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Abstract. The Proactive Parallel Suite offers multiple layers of abstrac-
tion for parallel and distributed applications which include both pro-
gramming and the environment/deployment abstraction layers.
At the core of ProActive’s programming abstractions are active objects
with transparent futures and wait-by-necessity. Other abstractions of-
fered by ProActive, such as typed groups, algorithmic skeletons, and hi-
erarchical distributed components among others; are constructed on top
of active objects. This pluralism of abstractions offers programmers a
wide choice of expressiveness for coding parallel and distributed applica-
tions.
Additionally, an environment/deployment layer offers abstractions that
simplify the interaction with the infrastructure. A deployment descriptor
and a super-scheduler abstractions manage deployment of application
on distributed resources, while the IC2D tool provides an abstraction to
monitor debug and profile parallel and distributed applications.

1 Introduction

The relevance of parallel programming is evident. There has never been a point
in time where we have had a dearer need for parallel programming abstractions
to harness the power of increasingly complex parallel systems [40]. On one side
large scale distributed-memory computing such as cluster and grid computing
[29]; and on the other parallel shared-memory computing through new multi-core
processors [7].

The difficulties of parallel programming have led to the development of many
parallel programming models, each having its particular strengths. One thing
which they have in common is that parallel programming models pursue a bal-
ance between abstractions (simplicity) and details (expressiveness). As appli-
cations increase in complexity, a single programming abstraction lacks expres-
siveness to adequately satisfy the whole application. Instead an approach where
multiple abstractions are used for particular parts of the application is better
suited. This papers describes a library providing such pluralism of programming
models, the ProActive Parallel Suite.



The ProActive Parallel Suite is a 100% Java library, which aims at achieving
seamless programming for concurrent, parallel, distributed, and mobile comput-
ing. It does not require any modification of the standard Java execution envi-
ronment, nor does it make use of a special compiler, pre-processor, or modified
virtual machine. Released under the GPL license, ProActive is a Java library for
parallel, distributed, and concurrent computing; also featuring mobility and secu-
rity in a uniform framework. With a reduced set of simple primitives, ProActive
provides a comprehensive API which simplifies the programming of applications
distributed on Local Area Networks (LAN), clusters, and Grids.

ProActive provides two levels of abstractions. First, a set of programming
model abstractions such as: active objects, typed groups, algorithmic skeletons,
distributed components, etc. The programming model abstractions are all im-
plemented on top of the core programming abstraction, active objects, because
they provide good properties such as determinism and orthogonality of future
update policies [21]. Second, ProActive is also concerned with the complexity of
deploying distributed applications. ProActive provides deployment descriptors
which abstract low level information from the application source code. Users
can deploy their applications on different infrastructures by providing the cor-
responding deployment descriptor, without changing the application code. Also,
for more dynamic environments, ProActive supports batch like deployment of
applications through an active object based scheduler. Additionally, ProActive
provides a monitoring, debugging and profiling tool IC2D. Among others, IC2D
provides a visual representation of an application’s active objects and their com-
munication.

This paper is organized as follows. Section 2 describes the related work. Sec-
tion 3 describes the parallel programming abstractions in ProActive, starting
with the active object model in Section 3.1, typed groups in Section 3.2, Cal-
cium’s algorithmic skeletons in Section 3.3, and the GCM hierarchical compo-
nents in Section 3.4. Then Section 4 describes the Environment and Deployment
abstractions. Finally Section 5 provides the conclusions and future work.

2 Related Work

ASSIST [2] is a programming environment which provides programmers with a
structured coordination language. The coordination language can express par-
allel programs as an arbitrary graph of software modules. The graph describes
how a set of modules interact with each other using a set of typed data streams.
The modules can be sequential or parallel. Sequential modules can be written
in C, C++, or Fortran; and parallel modules are programmed with a special
ASSIST parallel module (parmod).

Condor [35] is a distributed computing system for batch processing. Condor
provides job management, scheduling, resource monitoring and resource man-
agement. One of the key features of Condor is its matchmaking mechanism.
Both jobs and resources describe their requirements using a ClassAd language,
and the matchmaking determines if a resource is suitable for the execution of



a job. Jobs can be ordered using DAGMan to define the dependencies between
jobs, and a Master-Worker system is available for parameter search applications.
Condor also monitors the job’s progress and informs of completion to the user.

