lor E%:—- Information Society

Technologies

Project No. FP6-004265
CoreGRID

FEuropean Research Network on Foundations, Software Infrastructures and
Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Network of Excellence

GRID-based Systems for solving complex problems

Deliverable D.PM.02 — Proposals for a Grid Component
Model

Due date of deliverable: November 30, 2005
Actual submission date: February 15, 2006

Start date of project: 1 September 2004 Duration: 48 months

RESPONSIBLE PARTNER: INRIA

Revision: Final

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)
Dissemination level

PU [Public | PU

Keyword list: programming model, components, grid, high performance, scalability

CoreGRID FP6-004265

Contents

1 Summary

1.1
1.2
1.3
14

A Programming Model for the Grid,
Challenges, Requirements, and Main Characteristics of the GCM . .
Main Technical Contributions of this Proposal
Next Objectives and Future Works

2 Introduction

3 Context
3.1 Grid Specific Problematics
3.2 Stateofthe Art
3.2.1 Component Models
3.2.2 Grid Middleware
3.3 The Fractal Component Model

4 General Features

5 Rationale for a Grid Component Model

5.1
5.2
5.3
5.4
5.5

5.6
5.7

5.8

Communication Lo
Parameterized Instantiation o000
Controllers
Higher-order Components and Code Mobility
Interoperability o
5.5.1 Web Services Interoperability
5.5.2 Multi-language Interoperability
Adaptivity
Parallelism, Parallel Interfaces.
5.7.1 Deployment of Parallel Components
5.7.2 Parallel interfaces: Multicast, Gathercast
Component Packaging and Deployment

6 Proposal for the GCM Definition

6.1

6.2
6.3
6.4

6.5

6.6

Abstract Component Model and Architecture
6.1.1 Component Specification as an XML Schema
6.1.2 Run-Time API Defined in Several Languages
6.1.3 Packaging described as an XML Schema
Fractal Specification L.
Communication Semantics
Virtual Nodes o
6.4.1 Definitions L L L
6.4.2 Virtual Nodes and Components
6.4.3 Summary: Virtual Nodes in the GCM
Multicast and Gathercast Interfaces
6.5.1 Multicast Interfaces
6.5.2 Gathercast interfaces Lo
6.5.3 Gather-multicast interfaces
6.5.4 Collective bindings L 0oL
6.5.5 Gathercast to multicast bindings
6.5.6 Summary: Collective Interfaces and Collective Controllers . .
Dynamic Controllers
6.6.1 Principles Lo
6.6.2 Application to Reconfiguration

CoreGRID - Network of Excellence

(=] CU W w W

NoRNoJBEN BEN i el

CoreGRID FP6-004265

6.6.3 Summary: Dynamic Controllers as a Fractal Extension
6.7 Autonomic Components
6.7.1 Introductiono L.
6.7.2 Autonomic Controllers
6.7.3 Hierarchy and Autonomicity
6.7.4 Autonomic Component Controllers
6.7.5 Summary
6.8 Packaging

7 Existing Platforms and Implementations
8 Conclusion

A Fractal API
Al Java API
A2 CAPI . . . e
A3 OMGIDL API e

B Fractal ADL
B.1 standard.dtd

CoreGRID - Network of Excellence

37
38
38
38
40
40
43
44

44

45

51
ol
93
54

56

CoreGRID FP6-004265 3

1 Summary

This document describes a Grid component model (called GCM). It defines the
main features to be included in the GCM, as currently assessed in the Programming
Model Virtual Institute. By defining the GCM, the Virtual Institute aims at the
precise specification of an effective Grid Component Model.

The features are discussed taking Fractal as the reference model. As explained in
the text, the features are defined as extensions to the Fractal specification in order
to better target Grid infrastructure: mainly virtual nodes, collective interfaces,
dynamic controllers, and autonomic components. The Virtual Institute actually
expects several different implementations of the GCM, not necessarily relying on
existing Fractal implementations.

1.1 A Programming Model for the Grid

The Virtual Institute on programming models aims to deliver a definition of a
component programming model that can be usefully exploited to design, implement
and run high performance, efficient Grid applications. The same component model
should also be exploited in the design of tools supporting Grid programming, such
as in the development of PSEs or in the development of tools supporting resource
management or system architecture related activities.

It is assumed that the component based programming model’s main aim is to
address the new characteristic challenges of Grid computing - heterogeneity and
dynamicity - in terms of programmability, interoperability, code reuse and effi-
ciency. Grid programmability, in particular, represents the biggest challenge. Grid
programs cannot be constructed using traditional programming models and tools
(such as those based on explicit message passing or on remote procedure call/web
service abstraction, for instance), unless the programmer is prepared to pay a high
price in terms of programming, program debugging and program tuning efforts.

The objective of this first proposal for a Grid Component Model is to define the
main features to be included in the GCM, as currently assessed in the Programming
Model Virtual Institute.

1.2 Challenges, Requirements, and Main Characteristics of
the GCM

The GRID poses new challenges in terms of programmability, interoperability, code
reuse and efficiency. These challenges mainly arise from the features that are pecu-
liar to GRID, namely heterogeneity and dynamicity.

New programming models are required that exploit a layered approach to GRID
programming which will offer user friendly ways of developing efficient, high per-
formance applications. This is particularly true in cases where the applications
are complex and multidisciplinary. Within CoreGRID, the challenge is to design a
component based programming model that overcomes the major problems arising
when programming GRIDs.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 4

The challenge, per se, requires that a full set of sub challenges will be addressed:

e A suitable programming model (that is user friendly and efficient) to program
individual components is needed

e Component definition, usage and composition must be organized according to
standards that allow interoperability to be achieved.

e Component composition must be defined precisely in such a way that com-
plex, multidisciplinary applications can be constructed by the composition
of building block components, possibly obtained by suitably wrapping exist-
ing code. Component composition must support and, in addition, guarantee
scalability.

e Semantics must be defined, precisely modelling both the single component
semantics and the semantics of composition, in such a way that provably
correct transformation/improvement techniques can be developed.

e Performance/cost models must be defined, to allow the development of tools
for reasoning about components and component composition programs

All of these sub-challenges must be dealt with taking into account that im-
provements in hardware and software technology require new GRID systems to be
transparent, easy to use and to program, person centric rather that middleware,
software or system-centric, easy to configure and manage, scalable, and suitable to
be used in pervasive and ubiquitous contexts.

The essential characteristics proposed by the GCM include: Support for reflec-
tion, Hierarchical structure, Model Extensibility, Support for adaptivity, and Inter-
operability. Additionally the model should allow for lightweight implementations, in
order to support the design of compact and portable implementations.

We also require that the GCM has a well defined semantics. Moreover, the
GCM should take into account the necessity for its implementations to ensure high
performance.

It is important to note that this component model must be suitable both for
implementing Grid applications and Grid platforms themselves, with both of them
benefiting from having the above features. For example, adaptativity is a key issue
for programming Grid application that can be deployed on heterogeneous environ-
ments, but this also means that Grid platforms will themselves be deployed and have
to manage heterogeneous systems, consequently such platforms would necessitate
an even stronger support for adaptativity than the applications themselves.

1.3 Main Technical Contributions of this Proposal
The proposal for the definition of the GCM include the following aspects:

e Fractal as the basic component architecture: Fractal defines a highly extensi-
ble component model which enforces separation of concerns, and separation
between interfaces and implementation. Fractal is not particularly intended
at distribution, and Grid specificities need to be taken into account in the
definition of the GCM.

o Abstract Component Model and Architecture: this document presents the basis
for defining an abstract view of the Grid Component Model. The final version
of the GCM should include standard definitions for this abstract view. Such
a high-level view should allow all the partners to define a joint view of what

CoreGRID - Network of Excellence

CoreGRID FP6-004265)

should be in a component model for the Grid, thus allowing interoperability.
The following architecture has been proposed for concretely defining the GCM:

1. Component Specification as an XML schema or DTD
2. Run-Time API defined in several languages

3. Packaging described as an XML schema

e Communication Semantics Standards: GCM components should include var-
ious communication semantics, however we chose in this document to partic-
ularly support asynchronous method calls as the default case. It is however
important to notice that the definition of GCM interfaces should allow for any
kind of communications (e.g., streaming, file transfer) either synchronous or
asynchronous.

e Deployment of components relying on Virtual Nodes: Virtual Nodes are ab-
stractions allowing a clear separation between design infrastructure and phys-
ical infrastructure. Virtual Nodes are used in the code or in the ADL and
abstract away names and creation and connection protocols to physical re-
sources, from which applications remain independent. Virtual Nodes are op-
tional.

o Multicast and Gathercast Interfaces: To meet the specific requirements and
conditions of Grid computing for multiway communications, Multicast and
gathercast interfaces give the possibility to manage a group of interfaces as a
single entity, and expose the collective nature of a given interface.

o Component Controllers: To provide dynamic behavior of the component con-
trol, we propose to make it possible to consider a controller as a sub-component,
which can then be added, plugged or unplugged dynamically.

This approach gives a better adaptivity, both with respect to the platform,
and with respect to the controlled components.

o Autonomic Components: Autonomicity is the ability for a component to adapt
to situations, without relying on the outside. Several levels of autonomicity
can be implemented by an autonomic system of components. The GCM de-
fines four autonomic aspects, and it gives a precise interface for each of these
four aspects. These interfaces are non-functional and exposed by each com-
ponent: They correspond to Fractal controllers.

1.4 Next Objectives and Future Works

The long term objective of the Programming Model Virtual Institute concerning
the GCM is to finally provide the specification of the GCM standard. Such an
objective necessitates further refinements, discussions inside the Virtual Institute,
and collection of requirements expressed by other Virtual Institutes.

Next phase of the development of the GCM standard will be the preparation
of the technical specifications of the GCM. Based on the specifications of Fractal
(ADL), but also the technical specifications of other components models like CCM,
the long term objective of this work is to specify the ADL, the API, and all the
necessary technical details of the GCM. This specification should be precise enough
to allow interoperability of GCM components, but general enough to allow almost
all the existing component programming methodologies to be implemented as GCM
components.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 6

2 Introduction

This document is a proposal for a standard Grid Component Model that will be
defined by the Programming Model Virtual Institute. Its first aim is to identify the
required features for a Grid Component Model, deduced from the specificities of
Grid computing, and the kind of components we want to address. In order to fulfill
those requirements, we first describe the rationale for the GCM and then describe
the core features of the proposed GCM framework.

The general strategy adopted by the Virtual Institute is to rely on the Fractal
specification as much as possible, because the Fractal specification provides us with
a terminology and abstract API relative to components. We expect the GCM to be
an extension of the Fractal specification, if necessary specifying some choices and
extensions of Fractal that we consider as necessary in the context of Grid compo-
nents. As for the Fractal model, we expect the GCM to be very extensible and
generic, that is why we only aim at providing very generic APIs allowing different
implementations of the GCM to be realized, and different components implement-
ing the specification to communicate. Thus, we expect different GCM conformance
levels to be defined, and different implementations of GCM components to be char-
acterized by their conformance level. Because of the extensible and generic aspect
of the model, we also expect extensions of the GCM, and specific refinements to be
defined in the future, not necessarily inside the Virtual Institute.

The existence of different levels of conformance, and thus different versions of
the GCM is a crucial feature here. This results from discussions inside the Virtual
Institute, and is similar to what exists in Fractal. It should allow every CoreGrid
partner, and more generally, every user of the GCM to provide different imple-
mentations of the component model, still allowing all those implementations to
interoperate and to be comparable.

This proposal is concluded by an overview of the features that we identified as
requirements for a Grid component model, and the way we propose to fulfil the
requirements in the final specification.

This document is organized as follows. First, Section 3 presents the context
in terms of Grid computing, component models and existing approaches for dis-
tributed and Grid component models. Then, in Section 4, we present the very
general objectives and constraints that are crucial for our Grid Component Model
(GCM). Section 5 presents the rationale for the need for a Grid specific component
model. We focus in this section on the aspects that become crucial in the context
of Grid computing and explain how this can be realized by extending the Fractal
component model. However, we expect that GCM implementations not relying on
existing Fractal implementations will be developed. Then, Section 6 specifies the
Grid Component Model. Finally, Section 8 summarizes the required features for a
well-designed Grid component model, together with the solution proposed by the
GCM to implement those features.

3 Context

3.1 Grid Specific Problematics

Grid computing aims at providing transparent access to computing power and data
storage from many heterogeneous computers in different places - this is also called
virtualization of resources. Component based programming may be used in this
context for the same reasons than it is useful in a less heterogeneous and distributed
context: clarity in design and easier understanding of the design, and increased
reusability of software. Component frameworks, however, have to handle the crucial

CoreGRID - Network of Excellence

CoreGRID FP6-004265 7

features of Grid computing:

multiple administrative domains: the resources can be spread around
many different networks, each with their own management and security poli-
cies

distribution: resources can be physically distant from each other, resulting
in higher, and sometimes unpredictable, network latency

heterogeneity: unlike cluster computing, where the resources are homoge-
neous, Grids gather resources from multiple hardware vendors, running on
heterogeneous operating systems, and relying on different network protocols

dynamicity: configuration may change at runtime, due to environmental
changes (for optimized performance, or in case of failures), or by the addition
of new resources while the application is running.

legacy software: in order to reuse already existing and optimized software,
legacy software should be wrapped, enabling integration in broader systems

complexity: Grid applications can be complex since in addition to the com-
plexity of highly specialized pieces of software they address issues of integra-
tion, configuration and interoperability

high performance: components frameworks should be designed for effi-
ciency, notably by offering parallel programming facilities.

Several discussion about core features for Grid components can be found in the
literature, for example in [36, 37].

Most of these features concern both Grid applications and Grid middlewares.
The following of the document will show how the GCM aims to achieve these goals.

3.2

State of the Art

3.2.1 Component Models

Let us first focus on two commonly known models for a component-oriented ap-
proach [35] to distributed computing : the Common Component Architecture (CCA)
[19, 21] and the CORBA Component Model (CCM) [29].

CCA has been defined by a group of researchers from laboratories and aca-
demic institutions committed to defining standard component architectures
for high performance computing. The basic definition of a component in CCA
states that a component “is a software object, meant to interact with other
components, encapsulating certain functionality or a set of functionalities. A
component has a clearly defined interface and conforms to a prescribed behav-
ior common to all components within an architecture.” Currently the CCA
Forum maintains a web-site gathering documents, projects and other CCA-
related work (www.cca-forum.org) including the definition of a CCA-specific
format of component interfaces (Babel/SIDL — SRPC Interface Description
Language) and framework implementations (Ccaffeine)

CCM is a component model defined by the Object Management Group (OMG)
an open membership for-profit consortium that produces and maintains com-
puter industry specifications (e.g. CORBA, UML, XMI, ...). The CCM spec-
ifications include a Component Implementation Definition Language (CIDL);

CoreGRID - Network of Excellence

CoreGRID FP6-004265 8

the semantics of the CORBA Component Model (CCM); a Component Imple-
mentation Framework (CIF), which defines the programming model for con-
structing component implementations and a container programming model.
Important work has been performed in order to turn the CCM in a Grid
component model (e.g. GridCCM).

We observe from the features available in the current implementations of CCM,
CCA and other component models for the Grid that most current projects ex-
changing data, executable code or both across network boundaries use a portable
format. Thus, the underlying technologies XML, Java and Web Services should be
supported by a future Grid component model.

More generally, recent years have seen component technology becoming an im-
portant software construction technique. Standard component models such as EJB
(Enterprise Java Beans) [28] and CCM [29] are now used in industry at production
level. However, such components fall short of addressing all the Grid issues. Even if
components can fit into a distributed infrastructure, a single component is not itself
distributed per se. This means that a single component cannot be used to manage
the complexity of a computation spanning several computers. Moreover, business
components do not currently take into account the underlying Grid resources: they
do not take advantage of all available resources, nor such constraints as the multi-
tude of deployment protocols and dynamic distributed security mechanisms.

