
Fine Tuning Algorithmic Skeletons

Denis Caromel and Mario Leyton

INRIA Sophia-Antipolis, CNRS, I3S, UNSA. 2004, Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France.

First.Last@sophia.inria.fr

Abstract. Algorithmic skeletons correspond to a high-level program-
ming model that takes advantage of nestable programming patterns to
hide the complexity of parallel/distributed applications. Programmers
have to: define the nested skeleton structure, and provide the muscle
(sequential) portions of code which are specific to a problem.
An inadequate structure definition, or inefficient muscle code can lead to
performance degradation of the application. Related research has focused
on the problem of performing optimization to the skeleton structure.
Nevertheless, to our knowledge, no focus has been done on how to aide
the programmer to write performance efficient muscle code.
We present the Calcium skeleton framework as the environment in which
to perform fine tuning of algorithmic skeletons. Calcium provides struc-
tured parallelism in Java using ProActive. ProAcitve is a grid middle-
ware implementing the active object programming model, and providing
a deployment framework.
Finally, using a skeleton solution of the NQueens counting problems in
Calcium, we validate the fine tuning approach on a grid environment.

1 Introduction

Algorithmic skeletons correspond to a high level programming model which was
introduced by Cole [9]. Skeletons take advantage of common programming pat-
terns to hide the complexity of parallel and distributed applications. Starting
from a basic set of patterns (skeletons), more complex patterns can be built by
nesting the basic ones. All the non-functional aspects regarding parallelization
and distribution are implicitly defined by the composed parallel structure. Once
the structure has been defined, the programmer completes the program by pro-
viding the application’s sequential functional aspects to the skeleton, which we
refer to as muscle codes.

Skeletons are considered a high level programming paradigm because lower
level details are hidden from the programmer. Achieving high performance for an
application becomes the responsibility of the skeleton framework by performing
optimizations on the skeleton structure [1, 2], and adapting to the environment’s
dynamicity [10]. However, while these techniques are known to improve per-
formance, by themselves they are not sufficient. The functional aspects of the
application (ie the muscle), which is provided by the programmer, can be ineffi-
cient or generate performance degradations inside the framework.

Detecting the performance degradation, providing the programmer with an
explanation, and suggesting how to solve the performance bugs are the main
motivations of this work. The challenge arises because skeleton programming
is a high level programming model. All the complex details of the parallelism
and distribution are hidden from the programmer. Therefore, the programmer
is unaware of how her muscle code will affect the performance of the applica-
tion. Inversely, low level information of the framework has no meaning to the
programmer to fine tune her muscle code.

In this paper we contribute by: (i) providing performance metrics that apply,
not only to master-slave, but also to other common skeleton patterns; (ii) taking
into consideration the nesting of task and data parallel skeletons as a produc-
er/consumer problem; (iii) introducing the concept of muscle workout; and (iv)
introducing a blaming phase that relates performance inefficiency causes with
the actual muscle code. In this paper we also present a skeleton framework called
Calcium. Calcium is written in Java and provides a library for nesting task and
data parallel skeletons using dynamic task generation. Support for distributed
programming in Calcium is provided by ProActive’s [17] active object model [6],
and deployment framework [4].

2 Calcium Skeleton Framework

The Calcium skeleton framework is greatly inspired on Lithium [3, 12] and its
successor Muskel [11]. It is written in Java [15] and is provided as a library. To
achieve distributed computation Calcium uses ProActive. ProActive is a Grid
middleware [7] providing, among others, a deployment framework [4], and a
programming model based active objects with transparent first class futures [6].

Basic task and data parallel skeletons supported in Calcium can be combined
and nested to solve more complex applications, in the following way:

4 ::=farm(4) | pipe(41,42) | seq(fe) |
if(fb,4true,4false) | while(fb,4) | for(i,4)
map(fd,4, fc) | fork(fd,41, ...,4n, fc) | d&c(fd, fb,4, fc)

Where the task parallel skeletons are: farm for task replication; pipe for staged
computation; seq for wrapping execution functions; if for conditional branching;
and while/for for iteration. The data parallel skeletons are: map for single
instruction multiple data; fork for multiple instruction multiple data; and d&c
for divide and conquer.

