

An Extensible Binding Framework for Component-Based Middleware

Nikos Parlavantzas, Geoff Coulson, and Gordon S. Blair
Distributed Multimedia Research Group, Dept. of Computing, Lancaster University, UK

[parlavan, geoff, gordon]@comp.lancs.ac.uk

Abstract

One of the most significant limitations of current
middleware platforms, both commercial and research, is
that they typically support only a small, pre-defined, set
of fundamental binding types (e.g., remote method
invocation). This restriction limits the scope of platforms
in that they cannot easily accommodate, or easily be
extended to accommodate, richer or more specialised
forms of interaction (e.g. events, media streaming,
multicast, and many others discussed in the paper). This
paper describes a highly extensible, component-oriented
framework for the definition and implementation of such
binding types. We motivate and specify the framework in
detail and evaluate it by providing examples of its use.

1. Introduction

A primary function of middleware is to interconnect

application components. To this end, middleware
platforms offer interaction abstractions called bindings.
However, one of the most significant limitations of
current middleware platforms, both commercial and
research, is that they typically support only a small, pre-
defined, set of fundamental binding types (e.g., remote
method invocation). This restriction limits the scope of
platforms in that they cannot easily accommodate, or
easily be extended to accommodate, richer or more
specialised forms of interaction (e.g. events, media
streaming, or message queuing). Furthermore, when
multiple binding types are indeed supported, they tend to
be implemented in an ad-hoc way and to rely on distinct
infrastructures. For example, CORBA events [16] and
media streams [17] have completely separate APIs and
implementations and, moreover, these are completely
distinct from the API/ implementation of the core remote
method invocation binding type. Such a lack of
integration leads to missed opportunities for design and
code reuse, increases the cognitive load on middleware
users, who have to deal with multiple different APIs, and

leads to problems in realising globally-coordinated QoS
across binding types.

To address these concerns, this paper describes a
highly extensible and flexible component-based
framework for the design, development, deployment and
use of binding types. By capturing diverse forms of
interaction as binding types (hereafter, ‘BTs’) within the
framework, we argue that our approach can significantly
simplify application development, increase the
interoperability options available to developers, and
promote the reuse of recurring interaction patterns and
mechanisms.

Here are some examples of BTs that we would like to
be able to support: (1) remote method invocation (RMI)
in its numerous variants, (2) messaging and eventing in
their numerous variants, such as asynchronous method
invocation, message queuing and publish/subscribe
models, (3) continuous media streaming, (4) group
communication in its numerous variants, (5) shared data
spaces for communication such as tuple spaces,
blackboard systems, or mailboxes, (6) SQL links between
applications and databases, (7) FTP links, (8) Unix-like
pipes, (9) BTs that encapsulate voting protocols, auction
protocols, (10) distributed resource allocation protocols,
(11) BTs that execute a workflow process involving
multiple processing entities, (12) BTs that encapsulate
common interactions in e-Science GRIDs, (13) drag-and-
drop protocols between GUI components, (14) Model-
View-Controller collaborations, or (15) multi-player
game protocols.

Such communication (and, indeed, coordination)
services are needed in many different contexts by a
variety of applications. Therefore, providing these
services as part of the middleware is highly
advantageous. Of course, it is always possible to
implement such facilities in terms of the small, fixed set
of BTs offered by current platforms. But the purpose of
middleware is not to provide a theoretically minimum set
of communication primitives; rather, it should facilitate
the development of enterprise applications by raising the
level of abstraction over interaction mechanisms.
Platforms should therefore offer an (extensible) range of

BTs, while ensuring that BT APIs are consistent and that
their implementations are efficiently integrated within
the platform.

The specific goals of this paper are:

• to provide a detailed overview of our extensible
binding framework in terms of the design,
development, deployment and use of BTs

• to illustrate how the binding framework can be
used to define three representative BTs.

The paper is structured as follows. First, section 2
provides context for the framework in terms of the
OpenCOM/ OpenORB middleware technology on which
it is founded, the assumed conceptual binding model, and
the way in which binding types are specified abstractly.
Then, sections 3, 4, and 5 present the binding framework
in detail, and section 6 illustrates how it can be used to
construct three representative BTs. Finally, section 7
reviews related work and section 8 evaluates the
framework and draws conclusions.

2. Context

2.1. OpenCOM and OpenORB

The binding framework builds on our previous work

on the OpenCOM [4] component model and the
OpenORB component-based middleware architecture
[5,19]. OpenCOM is a lightweight, non-distributed
component model inspired by Microsoft COM [14]. It is
designed to include only aspects that are essential in
supporting the notion of a component and can be used for
composing both applications and middleware. The
OpenORB architecture supports the development of
highly configurable and dynamically reconfigurable
reflective middleware platforms and is structured in
terms of component frameworks [24]. Essentially,
component frameworks are reusable architectures that
apply to specific domains and are designed to be
instantiated in terms of components. The binding
framework that is the subject of this paper is specified
and implemented as such a component framework. In
general, the role of component frameworks (hereafter
‘CFs’) is to provide rules for structuring localised
domains of middleware functionality (e.g. concurrency
support, buffer management, message demultiplexing, or
pluggable protocols). Typically, CFs include software
that supports the rules at runtime and helps maintain
integrity in the face of dynamic reconfiguration. For
example, the pluggable protocols CF defines rules for
composing “plugged-in” protocol components and
manages their dynamic reconfiguration.

 The CF-based structure of OpenORB, complete with
the binding framework (labelled ‘Binding CF’), is
il lustrated in Fig. 1. As implied by Fig. 1, the binding
framework has access, in the ‘communications layer’ , to
an extensible range of CFs—the diagram shows a
pluggable protocols CF and a media streaming CF. In
addition, it has access to a range of ‘ resources layer’
CFs—either indirectly, via communications layer
intermediaries, or directly if desired. Note also that the
three layers are themselves encapsulated by an overall
top-level CF called ‘Middleware Top CF’ . This is
responsible for managing the lifecycle of its encapsulated
CFs, for enforcing policies concerning dynamic changes
in layer composition, and for supporting service
discovery to resolve dynamic dependencies between
layers [5]. Moreover, it imposes that the encapsulated
CFs conform to a ‘ resources framework’ (not discussed in
this paper) that allows fine-grained control over, and
accounting for, middleware-managed resources like
threads, buffers and network bandwidth (e.g. to simplify
QoS management) [20].

