
Transparent Dissemination of Adapters in Jini

Julien Vayssière
INRIA Sophia-Antipolis

2004, Route des Lucioles, BP 93
F-06902 Sophia-Antipolis Cedex, France

Julien.Vayssiere@sophia.inria.fr

Abstract

Jini is a Java-based technology for ’spontaneous’ dis-
tributed computing which enables programs to dynamically
discover nearby services by means of a type-based lookup
mechanism. However, this mechanism requires that all
the parties involved first agree on a set of common well-
known interfaces for describing services which offer the
same high-level functionalities. We believe that this mecha-
nism will in some situations prove to be too rigid or complex
and that “interface fragmentation” will inevitably happen.
We propose a mechanism for automatically disseminating
adapters, small downloadable components that convert be-
tween types that describe similar services but are yet in-
compatible. The implementation of the solution consists in
the definition of a new Jini service, the Adapter Service,
which is a repository for adapters that registers adapter-
augmented proxy objects with the Jini Lookup Service when
new services appear on the network. This solution does
not require any modification to clients, services or to the
Lookup Service.

1 Introduction

In this section we first introduce Jini, then explain shortly
what are the shortcomings we identified with Jini’s type-
based lookup mechanism. We then briefly describe our so-
lution and present the organisation of the paper.

1.1 Jini

Jini [1] is a Java-based technology which provides an in-
frastructure for networked Java services to spontaneously
form federations and engage in interactions without any
prior knowledge of each other.

Jini requires that all participants in a Jini federation are
Java programs running inside a Java virtual machine, or at

with S through the proxy object
3− C communicates directly

A

1− Service S registers
a proxy object of type A
with the Lookup Service

type A and gets a proxy object back
2− Client C performs a lookup on

AA

Client C Service S

Lookup Service

Figure 1. Simplified registration and lookup
protocols

least Java programs that act as surrogates for non-Java de-
vices or applications [16]. As a consequence, Jini can take
full advantage of Java’s robust type system and dynamic
code loading mechanism for looking up and communicat-
ing with remote services.

A Jini federation contains one or more instances of the
Lookup Service. The Lookup Service is a normal Jini ser-
vice which is responsible for keeping track of all the ser-
vices that are currently available within a federation. The
initial reference to the lookup service is obtained through a
multicast-based protocol called the Jini discovery protocol.

One of the key features of Jini is its join protocol: Jini
services register with the lookup service by passing to it a
serialized proxy object along with a set of attributes (step
1 in figure 1). It is the type of this proxy object that we
call the type of the service. Later on, when a client queries
the lookup service for a service of a given type using the
lookup protocol (step 2), the lookup service returns all the
proxy objects it knows that match the type. Once deserial-
ized on the client side, the proxy object is ready to handle
the communication with the remote service (step 3). The
proxy object can be as simple as an RMI stub or as com-
plex as a full-blown client-side application, complete with
GUI and client-side caching or fault-tolerance features, for
example.

1



1.2 Limitations of the type-based lookup mecha-
nism

Jini is arguably a step forward in the direction of distrib-
uted systems that adapt better to changing environmental
conditions. One of the features of Jini that provides higher
adaptability than standard distributed object systems such
as RMI or CORBA is its type-based lookup protocol which
allows us to dynamically discover previously unknown ser-
vices. However, this mechanism relies on the implicit as-
sumption that all the parties involved in designing service
implementations for a given kind of service will manage
to reach an agreement on a standard interface for describing
this kind of service, for example a standard Printer inter-
face for printing services or a standard Storage interface
for data storage services. We believe that this will not al-
ways be the case, and that there will be situations where we
have to make do with multiple incompatible interfaces for
describing the same kind of service. This problem was also
described in [8] where it is termed interface fragmentation.

1.3 Adapters and the Adapter Service

This is why we have designed and implemented a so-
lution that aims at solving the following problem: bridg-
ing the gap between services that are semantically close
(they provide the same functionalities), but nevertheless
have incompatible interfaces. We present a Jini service, the
Adapter Service, which acts as a repository for adapters, the
small pieces of software that perform conversions between
interfaces. The Adapter Service transparently populates the
lookup service with adapter-augmented proxy objects so
that a given service instance now appears under different
types instead of only one. Our solution does not require any
modification to Jini and remains perfectly transparent to the
services, the clients and even to the lookup service.

