes (see below).  

A BT component can have two kinds of usage 
dependencies: i) dependencies on other BTs (e.g., a BT 
component that realises a distributed auction protocol—
see section 6.4—may rely on an RMI BT), and ii) 
dependencies on services provided by the lower platform 
layers (i.e., the communications and resources layers, see 
section 2). To resolve such dependencies, BT components 
use the IBTAccess and IBTServices interfaces 
respectively, both of which are offered by the Binding CF 
implementation (see below).  
 
5.2. The Binding CF Implementation 
 

The Binding CF implementation is packaged within a 
singleton component (BindingCFI) which has the 
following three responsibilities: i) to act as the access 
point for BTs, ii) to manage the configuration of BT 
components, and iii) to provide BT components with 
access to other BTs and low-level services.  

To carry out the first responsibility, BindingCFI 
exposes the IBTAccess interface, as was described in 
section 4.1, which it implements internally by invoking a 
registry component. This maintains a shared, per-node, 
persistent repository that maps from BT identifiers to 
BinderProvider and GeneratorProvider component 
identifiers. If a BT identifier cannot be found in the per-
node repository, BindingCFI uses an installer 
component. This has the responsibility to contact some 
remote source (e.g., a global name service, or a specific 
URL) and download and install the components 
corresponding to the globally unique BT identifier. After 
finding suitable component identifiers, BindingCFI 
instantiates, initialises, and uses the corresponding BT 
component instance to retrieve the interface requested by 
the IBTAccess invocation. The instance is kept in an 
internal registry for later reference. 

To accomplish its second responsibility, BindingCFI 
uses the IBTImplementation interface (see section 5.1) to 
cause BT components to initialise and terminate 
themselves. Moreover, it offers the 
IBTImplementationUse interface to accept notifications 
about changes in their state. Different lifecycle 
management policies are implemented using pluggable 
unloader components, which track state changes in BT 
components and decide when to remove them. Moreover, 
as the standard pattern in OpenORB mandates [5], 
BindingCFI  exposes a reconfiguration interface 
(IBindingCFConfiguration) that allows clients to 
dynamically add, remove, replace and retrieve 



BinderProvider, GeneratorProvider and unloader 
components. The reconfiguration interface disallows the 
removal of active BT components. 

To carry out its third responsibility, BindingCFI 
exposes the interfaces IBTAccess and IBTService. 
IBTAccess we have already discussed in section 4.1.1; 
IBTServices defines an operation GetService() which 
receives as an input a service identifier and an interface 
type and returns an interface of the requested type. 

 
Interface IBTServices : IUnknown { 
 HRESULT GetService([in] OLECHAR* serviceID, 

[in] REFIID riid,  
   [out] IUnknown**);  
} 

 The set of available service identifiers, associated 
interfaces and interface contracts is standardized by the 
top-level CF in the middleware architecture (see Fig. 1). 
This minimizes the dependencies of the binding CF on 
its context in the architecture and increases its 
reusability.  
 
6. Some Example BTs 
 
6.1. Overview 

 
We now demonstrate the extensibility and ease of use 

of the Binding CF by presenting the design and outline 
implementation of three BTs: a simple RMII BT, a 
publish/subscribe BT and an auction protocol BT. Space 
constraints restrict us to consideration of just three BTs; 
the implementation of a wide range of others is discussed 
in [25]. 

Adding a new BT requires two separate pieces of 
development work: i) a BT specification, which must 
conform to the Binding API, and ii) a BT 
implementation, which realises the specification and 
conforms to the BT Contract. BT specifications, which 
are discussed in terms of the collaborations discussed in 
section 2.3, are the public part that is necessary both for 
providing new implementations, and for documentation 
purposes. In the following sections, each example BT is 
specified using the following format: (1) Participant 
Roles—describes participant roles and their 
relationships, (2) Binding Participation—describes how 
participants interact through an established binding, (3) 
Iref Generation/Resolution—describes the management 
of irefs, (4) Binding Establishment—describes the 
process of binding establishment, (5) Implementation—
outlines possible implementations of the BT, and also 
discusses how the API could accommodate more 
sophisticated extensions or variations of the BT. 

 
6.2. A Remote Method Invocation BT 

 
This BT provides the traditional RMI interaction style 

and can easily be accommodated by the framework with 
very minimal extensions to the Binding API.  

