
A Java Framework for Seamless

Sequential, Multi-threaded, and Distributed Programming

Denis Caromel, Julien Vayssi�ere

INRIA Sophia Antipolis
CNRS - I3S - Univ. Nice Sophia Antipolis

BP 93, 06902 Sophia Antipolis Cedex
tel: 33 93 65 76 31, fax: 33 93 65 78 58, email: First.Last@sophia.inria.fr

http://www.inria.fr/sloop/javall/

Abstract

Due to its platform-independent execution model,
its support for networking, multithreading and mo-
bile code, Java has given hope that easy Internet-
wide high-performance network computing was at
hand. Numerous attempts have then been made at
providing a framework for the development of such
metacomputing applications. Unfortunately, none
of them addresses seamless cross-paradigm comput-

ing, i-e the execution of the same application on a
multiprocessor shared-memory machine as well as
on a network of workstations, or on any combina-
tion of both.
In this article we �rst identify four requirements
for the development of such metacomputing frame-
works. We then introduce Java//, a 100% Java li-
brary that provides transparent remote objects as
well as asynchronous calls and high-level synchro-
nization mechanisms. We also present the metaob-
ject protocol Java// is built on and give some per-
formance �gures.

1 Introduction

In order to provide a framework for the devel-
opment of cross-paradigm metacomputing environ-

ments [7][10][8] within the scope of the Java lan-
guage [1] and environment [12], we identify four key
requirements: polymorphism between local and re-
mote objects, higher-level synchronization mecha-
nisms, reuse of sequential code and the availability
of a 100% Java portable library.

1.1 Transparent remote objects

First, let us focus on cross-paradigm portability.
Cross-platform portability is genuinely achieved by
the standard Java execution environment. An
application written in Java is compiled into an
architecture-neutral bytecode format, which then
executes on a Java Virtual Machine (JVM) whose

purpose is to hide the nature of the underlying plat-
form.
Some JVM implementations provide access to na-
tive threads, which, when run on a multiproces-
sor machine, permits automatic mapping of Java
threads onto the set of available processors. This
feature abolishes the frontier between a mono-
processor machine and a multiprocessor, shared-
memory machine when it comes to executing mul-
tithreaded Java applications. It results in instant
speedup for applications built around concurrent
activities, provided there actually is some paral-
lelism between the threads.
Consequently, code reuse for porting Java threaded
applications from a monoprocessor machine to a
multiprocessor machine is not an issue since the
application code for a monoprocessor machine does
not need any modi�cation at all to run on a multi-
processor shared-memory machine.
Nevertheless, a huge gap yet exists between mul-
tithreaded and distributed Java applications which
forbids code reuse in order to build distributed ap-
plications from multithreaded applications. Both
JavaRMI and JavaIDL, as examples of distributed
object libraries in Java, put a heavy burden on the
programmer because they require deep modi�ca-
tions of existing code in order to turn local objects
into remotely-accessible ones.
Remote objects in these systems need to be accessed
through some speci�c interfaces. One could argue
that programming to an interface is usually consid-
ered as a better practice than programming to an
implementation. This is undoubtedly true, but the
core of the problem is that implementation classes
are forced to move from one place in the inheri-
tance graph to another in order to become remote-
accessible classes. Method signatures are also mod-
i�ed in order to throw distribution-related excep-
tions, which does not allow a clear separation of
concerns between functional code and distribution-
related code.
As a consequence, these distributed objects libraries

1



do not allow polymorphism between local and re-
mote objects. This feature is our �rst requirement
for a metacomputing framework. It is strongly re-
quired in order to let the programmer concentrate
�rst on modeling and algorithmic issues rather than
lower-level tasks such as object distribution, map-
ping and load balancing.

