
Type Safe Algorithmic Skeletons

Denis Caromel, Ludovic Henrio, and Mario Leyton
INRIA Sophia-Antipolis, Université de Nice Sophia-Antipolis, CNRS - I3S

2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France

First.Last@sophia.inria.fr

Abstract

This paper addresses the issue of type safe algorithmic
skeletons. From a theoretical perspective we contribute by:
formally specifying a type system for algorithmic skeletons,
and proving that the type system guarantees type safety.

From an implementation point of view, we show how it is
possible to enforce the type system on an Java based algo-
rithmic skeleton library. The enforcement takes place at the
composition of the skeleton program, by typing each skele-
ton with respect to its construction parameters: sequential
functions, and other skeletons.

As a result, hierarchical skeleton nesting can be per-
formed safely, since type errors can be detected by the skele-
ton type system.

Keywords: Type systems, algorithmic skeletons.

1 Introduction

From a general point of view, typing ensures safety prop-
erties of programming languages. For instance, in object-
oriented languages, typing ensures that each field or method
access will reach an existing field or method: “message not
understood” errors will not occur. Nevertheless, type sys-
tems are limited, that is why in most object-oriented lan-
guages, type-casts have been introduced. In exceptional
cases, type-casts allow programmers to precise the type of
a known object, but this step is error-prone. Therefore, it
is important to reduce the number of necessary type-casts
to increase the type safety of a program; this is one of the
purposes of Java generics or C++ templates, for example.

Algorithmic skeletons (skeletons for short) are a high
level programming model for parallel and distributed com-
puting, introduced by Cole in [11]. Skeletons take advan-
tage of common programming patterns to hide the complex-
ity of parallel and distributed applications. Starting from a
basic set of patterns (skeletons), more complex patterns can
be built by nesting the basic ones. All the non-functional
aspects regarding parallelization and distribution are im-

plicitly defined by the composed parallel structure. Once
the structure has been defined, programmers complete the
program by providing the application’s sequential blocks,
called muscle functions.

Muscle functions correspond to the sequential functions
of the program. We classify muscle functions using the
following categories: execution (denoted fe), evaluation of
conditions (fb), division of data (fd), and conquest of re-
sults (fc). Each muscle function is a black box unit for the
skeleton language/framework, and while each may be error
free on its own, an inadequate combination with a skele-
ton pattern can yield runtime typing errors. This happens
because, during the evaluation of the skeleton program, the
result of one muscle function is passed to “the next” muscle
function as parameter. Where “the next” is determined at
runtime by the specific skeleton assembly. An incompatible
type between the result of a muscle function and the param-
eter of the next one yields runtime errors, which are difficult
to detect and handle on distributed environments.

Untyped skeleton programming forces the programmer
to rely on type-casts in the programming of muscle func-
tions. Indeed, if the higher-level language (skeletons) is not
able to transmit types between muscle functions, then the
poorest assumption will be taken for typing muscle codes
(e.g., in an untyped skeleton implementation in Java, mus-
cle functions accept only Object as type for parameter/re-
sult). In that case, every object received by a muscle func-
tion has to be casted into the right type, which is highly
error-prone.

On the other hand, typed skeletons relieve the program-
mer from having to type-cast every muscle function argu-
ment: basically, the type system will check that the input
type of a skeleton is equal to the declared output type of the
preceding skeleton. Type-casts remain necessary only when
it would be required by the underlying language. To sum-
marize, the type safety ensured by the underlying language
is transmitted by the skeletons: type safety is raised to the
skeleton level.

Let us consider the example shown in Figure 1,
which exposes the dangers of typeless skeleton pro-

gramming. In the example two functions {f1, f2}
are executed sequentially the other using a pipe skele-
ton: pipe(seq(f1), seq(f2)). During the evaluation
of the skeleton program, the unknown return type
of Execute1.exec will be passed as parameter to
Execute2.exec which is expecting a type B parameter.
While Execute1.exec (f1) and Execute2.exec (f2)
may be correct on their own, there is no guarantee that pip-
ing them together will not yield an error.

As shown in the example, type safe skeleton program-
ming does not only require a method for expressing the
types of muscle functions (parameters/return values), but
also an underlying type-system expressing how the typed
muscle functions interact with the skeleton patterns.

Indeed, one of the original aspects of the proposed type
system for algorithmic skeletons is that it transmits types
between muscle functions. As a consequence, the type
preservation property has a greater impact than in usual type
systems: it also ensures that muscle functions will receive
and produce correct types relatively to the assembly.

