
Balancing Active Objects on a Peer-to-Peer
Infrastructure

Javier Bustos1,2, Denis Caromel2, Alexandre di Costanzo2, Mario Leyton2, and Jose
M. Piquer1

1 Computer Science Department, University of Chile. Blanco Encalada 2120, Santiago, Chile.
{jbustos,jpiquer }@dcc.uchile.cl

2 INRIA Sophia-Antipolis, CNRS, I3S, UNSA. 2004, Route des Lucioles, BP 93, F-06902
Sophia-Antipolis Cedex, France.

First.Last@sophia.inria.fr

Abstract. We present a contribution on dynamic load balancing for distributed
and parallel object-oriented applications. We specially target on peer to peer
computing and its capability to distribute parallel computation, which transfer
large amount of data (calledintensive-communicatedapplications) among large
number of processors. We explain the relation between active objects and proces-
sors load. Using this relation, and defining an order relation among processors, we
describe our active object balance algorithm as a dynamic load balance algorithm,
focusing on minimizing the time when active objects are waiting for the comple-
tion of remote calls. We benchmark a Jacobi parallel application with several
load balancing algorithms. Finally, we study results from these experimentation
in order to show that our algorithm has the best performance in terms of migration
decisions and scalability.

1 Introduction

One of the main features of a distributed system is the ability to redistribute tasks
among its processors. This enables, a redistribution policy to gain in productivity by
dispatching the tasks in such a way that the resources are used efficiently, i.e. minimiz-
ing the average idle time of the processors and improving applications performance.
This technique is know as load balancing. Moreover, when the redistribution decisions
are taking on runtime, it is calleddynamic load balancing.

There are many definitions forPeer to Peer(P2P), many of them are similar to other
distributed infrastructures, such as Grid, client/server, etc. Two of the best definitions
are provided by Oram in [11], and Schollmeier in [13]. From these definitions and
more generally, P2P focus on sharing resources, decentralization, instability, and fault
tolerance.

We present an active object load balancing algorithm based on well known algo-
rithms [14] and adapted for a P2P infrastructure. This algorithm is a dynamic, fully
distributed load balancer, which reacts to load perturbations on the processor and the
system. Our main contribution are the relation between processors load and active
objects balancing, the use of an order relation (see section 4) to improve the parallel
application performance and the exploit of P2P to improve the balance algorithm.

Our algorithm has been implemented within ProActive [1], an open source Java
middleware which aims to achieve seamless programming for concurrent, parallel, dis-
tributed and mobile computing implementing the active object programming model.
Using this model, intensive-communicated parallel applications are developed (see a
particular example on [10]).

While many dynamic load balancing algorithms has been presented and studied in
depth [16, 15, 14], a previous work [4] shows that, for intensive-communicated parallel
applications, new constraints (like bandwidth) appear, and most of those algorithms
become not applicable.

This work is organized as follow. Section 2 presents ProActive as an implementation
of active object programming model. Section 3 describes our Peer to Peer infrastructure.
Section 4 explains the fundamentals of our active objects load balancing algorithm.
Section 5 shows implementation issues and benchmarking of our algorithm with a
Jacobi parallel application. Finally, conclusions and future work are presented.

2 ProActive and the Active Object Programming Model

The ProActive middleware is a 100% Java library, which aims to achieve seamless
programming for concurrent, parallel, distributed and mobile computing. As it is built
on top of standard Java API, it does not require any modification of the standard Java
execution environment, nor does it make use of a special compiler, pre-processor or
modified virtual machine.

The base model is a uniformactive objectprogramming model. Each active object
has its own thread of control and is granted the ability to decide in which order to serve
the incoming method calls that are automatically stored in a queue of pending requests.
If the queue is empty, the active objects waits until the arriving of a new request, this
state is known aswait-for-request.