Recently, the US initiative CCA brought together a number of efforts in component-
related research projects, with the aim of developing an interoperable Grid compo-
nent model [5, 19] and extensions for parallelism and distribution [8]. The partic-
ipants of the CoreGrid Programming Model Virtual Institute are closely following
this activity [22]. We believe there are several reasons why we should go for a
new and independent Grid component model springing from the European commu-
nity. First of all, the CCA model is non-hierarchical, thereby making it difficult to
handle large configurations such as those needed in the Grid (several thousands of
machines). Such a hierarchical approach to component systems, is indeed one of the
specificities of the Fractal component model; as it is the starting point for the GCM,
this component model is dedicated a special position in this state of the art (see 3.3).
In addition, the CCA model is rather poor with regards to managing, when needed,
components at execution time. This makes it hard to realize certain features, for
instance, dynamically reconfiguring components based on observed performance or
failures. The CCA activity seems to be somewhat US-centric, with difficulties for
European or world-wide component researchers to influence and incorporate their
contributions and requirements.

3.2.2 Grid Middleware

Since Grid components must be deployed on Grid infrastructures, integration with
Grid middleware is essential.

Currently, at scheduling and deployment levels, much Grid middleware is avail-
able. Besides the Globus / OGSA (Open Grid Services Architecture) / WSRF (Web
Services Resource Framework) toolkit and architecture, the standards network pro-
tocols (i.e. ssh, rsh), the open or proprietary job schedulers (LSF, OPBS, PBS, Sun
Grid Engine, etc.), there are the integrated European-financed software ranging
from system level middlewares like Unicore, EGEE gLite, up to application level
ones like GridLab GAT (Grid Application Toolkit), and ProActive. The compati-
bility and interoperability of those tools is, at the moment, rather poor. A general
aim of the proposed work will be to achieve strong portability of the component
framework being developed.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 9

To conclude this state-of-the art review, it is useful to clarify the relationship
between components and Web or Grid Services. While the latter is a fundamental
aspect of Grid infrastructure, especially at the level of finding services to carry out
scheduling, allocation, deployment etc., they will not replace the need for building
applications using off-the-shelf components — maybe for the unique reason that, at
some level, the integration must occur at code composition time, not only at de-
ployment time, hence the need for a well-defined component model. Nevertheless,
it is clear that a component should provide the means to automatically expose a
Web Service interface and integrate Web Services, in order, for instance, to facil-
itate the seamless integration of components into a service-oriented and dynamic
infrastructure.

3.3 The Fractal Component Model

In this document, we will describe the GCM as an extension of the Fractal specifica-
tion, and we will introduce the new features using a Fractal compliant terminology.
In that sense, Fractal is considered as a common terminology to ground the defini-
tion and comparison of Grid extensions to be included in the GCM. Fractal [16, 9, 17]
has been chosen as the reference model for designing the GCM, because it is well-
defined, hierarchical, and extensible. We define the GCM as a well-designed and
sizable extension of Fractal. Indeed, we rely on Fractal concepts and specification
for the design of the hierarchical component structure and clear separation between
functional — content — and non-functional — controllers — aspects.

A brief summary of the Fractal specification is given in Section 6.2, but the
reader should refer to the Fractal specification [17] for a complete description of the
Fractal model. similar to most component models, Fractal uses an object-oriented
terminology [34, 27]. We also adopt this terminology for the GCM; however, it is
possible to implement GCM components on top of any kind of language (provided
the designer of the component framework knows the Object-Oriented terminology).

Fractal is first an abstract component model; it has a formal specification, which
can be instantiated in different languages, like, for example, Java or C. Fractal actu-
ally has several different implementations in several languages. The GCM is based
on this formal specification and proposes an extension adapted to Grid comput-
ing. It is not tied to the reference implementation (Julia), which is not targeted
at distributed architectures. Fractal does not constrain the way(s) the GCM will
be implemented, but it provides a basis for its formal specification, allowing us to
focus on the Grid specificities.

Fractal is a multi-level specification, where depending on the level some of the
specified features are optional. Section 6.2 will recall those levels, called confor-
mance levels in the Fractal specification.

4 General Features

The GCM is the component model adapted for the grid that the Programming
Model Virtual Institute proposes. It should possess some basic and essential char-
acteristics.

e Support for reflection: Both introspection and intercession;

e Hierarchical structure: Facilitate the identification of architectural units, thereby
facilitating the design of complex systems. Grid systems are usually composed
of many different and heterogeneous software units. Each software unit may
itself integrate other software units. For example a unit responsible for data-
mining may itself be constituted of several units running on a given cluster,

CoreGRID - Network of Excellence

CoreGRID FP6-004265 10

and this data-mining unit may itself be part of a larger system, like a weather
prediction system;

e Model Eztensibility: The model should include placeholders to allow for new
features to be added to components and the component model;

e Language neutrality: GCM should be specified in a programming language
independent way;

e Support for adaptivity, that is provide automatic ways of adapting running
GCM programs to the features required/provided by the target Grid and
component architecture;

o Interoperability: GCM should allow components to export and import func-
tionalities from other frameworks; for instance, one should be able to use a
Web Service or CCM from within the GCM as well as being able to export a
Web Service port for any GCM component.

Additionally the model should be lightweight, in order to allow compact and portable
implementations to be designed, and have a well defined semantics. Moreover, the
GCM should take into account the necessity for its implementations to ensure high
performance.

This component model must be suitable both for implementing Grid applications
and Grid platforms themselves, with both of them benefiting from having the above
features.

5 Rationale for a Grid Component Model

The definition of the component model we propose is based on Fractal concepts and
terminology. In particular we will use many of the notions defined by the Fractal
specification. For example hierarchical composition of components follows the one
defined in Fractal. We will also separate functional and non-functional interfaces.
We wish to provide introspection and intercession as defined in Fractal, and we will
rely on a type system, which will be an extension of the one suggested in the Fractal
specification.

As in Fractal, we will use in this section and in Section 6 an extension of the
graphical representation for components that is already used in Fractal. In this
document, this graphical representation is here to illustrate the concepts presented
and facilitate the reading of the document. However, Fractal components repre-
sentation can be used to design component systems; thus, one can expect that an
adaptation of the representation used in this document will be used in the future
as an abstraction for creating real applications.

We will focus below on those features which we consider to be important in
a Grid component platform, and in particular discuss to what degree they are
supported by Fractal.

Implementing the features presented in this section in a component framework
ensuring the general features of Section 4, will lead to a well-designed component
model solving the Grid-specific problems presented in Section 3.1.

5.1 Communication

Generally, one of the challenges in Grid computing is mastering of network la-
tency. The Fractal model provides means to overcome this challenge, because it

CoreGRID - Network of Excellence

CoreGRID FP6-004265 11

supports all kinds of communication pattern. In addition, binding components can
implement sophisticated message-passing mechanisms, such as publish/subscribe or
pulling. For instance, the Dream framework implements complex communications
as composite bindings [1]. Also notification mechanisms, built upon asynchronous
communications, are useful when realizing compositions in time (workflows), where
the logic is driven by a sequence of events.

Asynchronous communications is one of the communication patterns that is
particularly useful in mastering the latency. It can even be realized without binder
components, thereby avoiding unnecessary intermediate components. This is the
case, for example, in the implementation of Fractal with ProActive[7], where inter-
component communications can be asynchronous and offer data-based synchroniza-
tion capabilities (wait-by-necessity, first class futures).

However, ProActive implements asynchronism with rendezvous to guarantee or-
dering of messages. More generally, different communication paradigms should be
implemented depending on the guarantees to be ensured and on the efficiency one
wants to achieve. Thus, even if asynchronism seems, in general, the most efficient
communication paradigm, asynchrony is achieved very differently in different frame-
works, depending on the assumptions and guarantees of the model.

Thus, it seems impossible to decide on a simple communication paradigm for
component communication over the Grid, which implies that the kind of communi-
cation implemented/accepted by each interface of a component should be specified
in the interface type, with the natural additional requirement that only interfaces
with compatible communication paradigms can be bound together. The definition
of the compatibility relation could, initially, be simply equality, meaning that only
a client and a server interface which communicate in the same way can be plugged
together; more generally, some kind of sub-typing can be defined between the com-
munication types.

Fractal’s composite bindings can be implemented in order to be able to plug
together interfaces implementing different communication paradigms.

The port semantics for some predefined (and classical) ways of communication
can be predefined, but such a semantics should be extensible.

The envisaged communication paradigms include synchronous, purely asyn-
chronous, asynchronous with rendez-vous, deferred mode, asynchronous method
invocation with futures, CCM events, ASSIST [3] data-flow streams, data-space
oriented, and yet unknown ways of communicating (e.g., explicitly nondeterminis-
tic communication). Section 6.5 will also present a proposal for collective ports,
leading to collective communications.

5.2 Parameterized Instantiation

A crucial feature for Grid components that is supported by the Fractal component
model is the parameterized instantiation. Indeed, depending on the environment
(execution environment, platform, application developed) the deployment of a given
component should be parameterized. This relates to the functional aspect (content),
and mainly the non-functional parts. Indeed, adding different controllers depending
on the usage of a given component is essential. For example, when instantiating a
component with a Factory, Fractal relies on a method of the form:

Component newFcInstance (Type t, any controllerDesc, any contentDesc).

This allows the parameterization of the component creation by a description of the
controllers to be associated with the component, and a description of the content
of the component.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 12

5.3 Controllers

Controllers, as defined in Fractal, handle non-functional behavior of components.

As Fractal is an open model, it is possible to introduce new controllers for the
management of non-functional properties. It is important to allow users of a com-
ponent framework to customize the framework for their needs. Controllers could
thus be defined to solve problems specific to the Grid. For instance, migration
controllers for moving a computation from an overloaded site to a less loaded one,
or disconnection controllers for handling the mobility on the client side. Commu-
nications between different administrative domains, although usually manageable
at a lower level of the infrastructure, could also be specialized or configured on a
component-by-component basis using custom controllers.

The ability to add or trigger controllers dynamically is also a key requirement for
achieving adaptivity of the component model. Fractal does not explicitly specify
that controllers should be determined and configured only at instantiation time
(c.f. Section 5.2), and Section 5.6 will propose a way to provide controllers that are
configurable at run-time.

Life-cycle controllers, content controllers and binding controllers as defined in
Fractal are necessary to handle hierarchical composition, application components
and platform components. However, they might be extended and adapted to a Grid
environment.

For instance, a binding controller adapted to a Grid component system should
be able to ensure, when binding components together, that they rely on compatible
communication paradigms, or, if it is possible, include an adapter component.

With regard to lifecycle, the controller might be extended to include Grid-related
features, for example, one might include the notion of session and transactions.
However, such notions could also be defined as separate controllers.

A controller can also act as an interceptor: it can intercept incoming and outgo-
ing operation invocations targeting or originating from the component’s sub com-
ponents. This is also useful in the context of aspect-oriented programming and the
definition of transactions. As for any controller, such interceptors are dynamically
configurable.

Section 5.6 will focus on a particular aspect of controllers that are, we believe,
crucial when addressing the dynamicity and adaptivity of component control.

5.4 Higher-order Components and Code Mobility

One could imagine several conformance levels towards real higher-order components.
Basically, for components, the term higher-order means that the components them-
selves are first class objects and can be manipulated by the application, this implies
that they can be passed along any binding (as parameters of service invocation).

This could be partially simulated by parameterizing the instantiation of a com-
ponent either by some executable code, or by other components. A step further
consists in dynamically changing the component configuration (acting on binding
and content controllers). The various ways of acting on the component system
topology results in the following classification into four levels:

e First, dynamic code loading in the context of skeleton programming allows the
configuration of components by using entities, given dynamically as parame-
ters when invoking a service on a component. In the HOC system for instance,
setWorker (Worker w) or setMaster (Master m) like services are available for
configuring a farm skeleton with some specific instances of Worker or Master
sub-classes [14]. On the Grid, such a functionality requires the ability to carry
code and transmit it through some component bindings.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 13

e Second, parameterized instantiation as supported by Fractal, allows, at instan-
tiation time, the initial content of a composite component to be expressed as
a set of component instances;

e Third, Fractal content controllers allow the dynamic addition or removal of
components from a composite component, combined with the usage of binding
controllers; this allows the topology of a component system to be dynamically
changed but relies on a meta-level,

e Finally, real higher-order means components of any type can be passed along
any binding, thus triggering uncontrolled (in the sense of not being managed
by a controller) dynamic reconfiguration. This means code mobility, not only
in a physical sense but primarily in a logical way; contrary to level three, this
would be triggered at the application level, not at a meta-level. Note that,
this fourth level cannot be seen as a natural or direct extension of the level
three. This level requires the definition of a semantics for passing components
as parameters (copy vs.reference, sharing vs. instantiation, ...).

The three first levels correspond to facilities at the meta level only (i.e. controllers).
The fourth level provides higher-order capabilities to the application level itself (real
higher-order), allowing a greater expressivity.

Inherited from Fractal, the GCM provides support for the three first levels; real
higher-order components can be defined in the future as an extension of the GCM.

In this version of the GCM, via dynamic controllers, we make the third level
above powerful enough to express all the higher-order features that seem necessary.

Having the three first levels, one could implement real higher-order components
by intercepting communications between components and triggering adequate bind-
ing/content control operations to simulate the passing of components along the
bindings.

5.5 Interoperability

Any realistic programming model has to take into account the need to interoperate
with existing, legacy software. As such, GCM needs to interoperate with existing
component frameworks and allow applications to be built from a mixture of various
kinds of components.

From the legacy code point of view, several approaches exist, as for example [12]
generally consisting in encapsulating legacy code into a single component or a sin-
gle Grid-service. At the opposite, the GCM should allow a much deeper interop-
erability: GCM component should be able to control any other component, and
to interact with it. In other words, any GCM component should be able to trig-
ger non-functional actions of other GCM components, but also to achieve complex
communication patterns, involving requests-replies, streaming, etc. Indeed, those
communication patterns are already used between components of the same platform,
thus real interoperability between GCM components necessitates the availability of
such communication patterns.

As stated in [24], multi-language interoperability is difficult in the general case,
and would require manual or semi-automatic generation of wrappers or adapters.
However for a specific programming model, with specific constraints and with well-
defined APIs, this goal is easier to achieve. In the GCM, APIs will be defined
in order to maximize interoperability within a given language, and Web-service
interfaces will be provided for full interoperability, even when dealing with very
different implementations of the GCM.

Two different issues have to be solved with respect to framework interoperability.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 14

e Devising a proper mapping of the GCM interfaces over those of the other
framework, both for exporting GCM components and applications, and for
importing alien components into GCM compositions of components.

e Developing a GCM run-time and non-functional interfaces which allow the
components and the deployment system to select the appropriate communi-
cation support and to translate interfaces crossing the framework boundary.

Obvious candidates for GCM interoperability are Web Services, as a framework
already available on Grids, the Corba Component Model (CCM), and the Com-
mon Component Architecture (CCA), a component framework which has several
different implementations targeted at parallel and distributed systems.

5.5.1 Web Services Interoperability

Web Service interoperability is essential: in order to conform to industrial standards,
we need to be able to export a WSDL for any components.

Of course, GCM components also need to be able to use existing Web Services
thus importing and interacting with existing Web Services is also a required feature
for the GCM. Exposition of GCM components as Web Services can be inspired,
for example, by the integration of Fractal with HOCs as proposed by WWU and
INRIA [15].

In any case, the GCM will have to circumscribe the compatibility with Web
Services. For this, we first need to answer the question: “By how much will WSDL
compatibility limit/influence the component model used to develop applications?”:
for example, can any type existing in a GCM interface be mapped to a type in a
WSDL description?

We propose to use Web Services as the standard for interoperability between
GCM components, and with external frameworks. However, Web Services is not the
only way to implement interoperability and the GCM must allow interoperability
with other frameworks to be implemented.

