
A Study of Computational Reconfiguration in a ProcessNetwork

D.L. Webb,A.L. WendelbornandJ.Vayssìere

Department of Computer Science, University of Adelaide
South Australia 5005, Australia

Email:
�
darren, andrew, julien � @cs.adelaide.edu.au

Abstract

In the processnetworkmodel,the networkevolvesby reconfiguration.Reconfigurationchangesthe representation
of the network. With a multi-threadedimplementationof the processnetworksystem,it is necessaryto coordinate
concurrentaccessesto the representationalstructure.We comparetwo approachesto the problemof ensuringcon-
sistency of representationduringreconfiguration.Oneis a “localized” view, takenfrom theviewpointof theprocess
undergoingreconfiguration.Theotherrequiresa “global” view of theentireprocessnetworkstructure.We show how
reconfigurationtakesplacein eachcase,andcompareadvantagesanddisadvantagesof each.

1 A Techniquefor ProcessNetwork Reconfiguration

TheKahnmodelof processnetworks[Kah74]isusedto representtransformationstostreamsof data.Processnetworks
arestructuredasdirectedgraphswherea noderepresentsa processandanedgerepresentstheflow of datafrom one
processto another. Kahn definesa processto be a mappingfrom oneor more input streams(or histories)to one
or more outputstreams.Processescommunicateonly throughdirectedfirst in - first out (FIFO) streamof tokens
with unboundedcapacitysuchthateachtokenis producedexactly once,andconsumedexactly once.Productionof
tokensis non-blocking,while consumptionfrom anemptystreamis blocking. The modelis highly concurrentand
deterministic,andis of interestto usasa semanticallysoundformulationof flow-basedsystems.

Reconfigurationis a fundamentalelementof processnetworksemanticsasdefinedby [Kah74], via therecursive
processschema.In fact,aprocessnetworkcanberegardedasstartingwith onenodeandexpandingasthecomputation
proceeds[KM77]. Thebehaviour of processnetworksis dynamic,evolving in a top-down fashion.Processnetworks
reconfigureby replacinga nodewith a subgraph.This is only possibleif thesubgraphcanbeappropriatelyspliced
into theincomingandoutgoingedgesof theoriginalnode.Here,weexamineaspectsof safeimplementationof such
computationalreconfiguration(mutationof arepresentation),asa basisfor furtherwork onadaptivereconfiguration.

[Kah74]assumesnormalorder(demanddriven)evaluation,hence:

1. reconfigurationhappensonly whenit is needed,and

2. nounnecessaryreconfigurationsoccur.

If animplementationis alsodemanddriven,then(1) makesit possibleto makestrongstatementsabouttheprocess
networknodethatis undergoingreconfiguration,andits inputandoutputchannels.

Implementingreconfigurationrequiresthatwe changetheprocessnetworkrepresentationdynamically;we must
beableto guaranteethatthemechanicsof mutatingtheprocessnetwork’simplementationstructuregivesthecorrectly
formedprocessnetworkbeforeandaftermutation,andthatmutationmustensurethatall channelconnectionsremain
correct,thatnovaluesarelost from channels,thatnovaluesareintroducedor duplicated,andthattheprocessnetwork
correctlyresumesoperation.We referto this asensuringconsistency of representationduringreconfiguration.

Againusing(1) above,andademanddrivenimplementation,wecanstate(in Fig. 1) thatthe(single)outputchan-
nelof B is emptyandhungry, andthatavaluemustbeproducedonthatchannelimmediatelyafterthereconfiguration
in orderto satisfythatdemand;in [Wen82], weshowedhow to performthemutationsafelyundertheseconditionsin
bothquasi-parallelanddistributedprocessnetworkimplementationschemes.

But we do not want to restrictoperationof a processnetworkto just demanddrivenoperation;it restrictscon-
currency (not entirely, asa sink nodecan propagatedemandson any numberof inputs, therebyproviding several
concurrentactivities to satisfythem,but it precludespipeliningor streamingparallelism).For this reason,we want
partsof a networkto proceedin a datadrivenfashion.This meanswe needto takemorecarein handlingmutations.