1.4 Organisation of the paper

This paper is organised as follows. Section 2 presents
the problem in greater detail and illustrates it with an ex-
ample. Section 3 explains what adapters are and how the
Adapter Service can transparently enrich a Jini federation
with adapters. Implementation issues are discussed in sec-
tion 4. Some related work is presented in section 5 and
section 6 presents concluding remarks and possible future
work.

2 The problem

In this section we present in detail both the problem and
the assumptions we made. We also provide an example of

the problem that will be used throughout the remainder of
the article.

2.1 The need for standard interfaces

As we briefly explained above, the discovery, join, and
lookup protocols of Jini altogether provide a simple and el-
egant solution to the problem of connecting together net-
worked Java entities that have never met before.

However, it is not exactly true to say that entities in a
Jini federation need not have prior knowledge of each other
in order to be able to interact. Client programs still need to
know, at as early as compile-time, the interface under which
services will register with the lookup service at runtime, i.e.
the interface implemented by the proxy object that will be
uploaded into the lookup service by the implementation of
the service.

This is arguably one of the most common misconcep-
tions about Jini. What Jini actually does is to simplify the
deployment of services and their discovery by the clients:
it is no longer necessary for each client to implement the
client-side part of the communication protocol since the
code for the communication protocol is contained within the
proxy object downloaded by the client from the lookup ser-
vice at runtime. But Jini still requires that the programmer
who writes the client-side code knows the interface imple-
mented by the proxy object, even if the actual implemen-
tation class of the proxy object is not known until runtime.
Jini goes one step further than traditional distributed object
systems, but not as far as to completely eliminate the need
to agree beforehand on well-known interfaces for describ-
ing standard services.

The fact that clients need to know at compile-time the
type of the proxy is not a problem in itself. It actually seems
to be the only way to proceed, since it is difficult to imagine
how a client program could guess the purpose of a service
interface it discovers at runtime without any other informa-
tion than the syntax of the interface. Standard introspection
techniques, such as that used in the JavaBeans API[14], do
not apply because what we are dealing with here is the ex-
traction of the semantics of a service, i.e. its purpose and its
behaviour, out of the bare syntax of its interface. There is
a wealth of semantic information that is not captured in the
syntax of interfaces. This information is usually contained
in the comments of the code or in the documentation, and
hence is only accessible to humans. These informations are
found elsewhere, usually in code comments or documenta-
tion, and are meant to be read by human programmers, not
processed by programs.

Jini’s answer to the problem is to require that the client
knows at compile-time the interface under which the service
the client is interested in is registered. As Jini is meant to be
used in very open environments, it is of paramount impor-

2



tance that all the services that provide the same high-level
functionalities (for example, printing a document) agree on
a single common interface for describing the service, as op-
posed to multiple proprietary interfaces.This is why there is
a large ongoing effort within the Jini community to agree on
standard interfaces to describe all kinds of useful services,
such as printers or storage devices, for example. It also ap-
pears that this standardisation process is a long and tedious
one, if not unfruitful.

Nevertheless, we believe that this standardisation
process, although extremely useful for a large number of
service types, cannot be generalised to all kinds of services.
As Jini gets more momentum, situations will appear where
multiple vendors will provide the same high-level service
under different incompatible interfaces. This may be be-
cause none of them had the willingness to lead the stan-
dardisation effort, because vendors feel a common interface
would hide the specific features of their product that gives
them a competitive edge, or simply because some vendor
deliberately attempts to establish their product and its pro-
prietary interface as a de facto standard.

2.2 An example

Let us now illustrate by means of an example the prob-
lem of having services that are semantically close but syn-
tactically incompatible.

Let us assume that we have two Jini-enabled temper-
ature sensors that we bought from two different vendors.
These vendors, for some reason, never managed to agree
on a common interface for describing temperature sensors.
As a result, we have to deal with two interfaces that are
not type-compatible but which, in the end, describe two
services that implement the same high-level functionality,
namely measuring a temperature and making it available as
a float number. Here is the code for the two interfaces
FooTempSensor and BarTempSensor.

public interface FooTempSensor {
public float getMeasurement ();

}

public interface BarTempSensor {
public float getTemp ();

}

If the client software was written for communicating
with sensors that implement the FooTempSensor inter-
face, it will not be able to deal with sensors that implement
the interface BarTempSensor. One solution would be to
make the client software aware of both interfaces, but this
has a major drawback: all the different interfaces need to
be known at the time the client software is written. If a

new vendor with another incompatible interface appears in-
between the writing of the software and its deployment, it
will not be possible to use it with this version of the client
software. This is clearly a step backwards since Jini tech-
nology is very dynamic and runtime-oriented in essence.

