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Presentation of the Problem.
We consider the Mc-Kean Vlasov Equation in Rd:

∂U(t, x)

∂t
=

1

2

d∑
i=1

∂2U(t, x)

∂x2
i

−
d∑

i=1

∂(U(t, x)bi(x, U(t, x)))

∂xi
(1)

U0(0, x) = µ0(x) (2)

where b : Rd ×Rd → R
d and bi(x, U(t, x))) =

∫
R

bi(x, y)U(dy).

We are interested in the limit function when the time goes
to infinite, lim

t→∞
U(t, x) .
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Presentation of the Problem .-Probabilistic Approach

• The probabilistic interpretation let us prove existence,
uniqueness and to give a discretization algorithm to the
solution of the equation 1.

• We have a stochastic differential equation associated to the Mc Kean

Vlasov.

dXt = [

∫
Rd

b(Xt, y)µt(dy)]dt + dWt (3)

L(Xt) = µt ∀t, (4)

where Wt is a d-dimensional Wiener process.

• Now our objectives are equivalence to:

Study the existence and the uniqueness of a stationary
measure. Propose an algorithm to approximate the stationary
measure. Characterize its convergence velocity.
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Theoretical Framework.

1. The analysis of the stationary measure existence is generally
easier than the uniqueness analysis.

2. Under restrictive hypothesis, Tamura (1982) proved there
exists a unique stationary solution for the equation (1)and a
theoretical velocity of convergence. he use a complicated norm.

‖U(t)− U∞‖L2( dx
U∞ ) ≤ a exp(−λt)

3. Also we can cite Veretennikov (2004). He proved existence
and uniqueness using weak hypothesis and treated the velocity
with a especial norm (total variation). Our approach is
different, because we search a result in a functional norm.
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Theoretical Framework.- Our Approach
We use hypothesis stronger than Veretennikov’s one and different
than Tamura’s one. We want to show the existence of the
stationary measure of the equation 3, but using Maximum Principle
techniques. Thanks of this type the technique we can bound the
density in each t and the stationary density. Overall we search
measure of the velocity of convergence punctually in the densities.
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Discretization Framework.
Classical techniques.
System Particles equation:

dXi,N
t =

1
N

d∑
j=1

b(Xi,N
t , Xj,N

t )dt + dW i
t

Xi
0 = µ0(x) ∀i

Euler’s squeme (General):

X
(4t)
0 = X0

Xti
= Xti−1 + b(Xti−1, ti − 1)4t + W4t,

where W4t ∼ N(0,4t)
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Discretization Framework.

• For the analysis in [0,T] we can approximations by Particle of
System introduced by Talay and Bossy

Theorem 1. Under H5, if T is fixed, 0 < ∆t < 1, such that
T = ∆t ∗K, K ∈ N. Let V (tk) be the distribution function
associated to U(tk) in time tk. Let V̄ (tk) be the approximation
by N particles then

E‖V (tk, ·)− V̄ (tk, ·)‖L1 ≤ C(T )(‖V0 − V̄0‖L1) +
1√
N

+
√

∆t
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Discretization.-Our Approach
We denote X̃t

dX̃t = aX̃τ(t)dt +
∫
R

∇φ(X̃τ(t) − y)µ̃τ(t)(dy)dt + dwt (5)

with τ(t) = inf{tk|tk < t}, tk k = 1, . . . K discretization times of
Euler’s schema

Proposition 1. If b(x, y) = −ax + βφ′(x− y), a positive, φ has a
bounded second derivative, and β ≤ a

4‖φ′′‖∞ . Then

E(Xt − X̃t)2 ≤ C(4t)2

C independent on the time.
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Conclusions

1. The first problem is to give the sufficient conditions to
guarantee existence and uniqueness. These hypothesis let us
frame the approximation.

2. The technique of the maximum principle is useful to prove
bounding properties on the densities and uniqueness and
existence of the stationary measure.

3. Respect to discretization, the usual techniques to prove
convergence velocity are useful when the analyze is in [0,T].In
our case is necessary to extend result.
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Future works
We will concentrate in the velocity of convergence in a functional
framework. That is to say, in the existence of the density and
inequalities for densities in the stronger hypothesis case.
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Hypothesis
H1. Tamura

• b = ∇φ1 + β∇1φ2

• φ1 = −α
2
|x|2 + ϕ1(x) where ϕ1(x) ∈ S(Rd) and α > 0

• φ2(x, y) = φ2(y, x)

• φ2 ∈ S(R2d) or φ2(x, y) = ϕ2(x− y), ϕ2 ∈ S(Rd)

• D2F (U∞, ·)[u][u] > 0, where F is the free energy functional and u is

a measurable function in Rd such that ess. sup
x∈R

| u
U∞

| < ∞
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Hypothesis
H2. Veretennikov

1. b(x, y) = b0(x) + b1(x, y)

2. sup
y
〈b0(x)− b0(y), x− y〉 ≤ −C0|x− y|2, with C0 > 0

3. lim
|x|→∞

sup
y
〈b(x, y), x〉 = −∞ or lim

|x|→∞
sup

y
〈b(x, y), x〉 = −r

4. b1(x, y)− b1(y, x) = 0 and 〈(x− y)− (z − y), b1(x, y)− b1(x, z)〉 ≤ 0

5. (replacing previous hypothesis)

max(|b1(x, y)− b1(z, y)|, |b1(y, x)− b1(y, z)|) ≤ Clip|x− z| and

C0 > Clip C0 as in 2
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Hypothesis
H5. Bossy-Talay

• b uniformly bounded in R2 and lipschitz.

• U0 admits a continuous density u0 verifying : ∃M, η positive

constants such that u0(x) ≤ η exp(−αx2

2
) when |x| > M or

• U0 admits a density u0 with compact support and it is continuous in

its support. Or

• U0 is a Dirac Measure.
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