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Abstract. This article investigates the security issues raised by the use
of meta-programming systems with Java. For each possible type of MOP
(compile-time, load-time, etc.), we study the permissions required for
both the base and the meta-level protection domains, taking into account
the flow of control between the different parts of the application.
We show that the choice of a particular MOP architecture has a strong
impact on security issues. Assuming a component-based architecture
with code from various origins having different levels of trust, we es-
tablish a set of rules for combining the permissions associated with each
protection domain (integration, base-level, meta-level, etc.).

1 Introduction

In this article we investigate how Meta-Object Protocols (MOPs) [15] may be
combined with Java’s security architecture, especially in the context of compo-
nent-based applications.

Java is the first mainstream programming language to take security into
account from scratch, however it has also given birth to quite a large number
of meta-programming extensions. Since its initial public release in 1995, Java
has arguably become one of the most popular implementation platforms for
researchers in the field of meta-programming with object-oriented languages.
There now exist Java implementations of many different types of MOP.

Specifying a security policy for a Java application means determining the
different protection domains involved and granting permissions to each of them,
the goal being to run each piece of code using the smallest set of permissions
necessary. As monolithic programs are now being gradually replaced with pro-
grams that are made up of a number of components, the above principle of
least privilege becomes even more relevant. Furthermore, within the framework
of meta-programming, one can use standard (base-level), meta-level, and MOP
components, together with application-specific code, each of them having a spe-
cific origin and a different level of trust. The question of what happens to the
specific security permissions of base-level and meta-level components when used
together presents itself. This article tackles the more general problem of com-
bining reflection and security in component-based Java applications.
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The organization of the paper is as follows. In section 2 we successively give
an overview of the security architecture of Java, introduce a classification of
MOPs in four distinct categories, and identify a typical reflective component
architecture. For that application, section 3 investigates the consequences of the
MOP architecture on the original permission sets. Analyzing the different types
of MOPs results in the development of a set of rules that govern the combination
of the permission sets. We demonstrate that the different MOPs raise different
security issues. This section also takes into account the doPrivileged construct.
Section 4 presents related but orthogonal research: assuming that a MOP is
secure, how can one use it to implement security policies? Finally, Section 5
summarizes and further generalizes the results.

2 Security, MOPs, and Components

In this section provide some background information on the security architecture
of Java and meta-programming in Java, we then present a typical component-
based application which will be used as a reference for the remainder of the
paper.

2.1 The Security Architecture of Java

What follows is a short introduction to the security architecture of Java. A more
detailed presentation can be found in [13].

The development of a security architecture for Java was motivated by the
need to protect local resources from Java applets downloaded from untrusted
sites. This explains why the current version of Java is heavily focused on access
control, i.e. protecting access to critical local resources such as files, sockets,
or the windowing system. The security architecture of Java is not concerned
however with issues such as controlling the flow of information between the
different pieces of code running inside a virtual machine [21], a problem of great
importance, for example, in the JavaCard environment [4]. The Java language
also has built-in security features, such as strong typing, enforcement of access
modifiers, and no pointer arithmetic, which we will not address in this paper
because they do not raise major problems when used with MOPs.

Central to the security architecture of Java is the notion of protection domain.
A protection domain corresponds to either a URL from which classes can be
downloaded, or a set of certificates that can be used for signing classes, or to
any combination of both. This enables the mapping of protection domains to
principals (persons or organizations on behalf of whom some code is distributed,
and who can be held responsible if the code misbehaves). Each protection domain
has an associated set of permissions. Each permission consists of a resource (for
example, a file) that we want to protect access to, and an access mode (such as
read, write, or execute).

Specifying a security policy for a Java application means determining the
different protection domains involved and granting permissions to each of them.
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This enables an application to run in accordance with the principle of least
privilege [25], which states that a piece of code “should operate using the least set
of privileges necessary to complete the job”. This principle is of equal importance
for both computer security and software engineering since it limits the damages
that can result from a security attack and also protects a program from the
consequences of a bug unwantingly introduced by a programmer.

