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Abstract

A file data model for algorithmic skeletons is proposed,
focusing on transparency and efficiency. Algorithmic skele-
tons correspond to a high-level programming model that
takes advantage of nestable programming patterns to hide
the complexity of parallel/distributed applications.

Transparency is achieved using a workspace factory ab-
straction and the proxy pattern to intercept calls on File
type objects. Thus allowing programmers to continue us-
ing their accustomed programming libraries, without hav-
ing the burden of explicitly introducing non-functional code
to deal with the distribution aspects of their data.

A hybrid file fetching strategy is proposed (instead of
lazy or eager), that takes advantage of annotated func-
tions and pipelined multithreaded interpreters to transfer
files in-advance or on-demand. Experimentally, using a
BLAST skeleton application, it is shown that the hybrid
strategy provides a good tradeoff between bandwidth usage
and CPU idle time.

Keywords: Algorithmic skeletons, file transfer, trans-
parency, aspect-oriented programming, aspects

1 Introduction

Scientific and engineering applications that require, han-
dle, and generate large amounts of data represent an impor-
tant part of distributed applications. For example, some of
the areas that require handling large amounts of data are:
bioinformatics, high-energy physics, astronomy, etc.

In this paper we focus on the integration of data ab-
stractions with a high level programing model: algorithmic
skeletons. We address the data problem by considering us-
ability and performance from the programming model per-
spective.

Algorithmic skeletons (skeletons for short) are a high
level programming model for parallel and distributed com-
puting, introduced by Cole in [18]. Skeletons take advan-
tage of common programming patterns to hide the complex-

ity of parallel and distributed applications. Starting from a
basic set of patterns (skeletons), more complex patterns can
be built by nesting the basic ones.

To write an application programmers must compose the
skeleton pattern of their program, and fill the skeleton with
the muscle functions specific to their application. The skele-
ton pattern implicitly defines the parallelization and distri-
bution aspects, while the muscle functions provide the ap-
plication’s specific functional aspects (i.e. business logic).
As a result, skeletons achieve a natural separation of paral-
lelization and functional aspects.

The support of file data access has been overlooked in
many skeleton frameworks such as Eden [34], eSkel [9],
JaSkel [25], Lithium [6, 21], Muesli [28, 29], Muskel [20],
Skil [11]. Most of them could be enhanced with file data
support by addressing file distribution aspects from inside
muscles, as is the case with ASSIST [2]. Nevertheless, this
strategy leads to the tangling of non-functional code (data
distribution) with the functional code (business logic).

Therefore, the integration of data files with algorithmic
skeletons must be achieved in a transparent non-invasive
manner, as not to tangle data distribution with functional
concerns, while also taking efficiency into consideration.

Non-invasive transparency Programmers should not
have to worry about data location, movement, or stor-
age. Furthermore, programmers should not have to
change their standard way of working with data. This
means that transparency should be non-invasive, i.e.
without imposing an ad hoc language nor library.

Efficiency is a double edged problem: computation and
bandwidth. A suitable approach must balance the
tradeoff between idle computation time, and band-
width usage.

This paper is organized as follows. Section 3 describes
an algorithmic skeleton’s programming model. Section 4
presents the file data model for algorithmic skeletons. Sec-
tion 5 studies efficiency concerns using BLAST as a case
study. Section 6 relates our approach with aspect-oriented

1



programming. Finally, section 7 provides the conclusions
and future work.

2 Related Work

Since most skeleton frameworks do not provide file data
transfer support, in the first part of this section we review
how file transfer has been addressed in workflows. In the
second part of this section we review the approach intro-
duced by ASSIST to support file transfer in algorithmic
skeletons.