As we will see in the next section, our solution based
on adapters provides an easy and transparent way to
convert, for example, between FooTempSensor and
BarTempSensor.

2.3 What is exactly the type of a Jini service ?

Before we move on to describing what the Adapter Ser-
vice is, we think it is important to make clear what we mean
when we refer to the type of a Jini service.

What we call a type, in general, is simply a standard
Java type as specified in the chapter 4 of the Java Lan-
guage Specification [5]. More specifically, a type can be
any of the following three things: a primitive type like int
or float, or a class, for example java.util.Vector,
or an interface like java.io.Serializable. At the
language level, Java types are reflected as instances of the
class java.lang.Class [15].

A Jini service does not have only one type but may have
many types. This is because what we call the type of a Jini
service is in fact the type of the proxy object that the ser-
vice registers with the lookup service and that is later down-
loaded by the client. The proxy object is an instance of a
class that extends a superclass and quite likely also imple-
ments one or more interfaces, one of which is the interface
that describes the functionalities provided by the service.
This is why there are more than one type compatible with a
given proxy object.

Let us illustrate this property with a well-known Jini ser-
vice, the Lookup Service. In the implementation provided
by Sun, the proxy object for the Lookup Service is an in-
stance of the class RegistrarProxy. This class directly
extends java.lang.Object and implements three in-
terfaces: ServiceRegistrar, which is the interface
that describes the functionalities provided by the service;
Administrable, which is an interface most Jini services
implement to provide access to an administration interface;
and java.io.Serializable, because the proxy ob-
ject needs to be serializable. As a result, the Lookup Ser-
vice is compatible with five different types: the two class
types and the three interface types that we just mentioned.

For the remainder of the paper, it is understood that the
type (singular) of a Jini service refers to the type of the in-
terface that describes the functionalities provided by the ser-
vice. It is not possible to programmatically determine which
of the different types that are compatible with a proxy object
is the actual type of the service, but this problem is allevi-
ated because, by design, the input or output types returned

3



by the introspection interface for adapters are types that de-
scribe functionalities. In the example above, the type of the
service would be ServiceRegistrar.

3 Adapters and the Adapter Service

In this section we first present adapters, then we exam-
ine how the Adapter Service populates the lookup service
with adapter-augmented proxy objects, which we illustrate
by building on the example introduced in the previous sec-
tion.

3.1 Adapters

Adapters [3] are small pieces of software that convert
an interface into another interface that a client expects. It
basically translates method calls it receives on its input in-
terface into method calls it sends to another object that im-
plements the output interface. Often, the two interfaces are
not type-compatible (otherwise there would be no need for
an adapter, an ordinary type cast would suffice) but they
nevertheless describe services that are sufficiently similar to
allow the adapter to perform its task transparently, as seen
from the client side.

As both design patterns are very frequently used in dis-
tributed systems, we would like to stress the difference be-
tween the Adapter and the Proxy design patterns in order to
avoid confusion. Both design patterns look similar because
they are usually seen as a sort of ’tunnel’ with one input and
one output, but the Adapter pattern is in fact the opposite of
the Proxy design pattern. An adapter converts between two
different types but leaves the semantics unchanged, while a
proxy object appears under the same type at both ends but
modifies the semantics of the calls, for example by turning
local calls into remote ones.

All the adapters we consider in this article are assumed
to have been written by hand by human programmers, as
opposed to adapters automatically generated by computers.
What we describe in this article is a way to disseminate
adapters transparently in a Jini federation, but not at all a
way to create adapters.

In our implementation, all the adapters are required to
implement the interface Adapter in order to provide sup-
port for introspection. This interface provides information
about the input and output types for the adapter and also
allows us to get and set the adapted object, which is essen-
tial for plugging the adapted proxy object into the adapter
or chaining adapters together. As we will see later in sec-
tion 4.2, this introspection feature is also very useful for
detecting already-adapted services as their appear in the
Lookup Service and thus avoiding infinite chains and cy-
cles of adapters.

and gets an adapted proxy object back
4− Client C performs a lookup on type B

the Adapter Service of a new service
2− The Lookup Service notifies3− The Adapter Service registers

an adapted proxy of type B

1− Service S registers
a proxy object of type A
with the Lookup Service

Service S

Lookup Service

Client C

Adapter Service

A

A

A

B

B

B

Figure 2. How the Adapter Service comes into
play

public interface Adapter
{

public Class getInputType ();
public Class getOutputType ();
public Object getAdaptee ();
public void setAdaptee (Object adaptee);