5.5.2 Multi-language Interoperability

Interoperability issues come into play if we consider multi-language support within
the GCM framework. This is a complex issue that requires either an interface
definition language for GCM (this is the approach adopted within CCA using Babel
[32] to generate mediators and adapters), or to exploit framework interoperability
and a language-neutral framework as a language mediator (e.g. Web Services, CCM,
CCA) and inherit an existing IDL (WSDL, IDL3 or Babel itself, respectively).
The former solution is the most difficult to implement, while the latter has to be
evaluated with respect to the amount of features and performance that can be lost
at the framework interface.

Relying on Web-services or other mediators in the general case does not pre-
vent GCM from using manually or automatically generated glue components (or
wrappers) when suitable. Babel is a good example of such glue components. These
adapters will rely on existing IDL and API for the GCM, but they will not be
defined within GCM.

5.6 Adaptivity

Parallel and Grid computing platforms allow us to run programs exploiting a num-
ber of different resource configurations, the most trivial example being the degree
of parallelism we choose to exploit. Adaptivity means that a component, or a
component-based application, is able to run and change its configuration over time,

CoreGRID - Network of Excellence

CoreGRID FP6-004265 15

dynamically adapting to a specific need or a series of events. Three major issues
call for adaptive reconfiguration on Grids:

e changing behaviour of the computing resource/platform,
e the presence of resource/program faults,

e changing application needs, either self-detected (autonomic control) or user-
controlled (computation steering).

In all cases the basic operation the component(s) performs is a reconfiguration, that
is a change in the logical or physical structure of the application. A reconfiguration
consists either in a change in the set of used resources, or in a change in the set
of used components, or in the dependencies (bindings) between existing compo-
nents. A natural prerequisite for a correct reconfiguration is the preservation of the
semantics of the ongoing computation.

Reaction to dynamic resource behaviour Reconfigurations can help the sys-
tem to adapt to its environment, which may be evolving over time: for example, a
cluster may be overloaded, in which case the work would better be done somewhere
else, or an end user may want to change the configuration during runtime to obey
some external condition (e.g. the user wants to put more computational power to
get faster or more accurate results).

Reaction to faults Adaptive reconfiguration is useful when fault tolerance is
provided, to restore the required amount and/or allocation of resources or set of
components for the running application.

When a system comprises many machines (Grid systems range from a few to
several thousand hosts), and when computations can last for days, failures must
be considered. These failures are not bugs in the application, but rather bugs of
the underlying operating system, hardware faults, computing resources becoming
unavailable due to network failures. In some cases, parts of the system become
unavailable without any failure, for example the connection to some clusters is lost,
or all the machines were busy, the jobs cannot be run in the place and time they
were scheduled, and a timeout is reached, or simply a laptop is unconnected. The
system must be capable of reorganization to cope with these kinds of disruption in
the accessibility of some components.

Fault detection and handling is a separate issue from adaptivity. However, recov-
ery generally relies on adaptivity features in order to react to faults, e.g. automat-
ically reconfigure parts of the system if necessary. Moreover, once the components
have reacted and corrected the fault, or as a consequence of the additional compu-
tation needed to handle each fault, program configuration in the general case will
be sub-optimal and will have to be adapted.

Reaction to program changes Adaptivity is useful not only in reacting to the
behaviour of resources, but also to the behaviour of the program itself. There is a
large class of algorithms whose computational cost depends on the kind/size/values
of data and parameters (e.g. a user steering a simulation), and systems whose QoS
has to remain within specified bounds no matter what amount of input is provided
(e.g. computation servers receiving streams of tasks to process).

More generally, program changes may also concern services provided and re-
quired by the application. Indeed, the set of services a component application
needs may evolve over time, and it is necessary to adapt the component system to
these dynamically changing requirements.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 16

To cope with all of these different kinds of events, the system must be capable
of reconfiguration. Beside resource-related reconfiguration, if components can be
moved or reconfigured, they necessarily have to be adapted to their new environ-
ment. This can mean adding or removing some of their non-functional behaviors.

The dynamic capabilities of the Fractal model can help tackle these kinds of
issues. The ability to reconfigure a running component can be exploited either by
user intervention or by an autonomic control, which reacts to a triggering condition
in such a way to enhance the component configuration.

Autonomic control of adaptivity will be detailed in Section 6.7 with respect to
the implications on component interfaces. However, we must underline here that
autonomic behaviour relies on adaptivity management.

When devising a general model of the ongoing works for handling adaptivity in
parallel and distributed programs, it is natural to pursue abstraction with respect to
implemented adaptation techniques, monitoring infrastructure and reconfiguration
strategies. Higher-level actions will rely on lower-level actions and mechanisms,
and autonomic functionalities will rely on adaptive reconfiguration [4]. On a coarse
description level, the difference between adaptive and autonomic behaviour is in
the presence of managing code that generates reconfiguration requests from events,
such events being collected autonomously by the component itself.

Adaptivity is therefore a strong requirement. We want to exploit component hi-
erarchical abstraction for adaptivity [2]. A solution to implement this would be to
provide local managers for component-level adaptation together with a hierarchy of
manager components. Those aspects will interact by well-defined external/internal
server and client interfaces for non-functional aspects (e.g., configuration, monitor-
ing, deployment). These interfaces will have the capability to be added, plugged
and unplugged dynamically.

As a consequence, GCM needs to allow adding, plugging, and unplugging con-
trollers dynamically, thus allowing the dynamic addition or removal of some management /non-
functional aspects to any component. We need to generalize Fractal controller inter-
faces for handling these aspects (e.g. consider controllers as components as proposed
in [26]).

This is especially true when high-level programming environments are able to au-
tomatically generate code implementing adaptivity control policies and autonomic
behaviour management. In all cases the code generated has to be plugged into
components, which must provide specific external and internal interfaces for that
purpose, but management code behaviour is completely external and an orthogonal
issue w.r.t. the GCM definition.

Our approach to adaptivity has some strong similarities with the study of aspect
oriented programming for components architectures [11, 18, 31]. Indeed, dynamic
management of aspects also requires the ability to bind, unbind and add managing
code dynamically.

As suggested as an extension of Fractal in the Fractal specification, the solution
that will be detailed in Section 6.6 considers controllers as Fractal components,
allowing us to bind and unbind them using the BindingController and add them
using the ContentController. Section 6.6 presents a proposal for such dynamic
controllers as part of the GCM.

5.7 Parallelism, Parallel Interfaces

One of the objectives is to support both sequential and parallel implementation
for a given component. This means supporting several alternatives and associated
meta-data. For example, one can rely on an external (platform) component to
decide which implementation of a given component should be used.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 17

Parallelism for components is covered under a number of headings.

A parallel component is a component that executes a parallel code (in the sense
of several activities — not necessarily identical — running in parallel). In this sense,
most of the GCM composites are parallel components, as they will embrace several
activities (running in parallel). These activities can, in general, be deployed on
several machines.

Very often in Grid computing, we also need to have components running identi-
cal operations in parallel. A parallel service component is a component comprising
several identical entities running in parallel: sub-components in the case of a com-
posite; hidden parallel code (threads) in the case of a primitive.

Parallel interfaces - also called collective interfaces in this document - allow in-
teraction with parallel service components in an efficient, customizable, and adap-
tive way. The GCM proposes two main kinds of parallel interfaces: multicast and
gathercast interfaces.

Note that parallel interfaces are not mandatory, and it is possible either not
to use parallel interfaces at all, or to encapsulate parallel interfaces inside a com-
ponent: hierarchical composition plays a crucial role here. In both cases, parallel
components do not have explicit parallel interfaces, thus allowing safely exchange-
able sequential /parallel components.

Parallel interfaces are particularly adequate to express SPMD-style program-
ming.

5.7.1 Deployment of Parallel Components

As a parallel component can run on several machines, we need to be able to express
the distribution of the activities constituting the component over the Grid. Locating
and recruiting resources is a much more complex issue for parallel, Grid-distributed
components than it is for sequential components.

We do not want the user to deal with details of deploying parallel components
over heterogeneous parallel resources, either in the component code itself or at the
application level, because this violates the encapsulation requirement of compo-
nents. This is especially true as any GCM component can have several different
parallel and sequential implementations, and they can be safely replaced with each
other dynamically.

Component deployment will need some form of component packaging that in-
cludes an architectural description of the component in an appropriate Architecture
Description Language (ADL). The description of a parallel component will refer at
least to a set of independent activities (threads, processes) that, from an abstract
point of view, are deployed on a number of virtual nodes/processors.

Starting from a description of a component! and a user objective function, the
deployment process is responsible for automatically performing the steps needed to
start the execution of the component on a set of selected resources.

A framework for the (automatic) deployment execution of applications is com-
posed of several interacting entities in charge of distinct activities (Submission, Re-
source Discovery, Resource Selection, Planning, Enactment, Execution). For those
steps that are automatically performed, the user may want to specify an objective
function (e.g. to choose faster or cheaper computing resources), whose specification
is part of the deployment system.

Whatever the actual implementation of the deployment system, it uses a com-
mon description of a component structure and of the kind of resources the compo-
nent needs.

IThe extension to component-based application as graphs of components is straightforward.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 18

From the point of view of the execution, a component contains a structured set
of binary executables and requirements for their instantiation. Such information
can be used to generate deployment plans for GCM components

e to deploy sequential and parallel components using a common interface and
run-time,

e to deploy components in a multi-middleware environment,

e to dynamically alter a previous configuration, adding new computational re-
sources to a running application,

e for re-deployment, when a concrete component is dynamically substituted
with a different one, and when a complete restart from a previous checkpoint
is needed due to severe performance degradation or failure of several resources.

Note that the deployment process does not need to exploit all the parallelism
specified within a component description. As long as the minimum requirements
specified within the component package are met (e.g. kind of architecture, avail-
able memory and so on) a component comprising several virtual processes can be
deployed in practice on a smaller set of resources, possibly on a single machine.

5.7.2 Parallel interfaces: Multicast, Gathercast

Managing the communications between the components of a Grid application im-
plies managing interactions to and from several components, sometimes in a parallel
fashion. This implies that a component model for the Grid should include multi-
way 2 and parallel programming facilities. We propose to express multiway bindings
simply by exposing the collective nature of component interfaces, and introduce new
cardinalities for Fractal interfaces: collective cardinalities. Collective interfaces are
specified as a collective cardinality in the type of the component interfaces, and
their behavior is customizable.

Currently, the Fractal model defines two kinds of cardinalities for interfaces:
single and collection. Interfaces of cardinality single are unique and exist at run-
time. Single interfaces can have a server role (Fig. 1.a), or a client role (Fig. 1.b).
Fig 1.c and Fig 1.d show respectively a single server interface and a single client
interface for primitive components. In the case of composite components, there is
a complementary internal interface of opposite role associated with each external
interface: Fig 1.e shows a single client interface along with its complementary in-
ternal single server interface, while Fig 1.f shows a single server interface along with
its complementary internal single client interface.

Interfaces of cardinality collection represent collections (i.e. an arbitrary number
of lazily created interfaces) of interfaces of the same type, with a common prefixed
name. One can define collection server interfaces (Fig. 2.a), or collection client
interfaces (Fig. 2.b). A collection interface does not exist at runtime, only the
lazily created interfaces that are part of the collection are accessible at runtime (see
Fig 2). In the case of composite components, there is a complementary internal
interface associated with each of these lazily created interfaces (Fig. 2.e and 2.f),
which is not the case for primitive components (Fig. 2.c and 2.d). In order to
perform an invocation on all of the lazily created interfaces, it is necessary first to
get a reference on each of the interfaces, and second perform the invocation on each
of these references. In this current work, we intend to provide a mechanism for
performing collective invocations without having to refer to each of the interfaces
successively.

2We name multiway interactions the interactions to and from several components.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 19

b.
single server interface single client interface

complementary internal
single client interface single client
=] interface

e. .- . -

- -,

—{ —H—

\
single server
interface

/
complementary internal
single server interface

Figure 1: Single interfaces for primitive and composite components

The current cardinalities of Fractal interfaces allow only one-to-one communi-
cations. It is possible though to introduce binding components, which act as bro-
kers and may handle different communication paradigms. Using these intermediate
binding components, it is therefore possible to achieve one-to-n, n-to-one or n-to-n
communications between components. It is not possible however for an interface to
express collective behavior: explicit binding components are needed for this.

To meet the specific requirements and conditions of Grid computing for multiway
communications, we propose the addition of new cardinalities in the specification
of Fractal interfaces, namely multicast and gathercast.

Multicast and gathercast interfaces give the possibility to manage a group of
interfaces as a single entity (which is not the case with a collection interface, where
the user can only manipulate individual members of the collection), and expose the
collective nature of a given interface. Moreover, specific semantics for multiway in-
vocations can be configured, providing users with flexible communications to or from
gathercast and multicast interfaces. Lastly, avoiding the use of explicit intermediate
binding components simplifies the programming model and type compatibility can
be automatically verified by the framework.

The role and use of multicast and gathercast interfaces are complementary. Mul-
ticast interfaces are used for parallel invocations, whereas gathercast interfaces are
used for synchronization, gathering or redispatching purposes. We also introduce
gather-multicast interfaces, which combine the capabilities of multicast and gather-
cast interfaces. More information may be found in Section 6.5.

5.8 Component Packaging and Deployment

Reusable components available from repositories is an essential feature for building
complex applications. Unfortunately this feature is not available yet for Fractal,

CoreGRID - Network of Excellence

CoreGRID FP6-004265 20

collection server interface collection client interface
N P
N

=} o
—f—
—f—

-

TT

—
C.:li |

|>
|>

e
IRl

lll

Figure 2: Collection interfaces for primitive and composite components

although some discussions were initiated on the Fractal mailing list. Packaging
should provide component encapsulation (of compiled code) and description (ADL),
as well as versioning capabilities. In the Fractal repository, there is a packaging
tool that sketches these yet to be provided features (encapsulation, description and
versioning), but it is still in alpha state. A packaging standard is being developed
by the Fractal community.

ADL with support for deployment The purpose of an ADL for the GCM is
twofold:

e to provide component structure as defined by a Standard ADL, e.g. Fractal;

e to define virtual computing topology for component deployment, cf. Proactive
Virtual Nodes or ASSIST Virtual Processes.

These two aspects are partially independent: the possible virtual computing
topologies depend on the structure of the component.

Then the mapping from virtual topology to the real one can be defined by a
deployment descriptor provided independently. Of course, this mapping can also be
dynamically discovered, in the way proposed in [23].

Grid applications would benefit from the availability of extensible packaging.
First, extra information can be provided with a package, for example concerning an
adaptation policy. Second, meta-information on executable code would be necessary
to handle legacy code efficiently.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 21

6 Proposal for the GCM Definition

We define in this section the Grid Component Model. This component model relies
on the Fractal specification [17]. We first give an abstract view of the component
model we propose, then we recall briefly the most useful characteristics of the Fractal
component model. Finally, we focus on the technical aspects on which the GCM
extends the Fractal component model. This extension allows, starting from the
Fractal component model, the fulfillment of the objectives set out in Section 5.

Except from the Fractal specification section (Section 6.2), and the packaging,
which is left undefined as the Fractal community is currently working on this aspect
(Section 6.8), all the features presented in this section are not part of Fractal and
should be part of the GCM extension to Fractal. However, as explained in the
following, some of the extensions proposed here have already been suggested inside
the Fractal community, but the GCM is to our knowledge the first proposal to
standardize those concepts.

6.1 Abstract Component Model and Architecture

First, we present the basis for defining an abstract view of the Grid Component
Model. The final version of the GCM should include standard definitions for this
abstract view (DTD or XML schema, complete API, ...). Such a high-level view
should allow all the partners to define a joint view of what should be in a component
model for the Grid. This abstract view is at the level of defining what a primitive
component is, what a hierarchical composition is, and what the various kinds of
ports and interfaces are.