At runtime, each of the classes loaded inside the virtual machine is associ-
ated with a specific protection domain. Whenever a thread performs a call that
requires a specific permission, the security manager computes the intersection
of the permission sets of all the protection domains on the execution stack of
the thread. If this intersection contains the permission needed for accessing the
resource, then access is granted, otherwise it is denied. This means that it is not
sufficient for a given class to belong to a protection domain that has the right
permissions in order to be granted access, all the other classes on the stack need
to have this set of permissions as well.

In the context of a MOP-based application, with calls on the stack going
successively back and forth between the base-level and the meta-level, the fact
that it is the intersection of the set of permissions on the stack that determines
whether or not access is granted is of great importance for our discussion.

However, the security architecture of Java provides a way to reduce this
constraint. The doPrivileged construct enables us to limit the computation of
the intersection to the protection domain from which the doPrivileged call is
made and the protection domains subsequently called from it. The signature of
the method is as follows:

public static Object doPrivileged (PrivilegedAction action)

The parameter of type PrivilegedAction encapsulates the code that is ex-
ecuted with the permissions of the new intersection of the protection domains.
In other words, it means that the class that uses this doPrivileged construct
takes responsibility for the classes that called it.

2.2 Meta-programming and Java

Since its initial public release in 1995, Java1 has arguably become the implemen-
tation platform of choice for researchers in the field of meta-programming with
object-oriented languages. There now exist Java implementations of all the ma-
jor types of MOPs, from compile-time and load-time MOPs to run-time MOPs.
We identify three main reasons why Java has become such an appealing platform
for implementing meta-programming systems.

First of all, Java is an interpreted language and interpreters have proven to
be an appropriate model for thinking about and implementing reflective features
into programming languages [10]. Interpreters provide a natural separation be-
tween how an application is written in a given language and the description of
1 by Java, we mean the whole Java Platform, which encompasses the Java Virtual

Machine [17] (JVM), the Java Language [14] itself, and all the Java Core APIs.
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how this language is executed. Interpreters allow us to alter the execution of a
program simply by modifying the interpreter, without having to modify the pro-
gram itself. This is the approach taken by sych runtime-MOPs as MetaXa2[16],
Guarana [22] and Iguana/J [23].

Seconfly, Java comes with a set of built-in reflective features, both structural
and behavioral, which can be used as basic building blocks by designers of meta-
programing systems. The best-known reflective feature of Java is the Reflection
API [20]. This API was introduced with JDK 1.1 and provides structural re-
flection: Java programs can discover at runtime what types3 exist inside a JVM
and can inquire about all the constructors, methods, and variables for a given
type. The Reflection API also provides a limited possibility to dynamically in-
voke those reflected members; however this does not come close to full-fledged
behavioral reflection [10].

A third reason why Java is an interesting platform for implementing meta-
programming systems is that Java classes are loaded and linked on demand at
runtime. This class-loading mechanism is itself reflected through objects of type
ClassLoader, which provides the indispensable hook for implementing load-time
MOPs. MOPs in this category usually modify the bytecode for a class at the
moment it is loaded into the JVM.

For these three reasons, a significantly large number of MOPs have been
written for Java. Depending on when meta-level code is executed, MOPs can be
broadly sorted into four categories:

– Compile-time MOPs reflect language constructs available at compile-time
by creating metaobjects to represent things such as classes, methods, loops,
statements, etc. The meta-level code is executed at compile-time in order to
perform a translation on the source code of a program.

– Load-time MOPs reflect on the bytecode and make use of a modified class
loader in order to modify the bytecode at the moment it is loaded into the
JVM. Their behavior if somehow similar to compile-time MOPs, except that
they operate on bytecode rather than on source code.

– VM-based runtime MOPs rely on a modified version of the JVM in order
to intercept things that only exist at runtime such as method invocations
and read or write operations on fields. When such events occur, control is
transferred to meta-level objects that are standard Java objects.

– Proxy-based runtime MOPs introduce hooks into the program, either at
compile-time or load-time, in order to reify runtime events, mostly method
invocation. They do not require any modification to the VM, which explains
why some low-level events cannot be reified.