}

3.2 The Adapter Service

The Adapter Service is a Jini service that acts as a repos-
itory and registering service for adapters. Whenever a new
instance of a Jini service appears on the network (step 2 in
figure 2), the Adapter Service searches its repository for all
the adapters whose output type matches the type of the ser-
vice that just appeared. For each such match, the Adapter
Service first builds a new proxy object that is composed
of the adapter and the original proxy to the service (the
adapted proxy) and then registers this new proxy object with
the Lookup Service (step 3). As a result, the service in-
stance that just appeared on the network is now registered
with the Lookup Service under more than one types, the
original type of the proxy object and the type of all the com-
patible adapters. All the adapted proxies point to the same
service instance, which we call an adapted service in this
context. Figure 2 summarises how the Adapter Service may
enhance the example presented earlier.

3.3 An example

We now come back to the example introduced in section
2.2 in order to show how adapters and the Adapter Service
help solve the problem.

We have two interfaces, FooTempSensor and
BarTempSensor, that are type-incompatible but describe
services that are basically the same, namely a tempera-
ture sensor. As our client software only understands the
former interface, we want to write an adapter that would
allow the client to talk to sensors that implement the

4



later interface without having to modify the client. This
adapter features FooTempSensor as the input interface
and BarTempSensor as the output interface1:

class TempAdapter implements FooTempSen-
sor, Adapter {
protected BarTempSensor theAdaptee;

TempAdapter (BarTempSensor s) {
this.setAdaptee (s);

}

// This is the only method in inter-
face FooTempSensor
public float getMeasurement () {

return theAdaptee.getTemp ();
}

// These methods come from inter-
face Adapter
public Class getInputType () {

return Class.forName (‘‘FooTempSensor’’);
}

public Class getOutputType () {
return Class.forName (‘‘BarTempSensor’’);

}

public Object getAdaptee () {
return this.theAdaptee;

}

public void setAdaptee (Object adaptee) {
this.theAdaptee = adaptee;

}
}

The simplest adapters only perform pure syntactical con-
versions, for example when two methods appear with dif-
ferent names in the input and the output interface but do ex-
actly the same thing. An adapter may also convert the data
types that are passed as parameters of the methods it imple-
ments.For example, converting a call to a method that takes
two float arguments for the real and imaginary parts of a
complex number into a call to a method that takes a Com-
plexNumber object as an argument results in no loss of
information.

4 Inside the Adapter Service

In this section we address the implementation of the
Adapter Service. We first detail how the Adapter Service
keeps track of all available adapters and services, then we

1The code excerpts shown here have been edited for clarity and length.

study the impact of using the Adapter Service on the num-
ber of proxies registered with the Lookup Service and fi-
nally we address how the Adapter Service deals with some
of Jini’s idiosyncrasy like attributes, service IDs and leases.

4.1 How the graph of types evolves over time

The data structure at the heart of the implementation of
the Adapter Service is a graph that describes all the types
that are known to the Adapter Service and how these types
are connected together with either adapters or inheritance
relations. This graph is used for two main purposes: first,
when a new service is found, the Adapter Service searches
the graph to determine the matching adapters for the type of
the newly-found service and, secondly, when a new adapter
is found, the Adapter Service searches the graph for services
that the adapter can be plugged into.

The nodes of the graph are the types that are known to the
Adapter Service. The types known to the Adapter Service
come from two different origins: they are either the types
of services that exist inside the Lookup Service or the types
of the adapters contained in the repository of the Adapter
Service. In the earlier case, all the types compatible with the
proxy object for the service are added to the graph. In the
later case, only the input and output types obtained through
introspection of the adapter are added to the graph. The arcs
of the graph represent the adapters. An arc from type

�
to

type � means that there exist an adapter that converts calls
sent to

�
into calls to an object of type � . The graph is a

directed graph because an adapter that adapts type
�

to type
� does not necessarily adapt from type � to type

�
.