A C A C(a)
d1 d2

(b)
d1 d2

B D

Figure1: Expansionof anetworkfrom (a) to (b), replacingtheexisting nodeB with a subgraphD. B mayor maynot
surviveaspartof D in thenew configuration.

h

siftip a

sift (2)filter

print

b

ip a

f sift (2)gfilter

e f g c

d

ip sift c printda b

cb

printd

denotes token flow

new framework

// create a new framework
Builder builder = Toolkit.newBuilder(sift1);

// construct the new subgraph
Filter filter = new Filter(prime);
Sift sift2 = new Sift();
builder.add(filter);
builder.add(sift2);
OutputPort f = filter.getOutputPort(0);
InputPort g = s.getInputPort(0);
builder.connect(f,g);

// splice framework into existing network
InputPort b = builder.getInputPort(0);
InputPort c = builder.getOutputPort(0);
filter.setInputPort(b,0);
sift2.setOutputPort(c,0);

// schedule any new nodes
builder.trigger();

Figure2: Codefor theexpansionof a processnetwork.

Wecannotguaranteethattheoutputchannelwill beempty, or thatits consumerwill beblocked;also,producersof its
input channelsmaybeactive.

Specifically, we mustbeableto guarantee(in Fig. 1) that the transformationfrom B to D is implementedby a
safemutationprocess.Wemustrecognizewith datadrivenevaluationthatA andC areautonomoussopotentiallywill
produceto d1 andconsumefrom d2 while reconfigurationoccurs.For this reason,theendpointsof thechannelsheld
by A andC cannotbemodified. This leavesB andthe nodesin D, the nodesaffectedin the reconfiguration,asthe
remainingpointsfor contention.

During theprocessof reconfiguration,it is likely thattheendpointsof B andD will change.To ensureconsistency
of representation,weassumethatoncethemutationstarts,it continuesto completion.Thisassumptionensuresthere
is no activity involving themutatingprocess,henceno opportunityto adverselyaffect theconsistency of theexisting
or newly createdintermediarychannelsin D.

Our techniquefor ensuringconsistency is to createanentirelyseparate“framework” in whichthenew subgraphD
is created,seamlesslysplicingtheinputandoutputportsof B with thoseof D, andstartingany newly createdprocess
networknodes.Fromthetime thatB decidesto reconfigureuntil newly formednodesin D arestarted,neitherB nor
thenodesof D areableto manipulateany channelsandhenceconsistency is preserved.

To illustrateour technique(describedin detailin [VWW99]), welook at theexampleof theSieveof Eratosthenes.
Thisexampleis instructivebecausethecomputationevolvesby reconfiguration,andformsapipelineof filter andsieve
processesin sodoing.Further, it canbewritteneitherrecursively (a sieve is replacedby a filter anda new sieve at the
discovery of eachprime)or iteratively (a filter is insertedin front of thesieve processwhich remainsin theprocess
network). In Fig. 2, we show the portsof the reconfiguringprocess(b andc) assignedto the framework, the new
processes(filter1 andsift2) createdwithin theframework, aswell astheirports(e, f , g andh), andtheinternal
connectionof f to g. Themutationis completedby distinguishingappropriateportsof newly createdprocesseswithin
theframework, andidentifyingthemwith theportsof thereconfiguringprocess(here,b becomese andc becomesh).
We schedulethenewly formedprocessesusingtrigger().

Processnetworknodescanalsoreconfigureby disappearingfrom theprocessnetwork;[KM77] describethis as
“tieing” theinputof aprocessnetworkto its output.This typeof reconfigurationis especiallyusefulin definingcyclic



CA B C
d1 d2

A C A C

(a) (b)
d1 d2

d1 d2

A B

I
d3

Figure3: Shrinka network.(a) providesquasi-shrinking,whereas(b) actuallyshrinksthenetwork.

ip a

cons

b

printd

print

c

ip a

tie

b d

printd

ccons

ip a

propagation threaddenotes token flow

// create a new framework
Builder builder = Toolkit.newBuilder(cons);

// tie the framework’s ports
InputPort b = builder.getInputPort(0);
OutputPort c = builder.getOutputPort(0);
builder.tie(b,c);

Figure4: Disappearingacons operator

networks.Justdrawing a cycle is meaninglessasa computationbecauseit impliesimmediatedeadlock.But if weuse
a processwhich insertsd ��� 1� valuesinto a channel,andthendisappears,wehave effectively specifieda“delay” d in
thecycle andturnedin into a feedbackloop– Vi is computedin termsof Vi � d �	�
�
�
� Vi � i.