Our contribution consists in detecting type errors in
skeleton programs, thus improving the safeness of algorith-
mic skeleton programming. From the theoretical side, we
contribute by providing type semantics rules for each of the
skeleton patterns in the language. Then, we prove that these
typing rules indeed satisfy type safety properties. On the
practical side, we show how the proposed type system can
be implemented in a Java [16] skeleton library, by taking
advantage of Java Generics [7]. As such, we show that no
further type-casts are imposed by the skeleton language in-
side muscle functions, and more importantly, that all the
typing validations of skeleton compositions are performed
at compilation time.

Section 2 presents related works. In section 3 we for-
mally define a type system for skeletons and prove its cor-
rectness. Then, section 4 shows an implementation of the
type system in a skeleton framework based on Java.

2 Related Work

Aldinucci et al. have provided semantics that can handle
both task and data parallelism [1, 2]. The semantics de-
scribe both functional and parallel behavior of the skeleton
language using a labeled transition system. Therefore, in
this paper we do not focus on the parallelism aspects of the
reduction semantics, and instead use big-step reduction se-
mantics. On the other hand, this paper focuses on the typing
rules, which allows us to deal with type safety.

As a skeleton framework we use Calcium [10]. Cal-
cium is implemented in Java [16], and achieves distributed
computation using ProActive [9]. ProActive is a Grid mid-
dleware that, among others, supports: an active object pro-
gramming model [8], and a deployment framework [5].

Calcium is mainly inspired by Lithium [3, 13] and
Muskel [12] frameworks, developed at University of Pisa.
In all of them, skeletons are provided to the programmer
through a Java API.

The Muesli skeleton library [14, 15] provides some of
its skeletons as generics using C++ templates. Neverthe-
less, no type system is enforced with the templates, allow-
ing type unsafe skeleton compositions. Concerning typing,
the P3L skeleton language [4] provides type verification at
the data flow level, which must be explicitly handled by the
programmer using intermediate variables. Compared with
Calcium, the type system proposed in Calcium enforces
safeness at a higher level of abstraction: the skeleton level,
where the data flow is implicit. In Skil [6], typed skeletons
are used as a mean to make skeletons polymorphic. Skil
translates polymorphic high order functions into monomor-
phic first order C functions. Nevertheless, the type system
described in Skil is not a formal type system, and hence
does not prove type safety of skeleton composition.

3 A typed algorithmic skeleton language

This section defines a type theory for skeleton program-
ming. In order to present such a theory, we first specify
a syntax for algorithmic skeletons in a very classical way.
Then section 3.2 defines a big-step reduction semantics for
skeletons; this semantics, though not as rich as the one pre-
sented in [1, 2] is sufficient for proving the type properties
that interest us. We then provide a simple type system [17],
and prove that this type system provides the usual property
of type preservation: subject-reduction. Subject-reduction
ensures that skeleton compositions do not threaten typing,
and that type information can be passed by skeletons to be
used in the programming of muscle function codes. This
property greatly improves the correctness of skeleton pro-
grams by allowing the underlying language and the algo-
rithmic skeletons to cooperate on this aspect.

3.1 Skeleton Language Grammar

The skeleton grammar supports several skeleton pat-
terns. The task parallel skeletons are: seq for wrapping
execution functions; farm for task replication; pipe for
staged computation; while/for for iteration; and if for
conditional branching. The data parallel skeletons are: map
for single instruction multiple data; fork which is like map
but applies multiple instructions to multiple data; and d&c
for divide and conquer.

4 ::= seq(fe) | farm(4) | pipe(41,42) | while(fb,4) |
if(fb,4true,4false) | for(i,4) |map(fd,4, fc) |
fork(fd, {4i}, fc) | d&c(fd, fb,4, fc)

Skeleton stage1= new Seq(new Execute1());
Skeleton stage2= new Seq(new Execute2());
Skeleton skeleton=new Pipe(stage1, stage2); //type error undetected during composition
--

class Execute1 implements Execute{ | class Execute2 implements Execute{
public Object exec(Object o){ | public Object exec(Object o){

A a = (A)o; /* Runtime cast */ | B b = (B)o; /* Runtime cast */
... | ...
return x; /* Unknown type */ | return y; /* Unknown type */

} | }
} | }

Figure 1. Motivation Example: Unsafe skeleton programming.

Notations In the following, fx denotes muscle functions,
4 denotes skeletons, terms are lower case identifiers and
types upper case ones. Also, brackets denote lists (or sets)
of elements, i.e., {pi} is the list consisting of the terms pi,
and {Q} is the type of a list of elements of type Q.