1.2 High-level synchronization

mechanism

Our second requirement for metacomputing is
higher-level synchronization mechanisms. Al-
though monitor-like primitives [13] may be theoret-
ically su�cient for expressing synchronization, im-
plementing complex synchronization speci�cations
using such low-levels tools is de�nitely cumbersome
and error-prone. Moreover, such architectures do
not scale well and have some reuse problems [2].
Such an architecture also assumes a shared mem-
ory of some kind, which does not �t well in a system
that needs to address distribution as well.

1.3 Reuse of sequential code

When designing an object-oriented application, the
programmer usually starts with creating high-level
domain-dependent abstractions and turns these
into objects and classes. These classes and objects
are then connected together using inheritance, com-
position or any other technique, which eventually
results in a modelling of the world managed by the
application.
Deciding which objects should have an activity on
their own or distributing objects over several adress
spaces is de�nitely a lower-level issue. As a matter
of fact, object distribution or the expression of par-
allel activities is always constrained by the actual
system the application should be implemented on.
This is why we believe a framework for metacom-
puting applications should provide a clear separa-
tion between high-level application design and im-
plementation issues such as object distribution or
managing concurrent activities.
Reuse of sequential code does not mean reusing
legacy applications in order to build distributed
concurrent Java applications but rather consider-
ing sequential Java code as the expression of high-
level abstractions. Reusing this code simply means
adapting it to a particular metacomputing environ-
ment.

1.4 A portable, non-intrusive library

A rather large number of research projects have al-
ready been conducted on transparent remote ob-
jects in Java [19][17].
Two major implementation techniques are used :

some change the Java Virtual Machine or the Java-
to-bytecode compiler, other rely on some source
pre-processing. These techniques lead to two di�er-
ent 
aws. The �rst one fails at providing Internet-
wide portability by requiring installation of a spe-
ci�c runtime environment on each possible node of
the computation. The second one requires that the
programmer has access to the source code of the ob-
jects he wants to make remote, which is barely never
the case when using third-party libraries. Conse-
quently, a library that aims at distributing Java ob-
jects transparently has to be 100% Java and only
require access to the compiled representation of
classes, not to the sources.

2 The Java// framework

In order to meet these requirements, we have de-
signed and implemented Java// (pronounce Java

Parallel), a Java library for seamless sequential,
multi-threaded, and distributed programming.
Java// only consists of a collection of 100% Java
classes, thus requiring no change to the standard
Java execution environment.
The Java// model uses by default the following
principles:

� heterogeneous model with both passive and ac-
tive objects (threads, actors)

� sequential processes
� uni�ed syntax between message passing and
inter-process communication

� systematic asynchronous communications to-
wards active objects

� wait-by-necessity (automatic and transparent
futures)

� automatic continuations (a transparent delega-
tion mechanism)

� no shared passive objects (call-by-value be-
tween processes)

� centralized and explicit control by default
� polymorphism between standard objects, ac-
tive objects, and remote objects.

2.1 Model of execution

Given a standard Java object, there are several new
behaviors we would like to transparently give it: lo-
cation transparency, activity transparency and ad-
vanced synchronization mechanism.
Location transparency provides polymorphism be-
tween local and remote objects. Activity trans-
parency hides the fact that methods invoked on
an active object actually execute in a separate
thread using transparent future objects and wait-
by-necessity [5]. Advanced synchronization mech-
anisms allow an easy and safe implementation of
potentially complex synchronization policies.

2



Let's have a look at how these di�erent features can
be obtained within the scope of the Java language.
In most distributed objects systems, such as RMI
or CORBA, location transparency is achieved using
the proxy pattern [11]. A local object (the so-called
proxy) acts as a representative for an object that re-
sides in another address space, possibly on another
machine across a network. This proxy encapsulates
all communication details so that other local objects
do not know they are actually sending messages to
a remote object.
Adding a new behavior to an object, such as its
own thread of execution, may be usually achieved
using two di�erent object-oriented techniques: mul-
tiple inheritance and composition. Multiple inheri-
tance allows e�ortless extension of a class behavior,
provided these di�erent behaviors be rather orthog-
onal, like functional code and synchronization for
example. Composition aggregates di�erent objects
with di�erent behaviors in order to mime a complex
object.
As Java features simple class inheritance and mul-
tiple interface inheritance, we have chosen to take
the best from both worlds. We use composition for
implementation of multiple behaviors while multi-
ple interface inheritance is used for declaring these
behaviors.
In Java//, any standard object (�gure 1) may be ex-
tended through composition with a pair of objects
: a proxy and a body (�gure 2).