2.3 Component-Based Architecture and MOPs

As observed in [27], monolithic programs are now being gradually replaced with
programs that are made up of a number of components, originating from various
2 formerly known as MetaJava
3 By type here we mean primitive types, arrays, classes, and interfaces.



260 Denis Caromel and Julien Vayssière

sources and with various levels of trust, plus some application-specific code for
gluing pieces together. This is especially true for Java applications, thanks to the
JavaBeans component model [19] which provides a standardized way to describe
and compose reusable Java components. However, it may happen that a third-
party component lacks a specific non-functional property, such as support for
transactions, persistence, or security. Meta-level protocols have proven to be a
solution of choice for adding non-functional properties to third-party components
[31], and so we will focus on component-based applications for the remainder of
the article.

We will now illustrate the notion of component-based architecture with an
example of a typical application (see Fig.1). This application is composed of five
different components. The application-specific code, which is itself treated as a
component named A, glues together two third-party components, B1 and B2. As
B2 lacks some non-functional property, it is extended with a meta-level behavior
described in component MetaB2 by using a metaobject protocol encapsulated
inside component MOP . It is important to note that both the MOP and the
meta-level classes are considered as components of the application, and as such
are granted some permissions but not necessarily all permissions.

We would like to stress that this example, however typical, does not pretend
to describe or model all possible applications that can be built using MOPs and
meta-level classes. Rather, it should be seen as a first step in the direction of
a general model for talking about the security properties of such applications.
Building such a model is a subject for future research and is beyond the scope
of this paper.

Nevertheless, we think this example is typical enough to describe most inter-
esting cases. First of all, we have three base-level components with all direct and
transitive chains of calls and callbacks between them. Moreover, one of the base-
level components is extended with a meta-level component while the other is not.
One of the components is implicitely using a reified component, and the example
also includes some integration code, which is also packaged as a component.

Arrows on the figure represent possible method calls from one component
to another component. We assume a one-to-one mapping between components
and protection domains, since each component was written by a possibly dif-
ferent principal. Hence, performing method calls from a component to another
component means crossing the boundaries of protection domains. For example,
MetaB2 calls the methods of B2 for executing reified calls originally sent to B2,
as represented by the arrow from MetaB2 to B2. It is worthwhile to mention
here that the absence of an arrow from B2 to MetaB2 is due to the fact that
classes inside B2 are not MOP-aware. We now list all the potential calls between
protection domains for this typical application. This is essential for determining
the protection domains that may appear together on the stack.
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B2B1

MOP

A

MetaB2

Callbacks

Standard Calls

Components

Legend

Fig. 1. Calls and callbacks between components

A → B1, A → B2, A → MOP ,
B1 → B2, MetaB2 → MOP

A client component uses the ser-
vice provided by another compo-
nent.

B1 → A, B2 → A, MOP → A,
B2 → B1, MOP → MetaB2

Callbacks from a component to
one of its client components.

A → MetaB2, B1 → MetaB2 Calls initially sent to B2 inter-
cepted by the MOP for meta-
level processing by MetaB2.

MetaB2 → B2 MetaB2 executes a reified call
originally sent to B2.

MOP → B2 The MOP instantiates a reified
instance of B2.

For completeness, we also list the calls that will not happen and explain why.

B1 9 MOP , MOP 9 B1,
MetaB29 B1

B1 is not MOP-aware. It does
not know that the calls it sends
to B2 are reified.

B29MOP , B29MetaB2 B2 does not have to be MOP-
aware either, which is one of
the advantages of using MOPs
for adapting third-party compo-
nents.

MetaB29 A No callback from meta-level code
to client code.

In the figure and the two tables above, all method calls could be considered
equally important, because we assumed that any chain of calls might trigger an
access check. However, it is not quite true. There are a couple of assumptions
that we can make which help reduce the number of possible chains of calls that
we must consider.
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First, let us notice that calls such as A → MOP and MOP → B2 are
only concerned with creating reified instances of types in B2. We can expect
object creation and initialization not to perform security-sensitive actions, as
these usually happen later on in the life cycle of the object.