3.2 Reduction Semantics

Figure 2 presents a big-step operational semantics for
skeletons. It relies on the fact that semantics for muscle
functions are defined externally. In other words, for any
function fx and for any term p we have a judgment of the
form: fx(p) ⇓ r.

For example, the pipe construct corresponds to the se-
quential composition of two algorithmic skeletons. Thus
R-PIPE states that if a skeleton 41 applied to a parame-
ter p (41(p)) can be reduced to s, and 42(s) can be re-
duced to r, then pipe(41,42)(p) will be reduced to r. In
other words, the result of 41 is used as parameter for 42:
42(41(p)) ⇓ r.

The d&c construct performs recursive divide and con-
quer. It recursively splits its input by the divide function fd

until the condition fb is false, processes each piece of the
divided data, and merges the results by a conquer function
fc.

3.3 Type System

Figure 3 defines a type system for skeletons. It assumes
that each muscle function is of the form: fx : P → R, and
verifies the following classical typing rule:

APP-F
p : P fx : P → R

fx(p) : R

We first define a typing rule for each of the skeleton con-
structs. These typing rules allow us to infer the type of an
algorithmic skeleton based on the type of the skeletons and

R-FARM
4(p) ⇓ r

farm(4)(p) ⇓ r

R-PIPE
41(p) ⇓ s 41(s) ⇓ r

pipe(41,42) ⇓ r

R-SEQ
fe(p) ⇓ r

seq(fe)(p) ⇓ r

R-IF-TRUE
fb(p) ⇓ true 4true(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r

R-IF-FALSE
fb(p) ⇓ false 4false(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r

R-WHILE-TRUE
fb(p) ⇓ true 4(p) ⇓ s while(fb,4)(s) ⇓ r

while(fb,4)(p) ⇓ r

R-WHILE-FALSE
fb(p) ⇓ false

while(fb,4)(p) ⇓ p

R-FOR
∀i < n 4(pi) ⇓ pi+1

for(n,4)(p0) ⇓ pn

R-MAP
fd(p) ⇓ {pi} ∀i 4(pi) ⇓ ri fc({ri}) ⇓ r

map(fd,4, fc)(p) ⇓ r

R-FORK
fd(p) ⇓ {pi} ∀i 4i(pi) ⇓ ri fc({ri}) ⇓ r

fork(fd, {4i}, fc)(p) ⇓ r

R-D&C-FALSE
fb(p) ⇓ false 4(p) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r

R-D&C-TRUE
fb(p) ⇓ true fd(p) ⇓ {pi}

∀i d&c(fd, fb,4, fc)(pi) ⇓ ri fc({ri}) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r

Figure 2. Skeleton’s Reduction Semantics

muscle functions composing it. Typing judgments for skele-
tons are of the form 4 : P → R. We explain below the
typing of two representative rules: T-PIPE and T-D&C.

T-PIPE Consider a pipe formed of skeletons41 and42.
First, the input type of pipe is the same as the input type of
41, and the output type of pipe is the same as the output of
42. Moreover, the output type of 41 must match the input
type of 42. In other words, consider the typeless skeleton
example shown in Figure 1, which would be equivalent to
the following code:

Object a = ...; //previous result
Object b = Execute1.execute(a);
Object c = Execute2.execute(b);

Without a typing system, the pipe skeleton cannot en-
sure type safety. The pipe typing ensures that types trans-
mitted by the pipe parameters are compatible; and the re-
cursive nature of the typing system ensures the correct typ-
ing of skeletons containing a pipe, but also of skeletons
nested inside the pipe. Here, type compatibility ensures that
the type of b is compatible with the type of the parameter
for Execute2.execute. Also, that a is compatible with
the parameter of Execute1.execute, and the type of c is
compatible with the following muscle instruction (belong-
ing to another skeleton construct).

With a typing system, the pipe skeleton yields a code
equivalent to:

A a = ...; //previous muscle result
B b = Execute1.execute(a);
C c = Execute2.execute(b);

Where the types of {a, b, c} are: {a :A, b :B, c :C}.

T-D&C Consider now a d&c skeleton, that accepts an in-
put of type P and returns an output of type R. Therefore, the
choice function fb must also accept an input of type P , and
return a boolean. Secondly, the divide function fd produces
a list of elements of P . Then, each element is computed
by a sub-skeleton of type P → R. Finally, the conquering
function fc must accept as input a list of elements of R and
return a single element of type R, which corresponds to the
return type of the d&c skeleton.