Object A

Figure 1: Standard model of execution

Proxy

Remote node

Body Object A

Local node

Figure 2: Java// model of execution

In terms of metaobjects, the proxy transparently
rei�es method invocations. Method invocations
are 'trapped' and converted into instances of the
MethodCall class. These method invocations may
then be manipulated as �rst-class objects in order
to implement any new semantics.
The body receives these rei�ed calls and stores them
into a queue of pending calls. It then executes them
in an order speci�ed by a given synchronization pol-
icy. If none is provided, the body defaults to a FIFO
behavior.
We provide two di�erent ways for expressing syn-
chronization policies : an explicit one and an im-

plicit one. In the explicit one, the programmer has
the possibility to override the default FIFO-ordered
policy by writing code for explicitely managing the
queue of pending calls on an object. This gives
him total control over the synchronization strategy.
In the implicit way, which is actually implemented
using the explicit one, the programmer declares a
set of properties that constrain the default FIFO-
ordered policy.
Note that any other synchronization abstraction
may be implemented using the explicit one.

2.2 Programming active objects

Given a sequential Java program, it takes only mi-
nor modi�cations from the programmer to turn
it into a multithreaded, ready-for-metacomputing
program. We'll �rst focus on active object creation
and then discuss inter-object synchronization.

Parallel execution

Java// actually only requires instanciation code to
be modi�ed in order to transform a standard object
into an active one. Besides the standard construc-
tor parameters for the object, the creation of an
active object requires at least the name of the node
to create the object on. Depending on special se-
mantics requirements, additional parameters may
be passed.
Here's a sample of code with several techniques for
turning a passive instance of class A into a remote,
active one.

A a = new A ("foo", 7) ;

becomes either (instanciation-based)

Object[] params={"foo", new Integer (7)};

A a =(A) Javall.newActive

("A", params, "myNode");

or (class-based)

class pA extends A implements Active {}

Object[] params={"foo", new Integer (7)};

A a =(A) MOP.newInstance

("pA", params, "myNode");

or (object-based)

A a = new A ("foo", 7) ;

a = (A) Javall.turnActive (a, "myNode");

This piece of code creates an instance of class A
on node myNode. The node is an abstract name
for an actual node in the computation. The map-
ping between nodes, network nodes and Java virtual
machines is not described here. As we are using
RMI, a node name maps to an URL. Mapping be-
tween node names and URLs is speci�ed through

3



the javall-mapping �le.
This mapping scheme allows several virtual ma-
chines to coexist on the same network host as well
as possibly having a single entry point for an entire
cluster of workstations.
The active instance just created owns its own thread
that executes methods invoked on this object in a
default FIFO order. The semantics of calls to such
an object are transparently asynchronous, with no
code modi�cation being required on the caller's
side.
This sample also illustrates instanciation-based
rei�cation (see section 4) contrasted with class-
based rei�cation and object-based rei�cation.

� Instanciation-based rei�cation is much of a
convenience technique. It allows the program-
mer to create an active instance of A with a
FIFO behavior without de�ning any new class.

� Class-based rei�cation is the core of Java//'s
philosophy. Given a class A, the programmer
writes a subclass pA that inherits directly from
A and implements a speci�c interface such as
Active. He or she may also provide a live

method for giving a speci�c activity or man-
aging synchronization, as we'll see in section
2.3

� Object-based rei�cation makes use of the
Javall.turnActivemethod, which enables us
to attach an active behavior to an existing ob-
ject at any time after its creation. This is es-
pecially useful when we do not have access to
the code that creates the standard object.