Rule 1 The instantiation of reified objects should not perform actions that re-
quire access checks. If such actions must be performed, they should be delayed
until after the construction of the object, for example until the first method call
to the reified object is made (lazy initialization).

The second assumption we would like to make is concerned with callbacks.
Callbacks are method calls sent from a component to one of its client components
through a specific interface in order to notify the client of the occurrence of an
event. Event-based components originated in the realm of graphical user interface
components and are becoming increasingly popular, thanks to the event model
of JavaBeans. Although callbacks are standard method calls, their function is
simply to deliver an event and then return, as opposed to calls from a client
to a component in which a request for a service is made4. As it is not possible
to guarantee that a method, called as part of the delivering of an event, does
not perform an action that requires an access check, the specifications of the
event model strongly recommend that one should perform such actions in a
separate dedicated thread, and thus in a different security context. As callbacks
are normal method calls, the security architecture of Java treats them just like
any other method call. We believe that callbacks, when used according to the
following rule, do not have any consequence security-wise.

Rule 2 Callbacks should not perform actions that may trigger an access check.
If such an action must be performed as the consequence of the callback, it should
rather be done in a separate thread that was created and launched by the compo-
nent that received the callback.

Let us present the immediate benefits of applying this rule in a simple case
with no MOP and no meta-level code. The only components we consider here
are A, B1, and B2. They are connected together as in figure 1. If we call P ,
the function that maps components to the set of permissions of their protection
domain, a call from A to B1 and then to B2 results in the following constraint
on the permission sets of the protection domains:

P (A) ⊇ P (B1) ⊇ P (B2)

If callbacks need to perform actions that require access checks, callbacks from
B2 to B1, and from B1 to A, respectively, add the two following equations:

P (B2) ⊇ P (B1)

4 Although there is no way to actually enforce this property, it is considered in the
Java community to be sound programming practice to do so.



Reflections on MOPs, Components, and Java Security 263

and

P (B1) ⊇ P (A)

and hence, together with the first equation above, this leads to:

P (A) ≡ P (B1) ≡ P (B2)

If the rule above is enforced, we are back to the first constraint, which is far
better as it allows us to maintain the specific permission sets, and hence abide
by the least privilege principle. In the remainder of this article we will use this
example architecture together with the two rules above in order to investigate
the permission issues raised by the use of different kinds of MOPs.

3 Combining Permission Sets with Reflection

We now detail how the different categories of MOPs work and investigate their
impact on security. We will present compile-time MOPs, load-time MOPs, VM-
based runtime MOPs, and proxy-based runtime MOPs. In general, we will con-
sider the most static solution for each MOP. For instance, a compile-time MOP
could be used for implementing a proxy-based runtime MOP, however we will
only consider the case of translations that do not introduce metaobjects at run-
time.

3.1 Compile-Time MOPs

The typical MOP in this category is OpenJava5 [7][28], which inherits most of
the design philosophy of its direct ancestor Open C++ Version 2 [6]. OpenJava
can be seen as an “advanced macro processor” that performs a source-to-source
translation of a set of classes written in a possibly extended version of Java into
a set of classes written in standard Java.

The translation to be applied to a base class is described in a metaclass
associated with the base class. The metaclass is written in standard Java using a
class library that extends the Java Reflection API with new classes for reflecting
language constructs such as assignments, conditional expressions, field accesses,
method calls, variables, type casts, etc. As a result, the object-oriented design of
the library makes writing translations easier and more natural than with Open
C++ where the sole abstraction available to the meta-level programmer is bare
abstract syntax trees.

At first sight, the use of OpenJava does not break the security model of
Java in any way: OpenJava outputs standard Java classes that compile and
run within the standard Java environment and are subject to the same security
restrictions as any Java class. Nevertheless, there is still a little security concern

5 We should also mention Reflective Java [32], a compile-time MOP for intercepting
method invocations.
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with OpenJava. Even though it does not introduce any breach of security as such,
it weakens the protection one might expect because it goes against the principle
of least privilege. OpenJava allows a translation associated with a given base
class to affect classes that may belong to different protection domains than the
protection domain of the base class, and this may blur the fine-grained protection
policy of the security architecture.

