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Abstract. We propose a file transfer approach for the Grid. We have
identified that file transfer in the Grid can take place at three differ-
ent stages: deployment, user application execution, and retrieval (post-
execution). Each stage has different environmental requirements, and
therefore we apply different techniques. Our contribution comes from:
(i) integrating heterogeneous Grid resource acquisition protocols and
file transfer protocols including deployment and retrieval, and (ii) pro-
viding an asynchronous file transfer mechanism based on active objects,
wait-by-necessity, and automatic continuation.
We validate and benchmark the proposed file transfer model using ProAc-
tive, a Grid programming middleware. ProActive provides, among oth-
ers, a Grid infrastructure abstraction using deployment descriptors, and
an active object model using transparent futures.

1 Introduction

Scientific and engineering applications that require, handle, and generate large
amount of data represent an increasing use of Grid computing. To handle this
large amount of information, file transfer operations have a significant impor-
tance. For example, some of the areas that require handling large amount of
data in the Grid are: bioinformatics, high-energy physics, astronomy, etc.

Although file transfer utilities are well established, when dealing with the
Grid, environmental conditions require reviewing our previous understanding of
file transfer to fit new constraints and provide new features at three different
stages of Grid usage: deployment, execution, and post-execution. At deployment
time, we focus on integrating heterogeneous file transfer and resource acquisition
protocols to allow on-the-fly deployment. During the application run time, we
offer a parallel and asynchronous file transfer mechanism based on active objects,
wait-by-necessity, and automatic continuation. Once the user application has
finished executing, we offer a file retrieval mechanism.

This document is organized as follows. In section 2 we provide some back-
ground on the Grid programming middleware ProActive. In sections 3 and 4
we describe our file transfer proposal for the Grid, and show how this is imple-
mented in the context of ProActive. We benchmark the implementation of the
model in section 5. Related work is reviewed in section 6, and finally we conclude
in section 7.



2 Background on ProActive

Figure 1, shows the active object (AO) programming model used in ProAc-
tive[16]. AO are remotely accessible via method invocations, automatically stored
in a queue of pending requests. Each AO has its own thread of control and is
granted the ability to decide in which order incoming method calls are served
(FIFO by default). Method calls on AO are asynchronous with automatic syn-
chronization (including a rendezvous). This is achieved using automatic future
objects as a result of remote methods calls, and synchronization is handled by a
mechanism known as wait-by-necessity [4].
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Fig. 1. Execution of a remote method call.

ProActive also provides a Descriptor Deployment Model [3], which allows
the deployment of applications on sites using heterogeneous protocols, without
changing the application source code. All information related with the deploy-
ment of the application is described in the XML Deployment Descriptor. Thus,
eliminating references inside the code to: machine names, resource acquisition
protocols (local, rsh, ssh, lsf, globus-gram, unicore, pbs, lsf, nordugrid-arc, etc..)
and communication protocols (rmi, jini, http, etc...).

The Descriptor Deployment Model is shown in Figure 2. The infrastructure
section contains the information necessary for booking remote resources. Once
booked, ProActive Nodes can be created (or acquired) on the resources. To
link the Nodes with the application code, a Virtual Node (VN) abstractions is
provided, which corresponds to the actual references in the application code.
Virtual Nodes have a unique identifier which is hardcoded inside the application
and the descriptor.

A deployer can change the mapping of the application → Virtual Node to
deploy on a different Grid, without modifying a single line of code in the appli-
cation.
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Fig. 2. Descriptor Deployment Model

3 Grid Deployment and File Transfer

3.1 On-the-fly Deployment

We consider that deployment on the Grid represents the fulfillment of the fol-
lowing tasks: (i) Grid infrastructure setup (protocol configuration, installation
of Grid middleware libraries, etc...), (ii) resource acquisition (job submission),
(iii) application specific setup (installing application code, input files, etc...),
and (iv) application deployment (setting up the logic of the application).

