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1 Departamento de Ciencias de la Computación, Universidad de Chile. Blanco Encalada 2120,
Santiago, Chile.

{jbustos,jpiquer }@dcc.uchile.cl
2 INRIA Sophia-Antipolis, CNRS-I3S, UNSA. 2004, Route des Lucioles, BP 93, F-06902

Sophia-Antipolis Cedex, France.
First.Last@sophia.inria.fr

3 Escuela de Ingenierı́a Informática. Universidad Diego Portales. Av. Ejercito 441, Santiago,
Chile.

Abstract. In this paper, we present a study of information sharing policies used
by well-known load balancing systems. Our approach comes from analyzing the
performance scalability of:response time(time of reaction against instabilities)
andbandwidth, from a communication-intensive application context. We divided
the policies into:Centralizedor Distributedoriented; andEageror Lazyload in-
formation sharing. We implement them with an asynchronous communication
middleware called ProActive. Our experimental results show thatEager Dis-
tributedoriented policies have better performance (response time and bandwidth
usage).
Keywords: Dynamic load balancing, Communication-intensive parallel applica-
tions, Load information sharing policies, Load information collection.

1 Introduction

Load-balancingis the process of distributing parallel application tasks on a set of pro-
cessors while improving the performance and reducing the application response time.
The decisions ofwhen, whereandwhich tasks have to be transferred are critical, and
therefore the load information has to be accurate and up to date [18]. Indynamic load
balance, decisions depend on the information collected from the system. Load informa-
tion can be shared among processors periodically or “on demand”, usingCentralizedor
Distributed information collectors [21]. When dealing with communication-intensive
applications (parallel applications which transfer a large amount of data among proces-
sors), the information sharing policy influences not only the load-balancing decisions
but also the communication itself. We studied this problem, because our results can be
applied in the context of load-balancing on peer-to-peer networks[7].

The load-balancing algorithms performance, for non intensive communication ap-
plications, has been studied in depth [22, 21, 8, 20] focusing onstability (ability of only
balancing the work if that action improves the performance of the system) andresponse
time (ability of reacting against instabilities). Casavant and Kuhl [8] show that a faster



response time is more important than stability to improve the performance of load-
balancing algorithms. A survey on this topic can be found in [12].

This paper describes experiments which measure the response time and bandwidth
usage for different information sharing policies applied by well-known load-balancing
algorithms. These policies are studied in a communication-intensive context and are
defined as follows:

1. Centralized Full Information : Nodes share all their load information with a cen-
tral server. Figure 1.a presents an example with three nodes: nodes A and C send
their load information L to the server B periodically. The server collects that infor-
mation and keeps the system balanced (in the figure, ordering A to balance with C).
This policy is widely used on systems like Condor [16, 13] and middlewares like
Legion [9]. Theoretical and practical studies report this policy as non scalable [21,
8, 1, 15].

2. Centralized Partial Information There is partial information sharing among the
nodes through central server. Figure 1.b presents an example using three nodes
which share information only when they are overloaded. A node A registers on the
server B when it enters an “overloaded state” (that is, the ”load metric” is above a
given threshold), and node C unregisters from the server because it exits the ”over-
loaded state”. At the same time C asks the server for overloaded nodes, the server
chooses one node from its registration table and starts the load-balancing between
them.

3. Distributed Full Information Nodes share all their information using broadcast.
Figure 1.c shows an example using three nodes: Each node broadcasts its load to the
others periodically. The nodes use the information for load balancing [19]. Then, A
and C realize they can share B’s load and send the balance message S. The figure
also shows the main problem of this policy: there is no control on the number of
balance messages an overloaded node might receive. For our response time mea-
surements, we considered only the first balance message (in the figure: the message
from A).

4. Distributed Partial Information There is partial information sharing among the
nodes using broadcast. Figure 1.d presents an example for theoverloadedcase: a
node B broadcasts its load only when changing to the overloaded state, requesting
a load balance. Using this information, A and C reply to the request S, but unlike
in the previous policy, only the reply from A is considered. In practice, this policy
is used in the “Robin Hood” algorithm [6] developed for ProActive [3].
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Fig. 1.a) Centralized Full Info. b) Centralized Partial Info. c) Distributed Full Info. d) Distributed
Partial Info.