GAT stands for Grid Application Toolkit [6, 34], which defines a platform in-
dependent API to access resources and services. The API focuses, among others,
on resource management (job submission and migration), and data management
(file transfer, file access and communication pipes). A GAT Engine dispatches
API calls to available services via adaptors. Adaptors are the interface between
the GAT Engine and the third party services. They are analogous to providers
in Java CoG. When a call to the API arrives, the GAT Engine executes suitable
adaptors until one succeeds, or all fail, to perform the operation.

Globus Toolkit [30] is a rich set tools capable of interoperating to run ap-
plications on distributed and Grid infrastructures. These tools are concerned
with deployment, data management, monitoring, and security among others.
For deployment Globus provides GRAM which is the module responsible of the
resource acquisition, configuration, executable staging, and program’s execution.
Data management is achieved by a set of tools, such as GridFTP used for data
movement; but also others such as the Data Replication Service which handles
replication of data.

Grid Superscalar [8] is an environment to program parallel applications for
the Grid using imperative languages such as C++ and Perl. The program is
specified as a set of tasks with input/output files in an interface description lan-
guage. Grid Superscalar analyzes the dependencies between tasks and executes
them sequentially or in parallel after having transferred the required data.

Java CoG Kit stands for Java Commodity Grid Kit [38], and provides services
using simplified interfaces for lower level providers, in particular for the Globus
Toolkit [31]. The Java CoG Kit’s abstraction model follows a provider pattern,
where abstract and generic concepts specified by programmers are translated into
provider specific implementation entities. In the case of file transfer abstractions,
file transfer operations are no different from other tasks, in the sense that a file
transfer operation must be submitted for execution as a file-transfer-task [37,
39].

SAGA stands for Simple API for Grid Applications, and has the same objec-
tive as GAT: to construct a uniform API for the development of Grid applica-
tions [32]. Indeed, SAGA is an API standardization effort within the Open Grid
Forum (OGF). The SAGA API is concerned with functional features such as
job submission and management, file input/output, replica management, remote
procedure calls, etc; and non-functional features such as permissions, security,
monitoring, etc.

Unicore [28] is a middleware oriented towards application Grid services,
where services are setup on a pre-configured Grid environment. Remote clients
submit jobs to the Unicore’s Grid gateway, which chooses suitable resources to
run the jobs. A job is composed of one or more typed tasks. Each tasks triggers
the execution of a predefined Grid service, in accordance with the type of the
task. Tasks are arranged using a workflow, and can be executed in parallel or



3− A future object

is created and returned

1− Object A performs

a call to method foo

2− The request for foo

is appended to the queue

5− The body updates the future

with the result of the execution of foo

6− Object A can use the result

throught the future object

4− The thread of the body

executes method foo on object B

Object B

Proxy Body

Object A

Future

Result

Local node Remote node

Object BObject A

Fig. 1. Execution of a remote method call.

not. All tasks belonging to the same job share a jobspace file system. Besides
the workflow, the job description also specifies which files must be imported into
the jobspace before the execution of the job, and which files must be exported
after the job is finished.

3 Parallel Programming Abstractions

ProActive provides several programming abstractions. This section describes
only the following ones: active objects, typed groups, algorithmic skeletons, and
components; which we believe provide a good overview of ProActive’s pluralism
of abstractions. Readers interested on some other specific programming model in
ProActive, such as the Branch & Bound [19], Master-Slave, or Monte Carlo [16]
APIs should refer to the ProActive documentation for further details [33].

3.1 Active Objects with Transparent Futures

At ProActive’s core lies a uniform active object programming model abstraction.
As shown in Figure 1, active objects are remotely accessible via method invoca-
tions, which are automatically stored in a queue of pending requests. Each active
object has its own thread of control and is granted the ability to decide in which
order the incoming method calls are served. Method calls on active objects are
asynchronous with automatic synchronization. This is achieved using transpar-
ent future objects as a result of remote methods calls, and synchronization is
handled by a mechanism known as wait-by-necessity [18].

Active objects are instantiated using the ProActive API, as shown in Listing
1.1, by specifying the class of the root object, the instantiation parameters, and



Object[] params= ...; //Constructor parameters

// instantiate active object of class B on a remote node

B b = (B) ProActive.newActive("B", params, node);

// use active object as any object of type B

R r = b.foo();

...

// possible wait-by-necessity

System.out.println(r.printResult());

Listing 1.1. Active Object instantiation and method invocation.

an optional location node. Invoking the method foo() on b returns a future
of type R. Where R is the return type of the method foo, not a wrapper type.
The computation can continue until a wait-by-necessity is reached. The thread
accessing the future will be blocked only if the result is not yet available when
it is actually required.