��������� �����	 �
 �

� � � � �� �
� �� � �

� �� � �
� �� � �

� � ��� �	 � ��
� �� � �

� � � � �� �
� �

� ����	 �
 �

� �

� � � ���
� � �� � � �

� �� � � �
 � � � ����� ���

� ����	 �
 � � �
 �� ��

�

 �	 ��� �� ��
 � 	 � � �

���������
� � �� � � �

�� �� �

� � �� � � �

�� �� � � �	 � � �
 � ��

� �
 �� � � � ��
� ��� �� � �� �

� �

� � �

��� ����� ����	�
 ����������

��������� �����	 �
 �

� � � � �� �
� �� � �

� �� � �
� �� � �

� � ��� �	 � ��
� �� � �

� � � � �� �
� �

� ����	 �
 �

� �

� � � ���
� � �� � � �

� �� � � �
 � � � ����� ���

� ����	 �
 � � �
 �� ��

�

 �	 ��� �� ��
 � 	 � � �

���������
� � �� � � �

�� �� �

� � �� � � �

�� �� � � �	 � � �
 � ��

� �
 �� � � � ��
� ��� �� � �� �

� �

� � �

��� ����� ����	�
 ����������

Figure 1. The OpenORB architecture

2.2. Conceptual Binding Model

The binding framework is based on a conceptual
binding model, influenced by RM-ODP [13], which
describes what bindings are, how they are established and
controlled, what entities are involved, and how those
entities interact. The key properties of this model, which
are mainly determined by the fact that it must be very
generally applicable, are as follows: First, the model
encompasses both local bindings which are primitively
realised within a single address space, and distributed
bindings, which can span address spaces and machines.
Second, the model assumes multi-party bindings—i.e.,
bindings between any number of participants (an RMI
binding involving two participants is merely a special
case of this more general case). Third, the model

supports explicit binding—i.e., bindings are created
explicitly by application code and are themselves
represented as components. This ‘ reification’ of bindings
allows applications to select from a possible range of
binding types, and opens the possibility of controlling,
managing and adapting bindings at runtime (via
interfaces on the binding components). Finally, the
model supports third-party binding. This means that the
party that initiates binding establishment may or may not
itself be a communicating participant in the binding.
Aside from reasons of generality, third-party binding is
particularly beneficial because it isolates the component
interconnection logic, thus making it easier to change.

At a more detailed level, the conceptual binding
model defines a number of basic entities: viz.
participants, binders, bindingCtls, generators, reps,
irefs, resolvers, and APUs. These entities, together with
their inter-relationships, are illustrated in Fig. 2. In brief,
bindings are established between binding participants
and the responsibility for binding establishment is
assigned to binders. Binders take as input a number of
components representing participants, together with
related information such as QoS specifications. They then
verify that the supplied participant components conform
to appropriate participant roles, which are defined in the
associated BT specification (see section 2.3).
Subsequently, binders invoke appropriate operations on
the participant components and establish the binding
with the aid of services offered by the underlying
platform. If binding establishment succeeds, the binder
returns a component (bindingCtl) through which the
binding can be controlled and managed.

 BT BT with Participant

Remoting

Binder
ResolverGenerator

BindingCtl

APU

Participant

IREF

Rep

1

1

1

1

1

1

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«call»
«call»

«use»

1

0..1

*

value

1

ParticipantRole

1..*

*

*

playedRole

Figure 2. The binding model entities

Participants that are remote with respect to a binder’s

location are represented by reps (‘ remote participant
representatives’). The process of creating a rep falls into
two stages as follows. First, a generator is used at the
participant’s (remote) site to generate both an iref and an

associated communication infrastructure. An iref is a
value that represents a participant and can be passed
around the distributed system. Second, the iref is
transferred to the binder’s site (by some means or other)
at which it is passed to a resolver that is responsible for
creating a corresponding rep. This whole process is
referred to as participant remoting.

A very common special case, which is specifically
accommodated by the framework, involves first-party
bindings that are initiated by an anonymous participant
(e.g., the ‘client’ in traditional RMI bindings). The
essence of such bindings is that one participant, the
binding initiator, is not explicitly represented; its
properties are implied because it is collocated with the
binder. In this case, when the binding is established, the
binder returns a so-called APU (“anonymous participant
use”) component (e.g., the ‘proxy’ in traditional RMI
bindings). Essentially, the need for APUs is a
consequence of the asymmetric nature of object
interfaces.

Finally, it is important to note that all of the above
defined entities (resolvers, binders, etc.) are in fact roles,
and that individual components can play more than one
role at a time (e.g., a resolver component can also serve
as a binder). A corollary of this is that a single
component can take part (i.e., play the participant role)
in many different bindings of different types. This
reduces the coupling of interacting components to the
used BTs, which increases the reusability of components
and allows the system to be easily adapted by evolving or
replacing BTs.

2.3. Specifying Binding Types

The framework defines BTs as systems that enable
components to cooperate in specific ways. Since the goal
of BTs is to support and mediate a given scope of
interactions, a BT specification can most naturally be
expressed using collaborations as defined in UML [18].
More specifically, a BT specification can be decomposed
into four types of collaborations between the BT and two
types of external role: binding participants and binding
managers. Binding participants are components that
interact through BT-provided bindings and binding
managers are components that establish and control
bindings. The collaborations are characterised as follows:

• Binding Participation describes the interaction
among binding participants that is supported by
and embodies the purpose of the BT.

• Iref Generation and Iref Resolution describe the
process of managing irefs, which is a prerequisite
to establishing bindings with remote participants.

• Binding Establishment describes the required
sequence of actions (initiated by the binding
manager role) to set-up a binding between some
number of participants.

• Binding Control describes the process of
managing (again, by the binding manager role) an
already-established binding, involving tasks such
as, e.g. monitoring and adaptation, controlling
and changing the QoS, adding/ removing
participants, and binding destruction.