The following architecture has been proposed for concretely defining the GCM:

1. Component Specification as an XML schema or DTD
2. Run-Time API defined in several languages
3. Packaging described as an XML schema

The first part, using a schema to precisely define a component description lan-
guage, a kind of ADL in XML, is the basic mechanism for defining inter-operable
component descriptions. The second aspect, run-time API allows the manipula-
tion components at execution in a uniform manner. Finally, the packaging schema
authorizes the development of common deployment tools. Details of the elements
comprising each part of the specification are given below.

6.1.1 Component Specification as an XML Schema

The first element in a component specification is the notion of primitive components.
One must be able to define, from a given piece of code, the attributes of the com-
ponent being constructed. A piece of standard code, or a module, is promoted to
the status of a component. Then, provided we are targeting a hierarchical model to
tackle the complexity and large scale nature of Grids, one must be able to compose
the primitives to build hierarchical entities.

Of course, the specification of components, both primitive and composite, calls
for defining interfaces (various kind of ports), and the binding between those ports.

With respect to dealing with language interoperability, a key aspect of the pro-
posed specification is reliance on external references (Java Interface, C++ .h, Corba
IDL, WSDL) to specify the nature of ports. In this way, one can define components
specific to a given platform, one can also specify a component that is exported in
several interfaces (e.g. Java and C), or even exported with portable ports such as
a WSDL definitions.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 22

Finally, the Grid aspects are covered through the specification of specific ele-
ments such as distribution, virtual Nodes, QoS, etc.

Definition of Primitive Components
e Definition of Composite Components (composition)

e Definition of Interfaces (ports)
— Server, Client, event, stream, etc.
e Including external references to various specifications:
— Java Interface, C++ .h, Corba IDL, WSDL, etc.
e Specification of Grid aspects:

— Parallelism, Distribution, Virtual Nodes,

— Performance Needs, QoS, etc.

Figure 3: XML Component Specification

Figure 3 summarizes the structure and the key aspects of the component speci-
fication. An important feature of such a specification is the extensible nature of an
XML Schema.

6.1.2 Run-Time API Defined in Several Languages

We propose to define a common run-time API for manipulating components at
execution. The basic functions of the API will address:

e Life cycle management

e Introspection

e Basic Control (Monitoring, Reconfiguration, ...)
e Optimization

The languages and formats in which we would like to define related APIs for ma-
nipulation of Grid components at runtime include Java, C++, C#, Fortran, etc.

The API will facilitate the portability and interoperability, and standard imple-
mentations of component infrastructures and containers will be possible; making
such components interoperable within a given language. We believe it would not
be realistic to attempt a direct multi-language infrastructure, with inter-language
interoperability. However, one can define the WSDL specification of part of the
run-time API. It would allow implementation and deployment of Web Services that
provide portable run-time manipulation of components (management of life cycle,
etc.). In any case, for the sake of efficiency, and expressive power, language specific
implementations are needed.

6.1.3 Packaging described as an XML Schema

Together with the component specification defined earlier, there is also a need to
provide more practical information about Grid components. For instance, one must
specify the dependencies between codes, where to find the appropriate bundles, for
what hardware platform, etc. Here is an incomplete list of such information:

e Requirements on the hardware platform

CoreGRID - Network of Excellence

CoreGRID FP6-004265 23

e Location of the code needed to instantiate the component on a platform
e Dependencies between versions

e Metadata driving reconfiguration (cf. Section 6.6.2), like cost functions or
descriptions of the component’s functional behaviour at different levels of
abstraction.

o ctc.

With such information, the components may be deployed in various contexts. De-
fined as an XML schema, this extensible specification will provide for generic tools
to help solve a complex problem: large scale deployment on the Grid.

6.2 Fractal Specification

The GCM relies on the Fractal component model; globally, we refer to the Fractal
specification as a basis for the specification of the GCM, and consider the GCM as
an extension to the Fractal specification. We present here a brief summary of the
crucial features of the Fractal component model taken from the Fractal specification
[17]. Section 5 explained the main particularities related to Grid computing, and
the main choices or extensions that GCM makes in relation to Fractal.

Fractal defines a highly extensible component model which enforces separation
of concerns, and separation between interfaces and implementation.

Fractal is based on the following definitions:

e (Content: one of the two parts of a component, the other one being its con-
troller. A content is an abstract entity controlled by a controller. The content
of a component is (recursively) made of sub components and bindings.

e Controller: one of the two parts of a component, the other one being its
content. A controller is an abstract entity that embodies the control behavior
associated with a particular component. A controller can exercise an arbitrary
control over the content of the component it is part of (intercept incoming and
outgoing operation invocations for instance).

e Server interface: a component interface that receives operation invocations.
e (lient interface: a component interface that emits operation invocations.

e Functional interface: a component interface that corresponds to a provided
or required functionality of a component, as opposed to a control interface.

e Control interface: a component interface that manages a “non functional as-
pect” of a component, such as introspection, configuration or reconfiguration,
and so on.

Figure 4 shows a composite component, its content (2 sub-components), and its
membrane containing the controllers.

Fractal defines several conformance levels, mainly depending on the level of
control exercised over the components. Different implementations of the GCM can
rely on different conformance levels of Fractal, and thus provide more or less features
among the ones defined in the Fractal specification.

The definition of the conformance level can be found in the Fractal specification.
We recall those levels below:

e level 0: at this level nothing is mandatory. Fractal components are like simple
objects. A Java object, a Java Bean, or an Enterprise Java Bean, for example,
are conform to the Fractal component model of level 0.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 24

o b o
—e
export
. . o o . . .
binding import binding
S
a1 f i H b1

© ©
S S
N = |
V N
~ ~
RS = ! bindi HH ¢, K
3 3 sub component hormai binaing
S N
§ § b b
= £
SI|F I f

content

controller

Figure 4: A composite component as defined in Fractal Specification

— level 0.1: same as level 0, with the additional requirements that all
components with configurable attributes must provide the AttributeCon-
troller interface, that all components with client interfaces must provide
the BindingController interface, that all components that expose their
content must provide the ContentController interface, and that all com-
ponents that expose their life cycle must provide the LifeCycleController
interface. Of course, these requirements do not prevent components from
providing additional control interfaces, including extensions and alterna-
tives of the previous interfaces.

e level 1: same as level 0, with the additional requirement that all components
must provide, at least, the Component interface.

— level 1.1: same as level 1, with the same additional requirements as for
level 0.1, concerning the control interfaces.

e level 2: same as level 1, with the additional requirement that all component
interface references must be castable to Interface.

— level 2.1: same as level 2, with the same additional requirements as for
levels 0.1 and 1.1, concerning the control interfaces.

e level 3: same as level 2, with the additional requirement that all the com-
ponents must use (an extension of) the type system defined in the Fractal
specification.

— level 3.1: same as level 3, with the same additional requirements as for
levels 0.1, 1.1 and 2.1, concerning the control interfaces.

— level 3.2: same as level 3.1, with the additional requirement that a boot-
strap component must be accessible from a “well-known” name. This
bootstrap component must provide a GenericFactory and a TypeFac-
tory interface. Moreover, the GenericFactory interface must be able to

CoreGRID - Network of Excellence

CoreGRID FP6-004265 25

create components with any control interfaces in the set of control in-
terfaces defined in section 4 (and, in particular, primitive and composite
components). Finally, this interface must also be able to create (3.2 level)
primitive components encapsulating 0.1 level components.

— level 3.3: same as level 3.2, with the additional requirement that the
GenericFactory interface of the bootstrap component must be able to
create primitive and composite template components.

In the same way, we can imagine specifying in the GCM several conformance
levels that clearly identify the different extensions of the GCM. Moreover a GCM
component system can be composed of components with different conformance levels
both in the sense of the Fractal specification and for the GCM.

Appendix A gives the Fractal API, as defined in the Fractal specification.

The DTD for the standard Fractal ADL is presented in Appendix B.

6.3 Communication Semantics

As explained in Section 5.1, we aim to support several kinds of communication in
the GCM. However, we consider the default semantics for communication to be
asynchronous method invocations. Tags can be added in the ADL to specify
interfaces with a different semantics. The way in which communication is im-
plemented is beyond the scope of the GCM (e.g., nothing prevents asynchronous
method call from relying on synchronous communication for transmitting the reified
method calls).

Now let us focus on one of the most important alternative kinds of communi-
cation on the Grid: communication via streams. We could add two different tags
in the ADL in order to specify streaming communication, with some additional
requirements:

e Streaming push requiring that each method of an interface implementing such
a service has no return value. For instance, in Java such an interface would
look like:

interface StreamPush {
void put(Object);
}

e Streaming pull requiring that each method of an interface implementing such
a service takes no argument. For instance, in Java such an interface would
look like

interface StreamPull {
Object get();
}

It is obviously outside the scope of the GCM to specify how streaming is imple-
mented.

6.4 Virtual Nodes
6.4.1 Definitions

Virtual Nodes are abstractions allowing a clear separation between design infras-
tructure and physical infrastructure. Virtual Nodes are used in the code or in the

CoreGRID - Network of Excellence

CoreGRID FP6-004265 26

ADL and abstract away names and creation and connection protocols to physical
resources, from which applications remain independent. Virtual Nodes are optional.

The design infrastructure - or virtual infrastructure - corresponds to the targeted
deployment infrastructure of components. The virtual infrastructure may define
specific constraints, such as the cardinality of the virtual node, which can be single,
or multiple. A single virtual node requires a unique physical node at deployment
time, whereas a multiple virtual node requires several physical nodes.

The physical infrastructure is the infrastructure which is available at deployment
time. Deployment on a physical infrastructure usually implies the use of connection
or creation protocols and the naming of existing resources (which may be hidden
by a resource broker framework, in which case the physical infrastructure in our
terminology refers to the resources requested from this resource broker).

The definition of virtual nodes together with a few items of information use the
following syntax. The syntax could include a constraint XML file, for instance as
in:

<virtualNodesDefinition>
<virtualNode name="Dispatcher" property="unique_singleA0"/>
<virtualNode name="Renderer" property="Multiple"
constraintFile="RendererConstraints.xml" />
</virtualNodesDefinition>

In the example above, the constraint file "RendererConstraints.xml" allows
one to specify properties that should be ensured by the allocated nodes. This
specification permits a program to generate automatically a deployment plan, that
is find the appropriate nodes on which processes should be launched.

In the future, we envisage the adjunction of more sophisticated descriptions of
the application needs with respect to the execution platform, for instance topology
of nodes, including point-to-point QoS, hardware or OS constraints, interconnect
preferences. It can also include specification of the application behavior.

We could also include general constraints, at the level of the component itself,
for instance allowing to specify constraints between Virtual Nodes.

6.4.2 Virtual Nodes and Components

Different ADLs usually use distinct virtual node names, and it may be adequate to
rename some virtual nodes, particularly for collocation purposes. This renaming is
done through the exportation and the composition of virtual nodes. The exportation
of virtual nodes defines which virtual nodes may be renamed and is specified in the
ADL. Only exported virtual nodes can be renamed. The exportation is actually
a renaming, and it is possible to export already exported virtual nodes: this is
called composing virtual nodes. Exportation preserves cardinality: a single virtual
node is exported with a single cardinality, a multiple virtual node with a multiple
cardinality.

An Example
For clarity, the following examples focus on virtual nodes in the ADL.

Suppose that a component named client uses a virtual node myNode, of cardi-
nality single, and exports it as client-un:

<exportedVirtualNodes>
<exportedVirtualNode name="VN1">
<composedFrom>
<composingVirtualNode component="this" name="myNode"/>
</composedFrom>
</exportedVirtualNode >
</exportedVirtualNodes >

CoreGRID - Network of Excellence

CoreGRID FP6-004265 27

<virtual -node name="myNode" cardinality="single"/>

If myNode had a multiple cardinality, the exported virtual node VN1 would also
be of cardinality multiple.

Suppose there is another component, named server, which exports the node
server-vn, of cardinality single.

An application using the client and server component may decide to keep client
and server in distinct locations, in which case it may export these nodes as VN1
and VN2 (for instance):

<exportedVirtualNodes >
<exportedVirtualNode name="VN1">
<composedFrom>
<composingVirtualNode component="client" name="client-vn"
/>
</composedFrom>
</exportedVirtualNode >
<exportedVirtualNode name="VN2">
<composedFrom>
<composingVirtualNode component="server" name="server-vn"
/>
</composedFrom>
</exportedVirtualNode >
</exportedVirtualNodes >

If, on the contrary, the client and server components should be collocated, say
on VN1, then the ADL would specify:

<exportedVirtualNodes>
<exportedVirtualNode name="VN1">
<composedFrom>
<composingVirtualNode component="client" name="client-vn"
/>
<composingVirtualNode component="server" name="server-vn"
/>
</composedFrom>
</exportedVirtualNode >
</exportedVirtualNodes >

As a result, the client and server component will be collocated / deployed on
the same virtual node. This can be profitable if there is a lot of communications
between these two components.

Although this example is simplistic, one can foresee a situation where the com-
ponents would be prepackaged components, where their ADL description could not
be modified ; the exportation and composition of virtual nodes allow the adaptation
of the deployment of the system depending on the available infrastructure. Collo-
cation as well as separation can be specified in the enclosing component definition.

6.4.3 Summary: Virtual Nodes in the GCM

Virtual Nodes are abstractions capturing information about how a given component
can be deployed on a Grid. They may be extended to include various kinds of
constraints or preferences which provide information for either the deployer, or
the automatic Grid computing tools such as schedulers and allocators. One can
envisage more sophisticated information such as, for instance, topology information,
QoS requirements between the nodes, etc. Having a standard definition for such

CoreGRID - Network of Excellence

CoreGRID FP6-004265 28

information within the GCM will make possible the interoperability of tools within
the CoreGrid community and beyond.

The final version of the GCM specification will precisely define the syntax for
the virtual node definition, and their composition.

6.5 Multicast and Gathercast Interfaces

We propose integrating the notion of collective interfaces into the component model,
so that it will be possible to expose a specific collective behavior at the level of
the interfaces. Collective interfaces correspond to new kinds of cardinalities for
interfaces: multicast, gathercast and gather-multicast. Each of these cardinalities
provides facilities for collective communications, and their behavior is customizable.
To initially configure and later dynamically customize their behavior, a collective
interface controller is associated with each component defining such collective in-
terfaces.

Solutions to the problem of data distribution have been proposed within PaCO++/GridCCM
[13]; these solutions can be seen as complementary to the basic distribution policy
specified here. Extensions of multicast and gathercast specification should include
the possibility to express such distribution policies.

Preliminary Remarks

e The examples provided in this section use the Java language, but the proposal
is not tied to this language.

e In the sequel, we use the term List to mean ordered set of elements of the same
type (modulo sub-typing). This notion is not necessarily linked to the type
List in the chosen implementation language; it can be implemented via lists,
collections, arrays, typed groups, etc. To be more precise, we use List<A> to
mean list of elements of type A.

6.5.1 Multicast Interfaces

Multicast interfaces provide abstractions for one-to-many communications.

Definitions The following definitions characterize external interfaces (which de-
fine the type of a component).

A multicast interface transforms a single invocation into a list
of invocations.

On the one hand, a multicast client interface distributes invocations to connected
server interfaces. On the other hand, a multicast server interface explicitly exposes
a multicast behavior (notably the fact that results are actually lists of results), and
forwards a single invocation either to a complementary multicast client interface
in the case of a composite component (Fig. 5.d), or to a contractually defined
implementation code in the case of a primitive component (Fig. 5.c¢).

A multicast server interface transforms each single invocation into a
set of invocations that are forwarded either to implementation code of a
primitive component (Fig. 5.c), or to bound server interfaces of internal
components (Fig. 5.d).

A multicast client interface transforms each single invocation coming
from either implementation code of a primitive component (Fig. 5.e) or
from an internal component (Fig. 5.f) into a set of invocations to bound
server interfaces of external components.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 29

a. b.
multicast server interface multicast client interface
\ .7
\ 7
——»‘r //
c d.