To summarize, the typing rules follow the execution
principles of the skeletons, attaching a type to each inter-
mediate result and transmitting types between skeletons.

Finally, a skeleton applied to a term follows the trivial
typing rule:

APP-4
p : P 4 : P → R

4(p) : R

T-FARM
4 : P → R

farm(4) : P → R

T-PIPE
41 : P → X 42 : X → R

pipe(41,42) : P → R

T-SEQ
fe : P → R

seq(fe) : P → R

T-IF
fb : P → boolean 4true : P → R 4false : P → R

if(fb,4true,4false) : P → R

T-WHILE
fb : P → boolean 4 : P → P

while(fb,4) : P → P

T-FOR
i : integer 4 : P → P

for(i,4) : P → P

T-MAP
fd : P → {Q} 4 : Q → S fc : {S} → R

map(fd,4, fc) : P → R

T-FORK
fd : P → {Q} 4i : Q → S fc : {S} → R

fork(fd, {4i}, fc) : P → R

T-D&C
fb : P → boolean

fd : P → {P} 4 : P → R fc : {R} → R

d&c(fd, fb,4, fc) : P → R

Figure 3. Skeleton’s Type System

3.4 Typing Property: Subject Reduction

A crucial property of typing systems is subject reduction.
It asserts the type preservation by the reduction semantics;
this means that a type inferred for an expression will not
change (or will only become more precise) during the ex-
ecution: the type of an evaluated expression is compatible
with the type of this expression before evaluation. Without
this property, none of the properties ensured by the type-
system would be useful. For skeletons, subject-reduction
can be formalized as follows.

Theorem 1 (Subject Reduction). Provided muscle func-
tions ensure application and subject reduction, i.e.:

SR-F
fx(p) : Q f(p) ⇓ q

q : Q

The skeleton type system ensures subject reduction:
SR-4
4(p) : R 4(p) ⇓ r

r : R

While the property should be proven for every single
skeleton construct, with conciseness in mind, we only il-
lustrate here the proof in the representative cases of: pipe,
for, and d&c constructs. Please refer to the appendix for
the other constructs. The general structure of the proof is
straightforward. For each skeleton construct we: particu-
larize subject-reduction; decompose the inference that can
lead to the correct typing of the skeleton; and verify that,
for each possible reduction rule for the skeleton, the type is
preserved by the reduction. The proof also involves some
double recursions in the most complex cases.

To prove this property, an alternative approach can be to
design a type-system closer to the one of λ-calculus (but
with a fixed point operator). Nevertheless, we have chosen
the operational semantics approach because of its simplic-
ity, and direct meaning in terms of typed skeletons.

Pipe Preservation

Subject-reduction for pipe skeletons means:
SR-PIPE
pipe(41,42)(p) : R pipe(41,42)(p) ⇓ r

r : R

Proof. Let us decompose the inferences asserting that
pipe(41,42)(p) :R and pipe(41,42)(p)⇓r, necessarily:

p : P

41 : P → X 42 : X → R

pipe(41,42) : P → R
T-PIPE

pipe(41,42)(p) : R
APP-4

41(p) ⇓ x 42(x) ⇓ r

pipe(41,42)(p) ⇓ r
R-PIPE

Finally, we prove that r has the type R as follows:

SR-4
APP-4

SR-4
APP-4 p : P 41 : P → X

41(p) : X 41(p) ⇓ x

x : X 42 : X → R

42(x) : R 42(s) ⇓ r

r : R

To summarize, we proved the subject-reduction property for
(T-PIPE) combined with (APP-4), which is the only way to
obtain a correctly typed and reducible expression involving
a pipe construct.

For Preservation

In the case of the for skeleton, we must prove:
SR-FOR
for(n,4)(p) : P for(n,4)(p) ⇓ r

r : P

Proof. We decompose for(n,4)(p) : P and
for(n,4)(p)⇓r, noting p0 =p, pn =r we have:

p0 : P

n : integer 4 : P → P

for(n,4) : P → P
T-FOR

for(n,4)(p0) : P
APP-4

∀i < n 4(pi) ⇓ pi+1

for(n,4)(p0) ⇓ pn

R-FOR

We prove that ∀i ≤ n, pi : P using induction on i. The base
case is true p0 : P , the inductive hypothesis is that pi : P ,
and we must prove that pi+1 : P . Applying the recurrence
hypothesis SR-4, and APP-4 we have:

SR-4
APP-4 pi : P 4 : P → P

4(pi) : P 4(pi) ⇓ pi+1

pi+1 : P

Therefore, pn : P , and in the orginal notation r : P .

