
Coupling Contracts for
Deployment on Alien Grids.

Javier Bustos-Jiménez3, Denis Caromel1, Mario Leyton1, and José Piquer2

1 INRIA Sophia-Antipolis, CNRS-I3S, UNSA. 2004, Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France.

First.Last@sophia.inria.fr
2 Departamento de Ciencias de la Computación, Universidad de Chile. Blanco

Encalada 2120, Santiago, Chile.
{jbustos,jpiquer}@dcc.uchile.cl

3 Escuela de Ingenieŕıa Informática. Universidad Diego Portales Av. Ejercito 441,
Santiago, Chile.

javier.bustos@udp.cl

Abstract. We propose coupling based on contracts as a mechanism
to address the problem of exchanging information between parties that
require information to work together. Specifically, we show how our ap-
proach can be used to couple the deployment of an application with a
Grid infrastructure deployment descriptor using ProActive[11,2].
To achieve this, we identify the properties related with information ex-
change between parties, and we group the properties of interest into
typed clauses. We then propose that interfaces can be built using shared
typed clauses. If the interfaces between parties are compatible, the cou-
pling of the interfaces can yield a coupling contract. The clauses belong-
ing to the contract represent what information can be shared between
the parties, and the type of the clause specifies how this information will
be shared.
Finally, we show how the deployment of applications on the Grid can
benefit from the proposed approach. Unfamiliar applications can couple
with deployment descriptors to deploy on alien Grids, without modifying
or inspecting neither of them.

1 Introduction

Originally, distributed resources were managed using a centralized approach.
This has been shown to be unpractical in the Grid. The resources can be nu-
merous, heterogeneous, with distributed ownership, and having different policies
[8,14].

The problem of scheduling an application on distributed resources was ad-
dressed using different strategies. This generated a diversity of mechanism for
resource acquisition protocols (LSF [16], PBS[10], SGE[9], Globus-gram[8], etc.).
At that point in time, application developers were forced to choose and bind an
application to a specific resource acquisition protocol. Migrating from one re-
source acquisition protocol to another required modifying the application.

Later, new levels of abstractions were introduced which allowed the appli-
cation developers to abstract the application, not only from the resource ac-
quisition protocol used, but also from other Grid infrastructure details such as
communication protocols, software location, etc.[3].

In the current scenario, we can now imagine having repositories of applica-
tions and repositories of Grid infrastructures. The problem of finding a suitable
Grid infrastructure for an application can be seen as a problem of classified
advertisements and matchmaking [12,13] or a problem of database search like
UDDI web services [6].

We set sail from this point. Let us imagine two candidate parties (ex: applica-
tion and Grid infrastructure) that have already been matched. To work together,
each party requires and provides information from the other. We propose cou-
pling based on contracts as a mechanism to address the problem of exchanging
information in a generic way between unfamiliar parties. Specifically, we show
how our approach can be used to couple the deployment of an unfamiliar ap-
plication with an unfamiliar Grid infrastructure descriptor using ProActive[11].
Therefore, our objective is the deployment of an application on a Grid infras-
tructure without modifying or inspecting either.

This paper is organized as follows. In section 2 we review the related work.
Then in section 3 we explain our coupling proposal, and in section 4 we show
how this proposal is applied for deployment on the Grid using ProActive. Finally
we conclude and present our future work in section 5.

2 Related Work

The problem of finding suitable resources for a given application have already
been addressed by techniques such as matchmaking in Condor [12,13], collections
in Legion [4], or using resource management architectures like Globus[5].

In the case of Condor, the resource acquisition is viewed as a three stage pro-
cess composed of advertisement, matchmaking, and claiming. The requirements
are advertised by the involved parties (jobs and resources), suitable matches
are found, and finally the claiming of the resources takes place. To achieve the
claiming, the advertised information from each party is exchanged.

While this approach has been acknowledged as suitable for finding matches,
how the advertised information sharing is done has been overlooked. Up to now,
techniques like the ones proposed by Condor allow finding suitable matches by
specifying what information is exchanged, but no mechanism is provided for
defining how the information exchange should take place.

For example, if an application is looking for n nodes, and a Grid infrastructure
can provide m nodes (n < m), then these two parties will be matched. If no
how semantics are provided for the claiming face, the following scenario could
happen: the application could decide to take advantage of the m nodes provided
by the infrastructure, while the infrastructure can decide to provide only the n
nodes advertised by the application. The result would be the application trying

to use m nodes, while the infrastructure is only providing n nodes. Therefore, a
mechanism is required to specify how the information exchange takes place.