Figure3(a) shows how sucha tie maybe implementedusingexpansion.We canexpandthe networkto replace
B with the identity nodeI. In otherwords,B emits its prefix, thenbehavesasan identity process.But we should
avoid theoverheadof copyingtokensunchanged.Hence,for disappearingto beefficient anduseful,the“disappear”
mutationmusttransparentlycombinetwo channelsinto one,without leaving artifacts(suchashiddenredirectionof
I). It is theoperationof combiningchannelsthatmakesthis typeof reconfigurationdifferentfrom, andmoredifficult
than,thatof Fig. 1 (“expansion”).

In [Wen82], undertheassumptionof demanddrivenevaluation,wecouldstatethatd2 mustbeempty, sod1 � d2 �
d1. We cannotapplythesameresultfor datadrivenevaluationasit is possiblethatd2 is not empty. In this case,we
mustmergethehistoriessuchthatd1 � d2 � d3. This leavesuswith theproblemof preservingtheorderingof d1, d2
andtheresultingd3 duringmutation.

Under the consistency rulesfor expansion,we cannot modify the endpointsat A andC. Onceagain,the au-
tonomousnatureof thesenodescomplicatesthe mutationoperation,as it is possiblefor d1 andd2 to be modified
(possiblythroughanotherdisappearoperation)by A andC prior to establishingd3. It is undesirableto requirethe
involvementof A andC in themutationoperation(i.e. stoppingthem),hencewe look at thechannelarchitectureto
assistperformingthis mutation.

Our techniquefor channelmerging requiresthat we describethe channelarchitecturein two halves,dp on the
producersideanddc on the consumerside, with a threadcoordinatingpropagationof tokensfrom dp to dc. We
referto thisarchitectureashalf-channels. Half-channelsenableusto insulateA andC from any manipulationof their
endpointsby requiringthatdp

1 anddc
2 remainafterthemutation.Theeffectof themutationis thenaprocessof gaining

amutationlock onall four half-channels,stoppingthepropagatingthreads,propagatingany tokensleft in dc
1 anddp

2 to
dc

2, creatingandstartinga new propagatingthreadbetweendp
1 anddc

2, thenreleasingtheremainingchannelmutation
locks.

To illustratethischannelarchitecture(describedin detailin [VWW]) weconsidertheimplementationof thecons
operator. The cons operatorprefixes a token to a channeland then vanishes. Figure 4 shows the creationof a
new framework to replacethe existing node,but on this occasionwe takethe two portsof the new reconfiguration
andtie them. Thetie() operationstopsthepropagatingthreadsof thetwo channels,propagatesany tokensin the
half-channelsthatdisappearwith cons, thencreateandstarta new propagatingthreadto resumetheprogressof the
channel.

With that,wehave a mutationschemethat:

 is safeunderbothdemanddrivenanddatadrivenevaluation;



 involvesonly thereconfiguringprocessandits inputandoutputchannels;

 is amenableto distributedimplementation.

Thereis anotheraspectof datadrivenevaluationweshouldconsider. It is speculativeby naturein thatit computes
valuesthat may not be neededto producethe overall processnetworkresult. In particular, it may causeinitiation
of non-terminatingcomputationin a fragmentof the processnetwork,but if the resultsof thatcomputationarenot
actuallyuseddownstream,the processnetworkwill still function correctly(we assumebut don’t discussa suitable
throttlingor resourcemonitoringmechanismto suppresstheerrantfragment).

The point here is that, in consideringmutationfor reconfigurationin a separatepart of the processnetwork,
we shouldnot let the presenceof this non-terminatingfragmentdelaythe mutation: this makesit essentialthat the
mutationmechanismbeableto operatelocally.

2 An Alter nativeTechniquein PtolemyII

PtolemyII [DIGH � 98] is a heterogeneousconcurrentmodellingsystem;its objective is to provide a generalframe-
work for theconstructionandinteroperabilityof executablemodelsthatarebuilt undera wide varietyof modelsof
computation.In PtolemyII,modelsareconstructedasa setof interactingcomponentsthatcanbeeasilydesignedto
interactin anumberof ways.A modelof computationdefinesthesemanticsfor this interaction.