We suggest the use of the factory method pattern
[11] in order to nicely encapsulate the code needed
to instanciate active objects. This would result in
a static method createActiveA in class pA :

public static A createActiveA

(String s, int i, String node)

{

Object[] params={s, new Integer (i)};

return (A) Javall.newActive

("A", params, node);

}

As a side-e�ect, this technique reduces the
amount of code needed to instanciate active objects
using Java//.

Inter-object synchronization

Asynchronous message-passing would not be of
much interest if the user had to explicitely add
synchronization to the code that invokes methods
on active objects. Fortunately, Java// provides a
mechanism of transparent futures.
When a method is invoked on an active object, it
immediately returns a future object. This object

acts as a placeholder for the result of the not-yet-
completed method invocation. As a consequence,
the calling thread can go on with executing its code,
as long as it doesn't need to invoke methods on the
returned object, in which case the calling thread is
automatically blocked if the result of the method
invocation is not yet available.
Future objects in Java// are said to be transpar-
ent because they do not require any modi�cation of
the caller's code. They are automatically created
when a method is invoked on an active object: this
is the wait-by-necessity principle. Transparent fu-
ture objects are possible because the automatically-
created future object is actually an instance of a
subclass of the returned object, which is compliant
with all compile- and runtime type checks and does
not weaken software quality.
We believe asynchronous calls and future objects
can dramatically improve performance of Internet-
wide computations. Because huge latency is the
plague of today's Internet, wait-by-necessity can
help automatically overlap computations and com-
munications. As a consequence, the Java virtual
machine that runs at a node in a computation
spends less time in the idle state waiting for some
remote computation to complete.
There are two cases where future objects are not
available. Primitive types cannot lead to future ob-
jects because they are not standard objects and thus
cannot be subclassed. We have also chosen to for-
bid the use of future objects for methods that throw
checked exceptions. If this were allowed, the execu-
tion of a method on an active object could throw
an exception in the calling thread at a point where
the calling thread has exited the try clause. This
would result in an exception being thrown in a con-
text where it cannot be caught, thus modifying the
semantics of the application and most likely result-
ing in an application crash.

2.3 Intra-object Synchronization

Active objects instanciated through the
Javall.newActive static method or implementing
the Active interface are transparently given their
own thread that executes invoked methods with
a default FIFO order. This thread is started by
the object that owns the queue of pending method
invocations on an object: the body.
Java// provides a mechanism for specifying syn-
chronization of method invocations on a given
active object. The purpose of this mechanism is
to enhance the standard thread synchronization
mechanism [16] with two di�erent methods for
specifying synchronization : an explicit one and
an implicit one. The biggest di�erence with the
standard thread synchronization mechanism is that
synchronization is now centralized in one special
method of a class, instead of being disseminated in

4



all methods of a class.
The responsibility for specifying the synchroniza-
tion policy for a class is placed on its live(Body

myBody)method. Depending on the speci�c Java//
interface a class implements, synchronization is
either explicit or implicit. If no live method is
provided by the class of the rei�ed object, the
body uses its own default live method. For most
bodies, the default policy is FIFO.
If the class implements Active, the default mecha-
nism, a thread of control is explicitely available and
it is then the responsibility of the live method to
explicitely manage the queue of pending requests,
if the programmer wishes to override the default
FIFO policy. It does so by invoking methods on
the Body, such as serveOldest, serveOldest

(Method met), serveOldestBut (Method met),
waitARequest(). This methods are provided as a
service library for managing the queue of pending
calls.