Whereas the first collaboration, binding participation,
is unspecified by the binding framework and can take any
required form, the remainder are all constrained by the
need to conform to the Binding API contract described in
section 4. These properties together facilitate the creation
of new BT specifications, while minimizing any
restrictions on the range of BT-supported interactions.
From a practical point of view, we use UML tools and
techniques to specify both functional and extra-functional
properties of the BT collaborations. Of course,
specialized QoS modelling languages expressed as UML
extensions could also be applied if needed (e.g., [1]).

3. Overall Architecture of the Binding CF

The Binding CF provides abstractions and rules that
support both the specification (according to the scheme
outlined in section 2.3) and the implementation of BTs.
These abstractions and rules are designed to be highly
generic to maximise the diversity of useful
communication and coordination mechanisms that can be
captured as BTs.

Architecturally, the Binding CF defines three roles
that are played by participating components: i) the
binding user role (this combines the binding manager/
participant roles specified in section 2.3, ii) the BT
implementation role, and iii) the Binding CF
implementation role. The CF itself is decomposed into
two contracts which structure the cooperation between
the three roles (see Fig. 3):

Binding CF
Implementation

BT contract

Binding
User

Binding
 API

BT
Implementation

Figure 3. The two binding CF contracts

• The Binding API defines the view of BTs seen by
binding users and provides the programming
model for handling bindings.

• The BT Contract defines the collaboration
between BT implementations and the Binding CF
implementation, which has the goals of (1)
facilitating the development of BT
implementations, and (2) supporting their
dynamic configuration.

All of these issues are dealt with in detail in sections 4
and 5 below.

4. The Binding API

The Binding API provides generic interfaces
corresponding to the conceptual binding model entities
that were described in section 2.2, together with rules
governing their BT-specific extension. All BT
specifications (and thus implementations) must conform
to the Binding API contract—i.e. they can extend the
contract as required but must include the generic
interfaces discussed in this section.

4.1. Realising the Basic Binding Model Entities

4.1.1. Preamble. BTs are identified by globally unique
names, BT identifiers, that are mapped to deployable
(sets of) components by the Binding CF. This separation
of BT specification from implementation, coupled with
the fact that BT specifications are assumed to be
immutable, enables BT implementations to be upgraded
without affecting binding users.

The BindingCFI component, which represents the
Binding CF implementation, provides the initial access
point for BT-provided facilities. It offers the interface
IBTAccess that provides three operations which
respectively resolve BT identifiers to binders, resolvers
and generators (see below1).

interface IBTAccess : IUnknown {
 HRESULT GetBinderForBT ([in] OLECHAR* BTid,

[in] REFIID riid,
 [out] IUnknown**);

 HRESULT GetResolverForBT ([in] OLECHAR*
BTid,[out]IResolver**);

 HRESULT GetGeneratorForBT ([in] OLECHAR*
BTid,[in] REFIID riid,

1 IUnknown, as defined by Microsoft’ s COM, is a special interface

supported by all components. It includes an operation, QueryInterface(), that

allows one to dynamically discover other interfaces supported by the

component. REFIID represents an interface type and is typically used to
request a specific interface on a component in a single step.

 [out] IUnknown**);
}

4.1.2. Binder. The Binding API mandates that there is a
single binder per supported BT at runtime. The
component type (i.e., set of supported interfaces) of
binders is highly dependent on the associated BT. The
Binding API itself requires only that a single, generic
interface, IGenericBinder, must be minimally offered.
The API further recommends that other BT-specific
interfaces follow the general form of IGenericBinder for
consistency reasons (where possible).

interface IGenericBinder : IUnknown {
 HRESULT Bind ([in] IUnknown* participants,
 [in] long participantCount,
 [in] VARIANT bindContext,
 [out] BindingCtl** ppBindingCtl,
 [out] IAPU** ppAPU);
}

The Bind() operation takes as arguments a set of
participants (represented as IUnknown pointers) and a
bindContext value (of VARIANT type) that holds generic
context information. Using this information, Bind()
attempts to establish a binding, and, on success, it returns
a bindingCtl and (optionally) an APU. The interpretation
of the bindContext parameter is BT-specific; for example,
it can be used to pass a QoS specification in an agreed
textual format, or a reference to a QoS negotiator
component.

Despite its flexibility, IGenericBinder cannot possibly
capture all the potential binding establishment scenarios,
which means that additional, BT-specific binder
interfaces will normally be required. However, the benefit
of generic interfaces, such as IGenericBinder, is twofold.
First, they largely increase the scope of binding scenarios
that can be accommodated, while minimally impacting
ease of use. Second, they act as uniform interfaces, which
promotes composability. For instance, they could be used
by an automated, metadata-driven tool that receives as
input an architectural description of a system in terms of
components and connectors and instantiates the system.

4.1.3. Generator. Generators are responsible for creating
irefs and their associated communication infrastructure.
There is a single generator per BT, and the component
type of the generator is specific to that BT. The API
defines only a single, generic interface,
IGenericGenerator, which must be minimally offered.
This provides an operation Generate() that takes as
arguments a participant, an interface type and a BT-
specific generateContext value (of VARIANT type); it
returns an iref.

The StdGenerator component is a special generator
implementation, provided by the framework by default,

that is used to marshal arbitrary component references
(i.e., pointers to component instances). Built-in support
for marshalling component references is necessary
because the component model presumes object-oriented
interfaces, which means that component references may
need to be passed as arguments over already established
bindings. The StdGenerator is accessed via BindingCFI
by using a well-known BT identifier. It offers the
IGenericGenerator interface and implements it by
selecting the target BT (see below), finding the
corresponding BT-specific generator (via the
BindingCFI) and delegating the generation request to it.
The BT selection step gives an opportunity for the
component to itself decide a preferred BT for iref
generation (marshalling). Specifically, if the component
implements the IStdMarshal interface, BindingCFI
invokes it to retrieve a BT identifier; otherwise a default
BT is used.

4.1.4. Resolver. Resolvers offer the interface
IResolver which has a single operation Resolve() that
takes as arguments an iref and an interface type, and
returns a reference of the requested type. There is a single
resolver per BT.

