
Balancing Active Objects on a
P2P infrastructure

Javier Bustos Jimenez
jbustos@dcc.uchile.cl

Agenda

• Load Balancing
• Balancing Active Objects
• Balancing in practice

Load Balancing

The problem The machines

STATIC
LOAD
BALANCING

Load Balancing

The problem The machines

? ? ?

? ? ?

DYNAMIC
LOAD
BALANCING

Who will start the balance process?

Sender initiatedReceiver initiated
(Work Stealing)

?

Agenda

• Load Balancing
• Balancing Active Objects
• Balancing in practice

Balancing Constraints

• To speed up application performance
• To maximize the resource (CPU) usage.
• To reduce the bandwidth usage of Load

Balance algorithm
• Fast reaction against load imbalances P2P

Active Objects and CPU time
100%CPU

Migrating this object will:
Speed up service rate
Reducing wait-for-response time

… if the new location is better.

Wait for
response Wait for

response

Javier Bustos Jiménez - INRIA
Sophia Antipolis - DCC
Universidad de Chile

9

Migration Constraints

• What is a better machine?
– Less loaded machine (idle machine?), and
– Faster (or equivalent) machine

• Supposing: no active object’s service will
use more than 50% of CPU time

Migration to a better machine?

• Using a total order relation (Rank) among
processors:

• If P1 is overloaded, it will demand for balance to
its neighbors, providing Rank(P1)

• Let OT, UT = Overloaded (Underloaded)
Threshold

• If load(P2) < OT:
If load(P2) < UT*Rank(P2)/Rank(P1):

 P2 will reply to P1 to start migration

Load Balancing on P2P

Messages =

N° of Overloaded Nodes

X

K (1 + P(underloaded))

Which value of K?
• Probability of have at least one reply: PR = 1 - PO

k

Which value of K?
• Probability of have at least one reply: PR = 1 - PO

k

Agenda

• Load Balancing
• Balancing Active Objects
• Balancing in practice

Jacobi’s Iteration

• To solve linear system of equations Ax = b.

• Having xk = D-1(L+U)xk-1+D-1b, where the
matrices D, -L and –U represent the diagonal,
strictly lower triangular and strictly upper
triangular parts of A respectively.

• Stopping when || xk – x k-1 || < ε

Test of P2P-LB Algorithm

• Load = [0,1] (% used CPU)
• Underloaded Threshold = 0.3
• Overloaded Threshold = 0.8
• Number of neighbors to ask = 3
• Update time = 5 + 30 t (1 – load) [sec]

• t follows an uniform distribution

• Rank = CPU’s speed
• 25 Machines (from 0.5 to 3.4 GHz)
• 36 Active Objects

Load Balancing Benchmarks

P2P

Server Oriented

Local to Global optimum

Application
time

Number of migrations0

WORK STEALING

Local optimum

Global optimum

Ranked Work Stealing (*)

(*) I will steal only if I am a better machine than my target

Robin-Hood

Robin Hood + Ranked Work Stealing

Conclusions

• New Load Balancing for P2P Architecture
was developed

• Algorithm exploits the P2P infrastructure
to speed up migration time, so application
time

• Preliminary results seem to be promising
• More research is needed

Questions?