OpenJava defines the scope of the translation, expressed in the metaclass
associated with a base class, according to the following rule: a translation can
only affect the base class itself (callee-side translation) or the classes that perform
method calls to the base class (caller-side translation)6.

As a consequence, a caller-side translation may introduce, into all the client
classes of a base class, code that may require additional permissions in order to
run (figure 2). In the typical component-based application presented in figure
1, this means that the meta-level component MetaB2 will be incorporated into
both the application code A and the MOP-unaware component B1 because the
base-level component B2 is reified.

Callbacks

Standard Calls

Components

Legend
A+MetaB2 B1+MetaB2 B2+MetaB2

Fig. 2. Pure compile-time MOP

As OpenJava does not provide a way to tell what are the permissions required
by the bits of code inserted by MetaB2 into the other components, we have
to take the most conservative approach. In order to ensure that the resulting
program does not raise security-related exceptions, the permission sets to be
assigned to the resulting components are:

P (A + MetaB2) = P (A) ∪ P (MetaB2)

P (B1 + MetaB2) = P (B1) ∪ P (MetaB2)

P (B2 + MetaB2) = P (B2) ∪ P (MetaB2)

Which means that the permission set of MetaB2 has to spread to the whole
program. This goes against the principle of least privilege and defeats the purpose
of a fine-grained security architecture.

There is also a problem with the requirement that as soon as a piece of code
is modified by the meta-level (either caller- or callee-side) its set of permissions is

6 Performing caller-side translation implies that all the client classes of the base class
on which the translation is performed are known at the time of the translation.
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expanded to include the permissions of the meta-level code. That is because there
is no way to know what are the permissions required by the code inserted by the
meta-level into the base-level code. Hence the most conservative approach has to
be taken and all the permissions of the meta-level have to be added to the base-
level classes. In the security literature, this problem is known as the composite
principal problem and is of great importance to access control in distributed
systems [1]. We will see that it also appears in run-time MOPs.

As a conclusion to this section, compile-time MOPs present inherent incom-
patibility issues with security but do not raise major security problems. What
might be needed is a companion tool that would help the user understand how
the translations expressed with the MOP affect the permission sets of the caller
and callee protection domains, and also help the user dispatch the permissions
needed by all the different components.

3.2 Load-Time MOPs

In load-time MOPs, meta-level computations take place either only at load-
time or at both load-time and run-time. This leads to two different kinds of
load-time MOPs: pure load-time MOPs and load-time MOPs that are used for
implementing run-time MOPs.

Pure load-time MOPs [8] are close to compile-time MOPs, except that they
operate on the bytecode representation of a class instead of on its source code.
We call these kind of MOPs pure because metaobjects only exist at load-time, as
opposed to load-time MOPs used for implementing run-time MOPs, like Kava
[29], where meta-objects also exist at runtime.

As we can expect, the consequences in terms of permissions are similar to
what we obtained with compile-time MOPs. However, there is one important
difference. A transformation applied to a class in a compile-time MOP may also
affect the client classes for the class, this is what we called caller-side translation
in section 3.1. This is not possible for load-time MOPs since translations have to
be performed at load-time on a class-by-class basis: client classes may have been
loaded before the class the translation is performed on, and it is not allowed to
modify classes after they are loaded inside the JVM [12].

Figure 3 illustrates the situation at runtime. The components MOP and
MetaB2 have disappeared, since they only exist at load-time. For pure load-
time MOPs we have

P (B2 + MetaB2) = P (B2) ∪ P (MetaB2)

and hence

P (A) ⊇ P (B1) ⊇ P (B2 + MetaB2)

Again, the problem of the composite principal (B2 + MetaB2 in the above
two statements) appears. It is actually a harder problem than one might first
imagine because the meta-level transformation performed on B2 may add some
code that requires permissions that are not needed for the execution of either B2
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or MetaB2. For instance, MetaB2 might include, within a string, the instruction
to be added into B2, for example new File().write(...). It seems impossible
to correctly determine the set of permissions required by B2+MetaB2 without
the cooperation of the meta-level code.