Usually, the deployment requires files transfer during the above cited tasks
to succeed, for such files as: Grid middleware libraries (i), application code (iii),
and application input files (iv). We say a Grid deployment can be achieved on-
the-fly if the required files can be transferred when deploying, without having
to install them in advance. It is our belief, that on-the-fly deployment greatly
reduces the Grid infrastructure configuration, maintenance and usage effort.

In the rest of this section, we describe how heterogeneous protocols for file
transfer and resource acquisition can be integrated to achieve on-the-fly deploy-
ment for the Grid. To explain the approach, we first introduce the notation and
review some general concepts concerning resource acquisition and file transfer.

3.2 Concepts

Let r be a resource acquisition protocol, t a file transfer protocol, n a Grid node,
p a Grid infrastructure parameter, and f a file definition. We say a node nk is
acquirable from n0 iff ∃{r0(p0), . . . , rk−1(pk−1)} and ∃{n0, . . . , nk−1} as shown



in Figure 3(a). The nodes are acquired sequentially one after the other, i.e. nk

is acquired before nk+1 using a resource acquisition protocol rk.
A Grid infrastructure resource acquisition can more precisely be seen as a

tree, since more than one node can be acquired in parallel. As shown in Figure
3(b), the leaf nodes represent the acquired resources1, and we will call them
virtualNode, using the ProActive terminology.

Fig. 3. Resource Acquisition and File Transfer.

Given a file transfer protocol t we say a file f can be transferred from n0 to
nk iff ∃{t0(p0, f), . . . , tk−1(pk−1, f)} and ∃{n0, . . . , nk−1} (Figure 3(c)).

A file transfer protocol can be of two types: internal if the file transfer protocol
is executed by the resource acquisition protocol, i.e. r(p, f) executes the file
transfer and performs the resource acquisition (unicore, nordugrid); or external
if they are not part of a resource acquisition protocol (scp, rcp). Therefore,
internal file transfer protocols can not be used separately from the corresponding
resource acquisition protocol.

3.3 Integration Proposal

Supposing that nk+1 is acquirable from nk using rk, and given an ordered list
of file transfer protocols

−→
tk that can or cannot be successful at transferring f

from nk to nk+1. Then, if there ∃tik ∈
−→
tk which corresponds to the lower indexed

transfer protocol capable of transferring f , we propose the sequencing of file
transfer and resource acquisition protocols in the following way:

1. If tik is external, then we will execute

nk
t0k(p,f),...,ti

k(p,f),rk(p)−−−−−−−−−−−−−−−→ nk+1

1 Depending on the deployment mechanism, sometimes the internal nodes also repre-
sent acquired resources.



That is to say, that the file transfer protocols will be executed sequentially
until one of them succeeds, and then the resource acquisition protocol will
be executed.

2. If tik is an internal file transfer protocol of rk, then we will execute:

nk
t0k(p,f),...,ti−1

k (p,f),rk(p,f)
−−−−−−−−−−−−−−−−−→ nk+1

The assumption is that the internal tik of a given rk will always succeed. This
is reasonable, because if the internal tik fails, this implies that rk will also
fail, and thus there is no point on testing further file transfer protocols.

The problem with the sequencing approach, is that no file transfer protocol
tik ∈ tk may be successful at transferring f . To solve this, we propose the usage of
a failsafe file transfer protocol, which is reliable at performing the file transfer,
but only after the resource acquisition has taken place. Therefore, if tik is a
failsafe protocol, then we will execute:

nk
t0k(p,f),...,ti−1

k (p,f),rk(p),ti
k(p,f)

−−−−−−−−−−−−−−−−−−−−−→ nk+1

Note that in the failsafe approach, the actual file transfer is performed after the
resource acquisition.

There are two main reasons for trying to avoid using a failsafe protocol. The
first one, is that failsafe performs the file transfer at a higher level of abstraction,
not taking advantage of lower level infrastructure information, as shown in the
benchmarks of section 5.2. The second reason is that on-the-fly deployment
becomes limited: the libraries required to use the failsafe protocol cannot be
transferred using the failsafe protocol, and must be transferred in advance.