PtolemyIIprovidesaverygeneralstructuralnotationto build relationshipsbetweencomponentsof amodel:topol-
ogy, entity, relation,receiver, port,connectionandlink. Thisstructuralnotationenablestheconstructionof hierarchi-
cally composeddomains.A domainis a packagethatimplementsa givenmodelof computation.

Actors arecomponentswith input andoutput,that at leastconceptuallyoperateconcurrentlywith otheractors.
Actorsaredefinedby asetof actionmethods,thatspecifytheactionperformedby theactor, andports,thatdefinethe
communicationinterfacewith theactor. Thefirst actionto beinvokedis initialize(), which is invokedexactly
oncefor thepurposeof initializing statevariablesin theactor. Initialization is followedby any numberof iterations.
An iterationwill typically involve a pre-fireto determineif firing is requiredor possible,oneor many firings, and
a post-fireto updatepersistentstateanddeterminewhetherexecutionof the actoris complete.Only domainswith
fixed-pointsemantics(wheremultiple firings arerequiredfor the resultof an iterationto converge) requiremultiple
firings. A wrapup()methodis invokedexactlyonce,typically for displayingfinal results.

Compositeactorsarecollectionsof actors,anda directorthatgovernstheexecutionof its actors.Thedirectoris
responsiblefor the local executionof thecompositeby observinga firing sequencefor theactorsof which theentity
is composed.A manageris definedto governtheoverall executionof themodelthrougha top-level compositeactor.

PtolemyII includesa processnetworkdomainimplementedby Goel[Goe98]. During initialization, the process
networkdomaincreatesaProcessThread for eachactor, thenstartsthesethreadsonthefirst pre-fire.Unlike most
otherdomains,theProcessThread is responsiblefor the pre-fire,fire andpost-fireof the actor. Thesemethods
areexecutedautonomouslyby this thread,with thedirectoractingasanobserver of thestateof thethreadsandtheir
actors.Thefire methodof theprocessnetworkdirectorperformsno firing, but observesthenetworkfor cessation
of progressdueto a networkstopor deadlock.

We areparticularlyinterestedin the PtolemyIImechanicsfor mutation. PtolemyIIhasa supportkernelfor op-
erationson the topologyitself. This is entirelyseparatefrom the expressionof how themodelruns(i.e. thekernel
elegantlyseparatesconcernsof structure(syntax)from operation(semantics)).

PtolemyII utilizes its own mechanismfor ensuringsafeconcurrentaccessto a runningtopology;eachentity in
thetopologyis immutablyassociatedwith a workspace,andappropriatereador write locksmustbeobtainedon the
workspaceto mutatethenetworkstructure.Thedrawbackis that the topologychangesnecessaryfor mutationmust
takeplacethroughkernelmanagementmethods.An actorthat is mutatingneedsa mechanismto signalbackto the
kernel that it wantsto mutate,andspecifywhat is involved in the mutation. In domainswhereactorsessentially
executeoneoperationfor eachfiring, therearewell definedpoints,betweenactorfirings, wheremutationcantake
place.

This is not so for processnetworks;actorsadhereto thefiring rules,but areessentiallyautonomoussomethods
mustbeprovidedto allow “breakingout” of the their firing sequence.PtolemyIIprovidesa mechanismthroughthe
managerfor propagatinga “stop firing” signal to all directors. In addition, the processnetworkdirector issuesa
stopThread() to all threadsto stoptheir firing. Whentheprocessnetworkdirectorobservesall actorsareeither
stopped,read-blocked,or in theprocessof mutation,control is returnedbackto manager. If themanageris required
to iterateagain,it will coordinatetheexecutionof all mutationsrequestedby actorswith theworkspaceto ensureone
mutationis only ever active,pre-firethenetworkby invokingstart() on newly formedthreadsresultingfrom the
mutation,andrestartThread() onexisting threadssothey maycontinue.