Active objects are remotely accessible via method invocation. Method calls with
active objects are asynchronous with automatic synchronization. This is provided by
automaticfuture objectsfor results of remote methods calls and synchronization is
handled by a mechanism known aswait-by-necessity[5]. There is a short rendez-vous
at the beginning of each asynchronous remote call, which blocks the caller until the call
has reached the context of the callee.

An another communicating way is thegroup communicationmodel. Group commu-
nication enables to trigger method calls on a distributed group of active objects of the
same compatible type, with a dynamic generation of groups of results. It has been shown
in [2] that this group communication mechanism, plus a few synchronization operations
(WaitAll, WaitOne, etc.), provides quite similar patterns for collective operations such
as those available in e.g. MPI, but in a language centric approach.

ProActive provides a way to move any active object from any Java Virtual Machine
(JVM) to any other one, this is calledmigrationmechanism [3]. An active object with its
pending requests (method calls), its futures, its passive (mandatory non-shared) objects
may migrate from JVMs to JVMs through themigrateTo(. . .)primitive. The migration
may be initiated from outside through any public method but it is the responsibility
of the active object to execute the migration, it is weak migration. Automatic and

transparent forwarding of requests and replies provide location transparency, as remote
references towards active mobile objects remain valid.

3 Peer-to-Peer Infrastructure

The goal of the Peer to Peer infrastructure is to use spare CPU cycles from institutions’
desktop computers combined with grids and clusters. Managing different sort of re-
sources (grids, clusters and desktop computers) as a single network of resources with a
high instability of them needs a fully decentralized and dynamic approach. Therefore,
mimicking data P2P networks is a good solution for sharing a dynamic JVM network,
where JVMs are the shared resources. Thereby, the ProActive infrastructure is a P2P
network, which shares JVMs for computation. This infrastructure is completely self-
organized and fully configurable. Main features and technical aspects are explained
below.

The main particularity of the infrastructure is the peers high volatility due to prin-
cipally those peers are users’ computers. That’s why it aims to maintain a created
JVMs network alive while there are available peers, this is calledself-organizing. On
condition that it is not possible to have exterior entities, as such centralized servers,
which maintain peer databases. All peers should be enabled to stay in the infrastructure
by their own means. There is a solution, which is widely used in data P2P networks;
this consists of maintain for each peers a list of their neighbors.

In the same way, this idea was selected to keep the infrastructure up. All peers
have to maintain a list ofacquaintances. At the beginning, when a fresh peer has
just joined the network, it knows only peers from a list of potential members of the
network. Because not all peers are always available, knowing a started fixed number of
acquaintances is a problem for peers to stay connected in the infrastructure.

Therefore, the infrastructure uses a specific parameter called:Number of Acquain-
tance(NOA). This is the minimum size of the list of acquaintances of all peers. Peers
keep frequently their lists up-to-date that are why a new parameter must be introduced:
Time to Update(TTU). This is the frequency, which peers must check theirs own
acquaintances’ lists to remove unavailable peers and in the case of the longer of the
lists is less than the NOA, discovering new peers. To discovering new acquaintances,
peers send exploring messages through the infrastructure. Then, peers verify the others
availabilities by sending aheartbeatto theirs acquaintances, which is sent every TTU.

As previously said, the main goal of this P2P network is to provide an infrastructure
for sharing computational nodes (JVMs). The resource query mechanism used is similar
to the Gnutella [8] communication system: Breadth-First Search algorithm (BFS). The
system is message-based with application-level routing. The message is forwarded to
each acquaintance and if the message has already been received, it is not forwarded
further. The number of hops that a message can take is limited with aTime-To-Live
(TTL) parameter. Message transport is provided by ProActive group communication in
an asynchronous way.