3.4 File Transfer in ProActive Deployment Descriptors

Figure 4 shows how the approach is integrated into ProActive XML Deployment
Descriptors. We take advantage of the descriptors structure to apply separation
of concerns. The actual files requiring file transfer are specified in a different
section (FileTransferDefinitions) than the Grid infrastructure parameters
(FileTransferDeploy). The infrastructure parameters holds information such
as: the sequence of protocols that will be tried to copy the file (copyProtocol)2,
hostnames, usernames, etc. Finally, the FileTransferRetrieve tag specifies
which files should be retrieved from the nodes in the retrieval (post-execution)
phase (reviewed in further depth in section 4.2).

4 File Transfer during execution and retrieval

Applications can generate data, and transferring this data during the applica-
tion execution is usually achieved using a specific communication protocol for
2 The failsafe protocol shown in the example is described in further detail in section

4.1.



<FileTransferDefinitions>
<FileTransfer id="requiredfiles">

<file src="application.class" dest="application.class"/>
<file src="ProActive.jar" dest="ProActive.jar"/>
<file src="input.dat" dest="input.dat"/>

</FileTransfer>
<FileTransfer id="results"><file src="output.dat"/></FileTransfer>

<FileTransferDefinitions>
...
<virtualNode name="exampleVNode" FileTransferDeploy="requiredfiles"/>
...
<processDefinition id="xyz">
<sshProcess>
<!-- The refid attribute can be set to "implicit", which will use the value defined in

the VirtualNode. -->
<FileTransferDeploy refid="implicit">
<copyProtocol>processDefault, rcp, scp, failsafe</copyProtocol>
<sourceInfo prefix="/home/user"/>
<destinationInfo prefix="/tmp" hostname="foo.org" username="smith" />

</FileTransferDeploy>
<!-- The refid can also directly reference the FileTransfer id. -->
<FileTransferRetrieve refid="results">
<sourceInfo prefix="/tmp"/>
<destinationInfo prefix="/home/user"/>

</FileTransferRetrieve>
</sshProcess>

</processDefinition>

Fig. 4. Example of File Transfer in Deployment Descriptor.

transferring the file’s data. Nevertheless, Grid resources are characterized by
distributed ownership and therefore diverse management policies, as our own
experiments [14, 15] confirm it. As a result, setting up the Grid to allow message
passing is a painfull task. Additionally configuring and maintaining a specific
file transfer protocol between any pair of nodes seems to us as an undesirable
burden3.

Therefore, we propose that the file transfer protocol should be built on top
of other protocols, specifically the message passing protocols. Standard message
passing is not well suited for transferring large amounts of information, mainly
because of memory limitations and lack of performance optimizations for large
amounts of data. In this section we show how an active object based message
passing model can be used as the ground for a portable efficient scalable file
transfer service for large files, where large means bigger than available runtime
memory. Additionally by using active objects as transport layer for file transfer,
we can benefit from the automatic continuation to improve the file transfer
between peers, as we will show in the benchmarks of section 5.

4.1 Asynchronous File Transfer with Futures

We have implemented file transfer as service methods available in the ProActive
library as shown in Figure 5. Given a ProActive Node node, a File(s) called
3 Deployment file transfer does not impose this burden, because the file transfer does

not take place between each possible pair of nodes.



source, and a File(s) called destination, the source can be pushed (sent) or
pulled (get) from node using the API. The figure also shows a retrieveFiles
method, which is discussed in section 4.2.

//Send file(s) to Node node
static public File pushFile(Node node, File source, File destination);
static public File[] pushFile(Node node, File[] source, File[] destination);

//Get file(s) from Node node
static public File pullFile(Node node, File source, File destination);
static public File[] pullFile(Node node, File[] source, File[] destination);

//Retrieve files specified for the virtualNode
public File[] virtualNode.retrieveFiles();

Fig. 5. File Transfer API.

The failsafe algorithm mentioned in section 3.3 is implemented using the
pushFile API, which is itself built using the push algorithm depicted in Figure
6 and detailled as follows:

Fig. 6. Push Algorithm.

