
File transfer in Grid applications at

Deployment, Execution and Retrieval

Françoise Baude Denis Caromel Mario Leyton

INRIA Sophia-Antipolis, CNRS, I3S, UNSA. 2004, Route des

Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France.
First.Last@sophia.inria.fr

Abstract

In this article a three staged file transfer approach for the Grid is

proposed. File transfer in the Grid can take place at three stages: de-

ployment, user application execution, and retrieval (post-execution).

Each stage has it’s own environmental requirements, and therefore

different techniques must be applied.

The contributions presented in this article can be grouped in two.

First, the integration of heterogeneous resource acquisition and file

transfer protocols. This allows on-the-fly deployment and retrieval

of files. Secondly, an asynchronous file transfer mechanism based on

active objects, wait-by-necessity, and automatic continuation.

The proposed file transfer model has been implemented using the

ProActive middleware. ProActive provides, among others, a Grid in-

frastructure abstraction using deployment descriptors, and a program-

ming model based on active objects with transparent futures. Finally,

the proposed file transfer model is benchmarked and validated with a

real case study: BLAST.

1

1 Introduction

Scientific and engineering applications that require, handle, and generate

large amount of data represent an increasing use of Grid computing. To

handle this large amount of information, file transfer operations have a sig-

nificant importance. For example, some of the areas that require handling

large amount of data in the Grid are: bioinformatics, high-energy physics,

astronomy, etc.

Although file transfer utilities are well established, when dealing with the

Grid, environmental conditions require reviewing our previous understand-

ing of file transfer to fit new constraints and provide new features at three

different stages of Grid usage: deployment, execution, and retrieval (post-

execution). At deployment time, by focusing on integrating heterogeneous file

transfer and resource acquisition protocols to allow on-the-fly deployment.

During the application run time, by offering a parallel and asynchronous

file transfer mechanism based on active objects, wait-by-necessity, and auto-

matic continuation. Once the execution of the user application has finished,

by offering a file retrieval mechanism.

Document Layout

This document is organized as follows. Background on the Grid programming

middleware ProActive is provided in section 2. The background is divided

into two parts, the first one explains the active object programming model,

and the second one the deployment framework.

The file transfer proposal for the Grid, and how it is implemented in

the context of ProActive, is shown in sections 3 and 4. Section 3 describes

how heterogeneous protocols for file transfer and resource acquisition can

be integrated to achieve on-the-fly deployment for the Grid. To explain the

approach, the notation is introduced and some general concepts concerning

resource acquisition and file transfer are reviewed. Section 4 details the file

transfer approach used during execution and retrieval, which are built on top

of the active object programming model.

Benchmark of the model’s implementation are provided in section 5. A

2

case study application is presented in section 6, where the proposed file trans-

fer model is used to distribute an application to perform sequence alignment

in bioinformatics: BLAST [5].

Related work is reviewed in section 7, and finally the concluding remarks

and future work are presented in section 8.

2 Background on ProActive

2.1 ProActive Active Objects and Futures

Figure 1, shows the active object (AO) programming model used in ProAc-

tive [20]. AO are remotely accessible via method invocations, automatically

stored in a queue of pending requests. Each AO has its own thread of con-

trol and is granted the ability to decide in which order incoming method calls

are served (FIFO by default). Method calls on AO are asynchronous with

automatic synchronization (including a rendezvous). This is achieved using

automatic future objects as a result of remote methods calls, and synchro-

nization is handled by a mechanism known as wait-by-necessity [6].

3⌧ A future object
is created and returned

1⌧ Object A performs
a call to method foo

2⌧ The request for foo
is appended to the queue

5⌧ The body updates the future
with the result of the execution of foo

6⌧ Object A can use the result
throught the future object

4⌧ The thread of the body
executes method foo on object B

Object B

Proxy Body

Object A

Future

Result

Local node Remote node

Object BObject A

Figure 1: Execution of a remote method call.

3

Figure 2: Deployment Descriptor.