TheSieveof Eratosthenesimplementedby Goelis differentto thatimplementedby [KM77]. This implementation
usesacombinedsieve-filteractor1. Thisactorhasthejob of filtering outagivenprime.Thefirst tokenreceivedthatis
nota multipleof theprimeit is filtering is a discoveredprime.In reactionto this, theactorwill requestthedirectorto
performamutationto insertanew sieve-filterafteritself. ActorsrequestmutationsusingaChangeRequest object
with anexecute() methodthatdirectlymanipulatesthetopology. Thecodefor this mutationis similar in purpose
to that shown in Fig. 2. The directorqueuesthe requestwith its manager, andit is thequeuingof this requestthat
causesthemanagerto issuea stopfire signal. Unlike mostotherdirectors,the processnetworkdirectorblocksthe
actorrequestingthechange.Thisblockageleavestheactorwith theimpressionof immediateexecutionof thechange
request.

3 Summary

We have consideredprocessnetworkreconfiguration,andthemutationsof representationrequiredfor its implemen-
tation. We have looked at aspectsof demand-driven (conservative) and data-driven (eager)evaluationstrategies;
centralizedandlocalizedrepresentationmanagement;andamenabilityto distribution of processnetworkprocesses
andchannels.

Demand-drivenevaluationletsuspreciselyidentify pointsof activity in aprocessnetwork.In [Wen82]weshowed
how mutationsof centralizedquasi-parallelandlocalizeddistributedrepresentationscould thenbesafelymanaged.
Whenweallow moreeagerevaluationstrategies,therearemany morepointsof activity, andit becomesmoredifficult
to specifyconditionsfor safemutation.

PtolemyII implementsprocessnetworksasonedomainamongmany; its primaryobjective is to facilitatesystem
modellingcombiningmany differentdomains.Hence,it adoptsa centralizedapproach,whichdiscouragesdistributed
implementation.Further, it assumeseagerevaluation2. This makesit difficult to preciselycharacterizeandreason
aboutthestateof processnetworkprocessesandchannelsinvolvedin areconfiguration,andis susceptibleto problems
with runawayprocessnetworkfragments.

Our currentwork is examininga potentiallydistributedimplementationutilizing conservative, eagerandhybrid
evaluationstrategieswith localizedrepresentationmanagement.Webelieve this combinationis essentialfor practical
usesof processnetworks. In this paper, we have outlineda safeimplementationschemefor reconfigurationin that
situation.

References

[DIGH � 98] J. Davis II, M. Goel, C. Hylands,B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muiadi, S. Neuendorf-
fer, J. Reekie,N. Smyth, and Y. Xiong. HeterogeneousConcurrentModeling and Design in Java,
PtolemyII DesignDocument. Technicalreport, EECS,University of California at Berkeley, 1998.
http://ptolemy.eecs.berkeley.edu/publications/papers/98.

[Goe98] M. Goel. ProcessNetworksin PtolemyII. MS ReportERL TechnicalReportUCB/ERL No. M98/69,
Universityof California,Berkeley, CA 94720,December1998.

[Kah74] G.Kahn.Thesemanticsof asimplelanguagefor parallelprogramming.In Proceedings of IFIP Congress
74, pages471–475.NorthHollandPublishingCompany, 1974.

[KM77] G. KahnandD.B. MacQueen.CoroutinesandNetworksof Parallel Processes.In B. Gilchrist, editor,
Proceedings of IFIP Congress 77, pages993–998.NorthHollandPublishingCompany, 1977.

[VWW] J.Vayssìere,D.L. Webb,andA.L. Wendelborn.DistributingProcessNetworks.Technicalreport,Uni-
versityof Adelaide.http://www.cs.adelaide.edu.au/dpn/documents.html,to appear.

[VWW99] J. Vayssìere, D.L. Webb, and A.L. Wendelborn. An Object-Oriented API for Pro-
cess Networks. Technical Report 9904, University of Adelaide, October 1999.
http://www.cs.adelaide.edu.au/dpn/documents.html.

[Wen82] A.L. Wendelborn.Reconfigurationin theProcessNetworksof KahnandMacQueen.Australian Com-
puter Science Communications, 4(1):233–243,February1982.

1it is not clearif it is possibleto insertanew actorin front of anexistingactor
2webelieve is wouldbepossibleto implementconservativeevaluationasaPtolemyIIdomain,andweareinvestigatinghow thatmaybedone.