The Calcium framework can be viewed as a producer/consumer problem. A
central task pool stores and keeps track of tasks. Tasks are inputed into the task
pool by the users who provide the initial configuration of the state parameter.
Interpreters consume tasks from the task pool, compute the tasks according
to the skeleton instructions, and return the computed tasks to the task pool.
Additionally, new tasks can be dynamically produced by the interpreters when
data parallelism is encountered, in a similar fashion as in [16]. Dynamically

produced tasks are referred to as subtasks, while the task that created them is
referred to as the parent task.

Fig. 1. Calcium Framework Task Flow

As shown in Figure 2(a), a (sub)task is mainly composed of: a skeleton in-
struction stack, and a state parameter. The instruction stack corresponds to the
parsing and execution of the skeleton program, and each instruction is specified
with the associated muscle codes. The state parameter is the glue between the
skeleton instructions, since the result of one instruction is passed as parameter
to the following one.

Since subtasks can also spawn their own subtasks, a task tree is generated
as shown in Figure 2(b). The root of the tree corresponds to a task inputed into
the framework by the user, while the rest of the nodes represent dynamically
generated tasks. In the task tree, the tasks that represent the leaf nodes are
the ones that are ready for execution or being executed, while the inner nodes
represent tasks that are waiting for their subtasks to finish.

When a task has no unfinished children, and no further skeleton instructions
need to be executed, then the task is finished. When all brother tasks are finished,
they are returned to the parent task for reduction. The parent may then continue
with the execution of its own skeleton, and perhaps generate new subtasks. When
a root task reaches the finished state it can be delivered to the user.

The task pool is therefore composed of tasks in 4 different states: ready, pro-
cessing, waiting and finished. The ready state represents tasks that are currently
ready for execution. The processing state keeps track of tasks currently being
executed. The waiting state holds the tasks that are waiting for their children
to finish. The finished state contains the root tasks that have been finished but
have not yet been collected by the user.

3 Muscle Tuning of Algorithmic Skeletons

The global concepts that are presented in this section are depicted in Figure 3.
After the execution of an application, the performance metrics are used to deter-

(a) Task Definition (b) Task Tree (c) N-Queens Skeleton

Fig. 2. Skeleton Programming Concepts

mine the causes of the performance inefficiency. Once the causes are identified, a
blaming process takes places by considering the workout of the muscle code. The
result of the blaming process yields the blamed muscle code. The programmer
can then analyze the blamed code to fine tune her application.

Fig. 3. Finding the tunable muscle code

3.1 Performance Diagnosis

Figure 4 shows a generic inference tree, which can be used to diagnose the
performance of data parallelism in algorithmic skeletons. The diagnosis uses the
metrics identified in section 3.2 to find the causes of performance bugs. Causes
can correspond to two types. External causes, such as the framework deployment
overhead, or framework overload; and tunable causes, which are related with the
muscle code of the skeleton program. Since external causes are unrelated with
the application’s code, in this paper we focus on the tunable causes.

The inference tree has been constructed by considering the performance is-
sues we have experienced with the skeleton framework. As such, the thresholds

Fig. 4. Generic Cause Inference Tree for Data Parallelism

{α, β, . . .} have been determined experimentally, and are provided to the users
in three flavors: weak, normal, and strong.

3.2 Performance Metrics

Task Pool Number of tasks in each state: Nprocessing, Nready, Nwaiting, and
Nfinished.

Time Time spent by a task in each state: Tprocessing, Tready, Twaiting, and
Tfinished. For Tprocessing and Tready this represents the accumulated time
spent by all the task’s subtree family members in the state. For the Twaiting

and Tfinished, this represents only the time spent by the root task in the
waiting state. There is also the Twallclock and Tcomputing. The overhead time
is defined as: Toverhead = Tprocessing −Tcomputing, and represents mainly the
cost of communication time between the task pool and the interpreters.