1. Two File Transfer Service (FTS) active objects are created (or obtained from
a pool): a local FTS, and a remote FTS. The push function is invoked by
the caller on the local FTS: LocalFTS.push(. . .).

2. The local FTS immediately returns a File future to the caller. The calling
thread can thus continue with its execution, and is subject to a wait-by-
necessity on the future to determine if the file transfer has been completed.

3. The file is read in parts by the local FTS, and up to (o − 1) simultaneous
overlapping parts are sent from the local node to the remote node by invoking
RemoteFTS.savePartAsync(pi) from local FTS [2].

4. Then, a RemoteFTS.savePartSync(pi+o) invocation is sent to synchronize
the parameter burst, as not to drown the remote node. This will make
the sender wait until all the parts pi, . . . , pi + o have been served (ie the
savePartSync method is executed).



5. The savePartSync(...) and savePartAsync(...) invocations are served in
FIFO order by the remote FTS. These methods will take the part pi and
save it on the disk.

6. When all parts have been sent or a failure is detected, local FTS will update
the future created in step 2.

The pullFile method is implemented using the pull algorithm shown in
Figure 7, and is detailled as follows:

Fig. 7. Pull Algorithm.

1. Two FTS active objects are created (or obtained from a pool): a local
FTS, and a remote FTS. The pull function is invoked on the local FTS:
LocalFTS.pull(. . .).

2. The local FTS immediately returns a File future, which corresponds to the
requested file. The calling thread can thus continue with its execution and
is subject to a wait-by-necessity on the future.

3. The getPart(i) method is invoked up to o (internally defined) times, by
invoking RemoteFTS.getPart(i) from the local FTS [2].

4. The local FTS will immediately create a future file part for every invoked
getPart(i).

5. The getPart(...) invocations are served in FIFO order by the remote FTS.
The function getPart consists on reading the file part on the remote node,
and as such, automatically updating the local futures created in step 4.

6. When all parts have been transferred, then the local FTS will update the
future created in step 2.

4.2 File Transfer after application execution

Collecting the results of a Grid computation distributed in files on different
nodes is an indispensable task. Since determining the termination of a distributed
application is hard and sometimes impossible, we believe that the best way is
to have non-automatic file retrieval, meaning that it is the user’s responsability
to trigger the file transfer at the end of the application execution (i.e once the
application data has been produced).



The file transfer retrieval is implemented as part of the API shown in Figure
5. For each node in the virtualNode, a pullFile is invoked, and an array of
futures ((File[]) is returned. The retrieved files are the ones specified in the
deployment descriptor, as shown in Figure 4.

5 Benchmarks

5.1 File Transfer Push and Pull

Using a 100Mbit LAN network with a 0.25[ms] ping, and our laboratory desk-
top computers: Intel Pentium 4 (3.60GHz) machines, we experimentally deter-
mined that overlapping 8 parts of size 256[KB] provides a good performance
and guarantees that at the most 2[MB] will be enqueued in the remote node.
The communication protocol between active object was configured to RMI.

Since peers usually have independant download and upload channels, the
network was configured at 10[Mbits

sec ] duplex. Figure 8(a) shows the performance
results of pull, push, and remote copy protocol (rcp) for different file sizes. The
performace achieved by pull and push approaches our ideal reference: rcp.
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Fig. 8. Performance comparisons.

More interestingly, Figure 8(b) shows the performance for getting a file from
a remote site, and then sending this file to a new site. This corresponds to a
recurrent scenario in data sharing peer to peer networks[11], where a file can be
obtained from a peer instead of the original source.

As we can see in Figure 8(b), rcp is outperformed when using pull and push
algorithms. While rcp must wait for the complete file to arrive before sending
it to a peer, the pull algorithm can pass the future file parts (Figure 7) to the
pull algorithm even before the actual data is received. When the future of the



file parts are updated, automatic continuation [5, 6] will take care of updating
the parts to the concerned peers. The user can achieve this with the API shown
in Figure 5, by passing the result of an invocation as parameter to another.