To address this issue, we propose the addition of a new stage called coupling,
thus rendering four stages: advertisement, matchmaking, coupling, and claiming.
Once the matchmaking has taken place, the semantics of how the information
will be shared between the parties will be addressed in the coupling face, before
the resources are successfully claimed.

Another related approach corresponds to the Web Services Agreement (WS-
Agreement) Specification[1], which is about to become a draft recommendation
of the Global Grid Forum[7]. The WS-Agreement is a two layer model: Agree-
ment Layer and Service Layer. Many of the concepts introduced in this paper find
their reflection in the Agreement Layer. According to the specification “an agree-
ment defines a dynamically-established and dynamically-managed relationship
between parties”, much like the proposed coupling contracts. Also, the proposed
coupling interfaces can be seen as agreement templates in WS-Agreement, since
they are both used to perform advertisement. Additionally, in the same way that
interfaces and contracts are composed of clauses, in WS-Agreement templates
and agreements are composed of terms. Finally, the concept of constraints is
present in both approaches.

The similarity of the proposed approach and WS-Agreement Specification
is encouraging when we consider that both were conceived independently. On
the other hand, the main difference in the approaches is that the definition of
a protocol for negotiating agreements is outside of the WS-Agreement Spec-
ification scope. Therefore, we believe that WS-Agreement could benefit from
the proposed automated coupling approach, built using typed clauses. From the
WS-Agreement perspective, typed clauses can be seen as an automated negoti-
ation approach because they provide an automated mechanism for accepting or
rejecting an agreement.

3 Coupling Matches with Contracts

In this section we describe our approach for coupling parties (ex: application and
descriptor) that require exchanging information to work together.

Figure 1i shows the problematic. Unfamiliar parties cannot exchange infor-
mation with each other in a generic way. Our approach proposes to capture the
properties of how the information exchange occurs into types (Figure 1ii). A
group of typed clauses will then form an interface that will specify what infor-
mation is required and provided by each party (Figure 1iii). The coupling of
the interfaces will yield a contract, that will allow the parts to couple and work
together on a common goal (Figure 1iv).

In the rest of this section we provide the details on how the parties can couple
using the proposed approach. Later in section 4 we will show how this approach
can be used to couple distributed application with Grid deployment descriptor
using the ProActive[11] Grid middleware.

Fig. 1. Coupling Matches with Contracts.

3.1 Clause Types

Let a and b be matched parties that require information from each other, or
from an external source e like the environment to work together. We have iden-
tified that the information requirements can be exposed and fulfilled using typed
clauses. The type of the clause represents a specific configuration of the following
properties:

1. Ability to set a value. This defines which party has the ability to set a
value for the clause. Possibilities are any permutation of a, b, e:
{abe, ab, be, ae, a, b, e}.

2. Ability to set empty values. This defines which party can set this clause
as empty. The possibilities are any permutation of a, b: {a, b, ab,−}.

3. Ability to set constraints to the values, thus narrowing the space of
possible values. This can be done by providing an explicit list of alterna-
tives, or using comparison operators (<, >, =, . . .). The alternatives are
permutations of: a, b: {ab, a, b,−}.

4. Priority. If more than one party can set a value, an empty value, or the
constraints, this identifies which has the priority. The alternatives are com-
binations of a, b, e: {abe, aeb, bae, bea, . . .}. The order in which they are
expressed defines the priority.

For example, we have identified the types depicted in Table 1. Conceptually
the types can be interpreted as:

A The value can only be set by a. Since b can set the value to empty, then b
can force a to provide a value.

B Corresponds to the symmetrical of A.
A-PRI The value can be set either by a or b, where b can provide a default

value, and a can override the default.

Table 1. Types

Type Name — Set value — Set empty — Set constraints — Priority

A a b - a
B b a - b

A-PRI ab - b ab
B-PRI ab - a ba
ENV e - - e

B-PRI Corresponds to the symmetrical of A-PRI.
ENV The value can be set from the environment.

The flexibility of the approach allows defining the types of interest only, and
extending the set of types as required. The definition of new typed clauses is
possible using these or future imagined properties. For example, we could imagine
handling the priorities at a finer grain, thus having to specify three priorities for
setting the value, setting the empty value, and setting the constraints. In this
work we will focus on the types depicted in Table 1, because these represent the
types of interest in section 4.