The FIFO behavior provided by default is simply
implemented as follows

live (Body myBody)

{

while (true) myBody.serveOldest ();

}

Please note that serveOldest blocks if the queue
of pending requests is empty (no active wait).
Now consider the case of the canonical Bounded
Bu�er example. We assume we have a class
FixedBuffer that implements a �xed-length bu�er
and features methods put and get as well as
isEmpty and isFull. In order to achieve consis-
tency, a typical programming could be :

class BoundedBuffer extends FixedBuffer

implements Active

{

live (Body myBody)

{

while (true)

{

if (this.isFull())

myBody.serveOldest ("get");

else if (this.isEmpty())

myBody.serveOldest ("put");

else myBody.serveOldest();

myBody.waitARequest ();

}

}

}

The implicit programming of the bu�er synchro-
nization policy would be as follows.

class BoundedBuffer extends FixedBuffer

implements ImplicitActive

{

live (Body myBody)

{

myBody.forbid ("put", "isFull");

myBody.forbid ("get", "isEmpty");

}

}

Given these two synchronization constraints, the
Body object manages the queue of pending request
properly. As several methods in the same class may
have the same name and di�erent argument types,
we provide a convenience mechanism of shortcuts
that associates a string to a given method, which
results in less code for constraints declaration. If
for example class A contains two methods foo with
di�erent argument types, shortcuts may be created
as follows :

java.lang.reflect.Method method1, method2;

// Obtain Method objects for these two

// 'foo' methods through Reflection API.

// [...]

Javall.setShortcut ("A", "foo1", method1);

Javall.setShortcut ("A", "foo2", method2);

It is the responsibility of the programmer to
choose between explicit or implicit synchronization.
Implicit synchronization has proven to be better
than its explicit counterpart with respect to ease
of reuse and better scalability. On the other
hand, the overhead needed to decide which call
to execute given a set of constraints may not be
neglectible and in general the explicit technique has
more expressiveness. However, high-performance
computing often relies on relatively simple syn-
chronization policies.

Reflect

Active ...

ImplicitActive

Figure 3: Java// interfaces for object distribution
and synchronization

This technique is easily extensible and the pro-
grammer is free to implement new abstractions for
intra-object synchronization [4]. Each of these im-
plementations should result in a body class that
implements the synchronization policy and an in-
terface inheriting directly or indirectly from Active

which declares the name of the proxy class (usually
the default asynchronous proxy) and the name of
the body class (see �gure 3). Such an interface helps

5



1. Sequential design and programming

2. Active objects identi�cation

� Initial activities

� Shared objects

3. Active objects programming

� De�ne each active object class

� De�ne the activity (live)

� Use the active objects classes

4. Adaptation to constraints

� Re�ne the topology

� De�ne new active objects

Figure 4: The 4 steps of the method

organize synchronization abstractions logically and
is used by classes such as pA (see 2.2) in order to
choose which synchronization technique they would
like to use. The interface Reflect does not provide
any functionality but acts as a common root inter-
face for all behaviors implemented using the Java//
metaobject protocol.

2.4 A method for reuse

As Java// is an extension of Ei�el// [3] and C++//
[6], it may be the support for a method for reuse
�rst described in [5]. Its main feature is to postpone
the identi�cation of active objects in the design of
an application. The programmer may then concen-
trate on application design and not mix it with the
division of the application in concurrent activities.
The main steps of this method are shown in �gure
4.

3 Example and performances

3.1 Distributed matrix-vector prod-

uct

We have implemented an example proposed by
Raje, William and Boyles in [18]: a matrix-vector
product, the rows of the matrix being split between
two machines. The matrix is a square matrix of size
1000 containing float numbers.
We make extensive use of wait-by-necessity in order
to automatically overlap local and remote calcula-
tions. The time we consider includes sending the
vector, performing the calculation and returning the
result. It does not include the initial transmission
of the remote rows of the matrix.

Here is the code for the main method of the se-

quential version of the program :

public static void main (String args[])

{

// Size of the matrix

int n = 1000;

// number of rows on the local node

int m;

// One initial matrix and two submatrixes

Matrix m0, m1, m2;

// Initial, temporary and final vectors

Vector v0, v1, v2, v3;

// Some initialization code

[...]