B1A

Callbacks

Standard Calls

Components

Legend
B2+MetaB2

Fig. 3. Pure load-time MOP

The second category of load-time MOPs contains MOPs, such as Kava [29],
which modify the bytecode of a class at load-time in order to introduce hooks
that implement a shift from the base-level to the meta-level at some specific
reification points in the code, usually on entering or leaving a method, or on
reading from or writing to a field. This is why we say Kava is a run-time MOP
implemented through load-time transformations of the code.

We can assume that the code inserted into the base-class does not trigger any
security check, since it is simply responsible for sending calls to the meta-level.
In our example, this means that the permission set required by B2 remains
the same, and the scenario at runtime is close to the one presented in figure
1. However there is one assumption made by the authors of Kava that greatly
simplifies the problem: both the MOP classes (MOP ) and the meta-level classes
(MetaB2) are assumed to be part of the “trusted computing base”, which means
that these classes are granted the same permissions as the classes in packages
java.*, namely all permissions.

As a result, computing the intersection of the permission sets on the stack
at any moment no longer depends on the permissions of components MOP and
MetaB2, and so we are back to a scenario without any meta-level components,
as is illustrated in figure 4. This means that base-level access checks remain
the same as in a non MOP-enabled version of the application. Meta-level access
checks will not be a problem, as long as they are performed inside doPrivileged
blocks, so as to exclude base-level classes when computing the intersection of the
permission sets.

To conclude this section, load-time MOPs either suffer almost from the same
problem as compile-time MOPs or manage to solve the problem with permissions
at the expense of granting meta-level classes with all permissions.

3.3 VM-Based Runtime MOPs

MetaXa [16] and Guaraná [22] are two examples of VM-based run-time MOPs.
They both rely on a modified version of the JVM. Guaraná is implemented using
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B2B1A

Callbacks

Standard Calls

Components

Legend

MetaB2

Fig. 4. Load-time MOP for implementing a run-time MOP

a modified version of the freely-available Kaffe virtual machine and MetaXa
extends the virtual machine with a collection of native methods put together in
a dynamic C library.

If our example application were run using such a MOP, there would be no
modification to the set of permissions required by B2 because the interception
mechanism is no longer visible as a standard call on meta-objects, but instead
is buried deep inside the JVM.

B2B1A

MetaB2

Callbacks

Standard Calls

MOP+VM

Components

Legend

VM−controlled calls

Fig. 5. VM-based Runtime MOPs

It is difficult to express relations between the different permission sets as we
did for the previous kinds of MOPs since run-time MOPs have the power to
alter the security architecture because they have access to the inner workings of
the JVM. The very fact that these MOPs rely on a modified version of the JVM
is not necessarily a security problem, instead it is actually a software diffusion
problem.
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Even if we trust the implementers of the MOPs, how can we control the
enormous power given to the meta-level developer by letting him access and
modify the internal data structures of the virtual machine, for example the
state of the execution stack of a thread which is central to the decision-making
algorithm of the security architecture of Java ?

If we assume that these potentially dangerous mechanisms are only used for
intercepting the events that we want to see reified, then we are back to the
security constraints of load-time MOPs used for implementing run-time MOPs.
One hidden assumption about Java’s security architecture is that all actions
are performed through method calls. If a meta-level method is called as the
consequence of, for example, reading a field or releasing a lock on an object, the
behavior of the security architecture is not clear. To the best of our knowledge,
all VM-based runtime MOPs were designed for versions of Java prior to Java 2,
which explains why no attention at all has been paid to this problem.

3.4 Proxy-Based Runtime MOPs

Just like VM-based runtime-MOPs, Proxy-based runtime MOPs such as RJava
[9] or ProActive[5], reify things that only exist at runtime, like object creation or
method calls. The difference is that proxy-based runtime-MOPs are targeted at
the standard Java runtime environment and do not rely on a specialized VM. As
a consequence, there are things that VM-based MOPs can reify that proxy-based
MOPs cannot, such as field access or operations on object locks.