3.2 Typed Clauses

We will define a typed clause (clause for short) as having the following fields:

1. Type Corresponds to one of the allowed clause types. These are: A, B,
A-PRI, B-PRI, ENV.

2. Name Corresponds to the name of the clause.
3. Value The value that will be set, empty or not.
4. Constraints The restrictions imposed on the values that can be set, if al-

lowed by the type.

We will say that a clause pair named clsa and clsb compose a shared clause
cls if both clauses names match clsa = clsb. The shared clause cls is type
compatible if clsa.type = clsb.type, and incompatible otherwise.

The fields of a type compatible shared clause are defined as:

– Name: cls = clsa = clsb,
– Type: cls.type = clsa.type = clsb.type,
– Value: cls.value = cls.type.priority(clsa.value, clsb.value)
– Constraint: cls.constraints = cls.type.priority(clsa.constraints, clsb.constraints)

We will say a clause, shared or not, is valid if and only if cls.value 6= empty
and cls.value satisfies cls.constraints such that: cls.constraints(cls.value) =
true. Note that two invalid clauses can be separately invalid, but the shared
clause composed using both of them can be a valid clause.

3.3 Coupling Interfaces

An coupling interface (interface for short) corresponds to a group of clauses. A
party can expose more than one interface, thus allowing coupling with more than
one party. An interface is defined by:

1. A name
2. Set of clauses identified by their names

Thus for a party a we can identify an interface by a.int name. And for
identifying a clause belonging to an interface we write: a.int name.cls name.

We will say that two interfaces can be coupled (a.int name and b.int name),
if there are no type incompatible shared clauses between the interfaces. The re-
sult of the interface coupling corresponds to the set of all shared clauses, and
will denote it as: a.int name � b.int name.

3.4 Coupling Contracts

A coupling contract (contract for short) corresponds to the interaction between
two interfaces of different parties. If there exists two interfaces a.int and b.int,
such that both interfaces can be coupled, then the contract is defined as a set of
clauses:

Contract = a.int � b.int ∪ (a.int− (a.int � b.int)) ∪ (b.int− (a.int � b.int))

This means that the clauses contract will contain the shared clauses between
the interfaces, the unshared clauses of a, and the unshared clauses of b.

We will say that two parties a and b can be coupled if:

1. A contract can be built between them: two interfaces belonging to a and b
can be coupled, and

2. the contract is valid: every clause in the contract is valid.

3.5 Matching parties: descriptors and applications example

Typed clauses can also be used to perform advertisement and matchmaking in
the Condor style. Both parties can expose their interface (advertisement) to a
matchmaker or broker. To determine if the two parties are a suitable match, the
coupling contract can be generated and validated.

The clauses belonging to the interfaces will specify what information is shared
(provided or required) for the matchmaking. And the type of the clauses will
specify how the information is shared for the coupling.

4 Coupling distributed applications with deployment on
the Grid

In this section we show how the concepts defined in section 3 can be applied.
Specifically, we aim at coupling a distributed application with Grid resources
using the Grid middleware ProActive. ProActive already provides a mechanism
based on deployment descriptors for deploying on the Grid. We will show how
this mechanism can benefit from the use of coupling contracts to couple appli-
cations with deployment descriptors.

This section is organized as follows. We will first provide some background on
ProActive. Then, we will show how coupling contracts have been incorporated
into ProActive.

4.1 Background on ProActive Deployment Descriptors

Within the ProActive Descriptor Deployment Model [3], it is possible to de-
ploy applications on sites that use heterogeneous protocols, without changing
the application source code. All information related with the deployment of the
application is described in an XML Deployment Descriptor. Thus, eliminating
references inside the application code to: machine names, submission protocols
(local, rsh, ssh, lsf, globus-gram, unicore, pbs, lsf, nordugrid-arc, etc.) and com-
munication protocols (rmi, jini, http, etc.).

The Descriptor Deployment Model is shown in Figure 2.

Deployment Descriptor

VN

Nodes

Connectors Acquisition

Creation Infrastructure

Mapping

Application Codes ADL

Fig. 2. Descriptor Deployment Model

The infrastructure section contains the information necessary for booking
remote resources. Once booked, ProActive Nodes can be created (or acquired)
on the resources. To link the Nodes with the application code, a Virtual Node
(VN) abstractions is provided, which corresponds to the actual references in
the application code. Virtual Nodes have a unique identifier which is hardcoded
inside the application and the descriptor.