We studied the given policies using the middlewareProActive [3]. ProActive pro-
vides a strong deployment infrastructure, communication and active object migration
[11]. Using active objects, communication-intensive parallel applications can be mod-
elled and developed [14, 4].

This paper is organized as follows: Section 2 presents the load models and the poli-
cies simulated with ProActive. Section 3 summarizes the main results of this study.
Section 4 shows the conclusions and discusses future work.

2 Model Overview and Definitions

This section provides the main definitions and a brief overview of the load-balancing
algorithms and information sharing policies used in our analysis.

In this paper, eachnoderepresents a machine (virtual or real) which participates in
the balancing. As in [21], we compare centralized and distributed algorithms, adding
also partial-information algorithms in our experiments. In ProActive, there is no notion
of tasks like in parallel batch systems [16, 23]. In this paper we use the termtask to
refer to aservice[3], and the termjob for a setof servicesservedby an active object.
In the literature, the wordload represents a metric such as the CPU queue length, the
available memory, a linear combination of both, etc. In this paper,load represents the
number of tasks in the CPU queue modelled with ProActive (see section 2.2). In our
study, response timeis the time since a node entering theoverloadedstate and the
beginning of the load-balancing.

2.1 Load Model

Following the recommendations of [5, 8], we simulate the load of each node with a
discrete-time population process with birth-rateλ and death-rateµ. The value ofλ rep-
resents the number of jobs which arrive every second to a node. The job size (in terms
of number of tasks) follows an exponential distribution with mean 1. The death-rateµ
represents the number of tasks served by a single node per second. In our experiments
we useλ = 1, 2, ..., 10, and in order to maintain the system stable:µ = 10. Note that
this methodology simulates the load balance process and its communications. Simu-
lation data will conclude whether the policies hinder intensive-communicated parallel
applications.

Because our experiments have to be comparable for all policies and number of
nodes, we calculated the total number of incoming tasks every second (along a pe-
riod of 60 seconds) for each value ofλ. These precomputed values were used for all the
experiments.

In our experiments, the nodes are labelled0, ..., n and the value ofλ assigned to the
nodei is λi = 1 + i mod10. Each node used the initial precomputed incoming rateλi,
and after 60 seconds, the simulation was restarted again with the value ofλi.

Several studies have shown that on a set of workstations (without load balancing),
more than 80% of the workstations are idle during the day [15, 16, 21]. The concept
of occupiedworkstations andoverloadednodes are similar: processors which want to
share work. Therefore, in our study, if no load balance was made, 20% of the nodes had



to reach the overloaded state. To achieve this with the previously calculated values for
λ, we used the convention:

– Underloaded Node: load< 10.
– Normal Node: 10≤ load< 15.
– Overloaded Node: load≥ 15.

2.2 Implementing the Information Sharing Policies

Since the information-sharing policies defined in section 1 can befull or partial, when
unspecified we will be referring tofull information sharing policies. Infull information
sharing policies, load information from overloaded and underloaded nodes is shared.

On the other hand, we will classifypartial information policies into two groups:
eageror lazy. Eagerpolicies correspond to the ones where anoverloadednode triggers
the load-balancing, and therefore the partially shared information corresponds to the
underloaded nodes.Lazypolicies correspond to the ones where theunderloadednode
triggers the load-balancing, and therefore the partially shared information corresponds
to the overloaded nodes.

Each node is modelled as anactive objectwith three principal operations:

– register : registers on the communication channel (server, broadcast). This method
starts the clock in our experiments.

– loadBalance : starts the load-balancing process, to stop the clock in our experi-
ments, and to calculate the response time.

– addLoad(x) : addsx tasks to the callee.

Centralized For this policy, one active object was chosen as a central server which
collected and stored load-balance information of each node as: underloaded, normal or
overloaded. The policy works as follows:

– Every second, the nodes call the remoteregister execution on the server.
– The load serverprocesses incoming method calls. If the call originates from an

overloaded node, the server randomly chooses an address of an underloaded node
(if any) and calls the methodloadBalance on the overloaded node with the
chosen address.

– The overloaded node performs locallyaddLoad(-myLoad/2) (according to the
recommendations of Berenbrink, Friedetzkyand Goldberg [5]) and the underloaded
node (remotely) performsaddLoad(myLoad/2) .