Active objects may migrate from any Java Virtual Machine (JVM) to any
other using the provided migration mechanism. An active object with its pending
requests (method calls), futures, and passive (mandatory non-shared) objects can
migrate from JVM to JVM through the migrateTo(...) primitive. The migration
can be initiated from outside the active object, but it is the responsibility of
the active object to execute the migration, this is known as weak migration.
Automatic and transparent forwarding of requests and replies provide location
transparency, as remote references toward active mobile objects remain valid.

ProActive uses by default the RMI Java standard library as a portable com-
munication layer, supporting the following communication protocols: RMI, HTTP,
Jini, RMI/SSH, and Ibis [36].

3.2 Typed Groups

An extension of the active object abstraction corresponds to the typed group com-
munication model [9]. Group communication is an important feature for high-
performance and Grid computing, for which MPI is generally the only available
coordination model [10]. Group communication allows triggering method calls on
a distributed group of active objects with compatible type, dynamically gener-
ating a group of results. It has been shown in [9] that this group communication
mechanism, plus a few synchronization operations (WaitAll, WaitOne, etc.), pro-
vides similar patterns for collective operations such as those available in MPI,
but in a language centric approach [10].

The typed group communication mechanism [9] is built upon the ProActive
elementary mechanism for asynchronous remote method invocation with auto-
matic futures. The group mechanism must be thought of as a replication of more
than one (say N) ProActive remote method invocations towards N active objects.



Object[][] paramsArray = {{...},{...},...};

Node[] nodes = {...,...,... };

A ag = (A) ProActiveGroup.newActiveGroup("A", paramsArray, nodes);

...

ag.foo(...); // A group communication

// A method call on a typed group

V vg = ag.bar();

// To wait and capture the first returned member of vg

V v = (V) ProActiveGroup.waitAndGetOne(vg);

// To wait all the members of vg are arrived

ProActiveGroup.waitAll(vg);

Listing 1.2. Typed Group Communications

Of course, the aim is to incorporate some optimizations into the group mecha-
nism implementation, in such a way as to achieve better performances than a
sequential achievement of N individual ProActive remote method calls. In this
way, the mechanism is a generalization of the remote method call mechanism of
ProActive.

The availability of such a group communication mechanism simplifies the
programming of applications with similar activities running in parallel. Indeed,
from the programming point of view, using a group of active objects of the same
type, subsequently called a typed group, takes exactly the same form as using
only one active object of this type. This is possible due to the fact that the
ProActive library is built upon reification techniques.

Listing 1.2 shows an example using typed group communication. The cre-
ation of a group is analogous to the creation of an active object but using the
newActiveGroup primitive. A group communication call is transparent and the
result is stored in a future. The API allows for several utility methods like
waitAndGetOne which waits for a single result from the group, and waitAll
which waits for all results.

3.3 Algorithmic Skeletons

Algorithmic skeletons (skeletons for short) are a high level programming model
for parallel and distributed computing, introduced by Cole in [24]. Skeletons take
advantage of common programming patterns to hide the complexity of parallel
and distributed applications. Starting from a basic set of patterns (skeletons),
more complex patterns can be built by nesting the basic ones. All the paralleliza-
tion and distribution aspects are implicitly defined by the composed skeletal
structure.

As a skeleton framework we use Calcium [20, 22, 23], which is greatly inspired
on Lithium [3–5, 27] and its successor Muskel [26]. Calcium is written in Java and
is provided as a library. The Calcium framework is capable of evaluating the same



skeleton program on different execution environments. Currently it supports
parallel environments using threads, distributed environments using ProActive’s
active objects, and Grid like environments using the ProActive Scheduler (see
Section 4.2).

In Calcium, skeletons are provided as a Java library. The library can nest
task and data parallel skeleton in the following way:

4 ::= seq(fe) | farm(4) | pipe(41,42) | while(fb,4) |
if(fb,4true,4false) | for(i,4) | map(fd,4, fc) |
fork(fd, {4i}, fc) | d&c(fd, fb,4, fc)

Each skeleton represents a different pattern of parallel computation. All the
communication details are implicit for each pattern, hidden away from the pro-
grammer, and are classified in two types: task parallel or data parallel. The task
parallel skeletons are: farm for task replication; pipe for staged computation; seq
for wrapping execution functions; if for conditional branching; and while/for
for iteration. The data parallel skeletons are: map for single instruction multi-
ple data; fork for multiple instruction multiple data; and d&c for divide and
conquer.