<

internal multicast

server iqterface
\

internal multicast
e. cIier)t interface f.

\
\

\

\

~{tié

Figure 5: Multicast interfaces for primitive and composite components

When a single invocation is transformed into a set of invocations, these invoca-
tions are forwarded to a set of connected server interfaces. A multicast interface is
unique and exists at runtime (it is not lazily created). The semantics of the prop-
agation of the invocation and of the distribution of the invocation parameters are
customizable, and the result of an invocation on a multicast interface - if there is
a result - is always a list of results. Invocations forwarded to the connected server
interfaces may occur in parallel, which is one of the main reasons for defining this
kind of interface: it enables parallel invocations.

This specification does not make any assumption about the communication
paradigm used to implement the multicast invocations ([25, 30]).

Signatures of methods For each method invoked and returning a result of type
T, a multicast invocation returns an aggregation of the results: a list of T.

The bindings between a multicast interface and server interfaces can be regarded
as composite bindings, because there is a typing conversion, from return type T in
a method of the server interface, to return type list of T in the corresponding
method of the multicast interface. The framework must transparently handle the
type conversion between return types, which simply is an aggregation of elements
of type T into a structure of type list of T.

For instance, consider the signature of a server interface:

public interface I {
public void foo();
public A bar();

}

A multicast interface may be connected to the server interface with the above sig-
nature only if its signature is the following (recall that List<A> can be any type
storing a collection of elements of type A):

CoreGRID - Network of Excellence

CoreGRID FP6-004265 30

public interface J {
public void foo();
public List<A> bar();

An extension of this proposal should include a reduction mechanism that would
return one (or several) reduced value(s) instead of systematically returning a list.
Then the return type of a multicast interface could be any type, a list is not manda-
tory.

Distribution of invocation parameters If some of the parameters - of a multi-
cast interface - are actually lists of values, these values can be distributed in various
ways through method invocations to the server interfaces connected to a multicast
interface. The default behavior - named broadcast - is to send the same parameters
to each of the connected server interfaces. However, similar to what SPMD pro-
gramming offers, it may be adequate to strip some of the parameters so that the
bound components will work on different data - named scatter.

The first question is where to specify which parameters are to be stripped and
distributed. We propose to specify the configuration in a dedicated controller,
named CollectivelnterfacesController, and we also need an extension of the type
system of Fractal interfaces:

interface InterfaceType extends Type {
String getFcItfName ();
String getFcItfSignature ();
boolean isFcClientItf ();
boolean isFcOptionalItf ();
boolean isFcCollectionItf ();
String getFcItfCardinality ();

The type of an interface is extended for dealing with new cardinalities: the
getFcItfCardinality() method returns a string element, which is convenient
when dealing with more than two kinds of cardinalities.

The type factory method createFcltfType is extended with the cardinality pa-
rameter:

interface TypeFactory {
InterfaceType createFcItfType (
String name,
String signature,
boolean isClient,
boolean isOptional,
boolean isCollection,
String cardinality

)

The type of a multicast client interface of signature I, named multicastItf, is
defined as follows:

CoreGRID - Network of Excellence

CoreGRID FP6-004265 31

InterfaceType itfType = typeFactory.createFcItfType (
"multicastItf",
I.class.getName (),
TypeFactory.CLIENT,
TypeFactory.MANDATORY,
TypeFactory.MULTICAST
)

The policy for managing the interface is specified as a construction parameter
of the CollectivelnterfacesController. This policy is implementation-specific, and a
different policy may be specified for each collective interface of the component.

The second question is how to specify the distribution of the parameters into
the invocations that are generated and forwarded. In the broadcast mode, all pa-
rameters are sent without transformation to each receiver. We suppose here that, in
the case of the scatter mode, the scattered parameter is of type 1list of T on the
server side, and of type T on the client side of the multicast interface. In the scatter
mode however, many configurations are possible, depending upon the number of
parameters that are lists and the number of members of these lists. We propose to
define, as part of the distribution policy, the multiset f C [1..k1] x [1..ka]... X [1..ky]
of the combination of parameters, where f is the (multi)set of the combinations
of parameters, n is the number of parameters of the invoked method which are
lists of values, and k;,1 < ¢ < n the number of values for each list parameter. Of
course, f may depend on the number of bound components. This multiset allows
the expression of all the possible distributions of scattered parameters, including
broadcast, cartesian product, and one-to-one association. f also gives the number
of invocations which are generated and which depends on the configuration of the
distribution of the parameters.

a.
broadcast invocation parameter

invocation parameter received in server component

scattered
invocation parameter

~

\'

j{\‘w

Figure 6: Broadcast and scatter of invocations parameters

CoreGRID - Network of Excellence

CoreGRID FP6-004265 32

Distribution of invocations Once the distribution of the parameters is deter-
mined, the invocations that will be forwarded are known. A new question arises:
how are these invocations dispatched to the connected server interfaces? This is de-
termined by a function d, which knowing s the number of server interfaces bound to
the multicast interface, describes the dispatch of the invocations to those interfaces.

Consider the common case where the invocations can be distributed regardless of
which component will process the invocation. Then a given component can receive
several invocations; it is also possible to select only some of the bound components
to participate in the multicast.

In addition, this framework of course allows us to express naturally the case
where each of the connected interfaces has to receive exactly one invocation, in a
deterministic way.

6.5.2 Gathercast interfaces

Gathercast interfaces provide abstractions for many-to-one communications. Gath-

ercast interface and multicast interface definitions and behaviors are symmetrical.
[6]

Definition The following definition characterizes external interfaces.

A gathercast interface transforms a set of invocations into a
single invocation.

A gathercast interface coordinates incoming invocations before continuing the invo-
cation flow: it may define synchronization barriers and may gather incoming data.
Invocation return values are also redistributed to the invoking components.

a. b.
gathercast server interface gathercast client interface

’ 4

S5 -

-

internal gathercast internal gathercast
client interface y server iqterface
e. s .

H—

N
T
s

Figure 7: Gathercast server interfaces for primitive and composite components

CoreGRID - Network of Excellence

CoreGRID FP6-004265 33

Gathercast server interfaces gather invocations from multiple client interfaces
(Fig. 7), but client interfaces can also have a gathercast cardinality. A gathercast
client interface transforms gathercast invocations (gathering and synchronization
operations) into a single invocation which is transfered to the bound server interface.
A client gathercast interface also indicates that invocations coming from this client
interface contain gathered parameters (lists). In primitive components, the purpose
of a gathercast client interface is solely to expose the gathercast nature of this
interface. These considerations are summed-up in the following definitions, which
characterize external interfaces:

A gathercast client interface transforms a set of invocations coming
from client interfaces of inner components (Fig. 7.f) or from the imple-
mentation code of the component (Fig.7.e), into a single invocation.

A gathercast server interface transforms a set of invocations coming
from server interfaces of external components into a single invocation
to one server interface of an inner component (Fig. 7.d), or to the
implementation code in case of a primitive component (Fig. 7.c).

Gathering operations require knowledge of the participants (i.e. the clients of
the gathercast interface) in the collective communication. As a consequence, in
the context of gathercast interfaces, we have explicitly to state that bindings to
gathercast interfaces are bidirectional links, in other words: a gathercast interface
is aware of which interfaces are bound to it.

Synchronization operations Gathercast interfaces provide one type of synchro-
nization operation, namely message-based synchronization capabilities: the message
flow can be blocked upon user-defined message-based conditions. Synchronization
barriers can be set on specified invocations, for instance the gathercast interface
may wait - with a possible timeout - for all its clients to perform a given invocation
on it before forwarding the invocations. It is also possible to define more complex
or specific message-based synchronizations, based on the content of the messages or
based on temporal conditions, and it is possible to combine these different kinds of
synchronizations.

Gathering of parameters The gathercast interface aggregates parameters from
method invocations. Thus the parameters of an invocation coming from a gathercast
(client) interface are actually lists of parameters (Fig. 8).

invocation parameter

s

list of
aggregated parameters

-
-,

Figure 8: Aggregation of invocation parameters for a gathercast interface

CoreGRID - Network of Excellence

CoreGRID FP6-004265 34

Symmetrically with the case of multicast results, gathered parameters may be
reduced, relaxing the constraint of having lists as parameters.

Redistribution of results The result of the invocation may be a simple result,
or a list of results, in which case a redistribution of the enclosed values may occur.

The distribution of results for gathercast interfaces is symmetrical with the
distribution of parameters for multicast interfaces, and raises the question: where
and how to specify the redistribution? The dispatch of the results is not problematic,
as it is already given from the binding configuration: each component participating
to the gather operation receives a single result.

The first question, where to specify the redistribution of results, is answered in
a similar fashion to the case of multicast interfaces: the redistribution is configured
through metadata information for the gathercast interface, specified either through
annotations or in the type of the interface.

The way redistribution is specified also follows reasoning similar to multicast in-
terfaces. It also necessitates a comparison between the client interface type and the
gathered interface type. If the return type of the invoked method in the client inter-
faces is of type T and the return type of the bound server interface is List<T> then
a redistribution function can be defined. Otherwise, results should be broadcast to
all of the invokers.

The redistribution function f is defined as part of the distribution policy of the
gathercast interface, and is configurable through its collective interface controller.

6.5.3 Gather-multicast interfaces

A gather-multicast interface transforms a set of invocations
into another set of invocations, redistributing both invocation
parameters and results from the invocations.

A gather-multicast interface combines the capabilities of gathercast and multicast
interfaces, and behaves like a gathercast interface immediately followed by a multi-
cast interface.

6.5.4 Collective bindings

We name a binding to or from a collective interface a collective binding. A collec-
tive binding is a special kind of binding. It does not use explicit binding compo-
nents, which simplifies the design of component models, ensures type compatibility
(and possible type conversions), and allows the designer to focus on the business
logic (typed relationships between components). The multicast, gathercast and
gather-multicast interfaces are configurable, which allows these interfaces to suit
various situations. Of course, the model still allows for the use of explicit binding
components for non-collective interfaces, in case of specific requirements for inter-
component communications, for instance when binding interfaces of incompatible

types.

6.5.5 Gathercast to multicast bindings

The “MxN” problem refers to the problem of efficiently communicating and ex-
changing data between parallel programs, for instance from a parallel program that
contains M processes, to another parallel program that contains N processes. Such
communications can be straightforwardly realized by binding a gathercast client
interface to a multicast server interface.

We intend to provide a specific binding process in the context of the MxN
problem. This specific MxN binding process will address the two following issues:

CoreGRID - Network of Excellence

CoreGRID FP6-004265 35

invocation parameters

-7
- <

- ’ ~o
- / ~

L

S
lI
4 !
I

e
—
==
—

[

M components

N components

Figure 9: MxN data redistribution

1. the redistribution of the parameters (and results) of the invocations: from
which components to which components? Which redistribution scheme? Fig.
9 shows an example of data redistribution.

2. the communication mode in the case of intermediate composite components:
are component-to-component communications direct communications? Are
communications still routed through intermediate composite components?

6.5.6 Summary: Collective Interfaces and Collective Controllers

Overall, this section presented a proposal for introducing collective communications
in the Fractal model. First, Fractal proposes only collection cardinalities, thus we
proposed the introduction of a new cardinality for interfaces: collective.

For example, a multicast interface allows any number of clients to be plugged
dynamically to a single server and to consider the collective interface as a whole.
In contrast, a collection interface implies a set of one-to-one bindings, and is rep-
resented by several distinct interfaces at runtime. On the client side, a multicast
interface is an interface that can be bound to several components at the same time
and which dispatches messages, it has an associated collective controller allowing
its behavior to be specified (distribution policy). On the server side a multicast
interface is a classical Fractal interface, but with an associated collective controller.
Symmetric arguments apply to gathercast interfaces.

The constraint of using lists as parameters for gathercast invocations and lists as
results for multicast invocations may be relaxed by providing a reduction mechanism
which could easily be integrated in the specification of collective interfaces.

Globally, this section specified the behavior of the collective interfaces and their
controllers.

6.6 Dynamic Controllers
6.6.1 Principles

Figure 10 shows the representation we suggest for implementing dynamic controllers.
As suggested as a classical extension of Fractal, it uses components as controllers,
we detail in the following the usage and the necessity of these component con-
trollers in the GCM. In the figure, we consider the example of a reconfiguration

CoreGRID - Network of Excellence

CoreGRID FP6-004265 36

L Reconfiguration
manager

T
T T H
| Reconf B H -
T controller
Grid Component
| | U
| |

Figure 10: A composite with pluggable controllers

manager providing an abstraction for managing the reconfiguration of the com-
ponents, thus avoiding triggering actions directly on the BindingController and
ContentController. A reconfiguration manager is considered as being part of the
execution platform; it decides “globally” when and which reconfigurations have to
be performed. Then, dynamically, a reconfiguration controller can be added to each
reconfigurable component. Such a controller component provides some high-level
reconfiguration features. It receives requests/messages from the reconfiguration
manager, but also sends information (e.g., about the actual topology of the sub-
component system). This approach allows a better adaptivity, both with respect to
the platform — it is easier to upgrade the reconfiguration manager and with respect
to the controlled components — one can add a new controller, or dynamically bind
to the manager a component to be managed.

The Fractal specification suggests to refine the general component structure
(a content plus a membrane), by specifying that the component’s controller can,
like the component’s content, contain sub-components. Such a Fractal compo-
nent can then provide new control interfaces to introspect and reconfigure the sub-
components of its controller part.

As suggested in the Fractal specification, we propose to provide the possibility
to consider a controller as a sub-component, which can then be added, plugged
or unplugged dynamically. However, such controller components do not need to
have all the functionality of a Grid component: a “simple” Fractal component is
sufficient: such a component can be considered as a primitive component and only
needs to provide the basic controllers (e.g. just the ability to be stopped, and
to be bound/unbound); and needs only to conform to the level 0.1 of the Fractal
specification; however, in this case, only the binding and life-cycle controllers are
mandatory. In other words, a controller component can be a primitive component
without any configurable attribute. As a consequence, when implementing con-
troller components, one can choose to use a simple object, that would provide the
required functionality. Of course, implementing such controllers with an indepen-
dent (possibly parallel) component is also possible.

In Fractal, this extension requires that, when instantiating a component (e.g.
through a Factory component), one must be able to specify, as part of the con-
troller description (ControllerDesc), a controller taking the form of a “controller

CoreGRID - Network of Excellence

CoreGRID FP6-004265 37

component”.

Recall that this approach is somewhat similar to previous work on aspect-
oriented programming for Fractal [11, 18, 31].

Such a component structure allows a more structured organization of the com-
ponents:

e controllers can now have server and client interfaces
e Controllers can be managed and reconfigured in a hierarchical way

For example, according to [33], the solution implemented in AOKell is to provide
a component-oriented approach for implementing membranes:

e cach control membrane is associated to a composite component which exports
the control interfaces provided by this membrane,

e each controller is programmed as a component and is inserted into the previ-
ously defined composite component,

e controllers are bound together depending on the relations deduced from their
semantics .

This raises a technical question regarding Fractal and the model proposed here:
in Fractal, invocation on controller interfaces must be enabled when a component
is stopped; here, if controllers are implemented by components, one must specify
which of these controller components have to be stopped.

6.6.2 Application to Reconfiguration

The implementation of controller components that trigger actions of the binding
controller and the content controller (e.g., the reconfiguration controller of the ex-
ample), or that directly implement binding and content control, provides a step
towards higher-order components. Indeed, such pluggable controllers might receive
components on their ports in order to add or bind them to the component they
control, thus achieving a high level of dynamicity and adaptivity. Note that this
is not sufficient for having real higher-order components since only some controller
components can receive components, and components can only be manipulated at
the meta-level.