On startup of an instance of the Adapter Service, the
graph is empty and then new nodes are added or removed
on the occurrence of the following events:

A new service is discovered. First, the set of all the types
that are compatible with the proxy object of the new
service is computed. For each element of the set, the
following operations are performed: if the graph does
not already contain a node for the type considered, a
new node is created and added to the graph. The node
starts with no arcs connected to it since there is no
adapter with this type, either as input or output. In
the opposite case, if the graph already contains a node
for the type, the Adapter Service determines all the
possible chains of adapters that lead to this type. For
each such path in the graph, a serialized object is con-
structed that contains all the adapters in the chain and
the original proxy object for the service as the last ele-
ment in the chain. It is this composite serialized object
that is the proxy object passed to the Lookup Service
for registering the adapted service.

A service is discarded. The Adapter Service cancels the

5



registration of all the composite proxy objects that
were generated as the consequence of the discovery of
the service that just got discarded.

A new adapter is discovered. New adapters may be dis-
covered at runtime because instances of the Adapter
Service are designed to share adapters between them.
When a previously unknown adapter is discovered,
new nodes are created if necessary for representing the
input and output types for the adapter, and an arc is
added to the graph to link the input type to the output
type. The Adapter Service then computes the set of
the types that are reachable from the input type of the
adapter. For all the elements of the set that correspond
to an actual service, the service is registered with the
lookup service as a proxy that contains all the adapters
on the path from the newly-found adapter to the proxy
for the service.

An adapter is discarded. Since the Adapter Service main-
tains a persistent repository of adapters, we only in-
clude this case here for the sake of completeness.

The Adapter Service may be queried directly for avail-
able adapters, just like any other Jini service. However, the
preferred mode of operation is to let the Adapter Service
work transparently in the background and make the adapters
available through the Lookup Service, so that client Jini en-
tities can use adapters without having to know about it. It
works in the following manner (see fig 2):

A service � starts up and registers a proxy object of type�
with the Lookup Service. Since, by design, the Adapter

Service is an observer for the Lookup Service2, it receives
a notification that a new service � of type

�
has just ap-

peared. The Adapter Service then performs a search of its
repository for an adapter with an output of type

�
. If such

an adapter is found, the Adapter Service registers service �
by passing the Lookup Service a proxy object that consists
of the adapter that converts type � into type

�
and the reg-

ular proxy object to � . As a result, a new service appears
in the Lookup Service. This service is of type � and its im-
plementation is � . Service � is therefore known under two
different types,

�
and � .

4.2 Avoiding infinite chains and cycles

When an instance of the Adapter Service registers an
adapted proxy with the Lookup Service, the Lookup Ser-
vice notifies all interested listeners of the availability of the
new service. As the instances of the Adapter Service are lis-
teners for this type of event, they receive such notifications,

2Any object that is capable of receiving remote events can subscribe
to the Lookup Service in order to receive notification whenever a service
instance is added or removed from the Lookup Service.

which may lead to generating chains of adapters of infinite
length if these events are not handled correctly.

Imagine a situation where the graph of the types inside
the Adapter Service contains an adapter from type

�
to type

� and another adapter from type � to type
�

. If a service
of type � registers with the Lookup Service, the Adapter
Service will therefore register an adapted version of this ser-
vice that consists of an adapter from

�
to � and the original

proxy for the service. As a consequence, the Adapter Ser-
vice will receive a notification from the Lookup Service that
a new service with type

�
has just registered, which will in

turn trigger the registration of an adapted proxy of type �
for this service (using the adapter from � to

�
), and we

end up with an infinite loop. The Adapter Service will keep
on registering adapted proxy objects of type

�
and type � ,

alternatively, with each proxy object containing one more
adapter than the previous one.

This problem could be avoided by having the Adapter
Service keep track of the already-registered services (by us-
ing the unique service ID for example) and avoiding regis-
tering services when a cycle in the graph is detected. Nev-
ertheless, this only solves the problem in the case with a
single instance of the Adapter Service on the network, but
not with multiple instances of the Adapter Service.

Let us say that we have two instances of the Adapter
Service in the same federation. The first instance contains
an adapter from

�
to � and the second instance contains

an adapter from � to
�

. None of the instances contains a
graph that shows cycles, yet an infinite number of adapters
will be registered because each instance is notified when the
other instance registers an adapted proxy with the Lookup
Service. Every time the first instance registers an adapted
proxy with type

�
, the second instance of the Adapter Ser-

vice registers an adapted proxy of type � , and we are back
to the same problem we had with a single instance of the
Adapter Service.