2.2 ProActive Deployment Descriptors

ProActive also provides a Descriptor Deployment Model [4], which allows

the deployment of applications on heterogeneous sites without changing the

application source code. All information related with the deployment of the

application is described in the Deployment Descriptor (XML). Thus, elim-

inating references inside the code to: machine names, resource acquisition

protocols (local, rsh, ssh, lsf, globus-gram, unicore, pbs, lsf, nordugrid-arc,

etc..), and communication/lookup protocols (rmi, jini, http, etc...).

The Deployment Descriptor is shown in Figure 2. The infrastructure sec-

tion contains the information necessary for booking remote resources. Once

booked, ProActive Nodes can be created (or acquired) on the resources. To

link the nodes with the application code, a virtual-node abstraction is pro-

vided, which corresponds to the actual reference in the application code.

Virtual-nodes have a unique identifier which is referenced inside the appli-

cation and the descriptor.

The person deploying the application can change the mapping of the Ap-

plication → virtual-node to deploy on a different Grid, without modifying

a single line of code in the application.

4

3 Grid Deployment and File Transfer

3.1 On-the-fly Deployment

We consider that deployment on the Grid represents the fulfillment of the

following tasks: (i) Grid infrastructure setup (protocol configuration, in-

stallation of Grid middleware libraries, etc...), (ii) resource acquisition (job

submission), (iii) application specific setup (installing application code, in-

put files, etc...), and (iv) application deployment (setting up the logic of the

application).

Usually, the deployment requires files transfer during the above cited tasks

to succeed. Such files as: Grid middleware libraries (i), application code (iii),

and application input files (iv). We say a Grid deployment can be achieved

on-the-fly if the required files can be transferred when deploying, without

having to install them in advance. It is our belief, that on-the-fly deployment

greatly reduces the Grid infrastructure configuration, maintenance and usage

effort.

3.2 Concepts

Let r be a resource acquisition protocol, t a file transfer protocol, n a Grid

node, p a Grid infrastructure parameter, and f a file definition. Then, a node

nk is acquirable from n0 iff ∃{r0(p0), . . . , rk−1(pk−1)} and ∃{n0, . . . , nk−1}
as shown in Figure 3(a). The nodes are acquired sequentially one after the

other, i.e. nk is acquired before nk+1 using a resource acquisition protocol

rk.

A Grid infrastructure resource acquisition can more precisely be seen as

a tree, since more than one node can be acquired in parallel. As shown

in Figure 3(b), the leaf nodes represent the acquired resources, and will be

referred to as a virtual-node, using the ProActive terminology.

Given a file transfer protocol t we say a file f can be transferred from n0

to nk iff ∃{t0(p0, f), . . . , tk−1(pk−1, f)} and ∃{n0, . . . , nk−1} (Figure 3(c)).

A file transfer protocol can be of two types: internal if the file transfer

protocol is executed by the resource acquisition protocol, i.e. r(p, f) executes

5

Figure 3: Resource acquisition and file transfer.

the file transfer and performs the resource acquisition (unicore, nordugrid);

or external if they are not part of a resource acquisition protocol (scp, rcp).

Therefore, internal file transfer protocols can not be used separately from the

corresponding resource acquisition protocol.

3.3 Integration Proposal

Supposing that nk+1 is acquirable from nk using rk, and given an ordered list

of file transfer protocols
−→
tk that can or cannot be successful at transferring

f from nk to nk+1. Then, if there ∃tik ∈
−→
tk which corresponds to the lower

indexed transfer protocol capable of transferring f , the sequencing of file

transfer and resource acquisition protocols is proposed in the following way:

1. If tik is external, then

nk

t0k(p,f),...,tik(p,f),rk(p)
−−−−−−−−−−−−→ nk+1

will be executed. That is to say, that the file transfer protocols will be

executed sequentially until one of them succeeds, and then the resource

acquisition protocol will be executed.