5.2 Deployment with File Transfer on a Grid

Our deployment experiments took place on the large scale national french wide
infrastructure for Grid research: Grid5000 [8], gathering 9 sites geographically
distributed over France.

Figure 9(a) shows the time for three different deployment configurations com-
bined with a transfer of a 10[MB] file: regular deployment without involving file
transfer, deployment combined with (scp), and deployment combined with the
failsafe file transfer protocol (which uses the push algorithm). The figure shows
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Fig. 9. Deployment with 10[MB] File Transfer on Grid5000.

that combining deployment with scp adds a constant overhead, while failsafe
adds a linear overhead. This happens, because the nodes in Grid5000 are di-
vided into sites, and each site is configured to use network file sharing. If the
deployment descriptor is configured with scp, the file transfer only has to be per-
formed a time proportional to the number of sites used (2 for the experiment).
On the other hand, since the failsafe mechanism transfers files from node to node
using the file transfer API (of section 4.1), then the overhead is proportional to
the number of acquired nodes.

It is important to note, that when using failsafe, the files are deployed in
parallel to the nodes. This happens because several invocations of push, on a set
of nodes, are eventually served in parallel by those nodes. On the other hand,
scp transfers the files sequentially to each site in turn. The result is that failsafe
reaches a better speed than scp, as shown in Figure 9(b), where scp averages
1.5[MB

sec ] while failsafe averages 18[MB
sec ].



6 Related Work

The importance of file transfer and resource acquisition has been studied, among
others, by Giersch et al.[7], and Ranganathan et al.[12], who showed that data
transfer can affect application scheduling performance. Solutions for integrat-
ing resource acquisition and file transfer have been developed by several Grid
middlewares like Unicore[17], and Nordugrid[10]. Our approach differs mainly
because it allows on-the-fly deployment while combining heterogeneous resource
acquisition and file transfer protocols.

The proposed deployment approach can be seen as a wrapper for third party
file transfer tools. Other approaches for using third party tools exist. The main
goal behind them is to provide a uniform API. This has been done in Java
CoG[18], and GAT[13]. Nevertheless, our motivations differ since we seek on-
the-fly deployment, rather than file transfer during application execution.

For transferring files between Grid nodes, GridFTP[1] is a popular tool, which
extends the traditional FTP[9]. The approach we propose at the programming
level mainly varies from GridFTP because we do not require an underlying
file transfer protocol to perform file transfer. On the contrary, we only rely
on portable always executable asynchronism with future remote method calls.
Therefore, we can benefit from automatic continuation to improve peer to peer
file transfer performance, as shown in Figure 8(b).

Concerning the retrieval of files, Unicore[17] and NorduGrid[10] have ad-
dressed this issue. Once the job has finished, files generated during the computa-
tion can be downloaded from the job workspace using the respective middleware
client. Our approach differs because we provide a user triggered API file retrieval
mechanism, which allows the user further flexibility. The API can be used by
the application at any point during execution once output results are relevant
to be transferred, and not only at the very end of the run.

7 Conclusions and Future Work

We have addressed file transfer for the Grid by focusing on three different stages
of Grid usage: deployment, execution and retrieval. Our experiments show that
it is possible to integrate heterogeneous file transfer with resource acquisition
protocols to allow on-the-fly deployment, which can deploy the Grid application
and install the Grid middleware at the same time. Experimentally, we have
benchmarked the proposed solution, and shown that it is scalable.

For the application execution, we proposed an asynchronous overlapping file
transfer mechanism using push and pull algorithms, built on top of an active
object communication model with futures and wait-by-necessity. Experimentally
we showed that both can achieve a performance similar to rcp. Additionally, we
showed how automatic continuation can be used to transfer files between peers
in an efficient way.

Finally, we proposed a user triggered file retrieval mechanism for the Grid.
This mechanism uses the algorithms developed here in combination with infras-
tructure information located inside the deployment descriptors.



In the future we would like to explore distributed file systems, built on top of
the proposed file transfer API. We also plan to investigate the interaction of file
transfer with structured distributed programming models known as skeletons.
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