Workflows are another high-level programming model
for parallel and distributed computation. Workflow pro-
graming models usually provide abstractions to access data
inside workflow units, and to transfer data between work-
flow units. For example, Java CoG Kit’s [39] data transfer
operations are explicitly defined like any other task, in the
sense that a data transfer operation must be submitted for
execution as a data-transfer-task [38, 40]. Another exam-
ple is Unicore [24, 37], which uses a workflow programing
model to order dependencies between tasks. All tasks be-
longing to the same job share a jobspace file system abstrac-
tion. The job description also specifies which files must be
imported into the jobspace before the execution of the job,
and which files must be exported after the job is finished.
Files that must be imported and exported to the jobspace
are staged before and after the job begins. Additionally, it
is also possible to interact with sub-jobs (which have their
own jobspace) by explicitly adding file transfer modules in
the workflow. The file transfer modules handle the input and
output of files between the jobspace and the sub-jobspaces.

Thus workflows require programmers to explicitly add
data management units to their applications. Therefore, un-
like worklflows, we would like to support data abstractions
in skeletons transparently.

To our knowledge, the only other skeleton framework
providing file data transfer support is ASSIST [2]. ASSIST
provides programmers with a structured coordination lan-
guage, which can express arbitrary graphs of software mod-
ules written in C++, interconnected by streams of data.
AdHoc, a hierarchical and fault-tolerant DSM system is
used to interconnect streams of data between processing el-
ements by providing a repository with: get/put/remove/ex-
ecute operations [1, 5, 30]. Research around AdHoc has
focused on transparency, scalability, and fault-tolerance of
the data repository.

Thus, throughout this paper we assume the existence of
a good data repository providing basic operations and prop-
erties such as the ones described in AdHoc. On the other
hand, while the view of ASSIST/AdHoc is to “provide an
abstract view of data, and a high-level API to access it”
[1], we feel programmers should not have to migrate to new
abstractions with new APIs to manipulate data. Instead,

we believe programmers should continue using, as much
as possible, their accustomed data abstractions and APIs.

3 Algorithmic Skeletons in a Nutshell

As a skeleton framework we use Calcium [15], which is
greatly inspired on Lithium [3, 4, 6, 21] and its successor
Muskel [20]. Calcium is written in Java [32] and is pro-
vided as a library. To achieve distributed computation Cal-
cium uses ProActive. ProActive is a Grid middleware [13]
providing, among others, a deployment framework [8], a
programming model based on active objects with transpar-
ent first class futures [12], and a data transfer model [7].

Basic task and data parallel skeletons supported in Cal-
cium can be combined and nested in a type safe way [14],
to solve more complex applications:

4 ::= seq(fe) | farm(4) | pipe(41,42) | while(fb,4) |
if(fb,4true,4false) | for(i,4) |map(fd,4, fc) |
fork(fd, {4i}, fc) | d&c(fd, fb,4, fc)

Where the task parallel skeletons are: seq for wrapping
execution functions; farm for task replication; pipe for
staged computation; while/for for iteration; and if for
conditional branching. The data parallel skeletons are: map
for single instruction multiple data; fork which is like map
but applies multiple instructions to multiple data; and d&c
for divide and conquer.

To program with algorithmic skeletons users have to de-
fine a nested skeleton pattern (4), and provide the func-
tional muscle codes specific to their problem:

fb : P → boolean

fc : ~P → R

fd : P → ~R

fe : P → R

Where P is the parameter type, R the result type, and ~X a
list of parameters or results.

Muscle functions (muscles for short) are black boxes
to the skeleton language which will be invoked during the
computation of the skeleton program. Muscles will be
invoked, either sequentially or in parallel, in accordance
with the defined skeleton pattern (4). The result of a
muscle is passed as a parameter to another muscle, until
no further muscles have to be computed. When no further
muscles have to be executed, the final result is returned to
the user.



Figure 1. Calcium Framework Task Flow

3.1 Calcium Implementation

Internally in Calcium, a task abstraction is used to dis-
tribute and keep track of a program’s execution. A task is
mainly composed of a skeleton instruction stack, and the
state memory.

The instruction stack is generated from the skeleton pat-
tern (4), and is capable of tracking the current execution
of the program. Each skeleton instruction in the stack rep-
resents the weaving between the parallelism and the func-
tional aspects of the program. When an instruction is
popped from the stack its invocation can results in: the ex-
ecution of a muscle and/or the addition of new instructions
to the stack.