The Gnutella’s BFS got a lot of justified critics [12] for scaling, bandwidth using,
etc. Thanks to ProActive asynchronous method with automatic futures, which provides
an advance to the basic BFS. Before forwarding the message, peers, which are free for

accepting computation, wait an acknowledgment from the requester. After an expired
timeout or a non-acknowledgment, peers do not forward the message. However, the
message is forwarded until the end of TTL or until the number of nodes asked reach
zero. The message contains the initial number of nodes asked and it is decrease each
time a peer shares its node. For peers, which are occupied, the message is forwarded as
normal BFS.

We made a permanent infrastructure with INRIA lab desktop computers and we
have been experiment about massive parallel applications for one year. In our exper-
iments, the network size of 250 machines with 100 Mb/s Ethernet connections the
message traffic has not yet posed significant problem. In the context of the second
Grid Plugtests [6], we are trying to beat the world record for finding all solutions of
the n-Queens problem withn = 25.

4 Active Objects Balance Algorithm

Dynamic load balancing on distributed systems is a well studied issue. Most of the
available algorithms (see algorithms compilations on [4, 14]) focus on fully dedicated
processors with homogeneous networks, using a threshold monitoring strategy and
reacting to load imbalances.

Nevertheless, on P2P networks heterogeneity and resource sharing (like processor
time) are key aspects. Therefore, most of these algorithms become inapplicable. More-
over, due the fact that processors connected to a P2P network share their resources not
only with the network but also with the processor owner, new constraints like reaction
time against overloading and bandwidth usage become relevant.

In this section, we present an adaptation of a well known load balancing algorithm
for P2P active object networks. First we present the relation between active object
service and processing time, followed by the algorithm details.

4.1 Active Objects and Processing Time

When an active object waits idly (without processing), it can be on await-for-requestor
a wait-by-necessitystate (see figure 1). While the former represents a sub utilization of
the active object, the latter means some of its requests are not served as quickly as they
should. The longer waiting time is reflected on a longer application execution time, and
thus a lesser application performance. Therefore, we focus our algorithm on a reduction
in thewait-by-necessitytime delay.

A key assumption in our model is the utilization of asynchronous calls on parallel
applications (like figure 1 (a) and (c)).

Figure 2 presents active object services and their CPU usage during periods of time
t . Message calls are represented by arrows and active object services by grey areas,
there can be a delay between the call and the service.

We consider the behaviour shown in figure 2 (left) similar to the one in figure 1
(b): the time spent by message services is so long that the usage offuturesis pointless.
In this sort of application design, asynchronism provided byfutureswill unavoidably
become synchronous. This is the same behaviour experienced when using an active

a

A B

WfR
Q

P
WbN

b

A B
Q

P

Q

P
c

A B C

Q P

Q

P

QP

Fig. 1. Different behaviours for active objects request (Q) and reply (P): (a) B starts in wait-
for-request (WfR) and A made a wait-by-necessity (WfN). (b) Bad utilization of the active object
pattern: asynchronous calls become synchronous. (c) C has a long waiting time because B delayed
the answer.

object as a central server. Migrating the active object to a faster machine may reduce
the application response time but will not correct the application design problem.

We focus on the behaviour presented by figure 2(right). This figure shows anover-
loadedCPU (cpu2 has no idle time) and another CPU (cpu1) doingwait-by-necessity.

The active object oncpu1 is delayed because the active object oncpu2 has not
enough free processor time to serve its request. Migrating the active object fromcpu2
to a machine with available processor resources speeds up the global parallel applica-
tion. This happens, becausecpu1 wait-by-necessitytime will shorten, andcpu2 will
decrease its load.

���
�

���
�

���
�

��
�
��
�

��
�
		
	

t t

cpu 1

cpu 2

Active Objects

System Calls

Q
P

Q
P

��
������
���
������
���

��
�
��
�

������
���
������
���
		
	

��
�
��
�

�

�

�

������
���
���
�

���
�

���
�

t t

cpu 1

Other Processes

Idle Cpu Time

cpu 2

QQ
P P

Q

Fig. 2.CPU overloading: (left) A long time running service. (right) Shared CPU among different
user processes.