Participant Roles 

• Server—a component that accepts remote method 
invocations. 

• Client—an anonymous participant that invokes 
operations on the server. 

Binding Participation. Client-originated invocations 
result in corresponding server invocations. The 
communication is synchronous and the delivery 
guarantee is at most-once; other non-functional 
properties, such as response delay, are not constrained. 

Iref Generation/Resolution. The RMI generator and 
resolver offer the standard, generic interfaces defined in 
the API.  

Binding Establishment. The resolver plays also the 
role of a binder; it establishes the binding using the iref 
and returns an APU component, which serves as the 
traditional proxy to the server. 

Implementation. The implementation builds on the 
low-level services provided by OpenORB. The API can 
also accommodate more sophisticated extensions of this 
BT, which offer flexible bindings with QoS support. In 
such a BT, the bindingCtl component, exposed through 
the APU, would be used to monitor and adapt the binding 
at the client-side (e.g., receive events notifying a drop in 
throughput). At the server-side, the generator would offer 
extra interfaces to configure its behaviour (e.g., to decide 
which protocol stack to use for the server). Moreover, the 
resolver could create a rep that needs to be explicitly 
bound using a binder. The separate binding 
establishment step could support negotiation of QoS 
properties of the bindings. 
 
6.3. A Publish/ Subscribe BT 
 

This BT provides a publish/ subscribe interaction 
style, whereby publishers and subscribers are indirectly 
associated through a separate entity, termed an ‘event 
channel’ . The event channel functionality is realised by 
the BT. An ‘event’  is a single invocation on a event 
interface, originated by a publisher and delivered by the 
BT to the appropriate subscribers. 

Participant Roles 

• Publisher—an anonymous participant that 
originates events (see Fig. 5). 

• Subscriber—a component that offers the event 
interface and receives events. 



• Event Channel—a logical participant realised by 
the BT itself. It is associated with a single event 
interface, which must be one-way; that is, all 
operations must contain only input parameters.  

 

Publisher SubscriberEventChannel
1

1

* *

«interface»

EventInterface

1

«call»

 
Figure 5. Publish/ Subscribe BT participants 

 
Binding Participation. When a publisher invokes an 

operation on an event interface, the corresponding 
operation with the same arguments gets invoked on all 
subscribers. The delivery guarantee is at-most-once, and 
event firing is synchronous; the publisher is blocked until 
the invocations on the subscribers have been completed. 
The BT does not specify the order or any further QoS 
characteristics of event delivery.  

Iref Generation/Resolution. Irefs are generated for the 
event channel and subscriber participants—publishers 
are anonymous. The standard generator API is extended 
to offer two extra interfaces: IEventChannelGenerator, 
and ISubscriberGenerator. The Generate() operation of 
the first receives the event interface type as an argument, 
verifies that this is ‘one-way’  using reflection, and 
creates the channel iref. The Generate() operation of the 
second accepts a subscriber interface pointer, verifies that 
the interface is one-way, and creates the iref. The 
channel/ subscriber irefs are transformed into 
corresponding rep components through the resolver. 

Binding Establishment. This collaboration is separated 
into two parts: i) the binding of publishers to the event 
channel, and ii) the binding of subscribers to the event 
channel. The standard binder API is extended to offer 
two extra interfaces: IPublisherToChanBinder, and 
ISubscriberToChanBinder. The Bind() operation of the 
first receives as argument a channel rep and returns both 
a bindingCtl and an APU. The APU supports the event 
interface and can be used for firing events. This separate 
publisher-to-channel binding step can be bypassed in this 
simple BT. Indeed, it can be assumed that the channel 
iref has all the necessary information to enable binding 
establishment at iref resolution time (e.g., when an iref 
enters an address space). In other words, the channel rep 
implements the event interface and can be used ‘as-is’  for 
firing events (i.e., the resolver serves also as a binder). 
The Bind() operation of ISubscriberToChanBinder 
accepts a channel rep and subscriber and returns a 

bindingCtl that represents the subscription. The 
subscriber component can either be a subscriber rep 
associated with the channel’s event interface or any local 
object supporting the event interface (verified 
dynamically). In other words, subscribers may not need 
to be “ remoted”  in applications of this BT (i.e., there is 
no need to generate/ resolve a subscriber iref). The 
subscriber could even be a proxy to a remote component 
produced by the RMI BT.  