Lazy Centralized We studied this policy looking for a reduction of the information
transmitted over the network. For this, we included anunregister method to the
node model. This policy is described as follows:

– When a node reaches the overloaded state, it registers on the central server, and
– When a node leaves the overloaded state, it unregisters (removes its reference) from

the server.



– Every second, if a node is underloaded it asks the server for overloaded nodes.
When the server receives that query, it randomly chooses the address of an over-
loaded node (if any), and starts the load-balancing: ordering the overloaded node to
balance with the node that originated the query.

Eager Centralized This policy is similar to the previous one, but underloaded nodes
share their information instead of overloaded ones. The nodes register on the server
when they reach the underloaded state and unregister when leaving it:

– When a node is in overloaded state, it asks the server for underloaded nodes once
per second.

– Upon receiving the query, the server randomly chooses the address of an under-
loaded node (if any) and begins the load-balancing by ordering the overloaded node
that sent the query to balance with the chosen underloaded node.

Distributed The policy is similar toCentralized, but instead of sending the informa-
tion to a central server, nodes broadcast their information. Therefore, all the nodes are
servers, and each node make’s its own balance decisions (i.e.: local decisions), using
information collected from the communication channel.

Lazy Distributed This policy is similar toLazy Centralized, but in this case the in-
formation is shared through the multicast channel instead of a central server. LikeDis-
tributedpolicy, every node is also a server and the decisions are local. We expected this
policy to have similar time delay but use less bandwidth than theDistributedpolicy due
to the reduction in the number of sent messages.

Eager Distributed This policy is the broadcast version ofEager Centralized, and we
expected a behavior similar to theLazy Distributedpolicy.

2.3 Hardware and Software

We simulated the models using the Oasis Team Intranet [2]. We tested the policies on
a heterogeneous network composed of: 3 Pentium II 0.4 GHz, 10 Pentium III 0.5 - 1.0
Ghz, 3 Pentium IV 3.4GHz and 4 Pentium XEON 2.0GHz for the nodes and a Pen-
tium IV 3.4GHz for the server. We uniformly at random distribute the nodes (active
objects) on the processors. Forresponse timemeasurements we used the system clock,
and for bandwidth measurements we used Ethereal [10] software. The policy meth-
ods for nodes and servers were developed using theProActivemiddleware on Java 2
Platform (Standard Edition) version 1.4.2.

3 Results Analysis

We tested the policies on20, 40, 80, 160, 320 nodes distributed on20 machines. For
each case we took1000 samples of response times and the bandwidth reports from
Ethereal. In this section we present the main results of this study. We will first discuss
theresponse time, and then thebandwidthanalysis.



3.1 Response Time

Figure 2 showsresponse timefor all the policies. Following the recommendations of
[18], response time should be less than the periodical update time, and in this study the
update time was 1000 ms.

Using this reference,Distributedpolicies presented better response times thanCen-
tralizedpolicies. Also, policies that sent underloaded information (Eagerpolicies) had
better performance than policies which shared overloaded information (Lazypolicies).
This happens because in theEagerpolicies, overloaded nodes generate the load balanc-
ing request, while inLazypolicies overloaded nodes have to wait until an underloaded
node contacts them.

Note that for theEager Distributedpolicy, overloaded nodes obtain the information
of underloaded ones before the balance process. Therefore, since the response time is
near to zero, we decided not to show this algorithm in the figure. Also note that, the
poor scalability of theLazy Centralizedpolicy, can be explained because the server is
monothreaded. Using a multithreaded central server can increase the saturation thresh-
old, but it is not scalable solution because new constraints like bandwith usage or mutual
exclusion are generated.
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Fig. 2.Mean response time for all policies

3.2 Bandwidth

In this section we tested the policies bandwidth usage. Unfortunately, the underlying
implementations introduces an additional difference: TCP or UDP based communica-
tions (resp.CentralizedandDistributedpolicies). To avoid having to interpret such bias,



we compare performance betweenfull andpartial information policies, developed on
centralizedanddistributedload-balancing algorithms.

Figure 3 shows the bandwidth used during the information sharing phase, counting
only messages sent to the server:

1. Centralizedpolicies use between 5 (Eager Centralized) and 40 times (Centralized)
more bandwidth than distributed policies. This phenomenon is the result of the
different type of network protocols used, and has been well studied in related-work
[17].