2. If tik is an internal file transfer protocol of rk, then

nk

t0k(p,f),...,ti−1
k (p,f),rk(p,f)

−−−−−−−−−−−−−−−→ nk+1

6

will be executed. The assumption is that the internal tik of a given rk

will always succeed. This is reasonable, because if the internal tik fails,

this implies that rk will also fail, and thus there is no point on testing

further file transfer protocols.

The problem with the sequencing approach, is that no file transfer pro-

tocol tik ∈ tk may be successful at transferring f . To solve this, we propose

the usage of a failsafe file transfer protocol, which is reliable at perform-

ing the file transfer, but only after the resource acquisition has taken place.

Therefore, if tik is a failsafe protocol, then

nk

t0k(p,f),...,ti−1
k (p,f),rk(p),tik(p,f)

−−−−−−−−−−−−−−−−−−→ nk+1

will be executed. In the failsafe approach, the actual file transfer is performed

after the resource acquisition.

There are two main reasons to avoid using a failsafe protocol. The first

one, is that failsafe performs the file transfer at a higher level of abstraction,

not taking advantage of lower level infrastructure information, as shown in

the benchmarks of section 5.2. The second reason is that on-the-fly de-

ployment becomes limited: the libraries required to use the failsafe protocol

cannot be transferred using the failsafe protocol, and consequently must be

transferred in advance.

3.4 File Transfer in ProActive Deployment Descrip-

tors

Figure 4 shows how the approach is integrated into ProActive Deployment

Descriptors, by taking advantage of the descriptor’s structure to apply sepa-

ration of concerns. The files requiring file transfer are specified in a different

section (FileTransferDefinitions) than the Grid infrastructure parame-

ters (FileTransferDeploy). The infrastructure parameters holds informa-

tion such as: the sequence of protocols that will copy the files (copyProtocol),

hostnames, usernames, etc. Further details of the failsafe protocol shown in

the example are described in section 4.1. Finally, the FileTransferRetrieve

7

tag specifies which files should be retrieved from the nodes in the retrieval

(post-execution) phase (reviewed in further depth in section 4.2).

<FileTransferDefinitions>

<FileTransfer id="requiredfiles">

<file src="application.class" dest="application.class"/>

<file src="ProActive.jar" dest="ProActive.jar"/>

<file src="input.dat" dest="input.dat"/>

</FileTransfer>

<FileTransfer id="results"><file src="output.dat"/></FileTransfer>

<FileTransferDefinitions>

...

<virtualNode name="exampleVNode" FileTransferDeploy="requiredfiles"/>

...

<processDefinition id="xyz">

<sshProcess>

<!-- The refid attribute can be set to "implicit", which will use the value defined in

the VirtualNode. -->

<FileTransferDeploy refid="implicit">

<copyProtocol>processDefault, rcp, scp, failsafe</copyProtocol>

<sourceInfo prefix="/home/user"/>

<destinationInfo prefix="/tmp" hostname="foo.org" username="smith" />

</FileTransferDeploy>

<!-- The refid can also directly reference the FileTransfer id. -->

<FileTransferRetrieve refid="results">

<sourceInfo prefix="/tmp"/>

<destinationInfo prefix="/home/user"/>

</FileTransferRetrieve>

</sshProcess>

</processDefinition>

Figure 4: Example of file transfer in Deployment Descriptors.

4 File Transfer during execution and retrieval

Applications can generate data, and transferring this data during the appli-

cation execution is usually achieved with a specific communication protocol.

Nevertheless, Grid resources are characterized by distributed ownership and

therefore diverse management policies, as our own experiments [18, 19] con-

firm it. As a result, setting up the Grid to allow message passing is a painful

task. Additionally configuring and maintaining a specific file transfer proto-

col between any pair of nodes seems to us as an undesirable burden1.

Therefore, file transfer protocol should be built on top of other protocols,

1Deployment file transfer does not impose this burden, because the file transfer does
not take place between each possible pair of nodes.