D&C Preservation

For d&c skeletons, subject-reduction becomes:

SR-d&c
d&c(fd, fb,4, fc)(p) : R d&c(fd, fb,4, fc)(p) ⇓ r

r : R

Proof. d&c(fd, fb,4, fc)(p) : R necessarily comes from

p : P

fb : P → boolean fd : P → {P}
4 : P → R fc : {R} → R

d&c(fd, fb,4, fc) : P → R
T-D&C

d&c(fd, fb,4, fc)(p) : R
APP-4

In addition to the skeleton based recurrence, we need to use
another recurrence on p for which the base case is fb(p) ⇓
false and the inductive case is fb(p) ⇓ true. This recursion
is finite because the division of the problem must always
terminate (one can formalize the recurrence based on a size
function such that fd(p) ⇓ {pi} ⇒ size(pi) < size(p) and
size(p) ≤ 0 ⇒ fb(p) ⇓ false).

CASE 1: if fb(p) ⇓ false

fb(p) ⇓ false 4(p) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r
R-D&C-FALSE

by hypothesis, 4 : P → R and thus:

APP-4 4 : P → R p : P

4(p) : R

By the recurrence hypothesis (4 is sub-skeleton of
d&c(fd, fb,4, fc)), 4 verifies subject reduction:

4(p) : R 4(p) ⇓ r

r : R
SR-4

which ensures that r :R and the subject reduction for d&c.

CASE 2: if fb(p) ⇓ true

fb(p) ⇓ true fd(p) ⇓ {pi}
∀i d&c(fd, fb,4, fc)(pi) ⇓ ri fc({ri}) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r
R-D&C-TRUE

First, each pi is of type P :

SR-F
APP-F fd : P → {P} p : P

fd(p) : {P} fd(p) ⇓ {pi}
{pi} : {P}

and thus, using the “sub”recurrence hypothesis, that is sub-
ject reduction on pi:

d&c(fd, fb,4, fc)(pi) : R d&c(fd, fb,4, fc)(pi) ⇓ ri

ri : R
SR-D&C

Therefore, ∀i, ri : R, and then {ri} : {R}. Finally r : R,
because (by subject reduction on fc):

SR-F
APP-F fc : {R} → R {ri} : {R}

fc({ri}) : R fc({ri}) ⇓ r

r : R

Note that the typing rule for d&c also ensures that fb(p) :
boolean (and thus fb(p) is necessarily true or false).

3.5 Sub-typing

This section briefly discusses how sub-typing rules can
be safely added to the type-system without major changes.
Classically, if the underlying language supports sub-typing,
see for example [17], we allow the skeleton typing to reuse
the sub-typing relation of the language. Suppose a sub-
typing relation (�) is defined on the underlying language;
then sub-typing can be raised to the skeleton language level
as specified by the rule:

T-SUB
4 : P → R P ′ � P R � R′

4 : P ′ → R′

The subject-reduction and most classical sub-typing prop-
erties can be proved like in other languages.

4 Type safe skeletons in Java

In this section, we illustrate the type-system designed
above in the context of a skeleton library implemented over
the Java programming language. We show how the type-
system of the Java language can be used at the skeleton level
to check the type-safety of the skeleton composition. We
have chosen Java for an implementation because Java pro-
vides a mechanism to communicate the type of an object to
the compiler: generics. More precisely, we use Java gener-
ics to specify our skeleton API: constraints on type compat-
ibility expressed as typing rules in Figure 3 are translated

into the fact that, in the skeleton API, several parameters
have the same (generic) type.

Typing defined in Figure 3 is then ensured by the type
system for Java and generics. Using generics, we do not
need to implement an independent type system for algo-
rithmic skeletons. Additionally, generics provide an elegant
way to blend the type system of the skeleton language with
the type system of the underlying language. In other words,
because skeletons interact with muscle functions, the pro-
posed skeleton type system also interacts with the Java lan-
guage type system.

In the Calcium skeleton framework, skeletons are rep-
resented by a corresponding class, and muscle functions
are identified through interfaces. A muscle function must
implement one of the following interfaces: Execute,
Condition, Divide, or Conquer. Instantiation of a skele-
ton requires as parameters the corresponding muscle func-
tions, and/or other already instantiated skeletons.

As discussed in section 3.3, the idea behind the type se-
mantics is that, if it is possible to guarantee that the skele-
ton parameters have compatible types, then the skeleton in-
stance will be correctly typed.