The state memory is the glue between the execution of
muscles. The state memory is passed as parameter when a
muscle is invoked and updated with the muscle’s result.

The execution and distribution of the program is done in
the following way. A task pool stores and keeps track of
tasks. As shown in Figure 1, root-tasks are entered into the
task pool by users who provide the initial state memory as a
parameter. Interpreters consume tasks from the task pool,
compute the tasks according to the skeleton instructions,
and return the computed tasks to the task pool. Additionally,
new tasks can be dynamically produced by the interpreters
when data parallelism is encountered (map, fork, d&c), in
a similar fashion as in [34]. Dynamically produced tasks are
referred to as sub-tasks, while the task that spawned them is
referred to as the parent-task.

A task is finished when all of its sub-tasks are finished,
and no further skeleton instructions need to be executed.
When all sub-tasks are finished, they are returned to their
parent-task for reduction. The parent-task may then con-
tinue with the execution of its own skeleton, and perhaps
generate new sub-tasks. When a root-task reaches the

finished state, its state memory can be delivered to the user
as the final result.

3.2 Limitations on Data Size

The model presented in this section supposes that the
data passed between muscles is small enough to be encapsu-
lated inside tasks’ state memory. This is suitable for trans-
ferring small amounts of data between muscles, as would
be done in regular non-parallel programming. Neverthe-
less, when the size of the data is too big to hold in runtime
memory, non-parallel programming uses secondary mem-
ory storage abstraction: files.

Therefore, skeleton programming requires a mechanism
that allows programmers to use their standard non-parallel
way of reading/writing files inside muscles (non-invasive).
Which, at the same time, does not force programmers to
specify code for transferring files; i.e. enables transparent
and efficient support for transferring files between the ex-
ecution of muscles. As we shall discuss in the following
section, the complexity arises because, from the skeleton
language perspective, muscles are black boxes.

4 File Transfer Model for Skeletons

4.1 Transparency with FileProxy

The Proxy Pattern [26] is used to achieve transparent
access to files. Files are rendered accessible using the
FileProxy object as shown in Figure 2. By intercept-
ing calls at the proxy level, the framework is able to de-
termine when a muscle is accessing a file. In a way, the
FileProxy illuminates a specific aspect inside black box
muscles.



Figure 2. Proxy Pattern for Files

Figure 3 provides an example. When an interpreter
thread invokes a muscle, all File type references inside
P are indeed FileProxy instances. A FileProxy can
transparently intercept a thread’s access to the actual File
object. A FileProxy can add new non-functional behav-
ior such as caching of metadata (file names, size, etc...),
transparent file fetching on demand, and blocking on a wait-
by-necessity style [12]. Afterwards, the FileProxy can
resume the thread’s execution by delegating method calls to
the real File object.

4.2 Stage-in and Stage-out

Listing 1 provides an example on the usage of Cal-
cium. Line 1 defines the skeleton pattern, and is omit-
ted here but detailed in Figure 5(a). Lines 3-4 instanti-
ates an execution environment, which in this case corre-
sponds to a ProActiveEnvironment, and creates the
Calcium instance. The boot and shutdown of the frame-
work are done in lines 6 and 23 respectively. Then in lines
8-9, a new input Stream is created with the blast skele-
ton pattern. Lines 12-15 illustrate the creation of a new
BlastQuery paremeter, which receives three File type
arguments: blast binary, query, and database files on the
client machine.

The interesting part takes place in line 17. The
BlastQuery is entered into the framework, and a
Future<File> is created to hold the result once it is
available. During the input process each file’s data is
remotely stored; and all File type objects are replaced
by FileProxy instances, capable of fetching the data
when required by remote nodes during the computation.
Once the result is available, and before unblocking threads
waiting on line 21, all remotely stored data referenced by
FileProxy instances are copied to the client machine,
and all FileProxy instances are replaced with regular
File type instances. Hence, the result in line 21 is a regu-
lar File with its data stored on the client machine.