The StdResolver component is a special resolver
implementation, provided by the framework as default,
that can resolve arbitrary irefs. StdResolver implements
the interface IResolver and is accessed through the
BindingCFI via a well-known BT identifier. It works by
extracting the BT identifier from the iref (exploiting the
standardised iref format—see below), finding the
associated resolver (via the BindingCFI), invoking the
resolver and returning the resulting reference.

4.1.5. Representations of the other Basic Entities.
Participants are represented in the Binding API as
components that are able to conform to some participant
role defined by the associated BT specification. Binders
and generators are expected to dynamically verify that
participant components conform to the expected role by
using IUnknown.QueryInterface() and/or extended meta-
information provided by the component model. For
example, a binder (or generator) can check that a
participant offers and uses a given set of interfaces.
Alternatively, it can check that an offered interface is
‘one-way’ (i.e., its operations have only input
parameters). This dynamic verification allows
components to participate in various BTs—even BTs that
did not exist when the components were implemented—
and play various roles. Moreover, components can be
upgraded without affecting their BT participation.

Irefs are represented as strings of a standardised
format. Each iref is associated with a single BT and

contains a BT identifier together with BT-specific data.
Reps are represented as components that support
interfaces used by binders for the purpose of binding
establishment. A rep is associated with a single BT,
which defines its component type. At a minimum, reps
must offer the interface IRep which defines a single
operation to return the rep’s associated BT identifier.

APUs are represented as components that minimally
offer the interface IAPU, which defines an operation to
return the associated bindingCtl. Finally, bindingCtls are
represented as components that minimally offer the
generic interface IBindingCtl with operations to destroy
the binding, get/set the QoS of the binding (represented
generically as a string) and subscribe/unsubscribe to
events generated by the binding. BindingCtl components
will normally offer additional, more sophisticated and
strongly-typed interfaces.

4.2. Collaborations specified by the Binding API

We are now in a position to illustrate the use of the
Binding API by describing the interactional view of the
generic collaborations discussed in section 2.3.

Binding Establishment. The steps for establishing a
binding are:

1. The binding user selects a BT and invokes
BindingCFI::IBTAccess to retrieve a binder
interface (e.g., IGenericBinder).

2. The binding user invokes the binder interface,
passing the participant components and other
required information as arguments.

3. The binder establishes the binding, and returns a
bindingCtl and (optionally) an APU.

Iref Generation. The steps for generating an iref are:
1. The binding user selects a BT and invokes

BindingCFI::IBTAccess to retrieve a generator
interface. The BT must support participant
remoting.

2. The binding user invokes the generator interface,
passing as arguments a participant component
and other information.

3. The generator generates an iref and associated
infrastructure (e.g., stub, protocols) and returns
the iref to the binding user.

4. The binding user exports the iref (e.g., to a
naming service, a trader, a web page).

The API recognises a specialisation of this
collaboration that applies when the binding user has no
context in which to base a selection of BT. This situation
typically arises when a component reference must be
passed through an already established binding. In this
case, the binding user (e.g., the part of the already

established binding that performs marshaling) invokes
the IGenericGenerator interface on the default
StdGenerator component, which in turn selects a more
specific generator and delegates the invocation to it, as
seen in section 4.1.3.

Iref Resolution. An iref may arrive through an already
established binding or be obtained from a file, the GUI
etc. The steps for resolving an iref are:

1. The binding user selects the StdResolver BT
identifier and retrieves the IResolver interface
(using BindingCFI::IBTAccess).

2. The binding user invokes
StdResolver::IResolver.Resolve(), passing the
iref as the argument.

3. StdResolver extracts the BT from the iref,
retrieves the IResolver on the corresponding
resolver (using BindingCFI::IBTAccess),
invokes it, and returns the result to the binding
user.

There are two possible BT-dependent variations
regarding the resulting component: i) the resulting
component is a rep, which can subsequently participate
in binding establishment, and ii) the resulting component
is an APU that is associated with a bindingCtl. In the
second variation, the resolver implementation also plays
the role of the binder and completes the binding between
the participant corresponding to the iref and an
anonymous participant.

Binding Control. The binding user controls a binding
through the bindingCtl that is obtained as a result from
either binding establishment or iref resolution, as
described above.

5. The BT Contract

The BT Contract defines the collaboration between BT
implementation components and the Binding CF
implementation itself. A structural view of the
collaboration is shown in Fig. 4. The interfaces and
constraints pertaining to each party are summarized next.

Figure 4. Structure diagram for BT contract

5.1. BT implementations

The BT Contract specifies that the implementation of
a BT is packaged into two separate singleton
components: a BinderProvider component and a
GeneratorProvider component. The former supplies
implementations for the binder and resolver roles of the
BT; the latter supplies the generator role. The motivation
for separating the BT implementation into two
distinguished components is that the two parts are largely
self-contained and frequently only a single part needs to
be used within a process (e.g., an RMI generator would
not be useful in the client tier of typical enterprise
applications). The separation means that the two parts
can be deployed and replaced independently. Of course,
the BT components can make use of, and be composed
of, further components; the BinderProvider and
GeneratorProvider are simply the components that are
recognised by the BT Contract.

The two mandatory BT implementations, StdResolver
and StdGenerator (see section 4.1), are packaged as
normal BT components and thus they are replaceable.
For example, StdResolver can be replaced to modify the
standardised iref format, and StdGenerator can be
replaced to modify the BT selection process.

Both types of BT component offer an
IBTImplementation interface which defines operations for
lifecycle management (i.e., initialisation and termination)
and for retrieving the ‘state’ of the component. A BT
component may be in one of two states: i) READY,
which indicates that the component is not currently being
used by any clients, and ii) ACTIVE, which means that
the component is currently in use (i.e. clients hold
references to it). The component moves between the
ACTIVE and READY states autonomously (exploiting

reference counting) and can be terminated only when it is
in the READY state. Moreover, the component is
responsible for notifying the Binding CF implementation
about its state changes (see below).

A BT component can have two kinds of usage
dependencies: i) dependencies on other BTs (e.g., a BT
component that realises a distributed auction protocol—
see section 6.4—may rely on an RMI BT), and ii)
dependencies on services provided by the lower platform
layers (i.e., the communications and resources layers, see
section 2). To resolve such dependencies, BT components
use the IBTAccess and IBTServices interfaces
respectively, both of which are offered by the Binding CF
implementation (see below).