This raises the question: “When/why the component topology should be changed?”.
Several answers are possible and should coexist. First, some meta-data (attached
to the components) can be used directly by the reconfiguration controller, directly
triggering actions of the binding and content controllers. Second, a reconfiguration
manager (as in the example above) can implement a given policy, and be parameter-
ized with different policy, and of course some meta-informations exploited, in this
case, directly by the manager. Finally several components of the platform could be
dedicated to implement a very general and powerful reconfiguration policy.

6.6.3 Summary: Dynamic Controllers as a Fractal Extension

From the ADL and API point of view such an extension only necessitates guaran-
teeing that a controller descriptor indicating the controllers to be instantiated in a
component can be specified in the ADL as well as when instantiating a component
(e.g., using a Factory). Moreover, when a controller descriptor is required, the de-
scriptor must be able to refer to a controller component. A controller component is
an entity that only needs to conform to level 0.1 of the Fractal specification (mainly

3the semantics refers here to the one of aspects and to their composition.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 38

a binding and a life-cycle controller), and thus can be implemented in a lightweight
manner, for example, by a particular kind of object.

Finally, the content controller should be extended in order to allow dynamic
addition of a controller component to the membrane. This entails extending the
Fractal API.

6.7 Autonomic Components
6.7.1 Introduction

To achieve better adaptivity as proposed in Section 5.6, we refine the definition of
the component for autonomic computation [20, 38, 10]. We propose an approach
based on the autonomic computing paradigm, that will drive us in the definition of
(non-functional) interfaces exposed by a component, and their implementation.

The autonomic computing paradigm is defined by four aspects that should be
implemented by each component:

e Self-Configuring: a component is self-configuring if it is able to handle recon-
figuration inside itself; this aspect should provide reconfiguration of higher
abstraction level than binding or control controllers. Self-configuration can
be used to change the component structure for fulfilling some task requested
by external clients. This feature might consist in triggering the adequate
actions on the binding controller and the content controllers.

e Self-Healing: A component is self-healing if it is able to provide its services in
spite of failures of any kind. Components can fail because of implementation
and programming errors, or because of hardware faults. In general, faults
originated from sub-components should be managed by their container.

e Self-Optimising: a component is self-optimising if it adapts its configuration
and structure in order to achieve the best/required performance. For instance,
this can be achieved by exploiting cost models and monitoring of the resources
which the component is using.

e Self-Protecting: A component is self-protecting if it is able to predict, prevent,
detect and identify attacks, and to protect itself against them.

We also consider it interesting to design a framework in which some compo-
nents explicitly deal with possibly malicious (sub)components, autonomically
enforcing correct interaction protocols and other self-protection policies.

These interfaces are bound to (possibly distinct) dynamic controllers that imple-
ment them. However, a single controller can implement several interfaces. If a
component does not provide one or more of the autonomic functionalities, then the
implementations of the respective interfaces are void.

6.7.2 Autonomic Controllers

In this section we give a precise interface for each of the “four selves” introduced
in the previous section. These interfaces are non-functional and exposed by each
component. Consequently they correspond to Fractal controllers.

We consider different compliance levels also with respect to autonomicity: the
highest level of compliance is that of fully autonomic components, which implement
the whole set of autonomic interfaces. At lower levels of compliance, a component
can implement a subset of the autonomic controllers.

Having an external control interface means that an external controller (i.e. the
controller of an enclosing component, in the composition hierarchy) can implement

CoreGRID - Network of Excellence

CoreGRID FP6-004265 39

autonomic behaviour from non-autonomic components, or it can override the auto-
nomic mechanism of controlled subcomponents.

Each autonomic interface takes as input some information formatted in some
structured way (e.g. XML), stating a goal the autonomic controller will try to
reach. We refer to this abstract goal as a contract describing a specific aspect of the
component’s QoS. Information in contracts can be qualitative or quantitative. We
will see examples of them in the following. In the future, the GCM will define the
structure for defining autonomic goals, but the content and the nature of this goals
will be left unspecified in order to keep the GCM specification generic: implemen-
tations of the autonomic controllers should choose the kind of the autonomic goal
they can deal with.

More generally, we use the term manager to represent a component pluggable
into a composite component, that implements autonomic management with respect
to a non-functional aspect.

We thus have a spectrum of different implementations of autonomicity, from
high-level, contract-based ones to low-level, low complexity ones which directly deal
with execution parameters or reconfiguration directives.

As a consequence, we purposely do not specify the type of the argument of
the methods for setting adaptivity goals. Indeed, depending on the level of auto-
nomicity, these arguments can be either very precise if the implementation does
not provide fully autonomic actions (e.g. resources to be are added/removed); or
much higher-level if the system is highly autonomic (e.g. a computation bandwidth,
which the components try to provide autonomically). Configuration can also mean
recursively adding/decreasing resources of contained components. In the follow-
ing we illustrate autonomic controllers by examples taken from a highly autonomic
context.

Self-Configuring Management Self-configuration, provided by a
SelfConfigurationController, has the following interface:

interface SelfConfigurationController {
void setConfigurationGoal (any goalDescription);

}

The description of a goal can be of any type; it provides a description of a
reconfiguration to be ensured.

For instance, the description of a goal could be a piece of code that should be
executed by the component in some way; or some semantics that the component
should provide or some “standard” behaviour previously stored in the component as
a policy. One could also imagine to provide, as a goal, a high-level reconfiguration
request (e.g., in a dedicated script language) for describing a reconfiguration to be
realized.

Self-Optimisation Management A self-optimising component should provide
a SelfOptimizationController providing a setPerformanceGoal method on its
interface:

interface SelfOptimizationController {
void setPerformanceGoal (any PerformanceContract);

}

The performance contract contains information that specifies the required per-
formance for the component.

For instance, we can pass a performance contract that requires the component
to offer a service time under a specified threshold (quantitative), or that requires
the component to offer the best completion time possible (qualitative).

CoreGRID - Network of Excellence

CoreGRID FP6-004265 40

Self-Healing Management A self-healing component exposes a
SelfHealingController. Such a controller must implement the following interface:

interface SelfHealingController {
void setResiliencyGoal(any resiliencyContract);

}

The information passed to the self-healing related interface specifies the require-
ments on the fault tolerance of the component.

It can be given in a probabilistic fashion. For instance, it can require a failure-
free execution probability of 99%, and in the event of failure (1%), it can require
a restart time of at most 1 hour (quantitative), or the fastest restart time possible
(qualitative).

Self-Protection Management A self-protecting component exposes a
SelfProtectionController, implementing the interface:

interface SelfProtectionController {
void setProtectionLevel (any protectionContract);

}

The protection contract specifies the security level required by the component.
For instance a quantitative measure of protection is the estimation of computation
time needed to break the encryption code which ensures privacy of exchanged data.

As stated earlier, there are different degrees of compliance w.r.t. autonomicity,
and the choice of externally exposing control interfaces instead of fully autonomic
ones is independent for each aspect. When a single controller implements several
autonomic aspects, it should export them as several different non-functional inter-
faces.

6.7.3 Hierarchy and Autonomicity

Applying autonomicity hierarchically is particularly important for a hierarchical
component model like the GCM. Indeed, to fulfil an autonomic goal, a component
should generally rely on its sub-components, and generate sub-goals that will be
delegated to them.

For example, hierarchical autonomic optimization can be realized as follows:

e Sub-component resource allocation is directly modified by the container com-
ponent, if the sub-components have a low level of autonomicity.

e A computation bandwidth is specified by the container, which the contained
components try to provide autonomically, if the sub-components are highly
autonomic.

Using dynamic controllers presented in the preceding section helps structuring
hierarchically the autonomic controllers. Indeed, in a hierarchical context, auto-
nomic controllers of the sub-components should be connected to the autonomic
controller of their container, either directly or by the intermediate of manager com-
ponents.

6.7.4 Autonomic Component Controllers

By allowing autonomic managers, which interface to Fractal controllers, to be re-
placed at run-time as component controllers, we introduce the notion of autonomic

CoreGRID - Network of Excellence

CoreGRID FP6-004265 41

component controllers. This provides high-level structuring, dynamicity, and auto-
nomicity. Autonomic controllers implemented using components can be dynamically
instantiated and are pluggable.

The implementation of controllers by means of Fractal components allows the
dynamic addition or removal of controllers. Applied to autonomic component con-
trollers, this means that one could dynamically change the autonomic policy, or add
an autonomic controller that was not planned upon the instantiation of a compo-
nent (however, the interface of this controller must be known by the entity that will
use it).

Autonomic component controllers can also manage new components that are
dynamically added to a composite, in fact they can be dynamically bound to the
added components’ controllers. Moreover they can be plugged to, or plug managed
controllers to, (external) manager components that belong to the execution platform
and are dedicated to management of a given autonomic aspect, when platform-
specific knowledge is required.

Configuration
H manager |

7%

SelfHealing
SelfConfiguration| and 1

SelfOptimization
controller controller

ol g

Interface to
the platform

Figure 11: Autonomic component controllers in the GCM

Three different scenarios can be implemented for the cooperation of managers
and controllers:

1. a centralized manager implements the policies and the component controllers
have a lower degree of autonomicity;

2. component controllers have full autonomy in implementing the policies;

3. several components share the responsibility of implementing autonomic poli-
cies.

We show some examples to clarify those points in the context of autonomic con-
trollers. Figure 11 exemplifies the first scenario (configuration manager and con-
figuration controller), and the second scenario (self-healing and self-optimisation
controller). Tt is quite complete and shows the following choices:

CoreGRID - Network of Excellence

CoreGRID FP6-004265 42

e Autonomic controllers have been implemented in the form of two controller
components;

e One of these controller components implement both the self-optimization and
the self-healing interfaces;

e The self-configuration controller is less autonomic and receives orders from an
external configuration manager (however the degree of autonomicity depends
rather on the kind of information the configuration manager would send);

e The self-healing controller uses a multicast interface to send self-healing goals
to the two sub-components, whereas the self-configuration and the self-optimization
controllers send explicitly (possibly different) requests to the sub-controllers.

e At the sub-level, only the self-configuration controllers are implemented by a
component controller, others are simple controllers;

e The composite component does not implement any self-protection controller.

e The self-healing, self-optimizing controller defines a client interface to the
platform, this interface can be used either to get information from the plat-
form, e.g. available machines, or to send information, e.g. logging, sending
local information about achieved performance, etc. As with every client in-
terface, this interface cannot be used by the platform to send requests to the
controllers.

Of course the example of the figure can be generalized by:

e Allowing managers (e.g. the configuration manager) to be implemented as
several components, or a composite one.

e Adding manager component(s) handling several autonomic aspects, for ex-
ample an external manager could handle both the self-configuration and the
self-healing controller.

e Repeating the same organization at each level of hierarchy (as suggested
roughly in the small sub-components of the Figure 11).

e Adding other non-functional client interfaces.

It is rather improbable that such different choices would be adopted at the same
time on the same platform. Indeed one could expect a given component platform
to adopt a consistent choice of implementation and degree of autonomicity for all
its components, and for all its autonomic controllers. However such highly hetero-
geneous configurations are possible and very different levels of implementations for
autonomicity can interoperate in the GCM.

Figure 12 focuses on the hierarchical implementation of autonomic controllers:
it shows a broader view and the dependencies between autonomic controllers of
several levels. This figure particularly illustrates the third scenario described above:
implementing an autonomic aspect as a hierarchy of managers and controllers. Such
a scenario generally relies on the fact that, like on the figure, at each level of
composition, the non functional interfaces are the same.

Autonomicity is hierarchically organized as follows:

e The composite component provides a set of non functional interfaces bound
to the controllers of the component itself.

e The controllers of the composite are bound to the controllers of the sub-
components by means of subcomponent non-functional interfaces.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 43

Self—* Controller

*~contract

*—contract

7

Component

Component

Definition

| Definition

TEEET

Figure 12: Hierarchical organization of autonomic component controllers

e Each sub-component controller directly monitors the subcomponent itself,
and, when requested, provides this information to the composite component
controller.

e Each sub-component controller directly manages the subcomponent.

6.7.5 Summary

Autonomicity is the ability for a component to adapt to situations, without relying
on the outside. Several levels of autonomicity can be implemented by an autonomic
system of components. The less the components rely on the outside the more
autonomous they are, and the more abstract are the orders and information the
components can receive from the outside the more autonomous they are.

The organization of autonomic controllers presented here enjoys the following
properties.

similarity and interoperability — All components (either simple or composite)
expose the same set of interfaces, and the managers of the composites require
exactly that set of interfaces from its sub-components, this allows the con-
struction of arbitrarily deep hierarchies and the interoperability of different
implementations of the GCM. This shows again the importance of specifying
an API for the controllers.

Support for locality — Choices can be taken locally whenever possible, thus al-
lowing to implement highly autonomic components.

Support for coordination High-level managers can coordinate sub-components
by assigning new contracts, exploiting monitoring information they provide.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 44

Autonomous controller activity We do not precise here if autonomic con-
trollers have their own activity. It seems reasonable to allow these highly inde-
pendent controllers to run a particular thread, but such an implementation choice
depends on the component platform. In any case, if such components have their
own activity, the implementation should ensure a clean synchronization with the
managed component in order to avoid incoherent states. In other words, some
synchronization seems necessary to guarantee that the actions triggered by the
autonomic controllers do not affect the coherence of the state of the component.
For instance, it seems necessary to synchronize an autonomic controller with the
life-cycle controllers upon any action affecting the component structure.

This also applies for any kind of controller, but is crucial for the autonomic ones
as, naturally, one would like to give them as much autonomy as possible.

6.8 Packaging

An extension to the Fractal specification for packaging is being defined by the
Fractal community. We plan to rely on this specification, and extend it if necessary
in order to define packaging for the GCM.

7 Existing Platforms and Implementations

This section shows how some of the features described in Section 6 can be imple-
mented in existing platforms, or for existing applications.

o Distributed Fractal implementation: Several implementations of Fractal sup-
port distribution, and ProActive [7] is particularly geared at Grid computing.
It is important to note that several investigations are being performed by
CoreGrid WP3 partners in order to make Fractal compliant several other
existing platforms.

e Virtual Nodes: this concept has already been implemented in ASSIST (called
Virtual Processes) and ProActive, of course, some improvements to those
implementations are needed in order to make Virtual Node specification more
geared at Grid and components.

e Multicast and Gathercast interfaces: Such interfaces are being implemented
over the ProActive Component framework.

e “MzN” communications: An optimized implementation of MxN communica-
tions have already been performed over CCM [13].

e Autonomic components: autonomic aspects have been implemented above
ASSIST.

e Component controllers: Composition of non-functional aspects have been par-
tially studied in AOKell, which should be taken into account in the design of
component controllers.

o Interoperability via the exportation of Web-Service interface: The integration
of ProActive Fractal implementation with HOCs was proposed by WWU and
INRIA [15]. Further than the classical integration of the two frameworks,
this work also intends to show how to automatically provide a Web-Service
interface for a ProActive-Fractal component interface.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 45

All these separate implementations can be seen as proof that GCM features
can be implemented inside a Grid environment. Of course, those features have not
been put together yet, and have not been implemented over a GCM component
framework. The Programming Model Institute expects that those existing imple-
mentations will be used when reference implementations of the GCM are designed.

Concerning application and use-cases, we expect to benefit from a lot of use-
cases implemented by CoreGrid partners, both in WP3, and in other Virtual In-
stitutes. As an example, a component version of a Grid application is developed
over ProActive components during a CoreGrid Research fellow. This application is
called JEM3D, it is an object-oriented time domain finite volume solver for the 3D
Maxwell Equations.

Steering and Visualisation GUI

Data Collector
.
—HH
. _ = H— 2
j 1 t/ :t 3:
i . H——
, |
=il b1 |]
H— L
- . ‘
'J ‘[|I sﬂﬂnmlln-lr_[‘
L4 —T t— ++:',/—| —
— |
]

Figure 13: A use-case for the GCM: a Grid component version of JEM3D

Figure 13 shows the component system of this application as it can be visualized
by the Fractal GUI: a graphical tool to edit Fractal component configurations. This
example also shows how the graphical representation of components used in Fractal
can be used to visualize and design component systems.