// Creates submatrixes of sizes m and n-m

m1 = m0.getBlock (0, 0, m, n-1);

m2 = m0.getBlock (m+1, 0, n-1, n-1);

// Computes both products

v1 = m1.rightProduct (v0);

v2 = m2.rightProduct (v0);

// Creates result vector

v3 = v1.concat (v2);

}

Now assume we want to get a multithreaded

and distributed version of this program. The only
modi�cations we need to bring to the source code
are located in the portion of code where we create
the objects we want to make active.

m1 = m0.getBlock (0, 0, m, n-1);

m2 = m0.getBlock (m+1, 0, n-1, n-1);

If we had access to the code of the Matrix class,
we would like to modify it in such a way that the im-
plementation of method getBlock in class Matrix
now returns an active object instead of a standard
one. But this method would have several 
aws :

� Every invocation of this method would return

an active object, even if we do not want to.

� Its signature would have to be modi�ed in or-
der to take into account a new argument: the
node on which to create the active object.

This is why we provide the Javall.turnActive

method in order to attach an active behavior to an
active object after its creation. As a consequence,
we only need to add these two lines to method main,
after the standard m1 and m2 :

m1=(Matrix) Javall.turnActive(m1, "remoteNode");

m2=(Matrix) Javall.turnActive(m2, "localNode");

As a general rule, we do not assume we have
access to the code of the linear algebra library.
Consequentely, using Javall.newActive is not al-
ways possible, since submatrixes might be instanci-
ated inside the library (actually inside the body of

6



method getBlock) and returned as a result of this
method invocation.
Parallelism is achieved here because, as both m1 and
m2 are active objects, both calls to rightProduct

are asynchronous and return future objects for
representing the not-yet-available result vectors
(namely v1 and v2). As a consequence, the thread
that executes main launches this two products and
is then blocked on the call to concat because v1

is not available at the moment. Both products are
executed in parallel on two di�erent nodes of the
computation (the local node localNode and a re-
mote one designated as remoteNode.
Let us now assume we want to run the same pro-
gram on an SMP machine with a JVM using native
threads. The only modi�cation needed would be
to change myRemoteNode to the current node name
(localNode here), through the javall-mapping

�le.

3.2 Performances

Figure 5 shows the time needed to compute the
product with respect to the number of rows on the
remote machine. Both the local and the remote ma-
chine were UltraSparcs. As in [18], the minimum is
reached for 400 remote rows and 600 local ones.
This is not surprising at all since both Java// and
ARMI are implemented on top of RMI.

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

100 200 300 400 500 600 700 800 900

T
im

e 
in

 m
ill

is
ec

on
ds

Number of remote rows

Figure 5: Java// performances for Matrix-Vector
computation

Our implementation of Java// is based on Java
RMI. Our experience with RMI lead us to the fol-
lowing conclusion: RMI shows catastrophic perfor-
mance when it comes to exchanging large-size mes-
sages, such as a whole matrix or a very large graph
of objects. RMI itself is not directly responsible
for this, but the default serialization mechanism is.
As a general rule, it is currently hard to achieve
speedup on a network of workstations when the
communication/computation ratio is too high.

4 Implementation: a Meta-

Object Protocol

Java// is built on top of a metaobject protocol
(MOP) [14] that permits rei�cation of method in-
vocation and constructor call. As this MOP is not
limited to the implementation of our transparent
remote objects library, it also provides an open
framework for implementing powerful libraries for
the Java language.
As for any other element of Java//, this MOP is
entirely written in Java and does not require any
modi�cation or extension to the Java Virtual Ma-
chine, as opposed to other metaobject protocols for
Java [15]. It makes extensive use of the Java Re
ec-
tion API, thus requiring JDK 1.1 or higher. JDK
1.2 is required in order to suppress default Java lan-
guage access control checks when executing rei�ed
non-public method or constructor calls.
If the programmer wants to implement a new
metabehavior using our metaobject protocol, he or
she has to write both a concrete (as opposed to ab-
stract) class and an interface. The concrete class
provides an implementation for the metabehavior
he or she wants to achieve while the interface con-
tains its declarative part. The concrete class imple-
ments interface Proxy and provides an implemen-
tation for the given behavior through the method
reify:

public Object reify (MethodCall c)

throws InvocationTargetException,

IllegalAccessException;