8

specifically the message passing protocols. Standard message passing is not

well suited for transferring large amounts of information, mainly because of

memory limitations and lack of performance optimizations for large amounts

of data. In this section we show how a message passing model based on

active object can be used as the ground for a: portable, efficient, and scalable

file transfer service for large files: where large means bigger than available

runtime memory. Additionally by using active objects as transport layer for

file transfer, we can benefit from automatic continuation to improve the file

transfer between peers, as we will show in the benchmarks of section 5.

4.1 Asynchronous File Transfer with Futures

File transfer between nodes has been implemented as service methods avail-

able in the ProActive library, as shown in Figure 5. Given a ProActive Node

node, a File(s) called source, and a File(s) called destination, the source can

be pushed (sent) or pulled (get) from a node using the API. The figure also

shows a retrieveFiles method, which is discussed in section 4.2.

//Send file(s) to Node node

static public File pushFile(Node node, File source, File destination);

static public File[] pushFile(Node node, File[] source, File[] destination);

//Get file(s) from Node node

static public File pullFile(Node node, File source, File destination);

static public File[] pullFile(Node node, File[] source, File[] destination);

//Retrieve files specified for the virtualNode

public File[] virtualNode.retrieveFiles();

Figure 5: File Transfer API.

The failsafe algorithm mentioned in section 3.3 is implemented using the

pushFile API, which is itself built using the push algorithm depicted in

Figure 6 and detailed as follows:

1. Two File Transfer Service (FTS) active objects are created (or obtained

from a pool): a local FTS, and a remote FTS. The push function is

invoked by the caller on the local FTS: LocalFTS.push(. . .).

9

Figure 6: Push Algorithm.

2. The local FTS immediately returns a File future to the caller. The

calling thread can thus continue with its execution, and is subject to

a wait-by-necessity on the future to determine if the file transfer has

been completed.

3. The file is read in parts by the local FTS, and up to (o−1) simultaneous

overlapping parts are sent from the local node to the remote node by

invoking RemoteFTS.savePartAsync(pi) from local FTS [3].

4. Then, a RemoteFTS.savePartSync(pi+o) invocation is sent to syn-

chronize the parameter burst, as not to drown the remote node. This

will make the sender wait until all the parts pi, . . . , pi + o have been

served (ie the savePartSync method is executed).

5. The savePartSync(...) and savePartAsync(...) invocations are served

in FIFO order by the remote FTS. These methods will take the part

pi and save it on the disk.

6. When all parts have been sent or a failure is detected, local FTS will

update the future created in step 2.

The pullFile method is implemented using the pull algorithm shown in

Figure 7, and is detailed as follows:

1. Two FTS active objects are created (or obtained from a pool): a local

FTS, and a remote FTS. The pull function is invoked on the local FTS:

LocalFTS.pull(. . .).

10

Figure 7: Pull Algorithm.

2. The local FTS immediately returns a File future, which corresponds

to the requested file. The calling thread can thus continue with its

execution and is subject to a wait-by-necessity on the future.

3. The getPart(i) method is invoked up to o (internally defined) times,

by invoking RemoteFTS.getPart(i) from the local FTS [3].

4. The local FTS will immediately create a future file part for every in-

voked getPart(i).

5. The getPart(...) invocations are served in FIFO order by the remote

FTS. The function getPart consists on reading the file part on the

remote node, and as such, automatically updating the local futures

created in step 4.

6. When all parts have been transferred, then the local FTS will update

the future created in step 2.

4.2 File Transfer after application execution

Collecting the results of a Grid computation distributed in files on differ-

ent nodes is an indispensable task. Since determining the termination of a

distributed application is hard and sometimes impossible, we believe that

the best way is to have non-automatic file retrieval, meaning that it is the

user’s responsibility to trigger the file transfer at the end of the application

execution (i.e once the application data has been produced).

11

 0.5

 1

 2

 1 4 16 64 256 1024

Sp
ee

d
[M

B/
se

c]

File Size [MB]

rcp
push

pull

(a) Push, pull, and rcp speed.