A deployer can change the mapping of the application → Virtual Node to
deploy on a different Grid, without modifying a single line of code in the appli-
cation.

4.2 The Problematic of Applications and Descriptors

In the traditional approach, the application developer and the descriptor devel-
opers need to have a previous agreement on the name of the Virtual Node. This
means that the name of the Virtual Node is hardcoded inside the application
and the descriptor. If the application wants to use a new descriptor, then either
the descriptor or the application has to be modified to agree on the new Virtual
Node name.

A possible solution to this problem is passing the Virtual Node name as
a parameter to the application. Nevertheless, the problem of figuring out the
proper Virtual Node name from the descriptor remains. To find out the name of
the Virtual Node, inspection of the descriptor has to be performed, which can be
a problem for someone alien with respect to the Grid infrastructure’s descriptor.

Furthermore, the Virtual Node name is not the only information sharing
problem that the application and descriptor have. For example, a descriptor
might be configured to deploy on k nodes, but the application only requires j
nodes (j < k). Without shared clauses, the descriptor has to be modified to
comply with the requirements of the application.

Modifying the application or the descriptor can be a painfull task, specially if
we consider that the person deploying the application (deployer) may not be the
author of either. To complicate things further, the application source may not
even be available for inspecting the requirements and performing modifications.
Figure 3 illustrates the issue. The deployer is not aware of the application or
descriptor requirements.

Fig. 3. Matching and Coupling Contracts.

Nevertheless, using coupling contracts, the deployment can be further en-
hanced by enabling automated matchmaking and coupling of applications and
descriptors.

4.3 Clause Types

The involved parties are the application (a) and the descriptor (b), and the
environment information (e) (given through java properties). To improve the
clarity of the example, we have renamed the clause types identified in the Table
1 to the names shown in Table 2.

Table 2. ProActive Deployment Clause Types.

Type Name — ProActive Type Name

A Application
B Descriptor

A-PRI ApplicationPriority
B-PRI DescriptorPriority
ENV JavaProperty

4.4 Clauses in ProActive Descriptors

Clauses can be specified using XML tags as shown in the example of Figure 4
for the descriptor. To define the clauses a new section labeled clauses has been
added at the beginning of the descriptor to hold the interfaces. The clauses
shown in the example correspond to:

PROACTIVE HOME & MAX NODES Correspond to descriptor set clauses. The value
is set directly in the descriptor, and can be used later on, inside the descriptor
or the application.

VIRTUAL NODE NAME Corresponds to a clause that the descriptor enforces the
application to set. If the application doest not set this value, the clause inside
the coupling contract will not be valid, and the application will not be allowed
to couple with the descriptor. In the example, we force the application to
set the name of the Virtual Node.

LOAD BALANCING Corresponds to a clause that the application has set, but the
descriptor can override. In the example, we imagine that an application is
capable of handling, or not, the load balancing. By default the application
will assume that no load balancing is provided by the Grid infrastructure
(Figure 5), and thus handle the load balancing at the application level. Nev-
ertheless, the descriptor is aware if load balancing can be done at the Grid

infrastructure level and activate it. The application can then access the con-
tract’s clauses to learn if the infrastructure is using the load balancing and
disable the application load balancing mechanism.

NUMBER OF NODES Corresponds to a clause that the descriptor has set a value,
but the application may override. Additionally, the descriptor has set con-
straints indicating that the value must be an integer between 1 and MAX NODES.

USER NAME Corresponds to a clause that is set from the environment. In this
case, the username can be specified from the environment as a java property.

<clauses>
<interface name="descriptor-example-interface">
<Descriptor name="PROACTIVE_HOME" value="ProActive/"/>
<Descriptor name="MAX_NODES" value="100/"/>
<Application name="VIRTUAL_NODE_NAME" value=""/>
<DescriptorPriority name="LOAD_BALANCING" value="on"/>
<ApplicationPriority name="NUMBER_OF_NODES" value="1">
<!--// (NUMBER_OF_NODES>0) && NUMBER_OF_NODES<=MAX_NODES -->
<integerConstraint>
<and>
<biggerThan>0</biggerThan>
<smallerOrEqualThan>${MAX_NODES}</smallerOrEqualThan>

</and>
</integerConstraint>

</ApplicationPriority>
<JavaProperty name="USER_NAME" value="user.name"/>

<interface>
</clauses>
...
<virtualNodesDefinition>
<virtualNode name="${VIRTUAL_NODE_NAME}"/>
</virtualNodesDefinition>

...
<sshProcess class="org.objectweb.proactive.core.process.SSHProcess"

hostname="example.host" username="${USER_NAME}"/>

Fig. 4. Example of clauses in descriptor.