The nested skeleton pattern (4) relies on sequential blocks of the application.
These blocks provide the business logic and transform a general skeleton pattern
into a specific application. We denominate these blocks muscles, as they provide
the real (non-parallel) functionality of the application. In Calcium, muscles come
in four flavors:

Execution fe : P → R

Division fd : P → {R}
Conquer fc : {P} → R

Condition fb : P → boolean

Where P is the parameter type, R the result type, and {X} a list of parameters
or results of type X.

For the skeleton language, muscles are black boxes invoked during the compu-
tation of the skeleton program. Multiple muscles may be executed either sequen-
tially or in parallel with respect to each other, in accordance with the defined
4. The result of a muscle is passed as a parameter to other muscle(s). When no
further muscles need to be executed, the final result is delivered to the user.

Figure 2 shows an example. BLAST [15] corresponds to Basic Local Align-
ment Search Tool. It is a popular tool used in bioinformatics to perform sequence
alignment of DNA and proteins. In short, BLAST reads a query file and performs
an alignment of this query against a database file. The results of the alignment
are then stored in an output file. A BLAST parallelization using skeleton pro-
gramming is shown in the figure. The strategy is to divide the database until
a suitable size is reached and then merge the results of the BLAST alignment.



//Initialization

Skeleton<BlastParams,File> blast = ...;

Environment env = new ProActiveEnv(...);

Calcium calcium = new Calcium(env);

Stream<BlastParams,File> stream =

calcium.getStream(blast);

//Input Parameters

stream.input(new BlastParams("/home/query.1"));

stream.input(new BlastParams("/home/query.2"));

//...

//Output Results

File alignment1 = stream.getResult();

File alignment2 = stream.getResult();

Fig. 2. BLAST Skeleton Program

The code shown in the figure represents the usage API. An initialization phase
defines the skeleton program (portrayed graphically in the example), and then
instantiates Calcium with a specific environment. The skeleton program is then
associated with a stream which is used to input parameters and collect the re-
sults.

3.4 Grid Component Model (GCM)

The Grid Component Model (GCM) [25] abstraction extends Fractal [17] for
distributed and Grid computing [12]. As in Fractal, GCM allows for hierarchi-
cal composition, separation of functional and non-functional interfaces; but also
considers deployment, collective communications [14], and autonomic behavior
[1] among others.

ProActive’s GCM implementation is built upon the active object model. Each
component is implemented with an active object and (non-)functional requests
are served from the active object queue. Invocations on component interfaces
inherit asynchronism from the remote method calls of active objects. The re-
sult of an invocation is also a transparent future which can be passed to other
components.

Figure 3 shows graphical example of a GCM component. External interfaces
provide interaction with the environment while internal interfaces are binded
with sub-components. The interface on the sides represent server (left) and client
(right), while interfaces on the top correspond to non-functional services: life
cycle, reconfiguration, etc.

Among others, GCM extends Fractal by providing multicast and gathercast
interfaces [14]. Multicast interfaces provide abstractions for one-to-many com-
munications, by transforming a single invocation into a list of invocations. The



Fig. 3. Fractal based Grid Component Model

transformation is customizable (broadcast, split, etc), and the result of such invo-
cation is a list of result or its reduction. The symmetrical interfaces are gathercast
which provide abstractions for many-to-one communications by transforming a
list of invocations into a single invocation. Gathercast interfaces can coordinate
the invocation which is automatically redistributed to the invoking components.

4 Environment and Deployment Abstractions

4.1 Deployment and Scheduling

Descriptor Based The deployment of distributed applications is commonly
done manually through the use of remote shells for launching the various virtual
machines or daemons on remote computers and clusters. In heterogeneous in-
frastructure the deployment complexity increases thus making the deployment
task central and harder to perform by the application.

To address this issue, ProActive provides a deployment descriptor abstrac-
tion [11], which allows the deployment of applications on heterogeneous sites
without changing the application’s source code. All infrastructure information
related with the deployment of applications on the infrastructure is described
in a deployment descriptor (XML). Thus, eliminating references inside the code
to: machine names, resource acquisition protocols (local, rsh, ssh, lsf, globus-
gram, unicore, pbs, lsf, nordugrid-arc, etc...), and communication/lookup proto-
cols (rmi, jini, http, etc...).

The deployment descriptor’s architecture is shown in Figure 4. The infras-
tructure section contains the information necessary for acquiring remote re-
sources. Once acquired, ProActive nodes are instantiated on the remote re-
sources. The nodes are then linked with the application code via a virtual-node
abstraction. In the application’s code, a virtual-node name corresponds to a
reference on the nodes that will be acquired during the deployment. While, on



Fig. 4. Deployment Descriptor Layout

the deployment descriptor, the virtual-node corresponds to a set of deployment
operations that will yield resources with instantiated nodes.

