Balancing Active Objects on a
P2P infrastructure

Javier Bustos Jimenez
Jbustos@dcc.uchile.cl

NN

I INRIA “hs X3S i R

(o
/

Agenda

* Load Balancing
« Balancing Active Objects
« Balancing in practice

Load Balancing

The problem The machines
STATIC ! 1]
LOAD - =
==
BALANCING L r

Load Balancing

The problem The machines
2: ¥

DYNAMIC Ty 1

LOAD — - —
BALANCING = ?\

Who will start the balance process?

N ¢
Tp ‘.M/
)1

Bendbeinitidiatd
(Work Stealing)

Agenda

* Load Balancing
« Balancing Active Objects
« Balancing in practice

Balancing Constraints

* To speed up application performance
* To maximize the resource (CPU) usage.

« To reduce the bandwidth usage of Load
Balance algorithm

« Fast reaction against load imbalances

P2P

Active Objects and CPU time

response

Wait for [

\/

Wait for
response

100%CPU

1

@

Migrating this object will:
Speed up service rate
Reducing wait-for-response time

... if the new location is better.

Migration Constraints

 What is a better machine?
— Less loaded machine (idle machine?), and
— Faster (or equivalent) machine

* Supposing: no active object’s service will
use more than 50% of CPU time

Javier Bustos Jiménez - INRIA
Sophia Antipolis - DCC
| Inivarcidad de Chila

Migration to a better machine?

* Using a total order relation (Rank) among

Processors:

 |If P1 is overloaded, it will demand for balance to
its neighbors, providing Rank(P1)

* Let OT, UT = Overloaded (Underloaded)
Threshold

* |If load(P2) < OT-:
If load(P2) < UT*Rank(P2)/Rank(P1):
P2 will reply to P1 to start migration

Load Balancing on P2P

Messages =

N° of Overloaded Nodes
X

K (1 + P(underloaded))

Which value of K?

« Probability of have at least one reply: P =1 - P

P(Overloaded) = 1 - P(Underloaded)

I T T T P = T > i ,_,_;.__-_ﬁ_,__L--f! T
— //’*
09} * ‘ ' A
08
ol
0.7
=,
) 06}
(@)]
(4] ”
2] -
(7)) 05
=
-~ 04 k=l —+—
a -
03} k=3 —%—
k=4
02} k=5
k=6 —a—
k=7
0.1 k=8
+ k=0 ——
0 1 1 L 1 1 L | L 1
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09

P(Underloaded)

Probability of have at least one reply: P; = 1 - Pk

P(Message)

09

08

0.6

0.5

04

03

Which value of K?

P(Overloaded) = 0.7 - P(Underloaded)

5 ,—*___ |

- e
fr— T

1 1 1

-

T

k=l —+—
k=2
k=3 —%—
k=4

k=6

k=8

0.4 0.5 0.6

P(Underloaded)

Agenda

* Load Balancing
« Balancing Active Objects
« Balancing In practice

Jacobi’'s lteration

« To solve linear system of equations Ax = b.

« Having x, - D-1(L+U)x,_,+D-'b, where the
matrices D, -L and —U represent the diagonal,
strictly lower triangular and strictly upper
triangular parts of A respectively.

« Stopping when || X, — X ¢ || <€

Test of P2P-LB Algorithm

Load = [0,1] (% used CPU)
Underloaded Threshold = 0.3
Overloaded Threshold = 0.8

Number of neighbors to ask = 3
Update time = 5 + 30 t (1 — load) [sec]

o t follows an uniform distribution

Rank = CPU’s speed
25 Machines (from 0.5 to 3.4 GHz)
36 Active Objects

time [msec]

Load Balancing Benchmarks

f=g=4=1%] T T T T T _ "
Central using CPU *
Centra ~y max 3 +
o)
ce8g -
+
1800 | Server Oriented 1
+ 2 AOxCPU
+
+
1688 -
+
1408 -
1288 P2P .
4 AOxCPU
1688 —
2 AOxCPU
1 1 1 1 1 1 1
a S 18 15 =4=) 25 38 35 44

number of measured migrations

Local to Global optimum

4 O
Application
time
Local optimum
WORKI|STEALING

Global optimum

>
Number of migrations

time [msec]

2288

2888

18808

16808

14060

1288

1668

s8a

Ranked Work Stealing (*)

Central Server *

Robin—-Hood O

Robin—-Hood + Ranked Hork Stealing +
2 AOxCPU

T
w
*

"o g Robin-Hood

4 AOxCPU

+

+ 3 AOxCP

15

35 48

(*) I will steal only if | am a better machine than my target

number of measured 'R6BVIM Hood + Ranked Work Stealing

Conclusions

New Load Balancing for P2P Architecture
was developed

Algorithm exploits the P2P infrastructure

to speed up migration time, so application
time

Preliminary results seem to be promising
More research is needed

Questions?