5.2. The Binding CF Implementation

The Binding CF implementation is packaged within a
singleton component (BindingCFI) which has the
following three responsibilities: i) to act as the access
point for BTs, ii) to manage the configuration of BT
components, and iii) to provide BT components with
access to other BTs and low-level services.

To carry out the first responsibility, BindingCFI
exposes the IBTAccess interface, as was described in
section 4.1, which it implements internally by invoking a
registry component. This maintains a shared, per-node,
persistent repository that maps from BT identifiers to
BinderProvider and GeneratorProvider component
identifiers. If a BT identifier cannot be found in the per-
node repository, BindingCFI uses an installer
component. This has the responsibility to contact some
remote source (e.g., a global name service, or a specific
URL) and download and install the components
corresponding to the globally unique BT identifier. After
finding suitable component identifiers, BindingCFI
instantiates, initialises, and uses the corresponding BT
component instance to retrieve the interface requested by
the IBTAccess invocation. The instance is kept in an
internal registry for later reference.

To accomplish its second responsibility, BindingCFI
uses the IBTImplementation interface (see section 5.1) to
cause BT components to initialise and terminate
themselves. Moreover, it offers the
IBTImplementationUse interface to accept notifications
about changes in their state. Different lifecycle
management policies are implemented using pluggable
unloader components, which track state changes in BT
components and decide when to remove them. Moreover,
as the standard pattern in OpenORB mandates [5],
BindingCFI exposes a reconfiguration interface
(IBindingCFConfiguration) that allows clients to
dynamically add, remove, replace and retrieve

BinderProvider, GeneratorProvider and unloader
components. The reconfiguration interface disallows the
removal of active BT components.

To carry out its third responsibility, BindingCFI
exposes the interfaces IBTAccess and IBTService.
IBTAccess we have already discussed in section 4.1.1;
IBTServices defines an operation GetService() which
receives as an input a service identifier and an interface
type and returns an interface of the requested type.

Interface IBTServices : IUnknown {
 HRESULT GetService([in] OLECHAR* serviceID,

[in] REFIID riid,
 [out] IUnknown**);
}

 The set of available service identifiers, associated
interfaces and interface contracts is standardized by the
top-level CF in the middleware architecture (see Fig. 1).
This minimizes the dependencies of the binding CF on
its context in the architecture and increases its
reusability.

6. Some Example BTs

6.1. Overview

We now demonstrate the extensibility and ease of use

of the Binding CF by presenting the design and outline
implementation of three BTs: a simple RMII BT, a
publish/subscribe BT and an auction protocol BT. Space
constraints restrict us to consideration of just three BTs;
the implementation of a wide range of others is discussed
in [25].

Adding a new BT requires two separate pieces of
development work: i) a BT specification, which must
conform to the Binding API, and ii) a BT
implementation, which realises the specification and
conforms to the BT Contract. BT specifications, which
are discussed in terms of the collaborations discussed in
section 2.3, are the public part that is necessary both for
providing new implementations, and for documentation
purposes. In the following sections, each example BT is
specified using the following format: (1) Participant
Roles—describes participant roles and their
relationships, (2) Binding Participation—describes how
participants interact through an established binding, (3)
Iref Generation/Resolution—describes the management
of irefs, (4) Binding Establishment—describes the
process of binding establishment, (5) Implementation—
outlines possible implementations of the BT, and also
discusses how the API could accommodate more
sophisticated extensions or variations of the BT.

6.2. A Remote Method Invocation BT

This BT provides the traditional RMI interaction style

and can easily be accommodated by the framework with
very minimal extensions to the Binding API.

Participant Roles

• Server—a component that accepts remote method
invocations.

• Client—an anonymous participant that invokes
operations on the server.

Binding Participation. Client-originated invocations
result in corresponding server invocations. The
communication is synchronous and the delivery
guarantee is at most-once; other non-functional
properties, such as response delay, are not constrained.

Iref Generation/Resolution. The RMI generator and
resolver offer the standard, generic interfaces defined in
the API.

Binding Establishment. The resolver plays also the
role of a binder; it establishes the binding using the iref
and returns an APU component, which serves as the
traditional proxy to the server.

Implementation. The implementation builds on the
low-level services provided by OpenORB. The API can
also accommodate more sophisticated extensions of this
BT, which offer flexible bindings with QoS support. In
such a BT, the bindingCtl component, exposed through
the APU, would be used to monitor and adapt the binding
at the client-side (e.g., receive events notifying a drop in
throughput). At the server-side, the generator would offer
extra interfaces to configure its behaviour (e.g., to decide
which protocol stack to use for the server). Moreover, the
resolver could create a rep that needs to be explicitly
bound using a binder. The separate binding
establishment step could support negotiation of QoS
properties of the bindings.

6.3. A Publish/ Subscribe BT

This BT provides a publish/ subscribe interaction
style, whereby publishers and subscribers are indirectly
associated through a separate entity, termed an ‘event
channel’ . The event channel functionality is realised by
the BT. An ‘event’ is a single invocation on a event
interface, originated by a publisher and delivered by the
BT to the appropriate subscribers.

Participant Roles

• Publisher—an anonymous participant that
originates events (see Fig. 5).

• Subscriber—a component that offers the event
interface and receives events.

• Event Channel—a logical participant realised by
the BT itself. It is associated with a single event
interface, which must be one-way; that is, all
operations must contain only input parameters.

Publisher SubscriberEventChannel
1

1

* *

«interface»

EventInterface

1

«call»

Figure 5. Publish/ Subscribe BT participants

Binding Participation. When a publisher invokes an

operation on an event interface, the corresponding
operation with the same arguments gets invoked on all
subscribers. The delivery guarantee is at-most-once, and
event firing is synchronous; the publisher is blocked until
the invocations on the subscribers have been completed.
The BT does not specify the order or any further QoS
characteristics of event delivery.

Iref Generation/Resolution. Irefs are generated for the
event channel and subscriber participants—publishers
are anonymous. The standard generator API is extended
to offer two extra interfaces: IEventChannelGenerator,
and ISubscriberGenerator. The Generate() operation of
the first receives the event interface type as an argument,
verifies that this is ‘one-way’ using reflection, and
creates the channel iref. The Generate() operation of the
second accepts a subscriber interface pointer, verifies that
the interface is one-way, and creates the iref. The
channel/ subscriber irefs are transformed into
corresponding rep components through the resolver.