Consequently, the parsing of the deployment descriptor, and associated de-
ployment operations, are triggered from the application code by calling one single
method of the ProActive library. The deployment can be configured by changing
the

application → virtual-node→ nodes

mapping, to run the application on a different infrastructure, without modifying
a single line of code in the application.

4.2 Scheduler

Batch schedulers provide an abstraction of resources to clients. Clients submit
tasks and the scheduler is in charge of executing them on available resources.
Thus, a scheduler allows several clients to share a same pool of resources. In this
section, we present a super-scheduler (scheduler for short), capable of federat-
ing other schedulers. Clients can interact with the scheduler through different
mechanism: command-line, API, GUI, and description files. In addition to the
super-scheduler, we describe a resource manager, which is in charge of acquiring
and managing resources.

The Scheduler is the central entity with which clients interact using a remote
Java API, or by submitting a Job Description. A Job describes the batch process



to be executed. The description specifies the code, which can be in Java by
extending the Executable interface or any native executable; required data files;
and a script for validating resources.

Currently three kinds of jobs are supported: in Task Flow Jobs, clients
describe the flow and dependencies of tasks to execute; in Parameter Sweep-
ing a single task is executed in parallel with multiple data; and in ProActive
Applications clients submit a regular ProActive distributed application.

The scheduler also supports customized allocation policies, and provides a
FIFO policy by default. Basic non-functional concerns such as security and fault-
tolerance are handled both at the ProActive middleware and scheduler levels.

Finally, the management, deployment, and selection of resources is handled
by a second entity, named the resource manager. Figure 5 shows a global overview
of the whole system.

Fig. 5. Scheduler Global Overview

The Resource Manager (RM) is responsible for acquiring and managing
resources. The RM is built on top of the deployment descriptors which provide
an abstraction of how resources can be acquired.

The static acquisition of resources is handled by deployment descriptors,
while the dynamic management of these resources is done by the RM. A scheduler
can ask resources from a RM, and the RM will deliver a resource through a node
abstraction. Once the scheduler no longer requires a node, it is returned to RM
for cleaning, pooling or releasing.

The scheduler can also request specific resources, that fulfill some require-
ments in order to execute a particular task. Requirements can be verified with a
script attached to the task, the RM uses this script to test resources. A successful
execution of this script on a given resource validates the node.

4.3 IC2D Monitoring, Debugging, and Profiling

Graphical visualization and monitoring of any ongoing ProActive applications
is possible with IC2D (Interactive Control and Debugging of Distribution) tool
[13]. IC2D provides a graphical representation of hosts, java virtual machines,



Fig. 6. IC2D Example Snapshot

nodes, active objects with their queue of requests, and messages as shown in
Figure 6. In the figure, outermost squares represent hosts while inner squares
correspond to java virtual machines and nodes. The ellipsis correspond to active
objects and the queue of pending requests is represented by dots inside active ob-
jects. Communications between active objects are shown by lines. Additionally,
IC2D allows the monitoring of migrations, which can also be triggered through
IC2D with a drag-and-drop.

When interfaced with Timit a profile of the application can be generated.
The profile contains information such as time spent sending/waiting for requests,
a timeline of activity for each active object, memory usage, and thread usage
among others.

5 Conclusions

The ProActive Parallel Suite offers a variety of abstractions to ease the program-
ming and execution of parallel and distributed applications. The programming
abstraction layer is based on an active object model with transparent first class
futures and wait-by-necessity. On top of this programming model, other abstrac-
tions are provided such as typed groups, Calcium’s algorithmic skeletons, and
GCM components among others. ProActive’s programming models pluralism
allows programmers to choose the most adequate abstractions for their applica-
tion.



ProActive also provides an environment/deployment abstraction. The de-
ployment process is simplified with deployment descriptors or a scheduler for
more dynamic environments. Additionally, the IC2D tool provides abstract to
monitor, debug, and profile parallel and distributed applications.

The current and future work of ProActive has many directions. For exam-
ple the deployment mechanism is currently undergoing a complete re-write and
extension. The new deployment labeled GCM Deployment, will harness all the
experience gathered in the deployment of ProActive applications. Besides a sim-
plified an easier description of infrastructure resources, the GCM Deployment
considers an application side descriptor.

At the programming abstraction level, for active objects we are currently
working on providing advanced update policies. For GCM components we are
currently working on better MPI like collective communications, integration
with webservices, tailored monitoring, reconfiguration, and compositional non-
functional aspects.
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