The interception mechanism usually follows the Proxy design pattern [11]: a
surrogate object with the same interface as the reified object acts as the reified
object for its clients, intercepts method calls, and sends reified method calls to
the meta-level.

B2B1

MOP

A

MetaB2

Callbacks

Standard Calls

Proxy−controlled Calls

Components

Generated proxies

Legend

Fig. 6. Proxy-based Runtime MOPs

One can further differentiate polymorphic run-time MOPs when the reference
returned by the MOP on the instantiation of a reified object is compatible with
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the original class of the reified object. For instance, a standard class C can be
instantiated with a MOP together with a meta-object of type M , and assigned
to a variable of type A. The Java pseudo-code for this would be:

C c = (C) MOP.newReified (‘‘C’’, ‘‘M’’);

This feature is quite important if one wants to be able to use reified instances
of C in a component that was originally designed to be a client of objects of type
C7. In ProActive, for example, the objects that intercept method calls are called
stubs. They are instances of classes that are subtypes of the class of the object
that is reified. Stub classes are generated and compiled on demand at runtime.
As all classes involved in a reified call are normal Java classes and the execution
environment is absolutely standard, all the protection domains involved appear
on the stack.

As a result, in the general case of proxy-based runtime MOPs, the meta-level
component has to include the permission sets of the component it reflects on:

P (MetaB2) ⊇ P (B2)

Note that, by contrast with the VM-based case, there seems to exist no means
to avoid it. However, such a restriction is quite fair and moderate and should not
be an obstacle to the use of reflection in secure component-based architectures.

Also, as can be seen from the chain of calls in the case of reified object
creation, we call the MOP component to trigger the creation, then the meta-
level code MetaB2, and finally the base code B2. Hence, the permissions of the
MOP have to be at least equal to the permissions of MetaB2, which should be
enough. So we have:

P (MOP ) ⊇ P (MetaB2)

To generalize, the permissions of the MOP in that case have to be at least
the union of the permission sets of all the meta-level components.

3.5 doPrivileged and Summary

As explained in section 2.1, the doPrivileged construct allows us to limit the
computation of the intersection of the permissions to the current protection
domains after doPrivileged is invoked. We now examine how this feature may
influence the constraints on the permission sets of our example application.

Usually, doPrivileged calls are found in standard libraries in order to exe-
cute security-sensitive method calls which are well-understood (such as reading
font files from a fonts directory) and are not a security threat, whatever the
permission set of the class that calls the method is.

For compile-time and pure load-time MOPs, one might be tempted to add
doPrivileged calls into MetaB2 in order to alleviate the need to take the
7 Note that the new dynamic proxy feature of the Reflection API only allows dynamic
stub generation for interfaces but not for classes.
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union of P (B2) and P (MetaB2) for the set of permissions of the resulting class.
However, this does not work because at runtime the resulting class belongs to a
single composite principal.

On the other hand, using the doPrivileged construct proves interesting for
run-time MOPs as it alleviates the following constraint:

P (A) ⊇ P (B1) ⊇ P (MetaB2)

An example of this is when MetaB2 requires permissions that we do not
want to give to the principal of B1. This means that MetaB2 no longer has to
worry about the permission sets of the classes that perform reified calls, and the
constraint above is no longer required to hold.

Let us now summarize the constraints on permission sets that we obtained
for all the different kinds of MOPs:

Compile-time

(P (A) ∪ P (MetaB2)) ⊇ (P (B1) ∪ P (MetaB2)) ⊇ (P (B2) ∪ P (MetaB2))

Pure load-time

P (A) ⊇ P (B1) ⊇ (P (B2) ∪ P (MetaB2))

Run-time VM-based

P (A) ⊇ P (B1) ⊇ P (MetaB2) ⊇ P (B2)

Run-time proxy-based

P (A) ⊇ P (B1) ⊇ P (MOP ) ⊇ P (MetaB2) ⊇ P (B2)

Fig. 7. Summary of the constraints on the permission sets

4 Related Work: MOP-Based Security Enforcement

The idea of using MOPs for expressing and implementing security policies is not
a new one. The security aspect of an application has long been recognized as
fairly orthogonal to functional code, although this point has never, to the best
of our knowledge, been thoroughly investigated.