 0.5

 1

 2

 4

 1 4 16 64 256 1024

Sp
ee

d
[M

B/
se

c]

File Size [MB]

rcp
pull&push

(b) Pushing while pulling a file.

Figure 8: Performance comparisons.

The file transfer retrieval is implemented as part of the API shown in

Figure 5. For each node in the virtual-node, a pullFile is invoked, and

an array of futures ((File[]) is returned. The retrieved files are the ones

specified in the deployment descriptor, as shown in Figure 4.

5 Benchmarks

5.1 File Transfer Push and Pull

Using a 100Mbit LAN network with a 0.25[ms] ping, and our laboratory

desktop computers: Intel Pentium 4 (3.60GHz) machines, we experimentally

determined that overlapping 8 parts of size 256[KB] provides a good per-

formance and guarantees that at the most 2[MB] will be enqueued in the

remote node. Because the interest of the experiment was to evaluate the pro-

posed file transfer approach, and not the lower level communication protocols

between active objects, the default protocol was used: rmi.

Since peers usually have independent download and upload channels, the

network was configured at 10[Mbits
sec

] duplex. Figure 8(a) shows the perfor-

mance results of pull, push, and remote copy protocol (rcp) for different

file sizes. The performance achieved by pull and push approaches our ideal

reference: rcp.

12

More interestingly, Figure 8(b) shows the performance of getting a file

from a remote site, and then sending this file to a new site. This corresponds

to a recurrent scenario in data sharing peer to peer networks [14], where a

file can be obtained from a peer instead of the original source.

As it can be seen in Figure 8(b), rcp is outperformed when using pull

and push algorithms. While rcp must wait for the complete file to arrive

before sending it to a peer, the pull algorithm can pass the future file parts

(Figure 7) to the pull algorithm even before the actual data is received.

When the future of the file parts are available, automatic continuation [7, 8]

will take care of updating the parts to the concerned peers. The user can

achieve this with the API shown in Figure 5, by passing the result of an

invocation as parameter to another.

5.2 Deployment with File Transfer on a Grid

The deployment experiments took place on the large scale national french

wide infrastructure for Grid research: Grid5000 [10], gathering 9 sites geo-

graphically distributed over France.

Figure 9(a) shows the time for three different deployment configurations

combined with a transfer of a 10[MB] file: regular deployment without involv-

ing file transfer, deployment combined with (scp), and deployment combined

with the failsafe file transfer protocol (which uses the push algorithm). The

figure shows that combining deployment with scp adds a constant overhead,

while failsafe adds a linear overhead. This happens, because the nodes in

Grid5000 are divided into sites, and each site is configured to use network

file sharing. If the deployment descriptor is configured with scp, the file

transfer only has to be performed a time proportional to the number of sites

used (2 for the experiment). On the other hand, since the failsafe mechanism

transfers files from node to node using the file transfer API (of section 4.1),

then the overhead is proportional to the number of acquired nodes.

It is important to note, that when using failsafe, the files are deployed in

parallel to the nodes. This happens because several invocations of push, on

a set of nodes, are eventually served in parallel by those nodes. On the other

13

 0
 20
 40
 60
 80

 100
 120
 140

 50 100 150 200 250 300 350 400

Ti
m

e
[s

]

Number of CPU (2 CPUs x Node)

w/o file transfer
w/scp

w/failsafe

(a) Time

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400

Sp
ee

d
[M

B/
se

c]

Number of CPUs (2 CPUs x Node)

scp speed
failsafe speed

(b) Speed

Figure 9: Deployment with 10[MB] File Transfer on Grid5000.

hand, scp transfers the files sequentially to each site in turn. The result is

that failsafe reaches a better speed than scp, as shown in Figure 9(b), where

scp averages 1.5[MB
sec

] while failsafe averages 18[MB
sec

].