This method takes a rei�ed call as a parameter and
returns the value returned by the execution of this
rei�ed call. Automatic wrapping and unwrapping
of primitive types is provided. If the execution of
the call completes abruptly by throwing an excep-
tion, it is propagated to the calling method, just as
if the call had not been rei�ed.
The interface that holds the declarative part of the
metabehavior has to be a subinterface of Reflect
(the root interface for all metabehaviors imple-
mented using Java//). The purpose of this interface
is to declare the name of the proxy class that imple-
ments the given behavior. Then, any instance of a
class implementing this interface will be automati-
cally created with a proxy that implements this be-
havior, provided that this instance is not created us-
ing the standard new keyword but through a special
static method: MOP.newInstance. This is the only
required modi�cation to the application code. An-
other static method, MOP.newWrapper, adds a proxy
to an already-existing object; the turnActive func-
tion of Java// is implemented through this feature.
Here's the implementation of a very simple yet use-
ful metabehavior : for each rei�ed call, the name of
the invoked method is printed out on the standard
output stream and the call is then executed. This
may be a starting point for building debugging or

7



pro�ling environments.

class EchoProxy extends Object

implements Proxy

{

// Constructor and variables declaration

public Object reify (MethodCall c)

throws InvocationTargetException,

IllegalAccessException

{

System.out.println (c.getMethodName());

return c.execute (targetObject);

}

}

interface Echo extends Reflect

{

public String PROXY_CLASS= "EchoProxy";

}

Instanciating an object of any class with this
metabehavior can be done in three di�erent ways
: instanciation-based, class-based or object-based.
Let's say we want to instanciate a Vector object
with an Echo behavior.
Standard Java code would be :

Vector v = new Vector (3);

Java// code, with instanciation-based declara-
tion of the metabehavior :

Object[] params = {new Integer (3)} ;

Vector v = (Vector) MOP.newInstance

("Vector", params, "EchoProxy", null) ;

While code with class-based declaration would be
:

public class MyVector extends Vector

implements Echo {}

Object[] params = {new Integer (3)} ;

Vector v = (Vector) MOP.newInstance

("Vector", params, null);

And object-based rei�cation would look like this:

Vector v = new Vector (3);

v=(Vector) MOP.newWrapper ("EchoProxy",v);

which is the only way to give a metabehavior to
an object that is created in a place where we can-
not edit source code. A typical example could be
an object returned by a method that is part of an
API distributed as a JAR �le, without source code.
Please note that, when using newWrapper, the invo-
cation of the constructor of the class Vector is not
rei�ed.
All the interfaces used for declaring metabehav-

iors inherit directly or indirectly from Reflect.
This leads to a hierarchy of metabehaviors such as
shown in �gure 6. Dashed interfaces are examples

of metabehaviors non related to object distribution
and synchronization. Note that ImplicitActive

inherits from Active to highlight the fact that im-
plicit synchronization somewhere always relies on
some hidden explicit mechanism. Interfaces inher-
iting from Reflect can thus be logically grouped
and assembled using multiple inheritance in order
to build new metabehaviors out of existing ones.
Due to its commitment to be a 100% Java library,
the MOP has a few limitations:

� Calls sent to instances of final classes (which
includes all arrays) cannot be rei�ed.

� Primitive types cannot be rei�ed because they
are not instance of a standard class.

Reflect

Active Persistent

...