Hopefully, the introspection mechanism described above
(see 3.1) provides a solution to the problem, whatever the
number of instances of the Adapter Service is. Just like
before, whenever an instance of the adapter service is noti-
fied of a new service, it searches its graph of types for all
the adapters that can be plugged into this type. The differ-
ence is that now the Adapter Service avoids registering an
adapted service if the adapter in question already appears
in the proxy object of the newly-discovered service. This is
possible because the newly-discovered proxy for the service
is first instrospected in order to determine if it is composed
of adapters, and, if so, what these adapters are.

As a conclusion, the proxy object for a service can con-
tain an arbitrary number of adapters in front of the actual
proxy for the service, but we now have the guarantee that
each adapter is different from the others, which is sufficient
to prove that infinite chains and cycles of adapters cannot

6



accidentally appear.

4.3 Controlling the number of registered services

For each instance of a service that appears on the net-
work, the Adapter Service may register a potentially large
number of adapted proxies for the service, in the case where
the Adapter Service contains a large number of adapters that
have the type of the newly-found service as their output
type. This is why we want to study how the number � of
proxy objects registered with the lookup service evolves for
a Jini federation that contains � instances of services. In the
standard case with no instances of the Adapter Service, � is
equal to � .

If we consider that adapters are only written by hand
by human programmers, we can safely assume that new
adapters appear far less often than new service instances.
As a consequence, the number of adapters (or chains of
adapters) that have a given type as their output type can be
considered as a constant. Let us call � the maximum over
all the possible types of the number of paths that lead to a
node in the graph. In other terms, it is the maximum num-
ber of adapters of chains of adapters that can be found for a
type.

As a consequence, we can state the following gross ap-
proximation for the total number � of proxy objects regis-
tered with the Lookup Service:

���������	�
� and hence ����������
with the above hypothesis about the number of possible

adapters for a given type being a constant in mind.

4.4 Controlling the number of adapters

As each adapter performs a conversion from one type to
another type, we may have a problem in a situation with
a large number of incompatible types that all describe the
same high-level functionality. Indeed, if we have � such
types, the number of adapters needed to convert between all
these different types may be as big as �������� . This corre-
sponds to the case where there exist a different adapter for
converting each type into any other type. In this case, all the
adapted proxies registered with the Lookup Service consist
of only one adapter and the original proxy for the service.

But this is a worst-case scenario. If there actually exist
a path in the graph that goes through all of the � different
types, the number of adapters is reduced to ������ , at the
expense of the size of the adapted proxy objects which will
be composed of a possibly long chain of adapters and the
original proxy object.

This is clearly a problem that requires further investiga-
tion. More specifically, we would like, for a given set of

adapters, to determine the optimal point in the trade-off be-
tween the number of adapters and the size of the adapted
proxies registered with the lookup service.

4.5 Dealing with attributes and Service IDs

Looking up Jini services by the type of the proxy object
they register with the Lookup Service may in some situa-
tions be not precise enough, so we may also want to dif-
ferentiate further between all the different instances of the
same service that are available in a federation. For exam-
ple, we would like to be able to attach a location attribute
to every Jini-enabled printer so that a user can choose the
printer nearest to his or her office. This is made possible in
Jini by passing a set of attributes at the moment a service in-
stance first registers with the Lookup Service. On the client
side, attributes can be specified as part of a standard lookup
request, and only those service instances that match the at-
tributes are returned to the client.

In the context of the Adapter Service, the question is as
follows: what are the attributes that an adapted proxy should
register with ? As we want our solution to be as transparent
as possible, it makes sense to decide that the adapted proxy
for a service registers with the exact same set of attributes
as the original service, since in the end it is the same service
instance.

Another issue that we came across has to do with service
IDs. When a service instance registers for the first time with
the Lookup Service, it is assigned a unique service ID num-
ber. This unique ID number is required for handling crash
recovery and registration of a service instance with multiple
instances of the Lookup Service. Unfortunately, we can-
not register the adapted proxy object for a service with the
same service ID as the original proxy object for the service
because the specification for the Lookup Service allows us
only one entry for each service ID. If we were allowed to
use the same ID for both the service and the adapter service,
it would be impossible to distinguish between registering an
adapted proxy and the original service instance registering
on startup after a crash.

This is why the adapted proxies register with a differ-
ent service ID as that of the original proxy for the ser-
vice. Based on the experience we gained in deploying the
Adapter Service, this is not a problem, since client programs
perform lookups based on type and attributes and are not
supposed to use the service ID directly.