Binding Establishment. This collaboration is separated
into two parts: i) the binding of publishers to the event
channel, and ii) the binding of subscribers to the event
channel. The standard binder API is extended to offer
two extra interfaces: IPublisherToChanBinder, and
ISubscriberToChanBinder. The Bind() operation of the
first receives as argument a channel rep and returns both
a bindingCtl and an APU. The APU supports the event
interface and can be used for firing events. This separate
publisher-to-channel binding step can be bypassed in this
simple BT. Indeed, it can be assumed that the channel
iref has all the necessary information to enable binding
establishment at iref resolution time (e.g., when an iref
enters an address space). In other words, the channel rep
implements the event interface and can be used ‘as-is’ for
firing events (i.e., the resolver serves also as a binder).
The Bind() operation of ISubscriberToChanBinder
accepts a channel rep and subscriber and returns a

bindingCtl that represents the subscription. The
subscriber component can either be a subscriber rep
associated with the channel’s event interface or any local
object supporting the event interface (verified
dynamically). In other words, subscribers may not need
to be “ remoted” in applications of this BT (i.e., there is
no need to generate/ resolve a subscriber iref). The
subscriber could even be a proxy to a remote component
produced by the RMI BT.

Implementation. A likely implementation could be
based on a simple RMI BT. The event channel is reified
by a channel manager component, which maintains the
current set of subscribers. The publishers invoke the
channel manager using the RMI BT and this forwards
the invocation, again through RMI, to all the associated
subscribers. Instead of this centralised implementation,
another possibility is to rely on a multi-party protocol
implementation, provided as a low-level OpenORB
service. The event channel would then be represented as
a multicast address. Note that binding users are always
isolated from the details of the implementation (e.g., the
existence of the channel manager component). A still
more sophisticated extension of this BT could enable
control of the QoS characteristics of event delivery. In
such a BT, the two kinds of bindingCtl as well as
additional generator interfaces could be used to configure
and negotiate QoS properties, such as reliability, priority
and ordering of events.

6.4. An Auction BT

This BT supports the realisation of an auction
protocol, which mediates resource exchange and
corresponding payment between a number of agents. BTs
for auctions could be useful as part of middleware for
electronic commerce applications [25] or for any other
area requiring market-based resource allocation
mechanisms.

The supported auction protocol is a variation of the
common English ‘open-outcry’ auction type. In this
protocol, the bid price is continuously increasing, and
potential buyers have a certain amount of time to indicate
their willingness to buy at the current price. The auction
continues until no buyers are prepared to pay the
proposed price. The buyer that first accepted the last bid
price is the winner of the auction. The seller can set a
minimum selling price (reserve), below which there is no
sale.

The auction protocol is encapsulated and driven by the
BT; this results in simplifying and decoupling the buyer
and seller roles. Each auction is configured with the
following information: item description, seller contact

information, the initial price, bid increment, duration of
each round, and reserve price.

Participant Roles

• Seller—a component that initiates an auction in
order to sell some item. It uses the interface
ISellerUse to start the auction and offers the
interface ISeller to receive the auction result (see
Fig. 6).

• Buyer—a component that participates in an
auction wishing to buy the related item. It offers
the interface IBuyer to receive the current bid
price and the auction result. It uses the interface
IBuyerUse to indicate acceptance of a bid price.

Binding Participation. This collaboration describes
the interaction among seller and buyers through the BT-
provided binding. A seller initiates the auction by
asynchronously invoking the ISellerUse.StartAuction()
operation. The BT announces a new bid price by
asynchronously invoking IBuyer.NewBid() on each buyer.
A buyer accepts the bid by invoking IBuyUse.AcceptBid()
(also asynchronously). When the auction is completed,
the BT issues the asynchronous invocation Lost() to the
unsuccessful buyers and the synchronous invocations
Won() and AuctionCompleted() to the winner (if there is
one) and seller respectively. The Won() operation passes
the contact details of the seller to the winner so that the
sale can be arranged subsequently. The invocations are
assumed to be delivered at-most-once. The sequence
diagram in Fig. 7 illustrates an example scenario for the
collaboration.

Iref Generation/Resolution. Irefs are generated for
both buyers and sellers. The API generator component is
extended to offer two extra interfaces: ISellerGenerator,
and IBuyerGenerator. The Generate() method of the first
receives as arguments an ISeller interface pointer and a
structure with the auction configuration data (item
description, seller contact details, initial price, bid
increment, round duration, reserve price) and returns a
seller iref. Furthermore, it passes an ISellerUse pointer to
the seller (through the ConnectSellerUse() operation),
which the seller can use to start the auction. The
IBuyerGenerator.Generate() method accepts an IBuyer
interface pointer, connects it with the IBuyerUse, and
creates the buyer iref. The resolver transforms the buyer/
seller irefs to corresponding rep components. The seller
rep (ISellerRep) exposes information about the auction
that is useful to binding initiators, namely the item
description, initial price, bid increment and round
duration (the seller details and reserve price are hidden).

Binding Establishment. This collaboration describes
the binding of buyers to a seller. The auction binder
offers the interface IBuyerToSellerBinder with the

operation Bind() that receives as argument a seller rep
and one or more buyers and returns a bindingCtl. The
buyers are either buyer reps or local objects implementing
IBuyer. The binding model enables multiple buyers from
different sites to participate in the same auction. Note
that after the auction is completed, the seller reps are
invalidated and any attempt to bind them fails.

Seller Buyer
1

AcceptBid(bid)

«interface»
IBuyerUse

NewBid(bid)
Won(bid, sellerDetails)
Lost()
ConnectBuyerUse(bf)

«interface»
IBuyer

*

«call
»

StartAuction()

«interface»

ISellerUse

AuctionCompleted(bid)
ConnectSellerUse(sf)

«interface»
ISeller

«call
»

Figure 6. Auction BT participants
.

