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Who will start the balance process?
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Balancing Constraints

* To speed up application performance
* To maximize the resource (CPU) usage.

« To reduce the bandwidth usage of Load
Balance algorithm

« Fast reaction against load imbalances

P2P




Active Objects and CPU time
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Migrating this object will:
Speed up service rate
Reducing wait-for-response time

... if the new location is better.




Migration Constraints

 What is a better machine?
— Less loaded machine (idle machine?), and
— Faster (or equivalent) machine

* Supposing: no active object’s service will
use more than 50% of CPU time
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Migration to a better machine?

* Using a total order relation (Rank) among

Processors:

 |If P1 is overloaded, it will demand for balance to
its neighbors, providing Rank(P1)

* Let OT, UT = Overloaded (Underloaded )
Threshold

* |If load(P2) < OT-:
If load(P2) < UT*Rank(P2)/Rank(P1):
P2 will reply to P1 to start migration



Load Balancing on P2P

Messages =

N° of Overloaded Nodes
X

K (1 + P(underloaded))




Which value of K?

« Probability of have at least one reply: P =1 - P

P(Overloaded) = 1 - P(Underloaded)
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Probability of have at least one reply: P; = 1 - Pk

P(Message)
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Which value of K?

P(Overloaded) = 0.7 - P(Underloaded)
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Jacobi’'s lteration

« To solve linear system of equations Ax = b.

« Having x, - D-1(L+U)x,_,+D-'b, where the
matrices D, -L and —U represent the diagonal,
strictly lower triangular and strictly upper
triangular parts of A respectively.

« Stopping when || X, — X ¢ || <€



Test of P2P-LB Algorithm

Load = [0,1] (% used CPU)
Underloaded Threshold = 0.3
Overloaded Threshold = 0.8

Number of neighbors to ask = 3
Update time = 5 + 30 t (1 — load) [sec]

o t follows an uniform distribution

Rank = CPU’s speed
25 Machines (from 0.5 to 3.4 GHz)
36 Active Objects
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Load Balancing Benchmarks
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Local to Global optimum
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Conclusions

New Load Balancing for P2P Architecture
was developed

Algorithm exploits the P2P infrastructure

to speed up migration time, so application
time

Preliminary results seem to be promising
More research is needed



Questions?