Implementation. A likely implementation could be 
based on a simple RMI BT. The event channel is reified 
by a channel manager component, which maintains the 
current set of subscribers. The publishers invoke the 
channel manager using the RMI BT and this forwards 
the invocation, again through RMI, to all the associated 
subscribers. Instead of this centralised implementation, 
another possibility is to rely on a multi-party protocol 
implementation, provided as a low-level OpenORB 
service. The event channel would then be represented as 
a multicast address. Note that binding users are always 
isolated from the details of the implementation (e.g., the 
existence of the channel manager component). A still 
more sophisticated extension of this BT could enable 
control of the QoS characteristics of event delivery. In 
such a BT, the two kinds of bindingCtl as well as 
additional generator interfaces could be used to configure 
and negotiate QoS properties, such as reliability, priority 
and ordering of events. 
 
6.4. An Auction BT 
 

This BT supports the realisation of an auction 
protocol, which mediates resource exchange and 
corresponding payment between a number of agents. BTs 
for auctions could be useful as part of middleware for 
electronic commerce applications [25] or for any other 
area requiring market-based resource allocation 
mechanisms.  

The supported auction protocol is a variation of the 
common English ‘open-outcry’  auction type. In this 
protocol, the bid price is continuously increasing, and 
potential buyers have a certain amount of time to indicate 
their willingness to buy at the current price. The auction 
continues until no buyers are prepared to pay the 
proposed price. The buyer that first accepted the last bid 
price is the winner of the auction. The seller can set a 
minimum selling price (reserve), below which there is no 
sale.  

The auction protocol is encapsulated and driven by the 
BT; this results in simplifying and decoupling the buyer 
and seller roles. Each auction is configured with the 
following information: item description, seller contact 



information, the initial price, bid increment, duration of 
each round, and reserve price.  

Participant Roles 

• Seller—a component that initiates an auction in 
order to sell some item. It uses the interface 
ISellerUse to start the auction and offers the 
interface ISeller to receive the auction result (see 
Fig. 6). 

• Buyer—a component that participates in an 
auction wishing to buy the related item. It offers 
the interface IBuyer to receive the current bid 
price and the auction result. It uses the interface 
IBuyerUse to indicate acceptance of a bid price. 

Binding Participation. This collaboration describes 
the interaction among seller and buyers through the BT-
provided binding. A seller initiates the auction by 
asynchronously invoking the ISellerUse.StartAuction() 
operation. The BT announces a new bid price by 
asynchronously invoking IBuyer.NewBid() on each buyer. 
A buyer accepts the bid by invoking IBuyUse.AcceptBid() 
(also asynchronously). When the auction is completed, 
the BT issues the asynchronous invocation Lost() to the 
unsuccessful buyers and the synchronous invocations 
Won() and AuctionCompleted() to the winner (if there is 
one) and seller respectively. The Won() operation passes 
the contact details of the seller to the winner so that the 
sale can be arranged subsequently. The invocations are 
assumed to be delivered at-most-once. The sequence 
diagram in Fig. 7 illustrates an example scenario for the 
collaboration. 

Iref Generation/Resolution. Irefs are generated for 
both buyers and sellers. The API generator component is 
extended to offer two extra interfaces: ISellerGenerator, 
and IBuyerGenerator. The Generate() method of the first 
receives as arguments an ISeller interface pointer and a 
structure with the auction configuration data (item 
description, seller contact details, initial price, bid 
increment, round duration, reserve price) and returns a 
seller iref. Furthermore, it passes an ISellerUse pointer to 
the seller (through the ConnectSellerUse() operation), 
which the seller can use to start the auction. The 
IBuyerGenerator.Generate() method accepts an IBuyer 
interface pointer, connects it with the IBuyerUse, and 
creates the buyer iref. The resolver transforms the buyer/ 
seller irefs to corresponding rep components. The seller 
rep (ISellerRep) exposes information about the auction 
that is useful to binding initiators, namely the item 
description, initial price, bid increment and round 
duration (the seller details and reserve price are hidden). 