A metaobject that intercepts method invocations for an object that repre-
sents a resource to be secured is the ideal place for implementing access control
checks without having to mix functional code with security-related code. In a
model based on capabilities, a metaobject attached to a reference can control
the propagation of the capability across protection domains. Riechmann [24], for
example, proposes a model in which metaobjects, attached to the boundary of a
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component, control how references to objects that live inside the component are
transmitted to other components. It dynamically attaches security metaobjects
to these references according to the level of trust of the component the reference
is transmitted to.

A similar idea was developed with the concept of Channel Reification [18, 2].
This model enhances the message reification model with the notion of history (or
state). The model was implemented in Java as part of a history-dependent access
control mechanism [3] that goes beyond the well-known access matrix model [25],
which is essentially a stateless access control mechanism. The channel reification
model is also claimed to be superior to the meta-object model where a single
metaobject monitors all access to a resource because it works with method-level
granularity and can be used for implementing role-based access models [26] which
are particularly well-suited to distributed object-oriented computing.

Another instance of using MOPs for implementing security policy is presented
in [30]. The idea here is to use the load-time MOP Kava (see 3.2) in order to
adapt third-party components to meet real-world security requirements. The
authors contrast their approach with the wrapper-based approach adopted by
the Enterprise Java Beans framework and argue that load-time MOPs provide
a cleaner implementation of meta-level security policies. In addition, having a
separate meta-level for the security policy attached to a component eases the
expression of any kind of high-level security mechanisms, while the wrapper-
based approach seems less expressive and is in fact only appropriate for enforcing
access control on resources.

These experiments proved the feasibility of using MOPs for implementing
security policies. Another issue is to know if this approach is worthwhile, i.e.
if the expression of a security policy at the metalevel is orthogonal enough to
functional code for this approach to be used in real-world applications.

In the context of Java, the very fact that the declaration of which permissions
are granted to which piece of code (the policy file) is separated from the source
code might be interpreted as a proof that functional code and the declaration
of security policies are orthogonal. However, there is at least one hint that func-
tional code and security are not that orthogonal. In practice, the security policy
as described in the policy file is unworkable if the code does not make use of the
doPrivileged call for bypassing part of the security mechanism.

5 Conclusion

We first defined a classification of MOPs based on the time of reflection shift
(compile-time, load-time, run-time VM-based, run-time proxy-based). From that
basis, and within a typical component-based reflective application, we have
demonstrated that the type of MOP being used greatly impacts the constraints
on permission sets.

A compile-time MOP globally imposes the constraint that the permissions of
a meta component have to be added to the corresponding base-level component,
and moreover, to all its client components. More generally, if a meta component
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reflects on several base components, the former permissions will have to spread to
all the base components and to all their clients. This fact might be an important
security concern as meta-level code can potentially require high permissions (for
instance in order to write persistent data on disk) that would be dangerous to
associate to untrusted reflected-on components.

A similar problem, but with less consequences, occurs with load-time MOPs
as the meta-level permissions only need to spread to the base-level class, and
not to all the clients. That is still an important issue to take into account.

In the case of run-time proxy-based MOPs, the only constraint seems to be
the inclusion of the meta-level permission set within its base-level permission set.
Indeed, this is a rather reasonable constraint. When the technique of generated
proxies is used, the proxy code must also have at least the base-code permissions.
Furthermore, if several meta-level components are used, the permissions of the
MOP have to be at least the union of all their permissions.

Finally, a run-time VM-based MOP in theory implies similar constraints
as a run-time proxy-based MOP. However, as the MOP is actually within the
modified VM, the constraints can be alleviated by the MOP implementer if
needed. This MOP architecture, besides its specific software diffusion limitation,
raises the problem of letting the meta-level control the inner working of the VM.
A solution might be to define specific MOP permissions to provide the integrator
with the ability to control and enforce, in a declarative manner, what can be
reflected on within the VM.
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