Figure 7. Auction Scenario

Implementation. The implementation of this BT could
rely on an asynchronous RMI BT and/or protocol
implementations provided by lower platform layers.
Versions of the BT that allow further variation in auction
configurations and even in the auction protocol itself can
be accommodated by extending the generator and rep
interfaces.

7. Related Work

CORBA services such as the event service [16] or the
audio/video streams service [17] represent an attempt to
provide different binding types within a single
middleware architecture. However, this approach has
many limitations. New ‘binding types’ are implemented
in an ad-hoc way by exploiting non-portable lower-level
infrastructure interfaces, and there is no coordination
between the implementations of services, which is
important if QoS is to be managed effectively.
Furthermore, the services are not replaceable and their
dependencies are not visible. Moreover, the programming
models of the different services have little in common,
which increases the cognitive load on middleware users.
The same criticism applies to similar services from the
Java world, such as the Java Message Service [23].

Enterprise component technologies, such as EJB,
CORBA Component model and COM+/.NET simplify
the use of middleware services by exposing a declarative
programming model. However, these technologies do not
address the need for multiple binding types; they only
offer a fixed set of types that typically includes remote
method invocation, messaging and events (e.g., [15]).

The RM-ODP standard [13] introduces the notion of
binding as the locus of interaction between objects. RM-
ODP assumes three kinds of interfaces, namely
operational, signal and stream interfaces, and associated
models of interaction. Both operational and stream
interfaces can be defined in terms of signal interfaces.
Given the fact that there are a multitude of useful
interaction models and the chosen three are not
orthogonal, the distinction seems to unnecessarily
complicate the programming model. Despite this
limitation, RM-ODP, by itself, does not restrict the
possible communication structures between interacting
objects and allows multiparty bindings even between
interfaces of different kinds.

RM-ODP concepts are followed in many research
platforms. For example, the ReTINA [7] project designed
an ORB architecture featuring a binding framework
based on those concepts. At the core of the framework
lies a distinction between location-independent interface
references, which are managed by the ORB kernel, and
binding factories which define various ways to access and
interact with interface references. Jonathan [9] is an ORB
initially developed at CNET, France Telecom, which
builds on the ReTINA approach. While it has a modular
and extensible architecture, Jonathan is implemented in
Java as a classical object-oriented framework without
taking advantage of component technologies. In practice,
this means that it is difficult to evolve or replace the
framework because of implicit and transitive
dependencies. Moreover, the binding framework in the
latest Jonathan version seems to be mainly geared

towards classic first-party bindings. That is, it involves
binding a reference in order to obtain an access path to
its corresponding object, which may be a remote and/or
logical object.

Hector [2] is another distributed processing
environment based on RM-ODP that notably supports
complex, multi-party bindings. Hector bindings specify
roles, defined as placeholders for interfaces, and
communication patterns between them, and can be used
to describe rich, high-level tasks (e.g., an electronic
contract between parties involved in a real-estate
purchase). However, Hector does not support any notion
of component-orientation. The programming model
available to applications follows RM-ODP and does not
comply with any commercial standards. Moreover, it is
distinct from the programming model available in the
support infrastructure, which is implemented in Python
and does not have a component architecture. One
implication of this is that it is not straightforward to
implement complex BTs by recursively building on
simpler BTs.

The Regis [6] system can be extended with
implementations of various interaction styles. A recent
version of Regis defines a language, Midas [22], for
specifying interaction styles in terms of asynchronous
messages and state machines. The main limitation of
both these systems is that they follow the Darwin [6]
binding model, which imposes that bindings are always
between two types of participants (i.e., a client and a
server). Although the model can capture a large class of
useful interaction styles (e.g., RMI, message ports, event
dissemination), it precludes multi-party, complex binding
types, such as group communications or auction
protocols.

The DIMMA [8] platform provided an explicit
binding model with application-controlled QoS, but the
API offered only two kinds of bindings, namely
operational and stream bindings. The FlexiNet [12]
platform also supports explicit binding but is restricted to
first-party, RMI bindings. FlexiBind [11] extends
FlexiNet with dynamic binding configuration based on
pluggable policies.

Finally, and more recently, the authors in [3] propose
building distributed applications using “medium”
components, which encapsulate reusable communication
services (e.g., video broadcast, voting, mailboxes).
Medium components are analogous to BT components in
our work, and they are also specified using UML
collaborations. Medium components are implemented as
sets of role managers that communicate among
themselves using an underlying middleware platform.
Each participant is associated with one role manager.
This model seems to restrict the range of binding models

that can be accommodated (e.g., it cannot accommodate
dynamically-established bindings as a result of interface
references entering address spaces). Moreover, the
underlying middleware for inter-manager communication
provides a fixed set of high-level interaction primitives
(i.e., calling operations on a set of managers
synchronously and asynchronously), which limits the
implementation options for medium developers and can
impact efficiency.

8. Evaluation and Conclusions

Performance evaluation of an open framework is
inherently problematic as the framework can be used to
built arbitrary software structures. However, in terms of
the efficiency of interactions over bindings implemented
with the framework, we are confident that no undue
overhead is incurred by the framework itself. Evidence
for this was presented in [5] which showed that IIOP
invocation in OpenORB (which used an earlier version of
the Binding CF) was actually faster than highly respected
ORBs such as TAO or Orbacus. Of course most of the
credit for this goes to the underlying communications and
resources layers, but it does demonstrate that the binding
framework is not imposing unacceptable overhead. It is
also problematic to evaluate the overhead of binding
establishment time in an environment where overhead is
very much a function of individual BTs. But again, we
can report that iref generation and resolution for a simple
RMI binding takes 11ms and 38 ms respectively2, which
is entirely comparable to that of Microsoft DCOM.

In qualitative terms, we have used the framework to
construct a representative selection of BTs including an
RMI BT, a publish/ subscribe BT, an auction BT, a group
communication BT and a message queuing BT.
Furthermore, we have investigated, at least to the level of
detailed design, a wide range of others as reported in
[21]. In all cases so far investigated, the required
functionality has been relatively straightforward to
accommodate within the constraints imposed by the
Binding API and the BT Contract. This gives us
confidence that we have indeed produced a generally
useful facility. To further test this assertion, we have
plans to apply the framework in a number of areas under
the auspices of future projects. In particular, we are
exploring the use of the framework to define e-Science
related collaborations for GRID computing [10], and to
support ad-hoc interactions in environments in which

2 Tests were performed on an Intel Pentium III PC equipped with

256Mb RAM and rated at 999Mhz. The operating system used was

Microsoft Windows XP Professional.

clients must intact with services without prior knowledge
of the either the service discovery or access protocols
used by the services.