6 Case Study: Distributed BLAST

BLAST [5] corresponds to Basic Local Alignment Search Tool. It is a pop-

ular tool used in bioinformatics to perform sequence alignment of DNA and

proteins. BLAST is a good case study because it performs intensive file ac-

cess and computation. In short, BLAST reads a query file and performs an

alignment of this query against a database file. The results of the alignment

are then stored in an output file.

The approach used for parallelizing BLAST corresponded to splitting the

database and distributing it among the computation nodes. Each node is

then given the query file to perform a BLAST alignment with it’s corre-

sponding part of the database. Once the computations are finished, the

output file of each node is retrieved and consolidated into a single result.

This experiment took place in Grid5000. The machines involved corre-

sponded to dual core AMD Opteron at 2.2GHz, with 2[GB] RAM. The net-

work bandwidth was configured to 1[Gb
sec

]. The BLAST tool version 2.2.15

14

Figure 10: Distributed BLAST overheads.

provided by NCBI [12] was used. As a query, the ecoli nucleotide file was

selected (5.8[MB]), and as a database the patented nucleotide file (2.4[GB])

was used. Both are publicly available from the NCBI website.

During the deployment phase, the Deployment Descriptor was configured

to perform on-the-fly deployment using scp . In other words, the ProActive

middleware was installed at the same time as the nodes were acquired. Ad-

ditionally, the query file was also transferred to the computing nodes during

the deployment.

Once the resource acquisition (creation of nodes) was completed, a slice of

the divided database was transferred to each node using the push algorithm.

Then, the BLAST tool was executed in parallel on each node using the

active object programming model. Once the computation was concluded,

the retrieval of the result files was performed using the pull algorithm.

6.1 Discussion

Figure 10 shows the overheads introduced when performing a distributed

BLAST. The figure shows that the time required to perform the deployment

file transfer is independent of the number of nodes, because it is performed a

15

Figure 11: Speedup of BLAST on Grid5000

number of times proportional to the number of sites (one in this experiment).

On the other hand, the figure shows that the node creation time is propor-

tional to the number of nodes. Compared with the node creation time, the

figure shows that the remote objects instantiation overhead is marginal. The

figure also shows that the database push experiences performance degrada-

tion when transferring to more than 60 nodes at the same time, because of

the network saturation, but is still capable of transferring at approximately

100[MB
sec

].

The speedup of the application is shown in Figure 6.1. The figure shows

that, as the granularity increases when using more nodes, the efficiency de-

creases.

During the BLAST case study, the concepts introduced in this article were

used to successfully distribute a BLAST application. On-the-fly deployment

was performed to install ProActive and transfer the blast query file at de-

ployment time. The push algorithm was used to transfer the database slices

to the computation nodes. The retrieval mechanism, in combination with

the pull algorithm was finally used to retrieve the results from the remote

nodes.

16

7 Related Work

The importance of file transfer and resource acquisition has been studied,

among others, by Giersch et al. [9], and Ranganathan et al. [16], who showed

that data transfer can affect application scheduling performance. Solutions

for integrating resource acquisition and file transfer have been developed by

several Grid middlewares like Unicore [21], and Nordugrid [13]. The pro-

posed approach differs mainly because it allows on-the-fly deployment while

combining heterogeneous resource acquisition and file transfer protocols.

The proposed approach can be seen as a wrapper for third party file

transfer tools. Other approaches for using third party tools exist. The main

goal behind them is to provide a uniform API. This has been done in Globus

XIO [2], Java CoG [22], and GAT [17]. Nevertheless, the motivations of this

work differ since on-the-fly deployment is sought, rather than file transfer

during application execution.

For transferring files during application execution GridFTP [1] is a pop-

ular tool, which extends the traditional FTP [11]. The approach proposed

at the programming level mainly varies from GridFTP because it does not

require an underlying file transfer protocol to perform the file transfer. On

the contrary, it only relies on portable always executable asynchronism with

future remote method calls. Therefore, it can benefit from automatic contin-

uation to improve peer to peer file transfer performance, as shown in Figure

8(b).