This application should also be used in the future to illustrate and make exper-
imentations on the Multicast and Gathercast interfaces.

8 Conclusion

This document presented the requested features for the GCM, and the way we pro-
pose to implement them, as a set of extensions to the Fractal specification. Among
those extensions, most of them, for instance multicast interfaces and autonomic
components, will not be mandatory. Depending on the implementation of these

CoreGRID - Network of Excellence

CoreGRID FP6-004265

46

non-mandatory features by the component model, we will define several confor-
mance levels for the GCM that will complement the ones defined in Fractal.

To conclude, we summarize the requested features for the GCM, together with
the solutions proposed to support them.

Requested feature

\Concept in GCM to achieve it

Hierarchical composition

Fractal’s component hierarchy

Extensibility

e From Fractal design

e dynamic controllers (any non-functional
feature can be added to any component)

e open and extensible communication mech-
anisms

Support for reflection (introspection
and intercession)

From the Fractal specification and API

Lightweight

e Support for adaptivity in the component
model and extensibility both in the compo-
nent model and the specification

e Conformance levels

e No controller imposed

Well-defined Semantics

API 4+ ADL + well-defined extensions — via
the (future versions of the) current document

ADL with support for deployment

Virtual Nodes + cf Section 6.1

Packaging

cf. packaging being defined by the Fractal
community

Support for Higher-order component
programming skeleton-parallel, func-
tional programming

language neutrality -+ partial support for
higher-order via controllers, and especially
controller components

Sequential and parallel implementa-
tion

XML component specifications, and
Multicast-Gathercast interfaces allow
plugging and unplugging several components
to the same interface dynamically

Asynchronous ports and Extended /
Extensible port semantics

Asynchronous Method Invocation as the de-
fault semantics but any semantics can be de-
fined via tags; special support for streaming
= Possibility to support method calls / mes-
sage oriented / streaming / still unknown
kinds of communication

Group related communication on in-
terfaces

Multicast / Gathercast interfaces

MxN communications

Multicast / Gathercast interfaces (to be re-
fined)

Adaptivity:

e FExploit Component Hierarchical
abstraction for adaptivity

e Ability to plug/unplug components
dynamically

Globally due to dynamic controllers
Dynamic controllers

Fractal’s content and binding controllers

CoreGRID - Network of Excellence

CoreGRID FP6-004265

e Give a standard for adaptive be-
havior and unanticipated extension
of the model

e Give a standard for the manage-
ment autonomic components

e Plug/unplug non-functional inter-

47

Dynamic controllers

Autonomic controllers

Dynamic controllers

faces

Support for deployment

Notion of virtual nodes
ADL with support for deployment

Parallel binding: Well-defined and
verifiable composition

Multicast / Gathercast interfaces

Language neutrality

e API in various languages

e Various interface specifications to be used
(IDL, Java, WSDL, etc.)

e “Systematic” exportation of a web-service
port

Interoperability

Exportation and importation as web-services

but

Recall the GCM is planned to be both a model for the application components
also for the system (middleware) level components, allowing the component

platform to benefit from the features of the GCM, in particular adaptivity, recon-
figurability, separation of concerns, etc. The component controllers presented in
Section 6.6 play a crucial role in this perspective. Future works on the GCM will
provide implementation strategies for the GCM.

References

[1]
2]

Dream communication framework. http://dream.objectweb.org.

M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin,
L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high performance
Grid programming in Grid.it. In V. Getov and T. Kielmann, editors, Proc.
of the Workshop on Component Models and Systems for Grid Applications,
CoreGRID series. January 2005.

M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. Assist
as a research framework for high-performance grid programming environments.
In Jose C. Cunha and Omer F. Rana, editors, Grid Computing: Software
environments and Tools. Springer-Verlag, 2004.

Marco Aldinucci, Frangoise André, Jeremy Buisson, Sonia Campa, Massimo
Coppola, Marco Danelutto, and Corrado Zoccolo. Parallel program /component
adaptivity management. PARCO 2005, Malaga, Spain, to appear, 2005.

Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn,
Lois MclInnes, Steve Parker, and Brent Smolinski. Toward a common compo-
nent architecture for high-performance scientific computing. In Proceedings of
the 1999 Conference on High Performance Distributed Computing, 1999.

B. Badrinath and P. Sudame. Gathercast: The design and implementation
of a programmable aggregation mechanism for the internet. In Proceedings of
IEEE International Conference on Computer Communications and Networks
(ICCCN), 2000.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 48

[7] Francoise Baude, Denis Caromel, and Matthieu Morel. From distributed ob-
jects to hierarchical grid components. In International Symposium on Dis-
tributed Objects and Applications (DOA), Catania, Sicily, Italy, 3-7 Novem-
ber, volume 2888, pages 1226-1242, Springer Verlag, 2003. Lecture Notes in
Computer Science, LNCS.

[8] Felipe Bertrand, Randall Bramley, Kostadin B. Damevski, James A. Kohl,
David E. Bernholdt, Jay W. Larson, and Alan Sussman. Data redistribution
and remote method invocation in parallel component architectures. In Proceed-
ings of the 19th International Parallel and Distributed Processing Symposium:
IPDPS, 2005.

[9] Eric Bruneton. Julia tutorial. http://fractal.objectweb.org/tutorials/julia/index.html,
2003.

[10] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, R. Baraglia, T. Fagni,
D. Laforenza, and A. Paccosi. HPC Application Execution on Grids. In
V. Getov, D. Laforenza, and A. Reinefeld, editors, Future Generation Grids,
CoreGrid series. Springer, 2006. Dagstuhl Seminar 04451 — November 2004.

[11] Pierre-Charles David and Thomas Ledoux. Towards a framework for self-
adaptive component-based applications. In Jean-Bernard Stefani, Isabelle De-
meure, and Daniel Hagimont, editors, Proceedings of Distributed Applications
and Interoperable Systems 2003, the 4th IFIP WG6.1 International Confer-
ence, DAIS 2003, volume 2893 of Lecture Notes in Computer Science, pages
1-14, Paris, November 2003. Federated Conferences, Springer-Verlag.

12

Thierry Delaitre, Tamas Kiss, Ariel Goyeneche, Gabor Terstyanszky, Stephen
Winter, and Peter Kacsuk. Gemlca: Running legacy code applications as grid
services. Journal of Grid Computing, 3(1 — 2):75 — 90, 2005/06.

13

Alexandre Denis, Christian Perez, Thierry Priol, and André Ribes. Bringing
high performance to the corba component model. In SIAM Conference on
Parallel Processing for Scientific Computing, 2004.

[14] Jan Dinnweber and Sergei Gorlatch. HOC-SA: A Grid Service architecture for
Higher-Order Components. In International Conference on Services Comput-
ing, Shanghai, China. IEEE Computer Society Press, September 2004. ISBN
0-7695-2225-4.

[15] Jan Diinnweber, Sergei Gorlatch, Francoise Baude, Virginie Legrand, and
Nikos Parlavantzas. Towards automatic creation of web services for grid com-
ponent composition. In Vladimir Getov, editor, Proceedings of the Grids@Work
Plugtest, Sophia-Antipolis, France, October 2005.

[16] Bruneton E., Coupaye T., and Stefani J.B. Recursive and dynamic software
composition with sharing. In Proceedings of the 7th ECOOP International
Workshop on Component-Oriented Programming (WCOP’02), 2002.

[17] E.Bruneton, T.Coupaye, and J.B. Stefani. The Fractal Component Model
http://fractal.objectweb.org/specification/index.html. Technical re-
port, ObjectWeb Consortium, February 2004.

[18] H. Fakih, N. Bouraqadi, and L. Duchien. Aspects and software components:
A case study of the fractal component model. In International Workshop
on Aspect-Oriented Software Development (WAOSD 200/4), Beijing, China,
September 2004.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 49

[19]

[20]

[21]
[22]

CCA forum. The Common Component Architecture (CCA) Forum home page,
2005. http://www.cca-forum.org/.

A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era.
IBM Systems Journal - Autonomic Computing, 42(1):5-18, 2003.

D. Gannon. Programming the grid: Distributed software components, 2002.

D. Gannon, S. Krishnan, A. Slominski, and G. Kanadaswamy. Building ap-
plications from a web service based component architecture. In V. Getov and
T. Kielmann, editors, Component Models and Systems fro Grid Applications,
1st volume of the CoreGRID series, pages 3—18. Springer, 2995. Invited con-
tribution.

Sébastien Lacour, Christian Pérez, and Thierry Priol. Generic application
description model: Toward automatic deployment of applications on computa-
tional grids. In 6th IEEE/ACM International Workshop on Grid Computing
(Grid2005), Seattle, WA, USA, November 2005. Springer-Verlag.

Maciej Malawski, Dawid Kurzyniec, and Vaidy Sunderam. MOCCA — towards
a distributed CCA framework for metacomputing. In Proceedings of the 10th
International Workshop on High-Level Parallel Programming Models and Sup-
portive Environments (HIPS2005), 2005.

A. Mayer, S. Mcough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and
J. Darlington. Meaning and behaviour in grid oriented components. In Third
International Workshop on Grid Computing, GRID, volume 2536 of LNCS,
pages 100-111, 2002.

Vladimir Mencl and Tomas Bures. Microcomponent-based component con-
trollers: A foundation for component aspects. In APSEC. IEEE Computer
Society, Dec. 2005.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

Sun Microsystems. Enterprise Java Beans. http://java.sun.com/products/ejb,
2005.

omg.org team. CORBA Component Model, V3.0.
http://www.omg.org/technology/documents/formal/components.htm, 2005.

C. Partridge, T. Menedez, and W. Milliken. Host anycasting service. RFC
1546, 1993.

Nicolas Pessemier, Lionel Seinturier, and Laurence Duchien. Components, adl
& aop: Towards a common approach. In Walter Cazzola, Shigeru Chiba,
and Gunter Saake, editors, RAM-SE, pages 61-69. Fakultét fiir Informatik,
Universitdt Magdeburg, 2004.

The Component Technologies Project. The Babel home page, 2005.
http://www.llnl.gov/CASC/components/babel.html.

Lionel Seinturier, Nicolas Pessemier, and Thierry Coupaye. AOKell:
an Aspect-Oriented Implementation of the Fractal Specifications, 2005.
http://www.lifl.fr/ seinturi/aokell/javadoc/overview.html.

Bjarne Stroustrup. The C++ programming language. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1986.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 50

[35] Clemens Szyperski. Component software: beyond object-oriented programming.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[36] The CoreGRID Programming Model Virtual Institute. Roadmap version 1 on
programming model. Technical Report D.PM.01, CoreGRID, Programming
Model Virtual Institute, Feb 2005.

[37] J. Thiyagalingam, S. Isaiadis, and V. Getov. Towards building a generic grid
services platform: a component-oriented approach. In V. Getov and T. Kiel-
mann, editors, Component Models and Systems for Grid Applications, CMSGA
workshop at ICS 2004. Springer Verlag, 2004.

[38] S.R. White, J.E. Hanson, I. Whalley, D.M. Chess, and J.O. Kephart. An archi-
tectural approach to autonomic computing. In Proceedings of the International
Conference on Autonomic Computing, pages 2-9. IEEE, May 2004.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 o1

A Fractal API
A.1 Java API

package org.objectweb.naming;
public interface Name {
NamingContext getNamingContext ();
byte[] encode () throws NamingException;
}
public interface NamingContext {
Name export (Object o, Object hints) throws NamingException;
Name decode (byte[] b) throws NamingException;
}
public interface Binder extends NamingContext {
Object bind (Name n, Object hints) throws NamingException;
}
public class NamingException extends Exception {
public NamingException (String msg) { super(msg); }
}
package org.objectweb.fractal.api;
import org.objectweb.fractal.api.factory.InstantiationException;
public interface Component {
Type getFcType ();
Object[] getFcInterfaces ();
Object getFcInterface (String interfaceName) throws NoSuchInterfaceException;
}
public interface Interface {
Component getFcItfOwner ();
String getFcItfName ();
Type getFcItfType ();
boolean isFcInternalltf ();
}
public interface Type {
boolean isFcSubTypeOf (Type type);
}
public class Fractal {
public static Component getBootstrapComponent () throws InstantiationException;
}
public class NoSuchInterfaceException extends Exception {
public NoSuchInterfaceException (String itfName) { super(itfName); }
}
package org.objectweb.fractal.api.control;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.NoSuchInterfaceException;
public interface AttributeController { }
public interface BindingController {
Stringl[] listFc O;
Object lookupFc (String clientItfName) throws NoSuchInterfaceException;
void bindFc (String clientItfName, Object serverItf) throws
NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException;
void unbindFc (String clientItfName) throws
NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException;
}
public interface ContentController {
Object[] getFcInternalIlnterfaces ();
Object getFcInternallnterface (String interfaceName) throws NoSuchInterfaceException;
Component [] getFcSubComponents () ;
void addFcSubComponent (Component subComponent)
throws IllegalContentException, IllegalLifeCycleException;

CoreGRID - Network of Excellence

CoreGRID FP6-004265 92

void removeFcSubComponent (Component subComponent)
throws IllegalContentException, IllegalLifeCycleException;
}
public interface SuperController {
Component [] getFcSuperComponents ();
}
public interface LifeCycleController {
String getFcState ();
void startFc () throws IllegallLifeCycleException;
void stopFc () throws IllegalLifeCycleException;
}
public interface NameController {
String getFcName ();
void setFcName (String name);
}
public class IllegalBindingException extends Exception {
public IllegalBindingException (String msg) { super(msg); }
}
public class IllegalContentException extends Exception {
public IllegalContentException (String msg) { super(msg); }
}
public class IllegallLifeCycleException extends Exception {
public IllegallLifeCycleException (String msg) { super(msg); }
}
package org.objectweb.fractal.api.factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.Type;
public interface Factory {
Type getFcInstanceType ();
Object getFcControllerDesc ();
Object getFcContentDesc ();
Component newFcInstance () throws InstantiationException;
}
public interface GenericFactory {
Component newFcInstance (Type type, Object controllerDesc, Object contentDesc)
throws InstantiationException;
}
public class InstantiationException extends Exception {
public InstantiationException (String msg) { super(msg); }
}
package org.objectweb.fractal.api.type;
import org.objectweb.fractal.api.NoSuchInterfaceException;
public interface ComponentType extends org.objectweb.fractal.api.Type {
InterfaceTypel[] getFcInterfaceTypes () ;
InterfaceType getFcInterfaceType (String name) throws NoSuchInterfaceException;
}
public interface InterfaceType extends org.objectweb.fractal.api.Type {
String getFcItfName ();
String getFcItfSignature ();
boolean isFcClientItf ();
boolean isFcOptionalIltf ();
boolean isFcCollectionItf ();
}
public interface TypeFactory {
InterfaceType createFcItfType (
String name, String signature, boolean isClient,
boolean isOptional, boolean isCollection)
throws org.objectweb.fractal.api.factory.InstantiationException;

CoreGRID - Network of Excellence

CoreGRID FP6-004265 93

ComponentType createFcType (InterfaceTypel[] interfaceTypes)
throws org.objectweb.fractal.api.factory.InstantiationException;