Figure 4 also shows an example of how the clauses can be used inside de-
scriptors. Note that the value of the clause VIRTUAL NODE NAME has not been
set in the descriptor, since it is of type Application. This means that the value
used inside the descriptor will be the one set from the application. Also note,
that clauses obtained from the environment can also be used, like the USER NAME
clause.

4.5 Clauses in ProActive Applications

We have also provided a mechanism for specifying clauses and interfaces from
the application. This can be done through an API, or loading the clauses from an
external XML file. Since the XML approach has already been shown for the de-
scriptor, Figure 5 shows an example using the API. First an interface is created,
and then the clauses are added to the interface. The interface is then passed

as a parameter when parsing the descriptor. The parsing will try to generate a
coupling contract using the application’s and the descriptor’s interfaces.

//Create a new interface
ClausesInterface ci= new ClausesInterface("application-example-interface");

//Set the clauses in this interface
//set(<type>, <clause name>, <value>, [<constraint>])

ci.set(Application, "VIRTUAL_NODE_NAME", "testnode",);
ci.set(ApplicationPriority, "NUMBER_OF_VIRTUAL_NODES", "16");

// LOADBALANCE="on" || LOADBALANCE="off"
OrConstraint oc = new OrConstraint();
oc.add(new EqualsConstraint("on"));
oc.add(new EqualsConstraint("off"));
ci.set(DescriptorPriority, "LOAD_BALANCING", "off", new StringConstraint(oc));

//Parse and load the descriptor using the coupling interface. If the application and
descriptor can not be coupled an exception will be thrown

ProActiveDescriptor pad = ProActive.getProactiveDescriptor("descriptor.xml", ci);

//Clauses from the coupling contract can be used in the application
CouplingContract cc = pad.getCouplingContract();
String loadBalancing = cc.getValue("LOAD_BALANCING");

//The application can take decisions based on the clauses
if(loadBalancing.equals("on")){...}
else{...}

Fig. 5. Example of clauses in application.

If the application can be coupled with the descriptor, then the application
can retrieve the coupling contract and consult the contract’s clauses. For exam-
ple, using this strategy the application can know if the descriptor activated the
infrastructure load balancing, and avoid using the application load balancing.

4.6 Constraints

Constraints are boolean expressions that will be evaluated for each clause when
the contract is built. The constraints can be of two types: integer or string. For
each constraint the logical operators: and, or, xor are allowed. Also, boolean
operators are provided for each type of constraint. The integer operators are:
biggerThan, biggerOrEqualThan, smallerThan, smallerOrEqualThan, equals.
The string case sensitive operators are: subString, superString, equals. Fig-
ure 6 shows the constraint grammar specified using XML Schema[15] for the
integer type constraints.

Figure 4 shows an example where the clause NUMBER OF NODES is constrained
to be: 0 < NUMBER OF NODES <= MAX NODES. Note that MAX NODES is defined as
a Descriptor type clause. Figure 5 shows an example using string constraints.
The clause LOAD BALANCING is constrained to be either on or off.

<xs:element name="integerConstraint">
<xs:complexType>
<xs:choice>
<xs:element name="and" type="intConst"/>
<xs:element name="or" type="intConst"/>
<xs:element name="xor" type="intConst"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:complexType>
<xs:complexType name="intConst">
<xs:choice minOccurs="1" maxOccurs="unbounded">
<xs:element name="and" type="intConst"/>
<xs:element name="or" type="intConst"/>
<xs:element name="xor" type="intConst"/>
<xs:element name="biggerThan" type="xs:string"/>
<xs:element name="biggerOrEqualThan" type="xs:string"/>
<xs:element name="smallerThan" type="xs:string"/>
<xs:element name="smallerOrEqualThan" type="xs:string"/>
<xs:element name="equals" type="xs:string"/>

</xs:choice>
</xs:complexType>

Fig. 6. Integer Constraint Schema Grammar.