4.2 Active Objects Balance Algorithm

Suppose function calledload(A,t) exists, which gives us the usage percentage of
processorP sincet units of time. Defining two threshold:OTandUT (OT > UT), we
say that a processorA is overloaded(resp.underloaded) if load(A,t) > OT(resp.
load(A,t) < UT).

The original load balancing algorithm uses a central server to store system informa-
tion, processors can register, unregister and query it for balancing. The algorithm is as
follows:

Everyt units of time

1. if a processorA is underloaded, it registers on the central server,
2. if a processorA was underloaded int-1 and now it has left this state, then it

unregisters from the central server,
3. if a processorA is overloaded3, it asks to the central server for an underloaded

processor, the server randomly choose a candidate from its registers and gives its
reference to the overloaded processor.

4. The overloaded processorA migrates an active object to the underloaded one.

This simple algorithm satisfies the requirements of minimizing the reaction time
against overloadings and, as we explained on section 4.1, it speeds up the application
performance. However, it works only for homogeneous networks.

In order to adapt this algorithm to heterogeneous networks, we introduce a function
called rank(A) , which gives us the processing speed ofA, note that this function
generates a total order relation among processors.

The functionrank provides a mechanism to avoid processors with low capacity,
concentrating the parallel application on the higher capacity processors. It is also pos-
sible to provide the server withrank(A) at registration time, allowing to search for a
candidate with similar or higher rank. This would produce the same mechanism, with
the drawback of adding the search time to reaction time against overloading. In general,
all search mechanism ofthe bestunloaded candidate in the server will add a delay into
server response, and consequently in reaction time.

Before our algorithm implementation, we studied the network and selected a proces-
sorB4 asreferencein terms of processing capacities. Then, we modified our algorithm
to:

Everyt units of time

1. If a processorA is overloaded, it asks to the central server for an underloaded
processor, the server randomly choose a candidate from its registers and gives its
reference to the overloaded processor.

2. If A is not overloaded, it checks ifload(A,T) < UT*rank(A)/rank(B) , if
true then it registers on the central server. Else it unregisters of the central server.

3. overloaded processor migrates an active object to the underloaded one.

4.3 Active Object Balancing using P2P Infrastructure

Looking for a better underloaded processor selection, we adapted the previous algo-
rithm: using a subset of peer acquaintances from the P2P infrastructure (defined on
section 3) to coordinate the balance.

If p is the probability of having a computer on an underloaded state, and the ac-
quaintances subset size isn, then using this approach (all computers are independents)

3 On a previous work [4] we showed that overloaded initiated algorithms have the best reaction
time on load balancing

4 Choosing the correct processor B requires further research, but for now the median is a
reasonable approach

the probability of having at leastk responses is
n∑

i=k

(n
k)pi(1− p)n−i

Therefore, a good election of the parametern permits a reduction on the bandwidth used
by the algorithm with a minimal addition on reaction time. For instance, ifp = 0.8 and
n = 3 one has a response probability of0.99, and usingp = 0.6 andn = 6 one has the
same response probability.

Everyt units of time

1. If a processorA is overloaded, it sends a balance request and the value ofrank(A)
to a subsetn of its acquaintances (using group communication).

2. When a processB receives a balance request, it checks ifload(B,T) < UT
andrank(B) ≥ rank(A)- ε (whereε > 0 is to avoid discarding similar, but
unequal, processors), if true, then it sends a response toA.

3. When A receives the first response (fromB), it migrates an active object toB.
Further responses for the same balance request can be discarded.

4.4 Migration Time

A main load balancing algorithm problem ismigration time, defined as the time interval
since the processor requests an object migration, until the objects arrives at the new
processor5. Migration time is undesirable because the active object is halted while
migrating. Therefore, minimizing this time is an important aspect on load balancing.