2. Forpartial informationschemes withcentralizedpolicies: when overloaded nodes
share their information, less than 20% of the total nodes (see section 2.1) will send
register/unregister messages, and more than 80% of them will send queries for reg-
istered nodes (every second).

3. When underloaded nodes share their information, more than 80% of the total nodes
will send register/unregister messages and less than 20% of them will send queries.
This behavior causes the former approach to consume more bandwidth than the
latter.

Figure 3 (right) shows the total bandwidth used by our load model, including the
loadBalance andaddLoad messages:

1. Eagerpolicies which sharepartial information of underloaded nodes have the low-
est bandwidth usage for each case (CentralizedandDistributed).

2. Lazypolicies which sharepartial information of overloaded nodes generate a great
increase of the bandwidth usage, because there is no control on how many un-
derloaded nodes sendloadBalance messages. In theLazy Centralizedpolicy,
this behavior generates a saturation on the communication channel even though
the number of messages is half of that of theCentralizedpolicy. This happens be-
cause most of the messages are balance queries, and the server has to choose an
overloaded node and send theloadBalance message to it.

3. When the service queue of a central server becomes saturated (over 300 nodes on
our experiments), the response time increases and the bandwidth usage decreases,
because the saturation will causes less messages to be sent over the network. As
noted for theresponse timeanalysis (see 3.1), using a multithreaded central server
it is not a scalable solution.

3.3 Testing a real application

We tested the impact of the policies with a real application: the calculus of aJacobi
matrix. This algorithm performs an iterative computation on a real-valued square ma-
trix. On each iteration, the value of each element is computed using its own value and
the value of its neighbors on the previous iteration. We divided a 3600x3600 matrix
into 25 disjoint sub-matrices of equal size, each one managed by an active object called
“worker” (implemented using ProActive). Each worker communicates only with its di-
rect neighbors.
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Fig. 3.Bandwidth usage of coordination policies: Information sharing phase (left), Total (right)

As a reference, all the workers are randomly distributed among 15 machines, using
at most two workers by machine. Using this distribution, we measured the mean exe-
cution time of performing 1000 sequential calculi of Jacobi matrices (first row of Table
1).

To determine the impact of the policies on theJacobiapplication, we distributed 30
nodes among the 15 machines. We ran the application (placing one load server outside
of the simulation machines), and measured the execution time ofJacobi. Separately for
each policy we measured the CPU cost (in % of busy time) for the 15 machines. The
results are in Table 1.

Table 1. Information Sharing Policies and their effects on execution time of a parallel Jacobi
application

Policy Execution Time (sec)% policy cost (time)% policy cost (CPU)

None 914.361 — —
Centralized 1014.960 11.00% 1.3%

Lazy Centralized 995.873 8.91% 1.1%
Eager Centralized 972.621 6.37% 1.1%

Distributed 1004.800 9.89% 10.7%
Lazy Distributed 925.964 1.26% 4.5%
Eager Distributed 915.085 0.08% 4.1%

While Centralizedpolicies use less CPU on the “client” side, they use more band-
width than their distributed equivalents. A special case is theDistributedpolicy, which
uses less bandwidth than theCentralizedpolicies, but the largest CPU time consump-
tion, and it produces almost 10% of time delay on the application. So, if this policy is
used, the load balancing itself will produce overloading.



4 Conclusions and Future Work

In this study we presented a comparison between six communication policies for load-
balancing. We focused on two metrics: communicationbandwidthusage andresponse
time.

We conclude thatDistributed oriented policies have the best performance using
these metrics, and sharing underloaded nodes information (Eager), is the best decision.
In a load-balancing architecture for communication-intensive parallel applications de-
veloped with asynchronous communicated middlewares, we suggest using anEager
Distributedpolicy where overloaded nodes trigger the balancing using previously ac-
quired information, thus avoiding the need ofCentralizedservers. Moreover, if the load
index could be updated with a lower frequency than one per second and similar accu-
racy, the policy would use less coordination messages, producing less interference with
parallel applications.

Our future goal is to optimize the optimal candidate selection for the balancing
process, aiming for the best performance in terms ofbandwidth usageand response
time.
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