Granularity Provides a reference of the the task granularity achieved during
the execution of data parallel skeletons by monitoring the task tree: size,
span, and depth (spandepth = size), and the granularity = Tcomputing

Toverhead
.

3.3 Muscle Workout

Let m0, ...,mk be an indexed representation of all the muscle code inside a skele-
ton program 4. We will say that workout is a function that, given a skeleton
program and a state parameter, after the application is executed, returns a list
of all the executed muscle codes with the computation time for each instruction:

workout(4, p) = [(mi, t0), ..., (mj , tn)]

The skeleton workout represents a trace of how the muscle codes were executed
for this skeleton program. The same muscle code can appear more than once in
the workout, having different execution times.

3.4 Code Blaming

Since algorithmic skeletons abstract lower layers of the infrastructure from the
programming of the application, low level causes have no meaning to the pro-
grammer. Therefore, we must link the causes with something that the program-
mer can relate to, and this corresponds to the muscle codes which have been
implemented by the programmer. The process of relating lower level causes with
the responsible code is what we refer to as code blaming.

A blaming mechanism must link each inferred cause with the relevant muscle
codes. Thus, the blaming must consider: lower level causes (the result of the
performance diagnosis), the skeleton program, and the muscle code’s workout.

Let us recall that for any skeleton program, it’s muscle codes must belong to
one of the following types: fexecution, fcondition, fdivision, fconquer. Additionally,
the semantics of the muscle code depend on the skeleton pattern where it is
used. A simple implementation of a blaming algorithm is the following:

(C3) Underused resources Blame the most invoked fcond ∈ {d&q} and fdiv ∈
{map, d&q, fork}. Suggest incrementing the times fcond returns true, and
suggest that fdiv divides into more parts.

(C4) Coarse subtasks Blame the least invoked fcond ∈ {d&q}. Suggest incre-
menting the times fcond returns true.

(C5) Fine grain subtasks Blame the most invoked fcond ∈ {d&q}. Suggest
reducing the number of times fcond returns true.

(C6) Burst Bottlenecks Blame the fdiv ∈ {map, d&q, fork} which generated
the most number of subtasks. Suggest modifying fdiv to perform less divi-
sions per invocation.

While more sophisticated blaming mechanisms can be introduced, as we shall
see in the NQueens test case, even this simple blaming mechanism can provide
valuable information to the programmer.

4 NQueens Test Case

The experiments were conducted using the sophia and orsay sites of Grid5000
[13], a french national grid infrastructure. The machines used AMD Opteron
CPU at 2Ghz, and 1 GB RAM. The task pool was located on the sophia site,
while the interpreters where located on the orsay site. The communication link
between sophia and orsay was of 1[Mbit

sec] with 20[ms] latency.
As a test case, we implemented a solution of the NQueens counting problem:

How many ways can n non attacking queens be placed on a chessboard of nxn?
Our implementation is a skeleton approach of the Takaken algorithm [18], which

(a) Performance Metrics

(b) Workout Summary

Fig. 5. Performance Metrics & Workout Summary for n = 20, w ∈ {16, 17, 18}

takes advantage of symmetries to count the solutions. The skeleton program is
shown in Figure 2(c), where two d&c are forked to be executed simultaneously.
The first d&c uses the backtrack1 algorithm which counts solutions with 8 sym-
metries, while the other d&c uses the backtrack2 algorithm that counts solutions
with 1, 2, and 4 symmetries.

We have chosen the NQueens problem because the fine tuning of the applica-
tion is centered in one parameter, and therefore represents a comprehensible test
case. Task division is achieved by specifying the first n−w queens on the board,
where w is the number of queens that have to be backtracked. The problem is
thus known to be O(nn), with exponential increase of the number of tasks as
w decreases. Therefore, the programmer of the NQueens problem must tune a
proper value for w.

Since the output of the blaming phase corresponds to the blamed muscle
code, it is up to the user to identify the parameters that change the behavior
of the muscle code. Therefore, the same approach can be used for applications
that require tuning of multiple parameters.