4.6 Handling leases

When a service registers with the Lookup Service, it is
granted a lease for a duration set by the Lookup Service.
It is the responsibility of the service implementation to re-
new the lease before it expires. Thanks to these time-bound

7



leases, Jini federations exhibit a self-healing property: dan-
gling references are automatically discarded after a finite
amount of time if a service instance is no longer available,
which contrasts with distributed garbage-collection mecha-
nisms which are known for not handling failures very well.

As adapted proxies register with the Lookup Service just
like any other Jini service, they too are granted leases. It is
the responsibility of the Adapter Service to renew the leases
for adapted services and, just as importantly, cancel leases
for adapted services if the lease for the original service ex-
pires. As a consequence, one can be sure that there will not
be adapters for services that are no longer available.

4.7 Implementation details

Our implementation of the Adapter Service is based on
Jini 1.1. It is composed of 12 classes and has a total of about
1000 lines of code, comments included. The implementa-
tion is fully functional and was tested on a set of dummy
services and adapters, in lack of a better testbed. We hope
that, as Jini gets larger acceptance, we will be able to test
our system in a real-life setting.

5 Related Work

Jini is not the only player in the field of dynamic ser-
vice discovery on a network. Other technologies such as
Bluetooth, Salutation, Universal Plug and Play or SLP [10]
present alternative solutions, but Jini is the only one that fea-
tures both dynamic code-loading and a single type system
for all participating devices. Similar mechanism appeared
recently in the realm of so-called Web Services, such as, for
example, UDDI (Universal Description, Discovery and In-
tegration), which is pushed forward by, among others, Mi-
crosoft and IBM.

Nevertheless, a significant amount of work has already
been performed on extending Jini’s service registration and
lookup mechanism. For example, solutions for introducing
traditional public-key authentication and encryption into
Jini service proxies were recently proposed [2, 4]. A con-
clusion we can draw from this work as well as from the
work we present in this paper is the following: extending
Jini hardly requires modifying the Jini specifications, most
of the extensions to Jini can be implemented transparently
through downloadable proxies or alternative implementa-
tions of the Lookup Service specification.

The concept of adapter can hardly be thought of as a new
one in the field of object-oriented programming. It has its
roots in the old controversy between inheritance-based and
prototype-based object-oriented languages [9]. Although
inheritance-based languages have been extremely success-
ful in the last fifteen years, we believe prototype-based solu-

tions exhibit runtime-adaptability properties that may prove
very useful with dynamic and open systems like Jini [7].

A solution somehow similar to ours was described in
1994 by Trevor and al. within the context of computer-
supported collaborative work (CSCW) [18]. Their adapters
do not only perform transparent conversions between types
but also provide additional semantics to the method calls
that they forward, like support for sharing and locking or ac-
cess control. In terms of patterns, these adapters implement
both the Adapter and the Proxy pattern. Their implementa-
tion features an Adapter Manager that acts as a central point
of coordination and reference for adapters, which is not so
different from our own Adapter Service.

Adapters are also routinely used for reusing software
components [11, 6]. They are usually written by hand by
programmers and, apart from very obvious cases, the au-
tomation of the generation of adapters has not produced
convincing results yet. This issue was nevertheless ad-
dressed by Thatté in [17]. The solution presented builds
on results from type theory in order to largely automate the
process of writing adapters, which means that it is the pro-
grammer who still has to take the critical decisions in the
end. A solution that also includes the human programmer
in the loop was proposed by Schmidt and Reussner in [12].
It models adaptable components by means of finite state
machines and then, using programmer input for resolving
conflicts and incompatibilities, generates adapter classes.

Finally, we discovered during the writing of this paper
that another author designed and implemented an idea sim-
ilar to ours in the context of Jini [8]. Although his design
seems to be similar to ours in essence, the paper does not
give enough technical details to determine if most of the
problems we investigate in this paper (infinite chains and
cycles of adapters, attributes, service IDs, leases, etc.) were
addressed or not. Nevertheless, we were quite happy to find
out that another author also came to the conclusion that us-
ing Jini in large-scale and open environments will inevitably
raise interface fragmentation problems.

6 Conclusion and Future Work

The problem we addressed in this paper was that of fill-
ing the gap between Jini services that are syntactically dif-
ferent (the interfaces under which they are published are not
type-compatible) but are yet semantically close (they pro-
vide the same high-level functionalities), a problem which
is sometimes referred to as interface fragmentation.

The solution we designed and implemented makes use
of adapters, which are small pieces of software that per-
form the conversion between a type and another type that is
not type-compatible with the former one. All the adapters
that we consider here are assumed to have been written by
human programmers. Our system is only concerned with

8



transparently and automatically disseminating adapters in a
Jini-enabled network, and not at all with the automatic or
semi-automatic generation of adapters, which is an orthog-
onal problem to the one we address in this paper, and a far
more difficult one, too.