Binding Establishment. This collaboration describes 
the binding of buyers to a seller. The auction binder 
offers the interface IBuyerToSellerBinder with the 

operation Bind() that receives as argument a seller rep 
and one or more buyers and returns a bindingCtl. The 
buyers are either buyer reps or local objects implementing 
IBuyer. The binding model enables multiple buyers from 
different sites to participate in the same auction. Note 
that after the auction is completed, the seller reps are 
invalidated and any attempt to bind them fails.  
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Figure 6. Auction BT participants 
. 

 
Figure 7. Auction Scenario 

Implementation. The implementation of this BT could 
rely on an asynchronous RMI BT and/or protocol 
implementations provided by lower platform layers. 
Versions of the BT that allow further variation in auction 
configurations and even in the auction protocol itself can 
be accommodated by extending the generator and rep 
interfaces. 

 
7. Related Work 
 



CORBA services such as the event service [16] or the 
audio/video streams service [17] represent an attempt to 
provide different binding types within a single 
middleware architecture. However, this approach has 
many limitations. New ‘binding types’  are implemented 
in an ad-hoc way by exploiting non-portable lower-level 
infrastructure interfaces, and there is no coordination 
between the implementations of services, which is 
important if QoS is to be managed effectively. 
Furthermore, the services are not replaceable and their 
dependencies are not visible. Moreover, the programming 
models of the different services have little in common, 
which increases the cognitive load on middleware users. 
The same criticism applies to similar services from the 
Java world, such as the Java Message Service [23].  

Enterprise component technologies, such as EJB, 
CORBA Component model and COM+/.NET simplify 
the use of middleware services by exposing a declarative 
programming model. However, these technologies do not 
address the need for multiple binding types; they only 
offer a fixed set of types that typically includes remote 
method invocation, messaging and events (e.g., [15]). 

The RM-ODP standard [13] introduces the notion of 
binding as the locus of interaction between objects. RM-
ODP assumes three kinds of interfaces, namely 
operational, signal and stream interfaces, and associated 
models of interaction. Both operational and stream 
interfaces can be defined in terms of signal interfaces. 
Given the fact that there are a multitude of useful 
interaction models and the chosen three are not 
orthogonal, the distinction seems to unnecessarily 
complicate the programming model. Despite this 
limitation, RM-ODP, by itself, does not restrict the 
possible communication structures between interacting 
objects and allows multiparty bindings even between 
interfaces of different kinds. 

RM-ODP concepts are followed in many research 
platforms. For example, the ReTINA [7] project designed 
an ORB architecture featuring a binding framework 
based on those concepts. At the core of the framework 
lies a distinction between location-independent interface 
references, which are managed by the ORB kernel, and 
binding factories which define various ways to access and 
interact with interface references. Jonathan [9] is an ORB 
initially developed at CNET, France Telecom, which 
builds on the ReTINA approach. While it has a modular 
and extensible architecture, Jonathan is implemented in 
Java as a classical object-oriented framework without 
taking advantage of component technologies. In practice, 
this means that it is difficult to evolve or replace the 
framework because of implicit and transitive 
dependencies. Moreover, the binding framework in the 
latest Jonathan version seems to be mainly geared 

towards classic first-party bindings. That is, it involves 
binding a reference in order to obtain an access path to 
its corresponding object, which may be a remote and/or 
logical object. 

Hector [2] is another distributed processing 
environment based on RM-ODP that notably supports 
complex, multi-party bindings. Hector bindings specify 
roles, defined as placeholders for interfaces, and 
communication patterns between them, and can be used 
to describe rich, high-level tasks (e.g., an electronic 
contract between parties involved in a real-estate 
purchase). However, Hector does not support any notion 
of component-orientation. The programming model 
available to applications follows RM-ODP and does not 
comply with any commercial standards. Moreover, it is 
distinct from the programming model available in the 
support infrastructure, which is implemented in Python 
and does not have a component architecture. One 
implication of this is that it is not straightforward to 
implement complex BTs by recursively building on 
simpler BTs. 

The Regis [6] system can be extended with 
implementations of various interaction styles. A recent 
version of Regis defines a language, Midas [22], for 
specifying interaction styles in terms of asynchronous 
messages and state machines. The main limitation of 
both these systems is that they follow the Darwin [6] 
binding model, which imposes that bindings are always 
between two types of participants (i.e., a client and a 
server). Although the model can capture a large class of 
useful interaction styles (e.g., RMI, message ports, event 
dissemination), it precludes multi-party, complex binding 
types, such as group communications or auction 
protocols.  