Echo

ImplicitActive

Figure 6: Java// interfaces

5 Conclusion and Future

Work

We have designed and implemented Java//, a Java
library aimed at providing a framework for the
development of metacomputing applications. It
features transparent active and remote objects

as well as asynchronous calls, transparent future
objects and wait-by-necessity.
Java// is implemented without any modi�cation
of the Java Virtual Machine or any element of
the standard Java environment. It is only made
of 100% Java classes and heavily relies on Java
Re
ection API and Java RMI.
We are currently working on a new implementation
of Java// which will take advantage of new JDK
1.2 features (suppression of language access control
checks, Re
ection and RMI enhancements, weak
references,...) as well as take into account depre-
cated parts of the thread API.
We're also working on an implementation of the
Salishan problems [9] as a test bed.
Java// is available for download along
with source code and examples at
http://www.inria.fr/sloop/javall.

8



References

[1] Ken Arnold and James Gosling. The Java Pro-
gramming Language. The Java Series. Addi-
son-Wesley, Reading, MA, USA, May 1996.

[2] Jean-Pierre Briot and Akinori Yonezawa. In-
heritance and synchronization in concurrent
OOP. In European Conference on Object-

Oriented Programming (ECOOP'87), pages
32{40. Springer-Verlag, LNCS 276, 1987.

[3] Denis Caromel. Service, Asynchrony, and
Wait-By-Necessity. Journal of Object Ori-

entated Programming (JOOP), pages 12{22,
November 1989.

[4] Denis Caromel. Programming Abstractions
for Concurrent Programming. In Technology

of Object-Oriented Languages and Systems,

PACIFIC (TOOLS PACIFIC '90), November
1990.

[5] Denis Caromel. Toward a method of object-
oriented concurrent programming. Communi-

cations of the ACM, 36(9):90{102, September
1993.

[6] Denis Caromel, Fabrice Belloncle, and Yves
Roudier. The C++// System. MIT Press,
1996.

[7] C. Catlett and L. Smarr. Metacomputing.
Communications of the ACM, 35:44{152, 1992.

[8] Geo�rey C.Fox and Wojtek Furmanski. Java
for parallel computing and as a general lan-
guage for scienti�c and engineering simulation
and modelling. 1996.

[9] John T. Feo. A comparative study of paral-

lel programming languages: the Salishan prob-

lems, volume 6 of Special topics in supercom-

puting. North-Holland Publishing Co., Ams-
terdam, The Netherlands, 1992.

[10] I. Foster and C. Kesselman. Globus: A meta-
computing infrastructure toolkit. The Interna-
tional Journal of Supercomputer Applications

and High Performance Computing, 11(2):115{
128, Summer 1997.

[11] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns { Ele-

ments of Reusable Object-Oriented Software.
Professional Computing Series. AW, 1995.

[12] James Gosling and H. McGilton. The Java

Language Environment. Sun Microsystems
Computer Company, May 1995.

[13] C.A.R Hoare. Monitors: An operating system
structuring concept. Communications of the

ACM, 10:549{557, October 1974.

[14] Gregor Kiczales, Jim des Rivi�eres, and
Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, 1991.

[15] Juergen Kleinoeder and Michael Golm. Meta-
java: An e�cient run-time meta architecture
for java. Techn. Report TR-I4-96-03, Univ. of
Erlangen-Nuernberg, IMMD IV, 1996. english.

[16] Doug Lea. Concurrent programming in

Java: design principles and patterns. Addi-
son/Wesley Java series. Addison-Wesley, Read-
ing, MA, USA, November 1996.

[17] Michael Philippsen and Matthias Zenger. Java-
party - transparent remote objects in java. In
ACM 1997 Workshop on Java for Science and

Engineering Computation, June 1997.

[18] Rajeev R. Raje, Joseph I. William, and
Michael Boyles. An asynchronous remote
method invocation (armi) mechanism for java.
In ACM 1997 Workshop on Java for Science

and Engineering Computation, June 1997.

[19] W. M. Yu and A. L. Cox. Java/DSM: a plat-
form for heterogeneous computing. In ACM

1997 Workshop on Java for Science and Engi-

neering Computation, June 1997.

9