While several schemes try to minimizingmigration timeusing distributed memory
[7] (not yet implemented in Java), or migrating idle objects [9] (almost inexistent on
intensive-communicated parallel applications), we exploit our P2P architecture to re-
duce the migration time: using a group call. The first reply will come from the nearest
acquaintance, and thus the active object will spend the minimum time traveling to the
closest unloaded processor.

Moreover, migrating the active object with the shortest service queue length (see
section 2) will minimize the amount of data which has to traverse the network, mini-
mizing the migration time.

5 Experimentation

Our P2P load balancer was deployed on a set of 25 INRIA lab desktop computers,
having 10 Pentium III 0.5 - 1.0 Ghz, 9 Pentium IV 3.4GHz and 6 Pentium XEON
2.0GHz, all of them using Linux as operative system and connected by a 100 Mbps
Ethernet network. Functionsload() (resp.rank()) of previous section are imple-
mented with information available on/proc/stat (resp./proc/cpuinfo). Load
balancing algorithms were developed usingProActiveon Java 2 Platform (Standard
Edition) version 1.4.2.

In our experience, we experimentally defined the algorithm parameters as:
5 In ProActive, an object abandons the original processor upon confirmation of arrival at the new

processor.

– OT= 0.8
– UT= 0.3

Having, in normal conditions, 80% of desktop computers in underloaded state.
Due the fact that thecpu speed(in MHz) is a constant property of each processor

and it represent its processing capacity, and after a brief analysis of them on our desktop
computers, we define therank function as:

– rank(P) = log10 speed(P)
– havingε = 0.5

On implementation time, a new constraint came to light: in our algorithms, all load
status are checked eacht units of time (calledupdate time). If this update time is
less than migration time, extra migrations which affects the application performance
could be produced. After a brief analysis of migration time, and avoiding network
collisions, we experimentally defined update time as:

if load = 0 tupdate = 30

else, t̃ follows a normal distribution

tupdate = 5 +
30 + 10 t̃

1 + load
[sec]

This formula has a constant component (migration time) and a dynamic component
which decrease the update time while the load increase, looking for a minimization on
reaction time.

We tested the impact of our load balancing algorithm over a real application: the
Jacobimatrix calculus. This algorithm performs an iterative computation on a square
matrix of real numbers. On each iteration, the value of each point is computed using
its value and the value of its neighbors for their last iteration. We divided a 3600x3600
matrix in 36 workers all equivalents, and each worker communicates with its direct
acquaintances. We measured the execution time of 1000 sequential calculus of Jacobi
matrices.

Looking for lower bounds on this parallel calculus, we calculate the mean time of
Jacobi calculus for 2,3 and 4 workers by machine, using the computers with higher
rank. Horizontal lines on figure 3 are the mean values of this experience. Therefore,
we tested our algorithm using the central server algorithm, having all workers ran-
domly distributed among 16 (of 25) machines and using as reference a cpu clock of
3000MHz.

Using the information of thenon-balancedexperience, we test the number of ac-
tives objects as a load index, andUT=2,OT=4 . Mean values from this experience are
represented by the symbolx on figure 3.

We implemented the central server and P2P algorithms from section 4.1. In figure 3,
measured values for the first one are represented by white circles and for P2P by boxes.
Having, in normal conditions, 80% of computers in underloaded state, and looking
for a reduction in the number of messages among acquaintances, we used a subset of
3 neighbors, which give us a probability greater than 0.99 of having a acquaintance
response in case of overloading.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35 40

tim
e

[m
se

c]

of migrations

Benchmark of Parallel Jacobi

4 AOxCPU

3 AOxCPU

2 AOxCPU

Central Server, using CPU load
Central Server, max 3 AOxCPU

P2P

Fig. 3. Impact of load balancing algorithms over Jacobi calculus

While using the static information seems to be a good idea, the heterogeneity of
the P2P network produces the worse scenario: large number of migrations and bad
migration decisions, therefore poor performance on Jacobi calculus. Using ready queue
as load index produces a better performance than the previous case, while the central
server oriented algorithm produces low mean times for low rate of migrations (a initial
distribution near to the optimal), P2P oriented algorithm presents almost the same per-
formance independently of number of migrations. Moreover, considering the addition
of migration time on Jacobi calculus performance, our balance algorithm produces the
best migration decisions only using a minimal subset of its neighbors. For this reason,
it presents scalability conditions for large networks.