Therefore, since the skeleton program is defined during
the construction of the skeleton objects, the proper place for
performing type validation corresponds to the constructor
methods of the skeleton classes.

Figure 4. From theory to practice: T-PIPE rule.

Figure 4 shows the analogy between the type semantics
and the Java implementation with generics for the T-PIPE
rule. The premises of the typing rules are enforced in the
signature of the skeleton constructor, and the conclusion of
the typing is reflected on the signature of the skeleton class.

A skeleton class is now identified as a skeleton that re-
ceives a generic parameter of type <P> and returns a param-
eter of type <R>, where <P> and <R> are specified by the
programmer. Additionally, all parameters must be coher-
ently typed among themselves, and with the skeleton. This
type coherence will be specific for each skeleton, follow-
ing the rules of the proposed typing system 3.3. The typing
rules are enforced in Calcium as shown in Figure 5.

As a result, the unsafe skeleton composition shown in
Figure 1 is transformed into the type safe skeleton program
shown in Figure 6. The constructors of Pipe and Seq en-
force that the return type of Execute1.exec must be the
same type as the parameter of Execute2.exec: B. If this
is the case, then the Pipe skeleton will be of type <A,C>,
where A is the parameter type of Execute1.exec and C
is the return type of Execute2.exec.

Skeleton<A,B> stage1= new Seq<A,B>(new Execute1());
Skeleton<B,C> stage2= new Seq<B,C>(new Execute2());
Skeleton<A,C> skeleton = new Pipe<A,C>(stage1, stage2); //type safe composition
--
class Execute1 implements Execute<A,B>{ | class Execute2 implements Execute<B,C>{

public B exec(A param){ | public C exec(B param){
... /* No cast required */ | ... /* No cast required */
return x; /* instanceof B */ | return y; /* instanceof C */

} | }
} | }

Figure 6. Example of a type safe skeleton program.

interface Execute<P,R> extends Muscle<P,R>
{ public R exec(P param); }

interface Condition<P> extends Muscle<P,Boolean>
{ public boolean evalCondition(P param); }

interface Divide<P,X> extends Muscle<P,X[]>
{ public X[] divide(P param); }

interface Conquer<Y,R> extends Muscle<Y[],R>
{ public R conquer(Y[] param); }

class Farm<P,R> implements Skeleton<P,R>
{ public Farm(Skeleton<P,R> child); }

class Pipe<P,R> implements Skeleton<P,R>
{ <X> Pipe(Skeleton<P,X> s1, Skeleton<X,R> s2); }

class If<P,R> implements Skel<P,R>
{ public If(Condition<P> cond, Skeleton<P,R> ifsub,

Skeleton<P,R> elsesub); }
class Seq<P,R> implements Skeleton<P,R>

{ public Seq(Execute<P,R> secCode); }
class While<P> implements Skeleton,P>

{ public While(Condition<P> cond, Skeleton<P,P> child)
; }

class For<P> implements Skeleton<P,P>
{ public For(int times, Skeleton,P> sub); }

class Map<P,R> implements Skeleton<P,R>
{ public <X,Y> Map(Divide<P,X> div, Skeleton<X,Y> sub,

Conquer<Y,R> conq); }
class Fork<P,R> implements Skeleton<P,R>

{ public <X,Y> Fork(Divide<P,X> div, Skeleton<X,Y>...
args, Conquer<Y,R> conq); }

class DaC<P,R> implements Skeleton<P,R>
{ public DaC(Divide<P,P> div, Condition<P> cond,

Skeleton<P,R> sub, Conquer<R,R> conq); }

Figure 5. Typed skeletons with Java Generics

The benefits of using a type system for skeletons with
Java generics are clear: no need to implement an additional
type validation mechanism; no type-cast are imposed by the
skeleton language inside muscle functions; and most impor-
tantly, type safe validation when composing the skeletons.

5 Conclusions

This paper has defined a type system for algorithmic
skeletons. We have tackled this problem from both a the-
oretical and a practical approach. On the theoretical side
we have contributed by: formally specifying a type system
for algorithmic skeletons, and proving that this type sys-

tem guarantees that types are preserved by reduction. Type
preservation guarantees that skeletons can be used to trans-
mit types between muscle functions.

On the practical side, we have implemented the type sys-
tem using Java and generics. The type enforcements are en-
sured by the Java type system, and reflect the typing rules
introduced in the theoretical section. Globally, this ensures
the correct composition of the skeletons. As a result, we
have shown that: no further type-casts are imposed by the
skeleton language inside muscle functions; and most im-
portantly, type errors can be detected when composing the
skeleton program.