1 Skeleton skel = ...;

3 Environment env = new ProActiveEnvironment(...);
Calcium calcium = new Calcium(env);

5
calcium.boot();

7
Stream<BlastQuery,File> stream =

9 calcium.newStream(skel);

11 //Initial stage-in
BlastQuery blast = new BlastQuery(

13 new File("/home/user/blast.bin"),
new File("/home/user/query.dat"),

15 new File("/home/user/db.dat"));

17 Future<File> future = stream.input(blast);

19 ...
//Final stage-out, the file is locally available

21 File result = future.get();

23 calcium.shutdown();

Listing 1. Calcium Input and Output Example

4.2.1 Initial and Final Staging

In general, when a parameter P is submitted into the skele-
ton framework, as shown in Listing 1 (line 17), a File
stage-in takes place. First, all references of type File in
P ’s object graph are replaced with FileProxy references.
Then, the files’ data are stored in the data server. If a name
clash occurs or a data transfer error takes place, an excep-
tion is immediately raised to the user, before the parameter
is actually entered into the skeleton framework.

When the final result R has been computed, but before it
is returned, a stage-out process takes place. Every reference
of type FileProxy in R’s object graph is replaced by a
regular File type pointing to a local file, and the remote
data is stored in the local file, before returning R to the user.

4.2.2 Intermediate Staging

Before an interpreter invokes a muscle, a staging process
takes place on the interpreter nodes. If not already present,



Figure 3. FileProxy Behavior Example

a unique and independent workspace is created. Then, de-
pending on the desired behavior (see section 5) all, some, or
none of the FileProxy type objects in P ’s object graph
are downloaded into the workspace, and the FileProxy
references are updated with the new location of the file.

After the invocation of a muscle, new files referenced in
R’s object graph, and present in the workspace, are stored
on the data server. Actually, files are only stored on the
data server if the file reference is passed on to other tasks,
i.e. returned to the task pool. Further details of how the
references are updated are discussed in Section 4.4.

4.3 The Workspace Abstraction

The workspace abstraction provides muscles with a lo-
cal disk space on the computation nodes. If several mus-
cles are executed simultaneously on the same interpreter
node, each muscle is guaranteed to have its own indepen-
dent workspace.

The workspace abstraction provides the following meth-
ods:

interface WSpace{
public File newFile(String name);
public void exec(File bin, String args);

}

Where the WSpace.newFile() factory can be used
to create a file reference on the workspace, and
WSpace.exec(...) can be used to execute a native
command with a properly configured execution environ-
ment (e.g. current working directory).

Listing 2 provides an example. A muscle of type fe :
BlastQuery → File is shown. Lines 4-5 get a refer-
ence on the native command and its arguments. For the
programmer, command is of type File, but is indeed a
FileProxy instance. The command’s data was stored
somewhere else during the computation (Listing 1 line 17),
and is transparently made available on the interpreter node.
Line 8 invokes the native blast command which outputs its
results to a file named result.blast, located in some

public File execute(WSpace wspace, BlastQuery blast){
2

//Get parameters
4 File command = blast.blastProg;

String arguments = blast.getArguments();
6

//Execute the native blast in the wspace
8 wspace.exec(command, arguments);

10 //Create a reference to a file in the wspace
File result = wspace.newFile("result.blast");

12
return result;

14 }

Listing 2. Muscle Function Example

directory, specified by the workspace, on the interpreter
node. Then line 11 uses the workspace factory to get a ref-
erence on the result.blast file. The workspace factory
returns a reference object of type File which is indeed an
instance of type FileProxy. Finally, line 13 returns the
File object as a result. If the result is passed to another
computation node, or delivered as final result to the user,
then the file will be transparently transferred.

An alternative approach to providing a workspace fac-
tory method would have been to use other aspect-oriented
programming [27] methodologies that, for example, manip-
ulate Java bytecode to intercept calls on the File class con-
structor. Nevertheless, as noted by Cohen et al. [16], fac-
tories provide several benefits over traditional constructor
anomalies.