We tested a problem instances for n = 20, w ∈ {16, 17, 18}, nodes = 100.
Relevant metrics are shown in Figure 5(a), and a summary of the workout is
shown in Figure 5(b). From the performance point of view, several guides can
be obtained by simple inspection of the workout summary. For example, that
the method DivideCondition must remain computationally lite because it is
called the most number of times, and that further optimizations of SolveBT2
will provide the most performance gain.

The result of the blaming process is shown in Figure 6, where the fcondition

muscle code (DivideCondition) appears as the main tuning point of the appli-
cation. For w = 16 the results suggest that the granularity of the subtasks is to
fine, while for w = 18 the granularity is to coarse. To better understand why
this takes place Figures 7(a), 7(c), 7(b) show the number of subtasks in ready
and processing state during the computation. The figures concur with the fine

//(n = 20, w = 16)
Performance inefficiency found.
Cause: Subtask are too fine grain, overhead is significant.
Blamed Code: public boolean nqueens.DivideCondition.evalCondition(nqueens.Board)
Suggested Action: This method should return true less often.

//(n = 20, w = 17)
No inefficiency found.

//(n = 20, w = 18)
Performance inefficiency found.
Cause: Subtask are too coarse, significant time spent waiting for last subtasks.
Blamed Code: public boolean nqueens.DivideCondition.evalCondition(nqueens.Board)
Suggested Action: This method should return true more often.

Fig. 6. Fine Tuning Output for n = 20, w ∈ {16, 17, 18}

tuning output. As we can see, the fine tuning of a skeleton program can have a
big impact on the performance of the application. In the case of the NQueens
test case, the performance improves up to 4 times when choosing w = 17 instead
of w ∈ {16, 18}.

5 Related Work

Calcium is mainly inspired by Lithium [3, 12] and Muskel [11] frameworks, where
skeleton are provided to the programmer through a Java API. Research related
to Lithium and Muskel has mainly focused on providing optimizations based
on: skeleton rewriting techniques [3, 1], task lookahead, and server-to-server lazy
binding [2].

In Calcium we explore deeper into the internals of the skeleton task pool. Un-
derstanding it’s design is vital to comprehend and expose adequate performance
metrics concerning the operation of the skeleton framework.

Dynamic performance tuning tools have been designed to aid developers in
the process of detecting and explaining performance bugs. An example of such
tools is POETRIES [8], which proposes taking advantage of the knowledge about
the structure of the application to develop a performance model. Hercules [14] is
another tool that has also suggested the use of pattern based performance knowl-
edge to locate and explain performance bugs. Both POETRIES and Hercules
have focused on the master-slave pattern, and promoted the idea of extending
their models to other common patterns. Nevertheless, to our knowledge, none
have yet considered performance tuning of nestable patterns (i.e. skeletons), nor
have provided a mechanism to relate the performance bugs with the responsible
muscle codes of the program.

For skeletons, in [5] performance modeling is done using process algebra
for improving scheduling decisions. Contrary to the previously mentioned ap-
proaches, this approach is static and mainly aimed at improving scheduling de-
cisions, not at providing performance tuning.

 0

 500

 1000

 1500

 2000

-100 0 100 200 300 400 500 600 700 800

T

as
ks

 in
 S

ta
te

Time [s]

ready
processing

(a) w = 16

 0

 20

 40

 60

 80

 100

 120

-50 0 50 100 150 200 250 300

T

as
ks

 in
 S

ta
te

Time [s]

Idle Resources

ready
processing

(b) w = 18

 0

 100

 200

 300

 400

 500

-50 0 50 100 150 200

T

as
ks

 in
 S

ta
te

Time [s]

Idle Resources

ready
processing

(c) w = 17

Fig. 7. Number of ready and processing subtasks for n = 20, with 100 nodes.

6 Conclusions and Future Work

We have shown a mechanism to perform fine tuning of algorithmic skeletons’
muscle code. The approach extends previous performance diagnosis techniques
that take advantage on pattern knowledge by: taking into consideration netsable
skeleton patterns, and relating the performance inefficiency causes with the skele-
ton’s responsible muscle code. This is necessary because skeleton programming is
a higher-level programming model, and as such, low level causes of performance
inefficiencies have no meaning to the programmer.