References

[1] M. Aldinucci and M. Danelutto. An operational se-
mantics for skeletons. In G. R. Joubert, W. E. Nagel,
F. J. Peters, and W. V. Walter, editors, Parallel Com-
puting: Software Technology, Algorithms, Architec-
tures and Applications, PARCO 2003, volume 13 of
Advances in Parallel Computing, pages 63–70, Dres-
den, Germany, 2004. Elsevier.

[2] M. Aldinucci and M. Danelutto. Skeleton based par-
allel programming: functional and parallel semantic
in a single shot. Computer Languages, Systems and
Structures, 2006.

[3] M. Aldinucci, M. Danelutto, and P. Teti. An advanced
environment supporting structured parallel program-
ming in Java. Future Generation Computer Systems,
19(5):611–626, July 2003.

[4] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and
M. Vanneschi. P3L: A structured high level program-
ming language and its structured support. Concur-
rency: Practice and Experience, 7(3):225–255, May
1995.

[5] F. Baude, D. Caromel, L. Mestre, F. Huet, and
J. Vayssière. Interactive and descriptor-based deploy-

ment of object-oriented grid applications. In Proceed-
ings of the 11th IEEE International Symposium on
High Performance Distributed Computing, pages 93–
102, Edinburgh, Scotland, July 2002. IEEE Computer
Society.

[6] G. H. Botorog and H. Kuchen. Efficient high-level
parallel programming. Theor. Comput. Sci., 196(1-
2):71–107, 1998.

[7] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: adding generic-
ity to the java programming language. In OOPSLA
’98: Proceedings of the 13th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-
guages, and applications, pages 183–200, New York,
NY, USA, 1998. ACM Press.

[8] D. Caromel. Toward a method of object-oriented con-
current programming. Communications of the ACM,
36(9):90–102, 1993.

[9] D. Caromel, C. Delbe, A. di Costanzo, and M. Ley-
ton. Proactive: an integrated platform for program-
ming and running applications on grids and p2p sys-
tems. Computational Methods in Science and Tech-
nology, 12:69–77, 2006.

[10] D. Caromel and M. Leyton. Fine tuning algorithmic
skeletons. In 13th International Euro-par Conference:
Parallel Processing, volume 4641 of Lecture Notes
in Computer Science, pages 72–81. Springer-Verlag,
2007.

[11] M. Cole. Algorithmic skeletons: structured manage-
ment of parallel computation. MIT Press, Cambridge,
MA, USA, 1991.

[12] M. Danelutto. Qos in parallel programming through
application managers. In PDP ’05: Proceedings of the
13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP’05), pages 282–
289, Washington, DC, USA, 2005. IEEE Computer
Society.

[13] M. Danelutto and P. Teti. Lithium: A structured paral-
lel programming enviroment in Java. In Proc. of ICCS:
International Conference on Computational Science,
volume 2330 of LNCS, pages 844–853. Springer Ver-
lag, April 2002.

[14] H. Kuchen and J. Striegnitz. Higher-order functions
and partial applications for a c++ skeleton library. In
JGI ’02: Proceedings of the 2002 joint ACM-ISCOPE
conference on Java Grande, pages 122–130, New
York, NY, USA, 2002. ACM Press.

[15] H. Kuchen and J. Striegnitz. Features from functional
programming for a c++ skeleton library: Research ar-
ticles. Concurr. Comput. : Pract. Exper., 17(7-8):739–
756, 2005.

[16] Sun Microsystems. Java. http://java.sun.com.

[17] B. C. Pierce. Types and Programming Languages.
MIT Press, March 2002.

Appendix
This appendix details the subject reduction proofs that

were not given in section 3.4.

Seq Preservation

We must prove:

SR-SEQ
seq(fe)(p) : R seq(fe)(p) ⇓ r

r : R

Proof. By decomposing seq(fe)(p) : R and seq(fe)(p) ⇓
r we obtain:

APP-4
SEQ-T fe : P → R

seq(fe) : P → R p : P

seq(fe)(p) : R

fe(p) ⇓ r

seq(fe)(p) ⇓ r
R-SEQ

Applying APP-F and SR-F we obtain the following infer-
ence:

SR-F
APP-F p : P fe : P → R

fe(p) : R fe(p) ⇓ r

r : R

Farm Preservation
We must prove:

SR-FARM
farm(4)(p) : R farm(4)(p) ⇓ r

r : R

which is done similarly to the case Seq above, except that
it uses APP-4 and SR-4 instead of APP-F and SR-F.