After a File reference is created through the workspace
abstraction, the framework transparently handles reference
passing; creation, modification and deletion of file’s data;
and remote data storage/fetching.

4.3.1 Data Division

When data parallelism is encountered, such as in
{d&c,map, fork} skeletons, new sub-tasks are spawned
and assigned with a new workspace.

Instead of copying all of the original workspace’s files



Figure 4. File Reference Passing Example

into each sub-task’s workspace, only referenced files are
copied. For example, if the muscle fd : P → ~R assigns
at some point

Ri.file← P.file1

Rj .file← P.file2

then only file1 will be copied into Ri’s workspace, while
file2 will be copied into Rj’s workspace.

The advantage of this approach is that the mapping of
files with workspaces is transparent for the programmer.
Contrary to what happens on workflow environments (see
section 2), there is no need for the programmer to explicitly
map which files are copied into which workspace. This is
automatically inferred from the FileProxy references.

4.3.2 Data Reduction

The symmetrical case is the reduction (conquer) case,
where several sub-tasks are reduced into a single one. This
is done with a muscle of type fc : ~P → R, which takes n
object elements and returns a single one.

Before invoking the conquer muscle, a new workspace
is created, and all the files referenced in ~P are copied into
the new workspace. Nevertheless, a name space clash is
likely to happen when two files originating from different
workspaces have the same name.

A simple solution is to have a renaming function which
provides a unique name when a name clash is detected. The
clashing file is then renamed, and the FileProxy refer-
ence is transparently updated with the new name. While this
solution can yield unexpected file renaming behavior for the
programmer, no problems will be encountered as long as the
programmer consistently uses the File references.

4.4 File References and Data

4.4.1 Storage Server

We assume the existence of a data storage server1, capable
of storing data, retrieving data, and keeping track on the

1For an example of a scalable data storage system refer to [1].

reference count of each data. The storage server provides
the following operations:

• store(Fx, k) → i, stores the data represented in file
Fx, with an initial reference count k > 0. The function
returns a unique identifier for this data on the storage
server.

• retrieve(i) → Fx, retrieves the data located on the
server and identified by i.

• count(i, δ)→ boolean, updates de reference count by
δ, and returns true if the reference count is equal to or
smaller than zero, and false otherwise.

Once the reference count reaches zero for a file’s data, no
further operations are permitted on the data, and the server
may delete the data at its own discretion.

4.4.2 Reference Counting

During the execution of a skeleton program, data can be cre-
ated, modified, and deleted. Also, File references point-
ing to data can be created, deleted, and passed (copied).
Therefore, it is up to the skeleton framework to provide sup-
port for these behaviors, by storing new/modified data; and
keeping track of File references, to delete data when it is
no longer accessible.

Consider the example shown in Figure 4, where
{P1, P2} are input parameters of a muscle f : ~P → ~R,
{R1, R2, R3} are the output results, and Fi are
FileProxy references. We are interested on know-
ing, for a given Fi, how many Pj/Rk have a directed path
from Pj/Rk to Fi, before/after the execution. We call this
the reference count, and we write it as [before,after].

In the example, the reference counts are:

F1 → [1, 3] F2 → [2, 0]
F3 → [0, 1] F4 → [0, 2]

Thus we know that F1 has incremented its reference
count by 2; F2 is no longer referenced and has decreased
its reference count by 2; and F3, F4 are new files created
inside f .



4.4.3 Update Cases

In general, after invoking a muscle f , a file Fx can be in one
of the cases shown in Table 1.

Case [Before,After] Action
New [b = 0, a > 0] store(Fx, a)→ i

Normal
[b > 0, a > 0]

count(i, a− b)
Modified count(i, −b)

store(Fx, a)→ j
Dereferenced [b > 0, a = 0] count(i,−b)
Unreferenced [b = 0, a = 0] ———

Table 1. File Scenarios after muscle invoca-
tion

Where the cases are described as follows:

• New files are created during the execution of f . A
new file’s data is uploaded to the storage server with
its after reference count by invoking store(Fx, k)→ i,
with k = a.