The proposed approach can be applied to fine tune applications that are
composed of nestable skeleton patterns. To program such applications we have
presented the Calcium skeleton framework. The relation of inefficiency causes
with the responsible muscle code is found by taking advantage of the skeleton
structure, which implicitly informs the role of each muscle code.

We have validated the approach with a test case of the NQueens counting
problem. The experiments where conducted on Grid5000 with up to a 100 nodes.

In the future we would like to improve the performance diagnosis inference
tree, and the code blaming mechanism to consider, among others, stateful skele-
tons. Additionally, in the case where many causes are found, we would like to
provide a prioritization scheme to be able to help the programmer decide which
are the most significant and relevant muscle codes that must be fine tuned.

References

1. M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of
PDCS: Intl. Conference on Parallel and Distributed Computing and Systems, pages
955–962, Cambridge, Massachusetts, USA, November 1999. IASTED, ACTA press.

2. M. Aldinucci, M. Danelutto, and J. Dünnweber. Optimization techniques for im-
plementing parallel skeletons in grid environments. In S. Gorlatch, editor, Proc. of
CMPP: Intl. Workshop on Constructive Methods for Parallel Programming, pages
35–47, Stirling, Scotland, UK, July 2004. Universität Münster, Germany.

3. M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting
structured parallel programming in Java. Future Generation Computer Systems,
19(5):611–626, July 2003.

4. F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and
descriptor-based deployment of object-oriented grid applications. In Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, pages 93–102, Edinburgh, Scotland, July 2002. IEEE Computer Society.

5. A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of
skeleton-based high level parallel programs. In M. Bubak, D. van Albada, P. Sloot,
and J. Dongarra, editors, The International Conference on Computational Science
(ICCS 2004), Part III, LNCS, pages 299–306. Springer Verlag, 2004.

6. D. Caromel. Toward a method of object-oriented concurrent programming. Com-
munications of the ACM, 36(9):90–102, 1993.

7. D. Caromel, C. Delbe, A. Costanzo, and M. Leyton. Proactive: an integrated
platform for programming and running applications on grids and p2p systems.
Computational Methods in Science and Technology, 12, 2006.

8. E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque. Modeling master-worker applica-
tions in poetries. hips, 00:22–30, 2004.

9. M. Cole. Algorithmic skeletons: structured management of parallel computation.
MIT Press, Cambridge, MA, USA, 1991.

10. M. Danelutto. Qos in parallel programming through application managers. In
PDP ’05: Proceedings of the 13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP’05), pages 282–289, Washington, DC, USA,
2005. IEEE Computer Society.

11. M. Danelutto and P. Dazzi. Joint structured/unstructured parallelism exploitation
in Muskel. In Proc. of ICCS 2006 / PAPP 2006, LNCS. Springer Verlag, May 2006.
to appear.

12. M. Danelutto and P. Teti. Lithium: A structured parallel programming enviroment
in Java. In Proc. of ICCS: International Conference on Computational Science,
volume 2330 of LNCS, pages 844–853. Springer Verlag, April 2002.

13. Grid5000. Official web site. http://www.grid5000.fr.
14. Li Li and A. Malony. Model-based performance diagnosis of master-worker parallel

computations. In Proceedings of the 12th International Euro-Par Conference: Par-
allel Processing, volume 4128 of LNCS, pages 35–46, Dresden, Germany, August
2006. Springer-Verlag.

15. Sun Microsystems. Java. http://java.sun.com.
16. S. Priebe. Dynamic task generation and transformation within a nestable workpool

skeleton. In Proceedings of the 12th International Euro-Par Conference: Parallel
Processing, volume 4128 of LNCS, pages 615–624, Dresden, Germany, August 2006.
Springer.

17. ProActive. http://proactive.objectweb.org.
18. Takaken. N queens problem. http://www.ic-net.or.jp/home/takaken/e/queen/.