At the heart of our solution is the Adapter Service, a Jini
service that registers adapter-augmented proxy objects with
the Lookup Service. Such a compound proxy object is com-
posed of an adapter, or a chain of adapters, and the original
proxy for the service. As a consequence, it becomes possi-
ble to use the type of the first adapter in the chain in order to
access the service represented by the original proxy object
that is the last element of the chain.

An important property of our design is that it is perfectly
transparent to the services, to the clients and also to the
Lookup Service.

There is a number of possible research directions that we
would like to explore. Class versioning is an important one,
since in a distributed and open environment, many different
versions of a Java class may co-exist and possibly collide.
This problem was extensively addressed in the context of
object-oriented databases [13], but received very little atten-
tion so far from the distributed programming community.
Also, the security issues raised by disseminating adapters
cannot be over-emphasised, since a malicious person may
want to use the solution we describe for easily spreading
viruses. On an almost orthogonal research direction, we
hope the problem of interface fragmentation we raise in this
paper will provide a new field of application to research in
automatic generation of adapters.

References

[1] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler,
and J. Waldo. The Jini Specification. Addison-Wes-
ley, Reading, MA, USA, 1999.

[2] P. Eronen, J. Lehtinen, J. Zitting, and P. Nikander.
Extending Jini with decentralized trust management.
In Proceedings of OpenArch’2000, Tel Aviv, Israel,
2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, 1996.

[4] C. Gehrmann and P. Nikander. Securing ad hoc ser-
vices, a Jini view. In Proceeding of the First An-
nual Workshop on Mobile and Ad Hoc Networking
and Computing. MobiHOC, Boston, MA, USA, Au-
gust 2000.

[5] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, Reading, USA, 1997.

[6] G. Heineman and H. Ohlenbusch. An evaluation of
component adaptation techniques. Technical Report
WPI-CS-TR-98-20, Department of Computer Sci-
ence, Worcester Polytechnic Institute, February 1999.

[7] G. Kniesel. Type-safe delegation for run-time com-
ponent adaptation. In R. Guerraoui, editor, Proceed-
ings ECOOP’99, LCNS 1628, pages 351–366, Lis-
bon, Portugal, June 1999. Springer-Verlag.

[8] J. Lawrence. Ubiquitous annoyance. Com-
municate, 5(2):54–59, December 2000.
http://www.broadcom.ie/communicate/.

[9] H. Lieberman. Using Prototypical Objects to Imple-
ment Shared Behavior in Object Oriented Systems.
In Proceedings of First ACM Conference on Object-
Oriented Programming Systems, Languages and Ap-
plications, Portland, Oregon, USA, September 1986.

[10] G. Richard. Service advertisement and discovery: en-
abling universal device cooperation. IEEE Internet
Computing, 4(5):18–26, Sept–Oct 2000.

[11] D. Rine, N. Nada, and K. Jaber. Using adapters to
reduce interaction complexity in reusable component-
based software development. In Procedings of the
Fifth Symposium on Software Reusability (SSR-99),
pages 37–43, New York, May 21–23 1999. ACM
Press.

[12] H. Schmidt and R. Reussner. Automatic component
adaptation by concurrent state machine retrofitting.
Technical Report 25/2000, Universität Karlsruhe, De-
partment of Informatics, 2000.

[13] A. H. Skarra and S. B. Zdonik. The management
of changing types in an object-oriented database.
In N. Meyrowitz, editor, Proceedings of the Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 21,
pages 483–495, New York, NY, 1986. ACM Press.

[14] Sun Microsystems. The JavaBeans API Specification,
July 1997.

[15] Sun Microsystems. The Java Core Reflection API,
1998.

[16] Sun Microsystems. Jini Technology Surrogate Archi-
tecture Specification, 2000.

[17] S. Thatte. Automated synthesis of interface adapters
for reusable classes. In Conference Record of
POPL’94: 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland,
Oregon, pages 174–187, New York, NY, Jan. 1994.
ACM.

9



[18] J. Trevor, T. Rodden, and J. Mariani. The use of
adapters to support cooperative sharing. In Proceed-
ings of ACM CSCW’94 Conference on Computer-
Supported Cooperative Work, Technologies for Shar-
ing I, pages 219–230, 1994.

10