• Normal files only require an update on their reference
count, since data has not been modified. This is done
by invoking count(i, δ) with δ = b− a.

• Modified files have been modified during the execu-
tion of f . Conceptually, modified files are treated as
new files. Therefore if i is the identifier of the orig-
inal file on the storage server, then count(i, δ) with
δ = −b is invoked to discount the before references on
the original file. Then, the modified file is treated as
a new one, by uploading its data to the storage server
and obtaining a new file identifier: store(Fx, k) → j
with k = a.

• Dereferenced files have no references after the execu-
tion of f , and therefore it is irrelevant if the file was
modified during the execution. Thus they only require
a count(δ) on the server, with δ = −b.

• Unreferenced files are temporary files used inside f ,
and can be locally deleted from the workspace after the
execution of f .

5 Efficiency

An efficient approach minimizes both bandwidth usage
and CPU idle time (blocked waiting for data). To minimize
the CPU idle time, a file’s data should already be locally
available when a muscle wants to access it. On the other
hand, to minimize the bandwidth usage, a file’s data should

only be transferred if it is going to be used by the muscle.
This presents a problem since muscles are black boxes.

Given a three staged pipeline on each interpreters where:
the first stage is the prefetch, which downloads candidate
files in advance; the compute stage invokes the muscles;
and the store stage uploads files’ data to the storage server.
Thus, in any given moment, three tasks can be present on an
interpreter pipeline performing different aspects: download,
computation, and upload.

Thus we can identify two strategies, a lazy strat-
egy which transfers a file’s data on demand using the
FileProxy (bandwidth friendly), and an eager strategy
which transfers all the files’ data in advance (CPU friendly)
using the interpreter pipeline. Additionally, we propose a
third hybrid strategy which uses annotated muscles to de-
cide which file’s data to transfer in advance.

For example, a muscle can be annotated to prefetch files
matching a regular expression pattern or files bigger/smaller
than a specified size:
@PrefetchFilesMatching(name="db.*|query.*",

sizeMin=10000,
sizeMax=20000)

public File execute(WSpace wspace, BlastQuery param){
...

}

While the separation of concerns is kept using the pro-
posed annotation, one may argue that the transparency of
the approach is hindered. Nevertheless, it is important to
emphasize that the annotation is not a file transfer definition
(source and destination are not specified), and as such does
not fall back into the non-transparent case. Furthermore, the
presence of the annotation is not mandatory, being its only
objective the improvement of performance.

5.1 BLAST Case Study

BLAST [10] corresponds to Basic Local Alignment
Search Tool. It is a popular tool used in bioinformatics to
perform sequence alignment of DNA and proteins. In short,
BLAST reads a query file and performs an alignment of this
query against a database file. The results of the alignment
are then stored in an output file. BLAST is a good case
study because it performs intensive data access, computa-
tion, and requires the execution of native code.

A BLAST parallelization using skeleton programming is
shown in Figure 5(a). The strategy is to divide the database
until a suitable size is reached and then merge the results
of the BLAST alignment. The result of applying lazy, hy-
brid and eager strategies are shown in Figure 5(b). The fig-
ure shows that a lazy strategy performs the least amount of
data transfers, but blocks the application for the longest time
waiting for the data. On the other hand, an eager strategy
performs the most data transfer, blocking the application for
the least time.



(a) BLAST Skeleton Program (b) Bandwidth / CPU Tradeoff

Figure 5. BLAST Case Study

For BLAST, a good tradeoff can be reached using the
proposed hybrid strategy, which can transfer as few data
bytes as the lazy strategy, and block the application at least
as the eager strategy. In general, the performance of the hy-
brid strategy may vary, depending on the application, but
the hybrid strategy’s performance is bounded by the lazy
and eager strategies.

6 Discussion on Skeletons and AOP

Readers familiar with Aspect-Oriented Programming
(AOP) [27] will have noticed that many of the techniques
used in this paper resemble those of AOP.