We conclude by summarising the major benefits of
binding frameworks in general, and of our solution in
particular. The main benefit of a well-designed binding
framework is that common interaction patterns can be
captured as reusable services, thus providing a structured
means whereby the level of abstraction of middleware
platforms can be raised to meet emerging needs. A good
framework should impose just the right amount of
structure: enough to guide the design of BTs so that they
can be easily understood and take advantage of generic
interfaces and services (including building on existing
BTs), but not so much that the preconceptions of the
framework restrict the scope of future BTs. We believe
that our framework broadly achieves these goals. In
addition, our framework offers two additional benefits.
First, the framework is designed to have minimal and
explicit context dependencies and thus it can be reused in
multiple middleware architectures. Second, when
integrated into the OpenORB architecture, it provides a
convenient, flexible and extensible set of support services
to simplify the implementation of BTs.

References

[1] J. Ø. Aagedal, E. Ecklund, “Modelling QoS: Towards a

UML Profile” , UML 2002, Dresden, Germany, September
20 - October 4, 2002. Springer LNCS 2460, ISBN 3-540-
44254-5, pp. 275-289.

[2] A. Bond, D. Arnold, and M. Chilvers, “Multi-Party Binding
in an ODP World”, Int’l Conf. Open Distributed
Processing, May 27-30 1997, Toronto, Canada.

[3] E. Cariou, A. Beugnard and J.-M. Jézéquel, “An
Architecture and a Process for Implementing Distributed
Collaborations”, 6th IEEE Int’ l Enterprise Distributed
Object Computing Conf. (EDOC 2002), September 17 -
20, 2002, EPFL, Switzerland

[4] M. Clarke, G.S. Blair, G. Coulson, N. Parlavantzas, "An
Efficient Component Model for the Construction of
Adaptive Middleware", Proc. IFIP / ACM Int’l Conf.
Distributed Systems Platforms (Middleware'2001), LNCS
2218, Heidelberg, Germany, November 2001, pp. 160.

[5] G. Coulson, G.S. Blair, M. Clarke, N. Parlavantzas, "The
Design of a Highly Configurable and Reconfigurable
Middleware Platform", ACM Distributed Computing
Journal, Vol 15, No 2, April 2002, pp 109-126.

[6] S. Crane. Dynamic Binding for Distributed Systems, PhD
Thesis, Imperial College, Univ. of London, March 1997.

[7] F.Dang Tran, B. Dumant, F. Horn, and J.B. Stefani.
“Towards an extensible and modular ORB framework”.
Workshop CORBA use and evaluation, ECOOP'97,
Jyväskylä, Finland, June 1997

[8] D. Donaldson, et al.,, "DIMMA - A Multi-Media ORB",
Proc. IFIP Int’ l Conf. Distributed Systems Platforms and
Open Distributed Processing (Middleware '98), The Lake

District, UK, Springer-Verlag, 15-18 September 1998, pp.
141-156.

[9] B. Dumant, F. Dang Tran, F. Horn, and J.B. Stefani,
“Jonathan: an open distributed processing environment in
Java”, Proc. IFIP Int’ l Conf. Distributed Systems Platforms
and Open Distributed Processing (Middleware '98),
Springer-Verlag, The Lake District, U.K., September 1998,
pp 175-190.

[10] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the
Grid: Enabling Virtual Organizations, Int’l Journal of
Supercomputer Applications, Vol 15, No 3, 2001.

[11] Ø. Hanssen and F. Eliassen, “A Framework for Policy
Bindings”, Proc. DOA’99, IEEE Press, Edinburgh,
September 1999.

[12] R. Hayton, A. Herbert and D. Donaldson, “Flexinet: a
flexible, component oriented middleware system”, Proc. 8th
ACM SIGOPS European Workshop: Support for
Composing Distributed Applications, Sintra, Portugal, 7-10
September 1998.

[13] ISO, ITU, Open Distributed Processing – Reference
Model, ISO/IEC 10746-1, 2, 3, 4 | ITU-T
Recommendation X.901, X.902, X.903, X.904, 1995-96.

[14] Microsoft, COM Home Page,
http://www.microsoft.com/com/default.asp (current June
2003).

[15] Object Management Group, CORBA Component Model,
OMG Document formal/2002-06-65.

[16] Object Management Group, CORBA Event Service v1.0,
OMG Document formal/2000-06-15.

[17] Object Management Group, Audio/Video Streams, v1.0,
OMG Document formal/2000-01-03.

[18] Object Management Group, Unified Modeling Language
(UML), Version 1.4, OMG Document formal/2001-09-67.

[19] N. Parlavantzas, G. Coulson and G.S. Blair, "An approach to
building reflective component-based middleware platforms",
Microsoft Summer Research Workshop, Cambridge, U.K.,
September 9-11, 2002.

[20] N. Parlavantzas, G. Coulson and G.S. Blair, "A Resource
Adaptation Framework For Reflective Middleware", Proc.
2nd Intl. Workshop Reflective and Adaptive Middleware
(located with ACM/IFIP/USENIX Middleware 2003), Rio
de Janeiro, Brazil, June, 2003

[21] N. Parlavantzas, An extensible binding framework for
component-based middleware, tech report, Distributed
Multimedia Group, Lancaster University, 2002.

[22] N. Pryce and S. Crane. “Component Interaction in
Distributed Systems”. IEEE Fourth Int’l Conf. on
Configurable Distributed Systems, Annapolis, Maryland,
USA, May 1998, pages 71-78.

[23] Sun Microsystems, Java Message Service API,
http://java.sun.com/products/jms/ (current June 2003).

[24] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

[25] P. Wurman, M. Wellman, et al., "A Control Architecture for
Flexible Internet Auction Servers," First IAC Workshop
Internet-Based Negotiation Technologies, Yorktown
Heights, New York, 1999.