LegionFS [23], and MAPFS-Grid [15] provide I/O interfaces for accessing

remote data. The proposed file transfer approach does not ambition to be a

distributed file system, but instead provides the tools on which one could be

built.

Concerning the retrieval of files, Unicore [21] and NorduGrid [13] have

addressed this issue. Once the job has finished, files generated during the

computation can be downloaded from the job workspace using the respective

middleware client. The proposed approach differs because it provides a user

triggered API file retrieval mechanism, which allows the user further flexibil-

ity. The API can be used by the application at any point during execution

17

once output results are relevant to be transferred, and not only at the very

end of the run.

8 Conclusions and Future Work

This article has addressed file transfer for the Grid by focusing on three

different stages of Grid usage: deployment, execution and retrieval. The

experiments show that it is possible to integrate heterogeneous file transfer

with resource acquisition protocols to allow on-the-fly deployment, which

can deploy the Grid application and install the Grid middleware at the same

time. Experimentally, the proposed solution has been benchmarked, and

shown that it is scalable.

For the application execution, the proposed file transfer approach is based

on an asynchronous overlapping file transfer mechanism using push and pull

algorithms, built on top of an active object communication model with fu-

tures and wait-by-necessity. Experimentally it has been shown that both

can achieve a performance similar to rcp. Additionally, it has been shown

how automatic continuation can be used to increase the performance when

transferring files between peers.

After the application execution, a user triggered file retrieval mechanism

for the Grid was proposed. This mechanism uses the algorithms developed

in this article, in combination with infrastructure information located inside

Deployment Descriptors.

As a case study, it has been shown how the proposed file transfer model

can be applied to distribute BLAST, which requires intensive file access and

computation.

In the future we would like to explore distributed file systems, built on top

of the proposed file transfer API. We also plan to investigate the interaction

of file transfer with structured distributed programming models known as

skeletons.

18

Acknowledgments

This work was partially funded by CONICYT Chile and the CoreGrid EU

Project (FP6-004265).

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,

C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data

management and transfer in high performance computational grid envi-

ronments. Parallel Computing, 28(5):749–771, 2002.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link. The globus

extensible input/output system (xio): A protocol independent io system

for the grid. In IPDPS ’05: Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop

4, page 179.1, Washington, DC, USA, 2005. IEEE Computer Society.

[3] F. Baude, D. Caromel, N. Furmento, and D. Sagnol. Overlapping com-

munication with computation in distributed object systems. In HPCN

Europe ’99: Proceedings of the 7th International Conference on High-

Performance Computing and Networking, pages 744–754, Amsterdam,

The Netherlands, 1999. Springer-Verlag.

[4] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive

and descriptor-based deployment of object-oriented grid applications. In

Proceedings of the 11th IEEE International Symposium on High Perfor-

mance Distributed Computing, pages 93–102, Edinburgh, Scotland, July

2002. IEEE Computer Society.

[5] BLAST. Basic local alignment search tool.

http://www.ncbi.nlm.nih.gov/blast/.

[6] D. Caromel. Toward a method of object-oriented concurrent program-

ming. Communications of the ACM, 36(9):90–102, 1993.

19

[7] D. Caromel and L. Henrio. A Theory of Distributed Object. Springer-

Verlag, 2005.

[8] S. Ehmety, I. Attali, and D. Caromel. About the automatic continua-

tions in the eiffel model. In International Conference on Parallel and

Distributed Processing Techniques and Applications, PDPTA’98, Las Ve-

gas, USA., 1998. CSREA.

[9] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files on

heterogeneous master-slave platforms. In 12th Euromicro Conference on

Parallel, Distributed and Network-Based Processing (PDP 2004), pages

364–371, A Coruña, Spain, February 2004. IEEE Computer Society

Press.

[10] Grid5000. http://www.grid5000.fr.

[11] J. Reinolds J. Postel. Rfc959 file transfer protocol.

[12] NCBI. National center for biotechnology information.

http://www.ncbi.nim.nih.gov.

[13] NorduGrid. http://www.nordugrid.org.