Indeed, the idea of weaving non-functional aspects us-
ing inheritance [19], in the same way that the FileProxy
abstraction has been used to intercept calls on File type
objects is not new. The dilemma of instantiating aspect aug-
mented objects has been addressed in AOP using factories
[16] in similar fashion as the workspace abstraction factory
introduced in section 4.3. And the transformation of File
→ FileProxy→ File, can be framed in the domain of
dynamic aspects [35] and object reclassification [22, 23].

From the AOP perspective, this paper has provided a
specific methodology for weaving file transfer aspects with
algorithmic skeletons, and as such has shown that AOP
like methodologies can be applied to algorithmic skeletons.
More generally the integration of AOP with distributed pro-
gramming has already been proposed for other middlewares
such as JAC[33], J2EE [17], ReflexD [36], etc.

Therefore, as [31], we believe that the integration of AOP
with algorithmic skeleton is a promissing mechanism to
support other non-functional aspects in skeleton program-
ming.

7 Conclusions and Future Work

This paper has proposed a file data access model for al-
gorithmic skeletons by focusing on transparency and effi-
ciency.

Transparency is achieved using a workspace abstraction
and the Proxy pattern. A FileProxy type intercepts calls
on the real File type objects, providing transparent access
to the workspace. Thus allowing programmers to continue
using their accustomed programming libraries, without hav-
ing the burden of explicitly introducing non-functional code
to deal with the distribution aspects of their data.

From the efficiency perspective we have proposed a
hybrid approach that takes advantage of annotated muscle
functions and pipelined interpreters to transfer files in
advance, but can also transfer the file’s data on-demand
using the FileProxy. We have experimentally shown
with a BLAST skeleton, that a hybrid approach provides a
good tradeoff between bandwidth usage and CPU idle time.

As current and future work we are working on a gen-
eralization of the methodologies presented in this paper to
support other non-functional aspects in algorithmic skele-
tons. Indeed, our goal is to provide an AOP model for algo-
rithmic skeleton, which will allow a tailored integration of
other non-functional aspects into skeletons, such as stateful
muscles, statistics gathering, event dispatching, etc.
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ming. In Mehmet Akşit and Satoshi Matsuoka, ed-
itors, Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[28] Herbert Kuchen and Jörg Striegnitz. Higher-order
functions and partial applications for a c++ skeleton li-
brary. In JGI ’02: Proceedings of the 2002 joint ACM-
ISCOPE conference on Java Grande, pages 122–130,
New York, NY, USA, 2002. ACM Press.

[29] Herbert Kuchen and Jörg Striegnitz. Features from
functional programming for a c++ skeleton library:
Research articles. Concurrency and Computation:
Practice and Experience, 17(7-8):739–756, 2005.

[30] Aldinucci Marco and Massimo Torquati. Accelerat-
ing apache farms through ad-hoc distributed scalable
object repository. In M. Danelutto, M. Vanneschi, and
Domenico Laforenza, editors, Proc. of 10th Intl. Euro-
Par 2004: Parallel and Distributed Computing, vol-
ume 3149 of LNCS, pages 596–605. Springer Verlag,
August 2004.

[31] Marco Danelutto Marco Aldinucci and Patrizio Dazzi.
Muskel: an expandable skeleton environment. Scal-
able Computing: Practice and Experience, 8(4), De-
cember 2007. To appear.

[32] Sun Microsystems. Java. http://java.sun.com.

[33] Renaud Pawlak, Lionel Seinturier, Laurence Duchien,
Gérard Florin, Fabrice Legond-Aubry, and Laurent
Martelli. Jac: an aspect-based distributed dynamic
framework. Softw. Pract. Exper., 34(12):1119–1148,
2004.

[34] Steffen Priebe. Dynamic task generation and trans-
formation within a nestable workpool skeleton. In
Proceedings of the 12th International Euro-Par Con-
ference: Parallel Processing, volume 4128 of LNCS,
pages 615–624, Dresden, Germany, August 2006.
Springer.
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