A.2 CAPI

typedef unsigned char jboolean;
typedef unsigned short jchar;
typedef signed char jbyte;
typedef signed short jshort;
typedef signed int jint;
typedef signed long long jlong;
typedef float jfloat;
typedef double jdouble;
struct Morg_objectweb_naming Name {
Rorg_objectweb_naming NamingContext* (*getNamingContext) (void *_this);
jbyte* (xencode) (void *_this);
I
struct Morg_objectweb_naming NamingContext {
Rorg_objectweb_naming Name* (*export) (void *_this, void* o, void* hints);
Rorg_objectweb_naming_Name* (*decode)(void *_this, jbytex b);
};
struct Morg_objectweb_naming_Binder {
Rorg_objectweb_naming_Name* (*export)(void *_this, void* o, void* hints);
Rorg_objectweb_naming Name* (*decode) (void *_this, jbytex b);
void* (*bind) (void *_this, Rorg_objectweb_naming Name* n, void* hints);
};
struct Morg_objectweb_fractal_api_Component {
Rorg_objectweb_fractal_api_Type* (*getFcType) (void *_this);
void** (*getFcInterfaces) (void *_this);
void* (*getFcInterface)(void *_this, charx interfaceName);
};
struct Morg_objectweb_fractal_api_Interface {
Rorg_objectweb_fractal_api_Component* (*getFcItfOwner) (void *_this);
char* (*getFcItfName) (void *_this);
Rorg_objectweb_fractal_api_Type* (*getFcItfType) (void *_this);
jboolean (*isFcInternalltf) (void *_this);
};
struct Morg_objectweb_fractal_api_Type {
jboolean (*isFcSubTypeOf) (void *_this, Rorg_objectweb_fractal_api_Type* type);
};
struct Morg_objectweb_fractal_api_control_AttributeController {3}
struct Morg_objectweb_fractal_api_control_BindingController {
char** (*listFc) (void *_this);
void* (*lookupFc) (void *_this, char* clientItfName);
void (*bindFc) (void *_this, char* clientItfName, void* serverItf);
void (*unbindFc) (void *_this, char* clientItfName);
};
struct Morg_objectweb_fractal_api_control_ContentController {
voidx* (*getFcInternallnterfaces)(void *_this);
void* (*getFcInternallnterface)(void *_this, char* interfaceName);
Rorg_objectweb_fractal_api_Component** (*getFcSubComponents) (void *_this);
void (*addFcSubComponent) (
void *_this, Rorg_objectweb_fractal_api_Componentx* subComponent);
void (*removeFcSubComponent) (
void *_this, Rorg_objectweb_fractal_api_Component* subComponent);
}

struct Morg_objectweb_fractal_api_control_SuperController {

CoreGRID - Network of Excellence

CoreGRID FP6-004265 o4

Rorg_objectweb_fractal_api_Component** (*getFcSuperComponents) (void *_this);
};
struct Morg_objectweb_fractal_api_control_LifeCycleController {
char* (*getFcState) (void *_this);
void (*startFc) (void *_this);
void (*stopFc) (void *_this);
};
struct Morg_objectweb_fractal_api_control_NameController {
char* (*getFcName) (void *_this);
void (*setFcName) (void *_this, char* name);
};
struct Morg_objectweb_fractal_api_factory_Factory {
Rorg_objectweb_fractal_api_Type* (*getFcInstanceType) (void *_this);
void* (*getFcControllerDesc) (void *_this);
void* (*getFcContentDesc) (void *_this);
Rorg_objectweb_fractal_api_Component* (*newFcInstance) (void *_this);
};
struct Morg_objectweb_fractal_api_factory_GenericFactory {
Rorg_objectweb_fractal_api_Component* (*newFcInstance) (
void *_this, Rorg_objectweb_fractal_api_Type* type,
void* ctrlDesc, void* cntntDesc);
};
struct Morg_objectweb_fractal_api_type_ComponentType {
jboolean (*isFcSubTypeOf) (void *_this, Rorg_objectweb_fractal_api_Type* type);
Rorg_objectweb_fractal_api_type_InterfaceType** (*getFcInterfaceTypes)
(void #_this);
Rorg_objectweb_fractal_api_type_InterfaceTypex (*getFcInterfaceType)
(void *_this, char* name);
};
struct Morg_objectweb_fractal_api_type_InterfaceType {
jboolean (*isFcSubTypeOf) (void *_this, Rorg_objectweb_fractal_api_Type* type);
char* (*getFcItfName) (void *_this);
char* (*getFcItfSignature) (void *_this);
jboolean (*isFcClientItf) (void *_this);
jboolean (*isFcOptionalltf) (void *_this);
jboolean (*isFcCollectionItf) (void *_this);
};
struct Morg_objectweb_fractal_api_type_TypeFactory {
Rorg_objectweb_fractal_api_type_InterfaceType* (*createFcItfType) (
void *_this, char* name, char* signature,
jboolean isClient, jboolean isOptional, jboolean isCollection);
Rorg_objectweb_fractal_api_type_ComponentType* (*createFcType) (
void *_this, Rorg_objectweb_fractal_api_type_InterfaceType** interfaceTypes);
};
// where Rxyz types are defined by:
// typedef struct {
// struct Mxyz *meth;
// void *selfdata;
// } Rxyz;

A.3 OMG IDL API

typedef sequence<Object> ObjectArray;

typedef sequence<string> stringArray;

typedef sequence<octet> octetArray;

module org_objectweb_naming {
exception NamingException { };
interface NamingContext;

CoreGRID - Network of Excellence

CoreGRID FP6-004265 %)

interface Name {
NamingContext getNamingContext ();
octetArray encode () raises(NamingException) ;
};
interface NamingContext {
Name export (in Object o, in Object hints) raises(NamingException) ;
Name decode (in octetArray b) raises(NamingException) ;
}
interface Binder : NamingContext {
Object bind (in Name n, in Object hints) raises(NamingException);
}
};
module org_objectweb_fractal_api {
exception NoSuchInterfaceException { };
interface Type {
boolean isFcSubTypeOf (in Type type);
}
interface Component {
Type getFcType ();
ObjectArray getFcInterfaces ();
Object getFcInterface (in string interfaceName) raises(NoSuchInterfaceException);
};
typedef sequence<Component> ComponentArray;
interface Interface {
Component getFcItfOwner ();
string getFcItfName ();
Type getFcItfType ();
boolean isFcInternalltf ();
}
};
module org_objectweb_fractal_api_control {
exception IllegalBindingException { };
exception IllegalContentException { };
exception IllegalLifeCycleException { };
interface AttributeController { };
interface BindingController {
stringArray listFc Q;
Object lookupFc (in string clientItfName)
raises(org_objectweb_fractal_api::NoSuchInterfaceException);
void bindFc (in string clientItfName, in Object serverItf)
raises(IllegalBindingException, IllegallLifeCycleException,
org_objectweb_fractal_api: :NoSuchInterfaceException);
void unbindFc (in string clientItfName) raises(IllegalBindingException,
IllegallifeCycleException,
org_objectweb_fractal_api::NoSuchInterfaceException);
};
interface ContentController {
ObjectArray getFcInternallnterfaces ();

Object getFcInternalIlnterface (in string interfaceName)
raises(org_objectweb_fractal_api::NoSuchInterfaceException);
org_objectweb_fractal_api: :ComponentArray getFcSubComponents ();
void addFcSubComponent (in org_objectweb_fractal_api::Component subComponent)

raises(IllegalContentException, IllegalLifeCycleException);
void removeFcSubComponent (in org_objectweb_fractal_api::Component subComponent)
raises(IllegalContentException, IllegalLifeCycleException);
};
interface SuperController {
org_objectweb_fractal_api::ComponentArray getFcSuperComponents ();

CoreGRID - Network of Excellence

CoreGRID FP6-004265

};
interface LifeCycleController {
string getFcState ();
void startFc () raises(IllegallLifeCycleException);
void stopFc () raises(IllegalLifeCycleException);
}
interface NameController {
string getFcName ();
void setFcName (in string name);
};
};
module org_objectweb_fractal_api_factory {
exception InstantiationException { };
interface GenericFactory {
org_objectweb_fractal_api::Component newFcInstance (
in org_objectweb_fractal_api::Type type,
in Object controllerDesc, in Object contentDesc)
raises(InstantiationException);
};
interface Factory {
org_objectweb_fractal_api::Type getFcInstanceType ();
Object getFcControllerDesc ();
Object getFcContentDesc ();
org_objectweb_fractal_api::Component newFcInstance ()
raises(InstantiationException);
};
I
module org_objectweb_fractal_api_type {
interface InterfaceType : org_objectweb_fractal_api::Type {
string getFcItfName ();
string getFcItfSignature ();
boolean isFcClientItf ();
boolean isFcOptionalItf ();
boolean isFcCollectionItf ();
};
typedef sequence<InterfaceType> InterfaceTypeArray;
interface ComponentType : org_objectweb_fractal_api::Type {
InterfaceTypeArray getFcInterfaceTypes () ;
InterfaceType getFcInterfaceType (in string name)
raises(org_objectweb_fractal_api::NoSuchInterfaceException);
};
interface TypeFactory {
InterfaceType createFcItfType (
in string name, in string signature,
in boolean isClient, in boolean isOptional, in boolean isCollection)
raises(org_objectweb_fractal_api_factory::InstantiationException);
ComponentType createFcType (in InterfaceTypeArray interfaceTypes)
raises(org_objectweb_fractal_api_factory::InstantiationException);
}
};

B Fractal ADL
B.1 standard.dtd

<?xml version="1.0" encoding="IS0-8859-1" 7>

<!-- A DTD that includes all the "standard" Fractal ADL modules -->

CoreGRID - Network of Excellence

CoreGRID FP6-004265 o7

<l== k%% *kk ——>
<!-- AST nodes definitions -=>
K= skokskskokokokokskok ook skokok ok sksk sk ook sk sk ok sk sk ok sk sk ok sk sk sk ok sksk ok ok sk sksk ko sk skosk ok skl ko skoskskokokskokkok ok ——>

<?add ast="definition" itf="org.objectweb.fractal.adl.Definition" 7>

<!-- components module -->
<?add ast="component" itf="org.objectweb.fractal.adl.components.Component" 7>
<?add ast="definition" itf="org.objectweb.fractal.adl.components.ComponentDefinition" 7>

<!-- interfaces module -->

<?7add ast="interface" itf="org.objectweb.fractal.adl.interfaces.Interface" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.interfaces.InterfaceContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.interfaces.InterfaceContainer" 7>

<!-- types module -->
<?7add ast="interface" itf="org.objectweb.fractal.adl.types.TypeInterface" 7>

<!-- bindings module -->

<?add ast="binding" itf="org.objectweb.fractal.adl.bindings.Binding" 7>

<?7add ast="definition" itf="org.objectweb.fractal.adl.bindings.BindingContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.bindings.BindingContainer" 7>

<!-- attributes module -->

<?7add ast="attribute" itf="org.objectweb.fractal.adl.attributes.Attribute" 7>

<?add ast="attributes" itf="org.objectweb.fractal.adl.attributes.Attributes" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.attributes.AttributesContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.attributes.AttributesContainer" 7>

<!-- implementations module -->

<?7add ast="implementation" itf="org.objectweb.fractal.adl.implementations.Implementation" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.implementations.ImplementationContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.implementations.ImplementationContainer" 7>
<?add ast="controller" itf="org.objectweb.fractal.adl.implementations.Controller" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.implementations.ControllerContainer" 7>

<?7add ast="component" itf="org.objectweb.fractal.adl.implementations.ControllerContainer" 7>

<?add ast="templateController" itf="org.objectweb.fractal.adl.implementations.TemplateController" 7>
<?add ast="definition" itf="org.objectweb.fractal.adl.implementations.TemplateControllerContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.implementations.TemplateControllerContainer" 7>

<!-- loggers module -->

<?add ast="logger" itf="org.objectweb.fractal.adl.loggers.Logger" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.loggers.LoggerContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.loggers.LoggerContainer" 7>

<!-- nodes module -->

<?add ast="virtualNode" itf="org.objectweb.fractal.adl.nodes.VirtualNode" 7>

<?add ast="definition" itf="org.objectweb.fractal.adl.nodes.VirtualNodeContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.nodes.VirtualNodeContainer" 7>

<!-- arguments module -->
<?add ast="definition" itf="org.objectweb.fractal.adl.arguments.ArgumentDefinition" 7>

<!-- coordinates module -->

<?7add ast="coordinates" itf="org.objectweb.fractal.adl.coordinates.Coordinates" 7>

<?7add ast="definition" itf="org.objectweb.fractal.adl.coordinates.CoordinatesContainer" 7>
<?add ast="component" itf="org.objectweb.fractal.adl.coordinates.CoordinatesContainer" 7>

<!-- comments module -->
<?7add ast="comment"
<?add ast="definition"
<?add ast="component"
<?add ast="interface"
<?7add ast="binding"
<?7add ast="attributes"

itf="org.objectweb.fractal.adl.comments.Comment" 7>
itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
<?add ast="attribute" itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
<?add ast="controller" itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
<?7add ast="templateController" itf="org.objectweb.fractal.adl.comments.CommentContainer" 7>
<?7add ast="implementation" itf="org.objectweb.fractal.adl.comments.CommentContainer" ?>

<!__ Kk ok kkk —=>
<!-- Mapping from XML names to AST names -=>
NESEE T *k *k Hokkkk ——>
<?map xml="binding.client" ast="binding.from" 7>

<?map xml="binding.server" ast="binding.to" 7>

<?map xml="content" ast="implementation" 7>

<?map xml="content.class" ast="implementation.className" 7>

CoreGRID - Network of Excellence

CoreGRID FP6-004265

<?map xml="controller.desc" ast="controller.descriptor" 7>

<?map xml="template-controller" ast="templateController" 7>
<?map xml="template-controller.desc" ast="templateController.descriptor" 7>

<?map xml="virtual-node" ast="virtualNode" 7>

V== skrookatokokokok ok okokok ok stk ok stk ksl ok ook ok stk ok sk stk ok sk ok sk ok kok ok stk fokok ok ok okok - ——>
<!l-- XML syntax definition -=>
T >

<!ELEMENT definition (comment*,interface*,component*,binding*,content?,attributes?,
controller?,template-controller?,logger?,virtual-node?,coordinates*) >
<!ATTLIST definition
name CDATA #REQUIRED
arguments CDATA #IMPLIED
extends CDATA #IMPLIED
>

<!ELEMENT component (comment#,interface*,component*,binding*,content?,attributes?,
controller?,template-controller?,logger?,virtual-node?,coordinates*) >
<!ATTLIST component
name CDATA #REQUIRED
definition CDATA #IMPLIED
>

<!ELEMENT interface (commentx) >
<!'ATTLIST interface
name CDATA #REQUIRED
role (client | server) #IMPLIED
signature CDATA #IMPLIED
contingency (mandatory | optional) #IMPLIED
cardinality (singleton | collection) #IMPLIED
>

<!ELEMENT binding (comment*) >
<!'ATTLIST binding
client CDATA #REQUIRED
server CDATA #REQUIRED
>

<!ELEMENT attributes (comment*,attributex) >
<!ATTLIST attributes

signature CDATA #IMPLIED
>

<!ELEMENT attribute (comment*) >
<!ATTLIST attribute

name CDATA #REQUIRED

value CDATA #REQUIRED
>

<!ELEMENT controller (comment*) >
<!ATTLIST controller

desc CDATA #REQUIRED
>

<!ELEMENT template-controller (comment*) >
<!ATTLIST template-controller

desc CDATA #REQUIRED
>

<!ELEMENT content (comment*) >
<!ATTLIST content

class CDATA #REQUIRED
>

<VELEMENT logger EMPTY >
<IATTLIST logger

name CDATA #REQUIRED
>

<!ELEMENT virtual-node EMPTY >
<!ATTLIST virtual-node

name CDATA #REQUIRED
>

<!ELEMENT coordinates (coordinatesx*) >

<!ATTLIST coordinates
name CDATA #REQUIRED

CoreGRID - Network of Excellence

a8

CoreGRID FP6-004265

x0 CDATA #REQUIRED
x1 CDATA #REQUIRED
yo CDATA #REQUIRED
yi CDATA #REQUIRED
color CDATA #IMPLIED

<!ELEMENT comment EMPTY >

<!ATTLIST comment
language CDATA #IMPLIED
text CDATA #IMPLIED

CoreGRID - Network of Excellence