[14] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technolo-

gies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[15] Maŕıa S. Pérez, Jesús Carretero, Félix Garćıa, José M. Peña Sánchez,

and Vı́ctor Robles. Mapfs-grid: A flexible architecture for data-intensive

grid applications. In F. Fernández Rivera, Marian Bubak, A. Gómez

Tato, and Ramon Doallo, editors, European Across Grids Conference,

volume 2970 of Lecture Notes in Computer Science, pages 111–118.

Springer, 2003.

[16] K. Ranganathan and I. Foster. Decoupling computation and data

scheduling in distributed data-intensive applications. In HPDC ’02:

Proceedings of the 11 th IEEE International Symposium on High Perfor-

mance Distributed Computing HPDC-11 20002 (HPDC’02), page 352.

IEEE Computer Society, 2002.

20

[17] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. Gridlab: A grid

application toolkit and testbed. Future Generation Computer Systems,

18:1143–1153, 2002.

[18] INRIA OASIS Team and ETSI. 2nd grid plugtests report. http://www-

sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf.

[19] INRIA OASIS Team and ETSI. Second grid

plugtests demo interoperability. Grid Today, 2005.

http://www.gridtoday.com/grid/520958.html.

[20] ProActive INRIA Sophia Antipolis OASIS Team.

http://proactive.objectweb.org.

[21] Unicore. http://www.unicore.org.

[22] G. von Laszewski, B. Alunkal, J. Gawor, R. Madhuri, P. Plaszczak, and

X. Sun. A File Transfer Component for Grids. In H.R. Arabnia and

Youngson Mun, editors, Proceedings of the International Conferenece on

Parallel and Distributed Processing Techniques and Applications, vol-

ume 1, pages 24–30. CSREA Press, 2003.

[23] Brian S. White, Michael Walker, Marty Humphrey, and Andrew S.

Grimshaw. Legionfs: a secure and scalable file system supporting cross-

domain high-performance applications. In Supercomputing ’01: Proceed-

ings of the 2001 ACM/IEEE conference on Supercomputing (CDROM),

pages 59–59, New York, NY, USA, 2001. ACM Press.

Authors

Françoise Baude is an associated Professor at the University of Nice-Sophia

Antipolis. Her main research interests are on distributed object and

component oriented parallel and distributed programming. She is cur-

rently involved in several EU funded and French funded projects dedi-

cated to Grid computing research.

21

Denis Caromel is a full professor at University of Nice-Sophia Antipolis

and CNRS-INRIA. He is also member of the Institut Universitaire de

France (IUF), a multi-disciplinary nation academia that selects a few

professors based on the excellence of their research records. His re-

search interests include parallel, concurrent, and distributed object-

oriented programming. He was an invited visiting scientist at various

universities and research institutes (including Digital System Research

Center in Palo Alto, NASA Langley Research Center in Hampton, Vir-

ginia, and IBM Tom Watson). He has published more than 70 scientific

papers in referred international journals and conferences, and edited 5

volumes of Lecture Notes. In 2005 Springer-Verlag published his mono-

graph called ”A Theory of Distributed Objects”.

Mario Leyton received his Computer Science Engineer degree, with maxi-

mum distinction, from the University of Chile in 2004. Currently he is

a PhD student at INRIA Sophia-Antipolis, University of Nice-Sophia

Antipolis, and CNRS/I3S. His main research interests are on parallel,

distributed and grid computing. In particular, the field of structured

parallel programming models.

List of Figures

1 Execution of a remote method call. 3

2 Deployment Descriptor. 4

3 Resource acquisition and file transfer. 6

4 Example of file transfer in Deployment Descriptors. 8

5 File Transfer API. 9

6 Push Algorithm. 10

7 Pull Algorithm. 11

8 Performance comparisons. 12

9 Deployment with 10[MB] File Transfer on Grid5000. 14

10 Distributed BLAST overheads. 15

11 Speedup of BLAST on Grid5000 16

22