5 Conclusions and Future Work

We have shown an approach for coupling parties that require exchanging in-
formation to work together. To achieve this, we have identified the properties
related with information exchange between parties, and we have grouped the
properties of interest into typed clauses. We have then proposed that interfaces
can be built using shared typed clauses.

If two interfaces between parties are compatible, the coupling of the interfaces
can yield a coupling contract. The clauses belonging to the contract represent
what information can be shared between the parties, and the type of the clauses
specify how this information will be shared.

Using the proposed coupling approach, we have shown how coupling con-
tracts can be applied for automated deployment of unfamiliar applications on
alien Grids. For this, we have provided a mechanisms to specify clauses in the
application and the deployment descriptor using the Grid middleware ProAc-
tive. As a result, the approach can now be used to couple applications with
descriptors, without having to modify or inspect either.

Nevertheless, it can be argued that the proposed approach requires each
party to know beforehand the names of the clauses used in the coupling. In
reality, only a subset of the clauses belonging to the coupling contract have to
be known: the ones that must be provided with a value to make the contract
valid. Furthere more, if two different interfaces couple with a third generating
two valid coupling contracts, the clauses contained in these contracts can be
different. While this seems strange, it is a direct result of the proposed approach
being boolean: either the contract is valid or not. In the future, we would like to

extend this concept by introducing Conformance Levels in coupling contracts.
Thus, a minimum conformance level (i.e. minimum set of known clauses) could
be provided for basic applications, and higher conformance levels (i.e. a superset
of the lower conformance levels) could be used for more advanced features that
require more specific clauses.

From the Grid infrastructure side, in the future we would like to identify
standard interfaces for coupling applications with different types of Grids. The
idea is to be able to release applications packaged with interfaces that certify
the deployment of an application with a Grid interface. On the other hand, from
the application point of view, we would like to identify interfaces for common
structured parallel programming patterns. For example, if an application uses
the master-slave pattern, then it can benefit by coupling with a Grid interface
optimized by deploying the master on a more powerfull or better connected
resource than the regular slaves. Thus, a Grid could provide an optimized inter-
face for applications exploiting different patterns such as: farm, pipe, divide and
conquer, etc.

References

1. Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.
Web services agreement specification (ws-agreement). Draft Version 2005/09.
http://forge.gridforum.org/projects/graap-wg.

2. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming, Com-
posing, Deploying, for the Grid. Springer Verlag, 2005.

3. F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and
descriptor-based deployment of object-oriented grid applications. In Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, pages 93–102, Edinburgh, Scotland, July 2002. IEEE Computer Society.

4. Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw.
Resource management in legion. Legion Winter Workshop, 1997.

5. Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kesselman, Stuart Mar-
tin, Warren Smith, and Steven Tuecke. A resource management architecture for
metacomputing systems. In IPPS/SPDP ’98: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 62–82, London, UK, 1998. Springer-Verlag.

6. D. Fensel and C. Bussler. The web service modeling framework WSMF. Electronic
Commerce Research and Applications, 1(2):113–137, Summer 2002.

7. Global Grid Forum. http://www.gridforum.org/.
8. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit, 1996.
9. Wolfgang Gentzsch. Sun grid engine: Towards creating a compute power grid. In

CCGRID, pages 35–39. IEEE Computer Society, 2001.
10. R. Henderson and D. Tweten. Portable batch system: External reference specifi-

cation. Technical report, NASA, Ames Research Center, 1996.
11. ProActive. http://proactive.objectweb.org.
12. R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource man-

agement for high throughput computing. In In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, 1998.

http://forge.gridforum.org/projects/graap-wg
http://www.gridforum.org/
http://proactive.objectweb.org

13. R. Raman, M. Livny, and M. Solomon. Policy driven heterogeneous resource co-
allocation with gangmatching. In Proc. of the 12th IEEE Int’l Symp. on High
Performance Distributed Computing (HPDC-12), 2003.

14. INRIA OASIS Team and ETSI. 2nd grid plugtests report. http://www-sop.

inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf.
15. W3C. Xml schema: Formal description. http://www.w3.org/TR/

xmlschema-formal/.
16. S Zhou. Load sharing in large-scale heterogenous distributed systems. In Proceed-

ings of the Workshop on Cluster Computing, 1992.

http://www-sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf
http://www-sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xmlschema-formal/