If Preservation
We must prove:

SR-IF
if(fb,4true,4false)(p) : R if(fb,4true,4false)(p) ⇓ r

r : R

Proof. By decomposing if(fb,4true,4false)(p) : R and
if(fb,4true,4false)(p) ⇓ r we obtain:

p : P

fb : P → boolean 4true : P → R 4false : P → R

if(fb,4true,4false) : P → R
T-IF

if(fb,4true,4false)(p) : R
APP-IF

fb(p) ⇓ {true|false} 4{true|false}(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r
R-IF

Applying app-4 and SR-4 on the right skeleton (∆true or
∆false), we obtain the following inference:

p : P 4{true|false} : P → R

4{true|false}(p) : R
APP-4
4{true|false}(p) ⇓ r

r : R
SR-4

While Preservation
We must prove:

SR-WHILE
while(fb,4)(p) : P while(fb,4)(p) ⇓ r

r : P

Proof. By decomposing while(fb,4)(p) : P , and
while(fb,4)(p) ⇓ r we obtain:

p : P

fb : P → boolean 4 : P → P

while(fb,4) : P → P
T-WHILE

while(fb,4)(p) : P
APP-4

fb(p) ⇓ false

while(fb,4)(p) ⇓ p
R-WHILE-FALSE

fb(p) ⇓ true 4(p) ⇓ s while(fb,4)(s) ⇓ r

while(fb,4)(p) ⇓ r
R-WHILE-TRUE

This is done again by a sub-recurrence on the number of
times the skeleton ∆ is executed. The case where fb(p) ⇓
false is trivial because p : P . For the case where fb(p) ⇓
true, we must first determine that s : P . Using the recur-
rence hypothesis (SR-4) and app-4:

APP-4 p : P 4 : P → P

4(p) : P 4(p) ⇓ s

s : P
SR-4

Now, by applying the sub-recurrence hypothesis on s we
have:

SR-WHILE
APP-WHILE s : P while(fb,4) : P → P

while(fb,4)(s) : P while(fb,4)(s) ⇓ r

r : P

Map Preservation

We must prove:

SR-MAP
map(fd,4, fc)(p) : R map(fd,4, fc)(p) ⇓ r

r : R

Proof. By decomposing map(fd,4, fc)(p) : R and
map(fd,4, fc)(p) ⇓ r we obtain:

p : P

fd : P → {Q} 4 : Q → S fc : {S} → R

map(fd,4, fc) : P → R
T-MAP

map(fd,4, fc)(p) : R
APP-4

fd(p) ⇓ {pi} ∀i 4(pi) ⇓ ri fc({ri}) ⇓ r

map(fd,4, fc)(p) ⇓ r
R-MAP

Applying APP-F and SR-F:

SR-F
APP-F p : P fd : P → {Q}

fd(p) : {Q} fd(p) ⇓ {pi}
{pi} : {Q}

Therefore pi : Q, and applying APP-4 SR-4:

SR-4
APP-4 pi : Q 4 : Q → S

4(pi) : S 4(pi) ⇓ ri

ri : S

Thus, {ri} : {S}, and by APP-F and SR-F:

SR-F
APP-F {ri} : {S} fc : {S} → R

fc({ri}) : R fc({ri}) ⇓ r

r : R

Fork Preservation
We must prove:

SR-FORK
fork(fd, {4i}, fc)(p) : R fork(fd, {4i}, fc)(p) ⇓ r

r : R

Proof. By decomposing fork(fd, {4i}, fc) : R and
fork(fd, {4i}, fc) ⇓ r we obtain:

p : P

fd : P → {Q} 4i : Q → S fc : {S} → R

fork(fd, {4i}, fc) : P → R
T-FORK

fork(fd, {4i}, fc)(p) : R
APP-4

fd(p) ⇓ {pi} ∀i 4i(pi) ⇓ ri fc({ri}) ⇓ r

fork(fd, {4i}, fc)(p) ⇓ r
R-FORK

Applying APP-F and SR-F:

SR-F
APP-F p : P fd : P → {Q}

fd(p) : {Q} fd(p) ⇓ {pi}
{pi} : {Q}

Then pi : Q, and applying APP-4 SR-4, we have for all i:

SR-4
APP-4 pi : Q 4i : Q → S

4i(pi) : S 4i(pi) ⇓ ri

ri : S

Therefore, {ri} : {S}, and from APP-F and SR-F:

SR-F
APP-F {ri} : {S} fc : {S} → R

fc({ri}) : R fc({ri}) ⇓ r

r : R