The DIMMA [8] platform provided an explicit 
binding model with application-controlled QoS, but the 
API offered only two kinds of bindings, namely 
operational and stream bindings. The FlexiNet [12] 
platform also supports explicit binding but is restricted to 
first-party, RMI bindings. FlexiBind [11] extends 
FlexiNet with dynamic binding configuration based on 
pluggable policies. 

Finally, and more recently, the authors in [3] propose 
building distributed applications using “medium” 
components, which encapsulate reusable communication 
services (e.g., video broadcast, voting, mailboxes). 
Medium components are analogous to BT components in 
our work, and they are also specified using UML 
collaborations. Medium components are implemented as 
sets of role managers that communicate among 
themselves using an underlying middleware platform. 
Each participant is associated with one role manager. 
This model seems to restrict the range of binding models 



that can be accommodated (e.g., it cannot accommodate 
dynamically-established bindings as a result of interface 
references entering address spaces). Moreover, the 
underlying middleware for inter-manager communication 
provides a fixed set of high-level interaction primitives 
(i.e., calling operations on a set of managers 
synchronously and asynchronously), which limits the 
implementation options for medium developers and can 
impact efficiency. 
 
8. Evaluation and Conclusions 
 

Performance evaluation of an open framework is 
inherently problematic as the framework can be used to 
built arbitrary software structures. However, in terms of 
the efficiency of interactions over bindings implemented 
with the framework, we are confident that no undue 
overhead is incurred by the framework itself. Evidence 
for this was presented in [5] which showed that IIOP 
invocation in OpenORB (which used an earlier version of 
the Binding CF) was actually faster than highly respected 
ORBs such as TAO or Orbacus. Of course most of the 
credit for this goes to the underlying communications and 
resources layers, but it does demonstrate that the binding 
framework is not imposing unacceptable overhead. It is 
also problematic to evaluate the overhead of binding 
establishment time in an environment where overhead is 
very much a function of individual BTs. But again, we 
can report that iref generation and resolution for a simple 
RMI binding takes 11ms and 38 ms respectively2, which 
is entirely comparable to that of Microsoft DCOM. 

In qualitative terms, we have used the framework to 
construct a representative selection of BTs including an 
RMI BT, a publish/ subscribe BT, an auction BT, a group 
communication BT and a message queuing BT. 
Furthermore, we have investigated, at least to the level of 
detailed design, a wide range of others as reported in 
[21]. In all cases so far investigated, the required 
functionality has been relatively straightforward to 
accommodate within the constraints imposed by the 
Binding API and the BT Contract. This gives us 
confidence that we have indeed produced a generally 
useful facility. To further test this assertion, we have 
plans to apply the framework in a number of areas under 
the auspices of future projects. In particular, we are 
exploring the use of the framework to define e-Science 
related collaborations for GRID computing [10], and to 
support ad-hoc interactions in environments in which 

                                                        
2 Tests were performed on an Intel Pentium III PC equipped with 

256Mb RAM and rated at 999Mhz. The operating system used was 

Microsoft Windows XP Professional. 

clients must intact with services without prior knowledge 
of the either the service discovery or access protocols 
used by the services. 

We conclude by summarising the major benefits of 
binding frameworks in general, and of our solution in 
particular. The main benefit of a well-designed binding 
framework is that common interaction patterns can be 
captured as reusable services, thus providing a structured 
means whereby the level of abstraction of middleware 
platforms can be raised to meet emerging needs. A good 
framework should impose just the right amount of 
structure: enough to guide the design of BTs so that they 
can be easily understood and take advantage of generic 
interfaces and services (including building on existing 
BTs), but not so much that the preconceptions of the 
framework restrict the scope of future BTs. We believe 
that our framework broadly achieves these goals. In 
addition, our framework offers two additional benefits. 
First, the framework is designed to have minimal and 
explicit context dependencies and thus it can be reused in 
multiple middleware architectures. Second, when 
integrated into the OpenORB architecture, it provides a 
convenient, flexible and extensible set of support services 
to simplify the implementation of BTs.  
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