6 Related Work

X do the same but now it is not applicable, Y did the same but for homogeneous
networks and Z do the same without worried of the reaction time.

7 Conclusions

We have introduced a P2P dynamic load balancer for active objects, focusing on intensive-
communicated parallel applications. We started introducing the P2P infrastructure de-
veloped for ProActive and the relation between active objects and CPU load. Then, a
order relation to improve the balance is defined. A case study presents the impact of
our approach over a parallel application, showing the best performance on migration
decision and scalability for our P2P based algorithm. As future work, for the P2P

infrastructure we will prospect solutions with not fixed TTL to avoid network flooding
due to BFS algorithm. It is the continued goal of this work to search for the best load
index and parameters for our algorithm, looking for the best performance in bandwidth,
reaction time and parallel application speed.

References

1. Oasis Group at INRIA Sohpia-Antipolis. “Proactive, the java library for parallel, distribuited,
concurrent computing with security and mobility”. http://www-sop.inria.fr/oasis/proactive/,
2002.

2. Laurent Baduel, Françoise Baude, and Denis Caromel. Efficient, flexible, and typed group
communications in java. InJoint ACM Java Grande - ISCOPE 2002 Conference, pages
28–36, Seattle, 2002. ACM Press.

3. Francoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayssier e. Communicating
mobile active objects in java. InProceedings of HPCN Europe 2000, volume 1823 ofLNCS,
pages 633–643. Springer, May 2000.

4. Javier Bustos, Denis Caromel, and Jose Piquer. Information collection policies:
Towards load balancing of communication-intensive parallel applications.
http://www.dcc.uchile.cl/˜jbustos/Pub/intensive.pdf, 2005.

5. Denis Caromel. Toward a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

6. ETSI and INRIA. http://www.etsi.org/plugtests/GRID.htm.
7. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5

multithreaded language. InSIGPLAN Conference on Programming Language Design and
Implementation, pages 212–223, 1998.

8. Gnutella. http://www.gnutella.com.
9. Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, and Paul F.

Reynolds Jr. Legion: The next logical step toward a nationwide virtual computer. Technical
Report CS-94-21, University of Virginia, 8, 1994.

10. Fabrice Huet, Denis Caromel, and Henri Bal. A high performance java middleware with
a real application. InProc. of High Performance Computing, Networking and Storage
(SC2004), Pittsburgh, USA, 2004.

11. Andy Oram.Peer-to-Peer : Harnessing the Power of Disruptive Technologies. O’Reilly &
Associates, Sebastopol, CA, 2001.

12. Jordan Ritter. Why Gnutella can’t scale. No, really., 2001.
http://www.darkridge.com/ jpr5/doc/gnutella.html.

13. Rudiger Schollmeier. A definition of peer-to-peer networking for the classification of peer-
to-peer architectures and applications. In IEEE, editor,2001 International Conference
on Peer-to-Peer Computing (P2P2001), Department of Computer and Information Science
Linko pings Universitet, Sweden, august 2001.

14. Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for locally
distributed systems.IEEE Computer, 25(12):33–44, 1992.

15. M. M. Theimer and K. A. Lantz. Finding idle machines in a workstation-based distributed
system.IEEE Trans. Softw. Eng., 15(11):1444–1458, 1989.

16. M. J. Zaki, Wei Li, and S. Parthasarathy. Customized dynamic load balancing for a network
of workstations. InProceedings of the High Performance Distributed Computing (HPDC
’96), page 282. IEEE Computer Society, 1996.

